Zadania z ułamkami. Obliczenia czasowe

Wielkość: px
Rozpocząć pokaz od strony:

Download "Zadania z ułamkami. Obliczenia czasowe"

Transkrypt

1 Przykładowe zadania do etapu szkolnego i do etapu powiatowego Konkursu Matematycznego dla uczniów klas V. (zadania z poprzednich edycji konkursu) Zadania z ułamkami. Zad. 1. (2 pkt) Pod kasztanowcem leżały kasztany. Jaś wziął z nich, a Małgosia tylko cztery kasztany. Razem mieli wszystkich kasztanów. Ile kasztanów zostało pod kasztanowcem? Zad.2. (2pkt) W pewnej klasie wszystkich uczniów najbardziej z czterech pór roku lubi wiosnę, - lato, a - zimę. Zakładając, że każdy uczeń ma jedną ulubioną porę, jaka część klasy najbardziej lubi jesień? Zad. 3. (3pkt)) Dwie maszyny kopały z dwóch stron tunel długości 15 km. Pierwsza maszyna przekopała 0,2 długości tunelu, a druga 0,4 pozostałej części. Ile kilometrów tunelu pozostało do przekopania? Ile to metrów? Obliczenia czasowe Zad.4.(3pkt) Jas zjada pizzę w 10 minut, Małgosia w 15 minut na godzinę. W ile minut zjedzą razem wspólną pizzę? Zad. 5. (3pkt) Dzisiaj jest 24 maja. Jaki dzień tygodnia będzie za miesiąc 24 maja?

2 Zad. 6.(4pkt) Przeglądając kalendarz, można zauważyć, że w najdłuższym dniu w roku Słońce wschodzi o godzinie 4 14, a zachodzi o godzinie (według czasu letniego). Natomiast w najkrótszym dniu w roku Słońce wschodzi o 7 43, a zachodzi o (według czasu zimowego). Ile trwa najdłuższy, a ile najkrótszy dzień w roku? O ile dłuższy od najkrótszego jest najdłuższy dzień? Obliczenia pieniężne Zad. 7.(3pkt) Tomek ma w lewej kieszeni monety dwugroszowe, a w prawej dziesięciogroszowe. W lewej kieszeni ma tyle samo pieniędzy co w prawej, razem 2,60 zł. Ile monet ma Tomek? Zad. 8.(4pkt) Na wykonanie stroju kosmicznego Dorota kupiła 1,5 m materiału po 20 zł za metr oraz 4,5 m tasiemki po3 zł za metr. Zapłaciła banknotem 50 złotowym. Czy wystarczy jej jeszcze na kupno 15 ozdobnych guzików w cenie 40 groszy za jedną sztukę? Zad 9 (2pkt) Kasia zbiera pieniądze na telefon komórkowy. Zebrała już 50 zł. Ile kosztuje ten telefon? całej kwoty. Musi zebrać jeszcze Zadania ze skalą Zad. 10.(3pkt) Odległość między miastami A i B wynosi 150 km. Na pewnej mapie odległość ta równa jest 30 cm. Podaj skalę tej mapy. Zad. 11.(4pkt) Architekt ma dwa plany tego samego budynku: jeden w skali 1 : 20, drugi w skali 1 : 50. Oblicz szerokość fasady tego budynku na planie w skali 1 : 50, jeśli na planie w skali 1 : 20 jest ona równa 20 cm. Zad.12.(4pkt) Grupa dzieci wzięła udział w 3-dniowym rajdzie rowerowym. Pierwszego dnia uczestnicy rajdu pokonali trasę 32 km, drugiego dnia o 12 km więcej niż pierwszego, a trzeciego o 8 km mniej niż drugiego dnia. Czy długość trasy rajdu jest mniejsza od 70 mil? Narysuj w skali

3 1 : odcinki, przedstawiające drogę przebytą w każdym dniu. Uwaga: 1 mila lądowa = 1609,344m. Zadania różne. Zad. 13. (3pkt) Prostokątna działka ma wymiary 15m x 25m. Dom ma stać co najmniej 3m od granicy działki. Jaka jest powierzchnia tej części działki, na której można zbudować dom? Wykonaj rysunek pomocniczy. Zad.14.(3pkt) Gumowy kwadrat rozciągamy tak, że jeden z boków wydłuża się o 2 cm, a drugi o 4 cm. Utworzony w ten sposób prostokąt ma obwód równy 24 cm. Oblicz. Oblicz długość boku kwadratu i jego pole. Zad. 15. (3 pkt.) Jaś przychodzi do pracowni internetowej codziennie, Karol co dwa dni, Staś co trzy dni, Adaś co 4 dni, Paweł co pięć dni i Piotr co sześć dni. Dziś (24 maja) pracownię odwiedzili wszyscy. Kiedy ponownie wszyscy do niej zawitają? Podaj datę. Zadania zamknięte. 1. Ile pełnych dziesiątek jest w liczbie A. 22 B. 221 C. 220 D Cyfra jedności sumy pięciu kolejnych liczb nieparzystych jest równa: A. 1 B. 7 C. 5 D Dana jest liczba O ile musisz zwiększyć jedną z cyfr, aby otrzymana liczba była podzielna przez 9? A. 1 B. 3 C. 4 D Której liczby suma cyfr jest liczbą pierwszą? A. 257 B C D Wartość, którego wyrażenia jest dzielnikiem liczby 350? A B. 5 (6 3) B. C D

4 6. Napisano cztery różne liczby, z których każda następna jest o 7 mniejsza od poprzedniej. Ostatnią liczbą jest 23.Ile wynosi suma tych liczb? A. 50 B. 134 C. 128 D Czterech robotników wykonało pewną pracę. Pierwszy wykonał, drugi, trzeci całej pracy, a czwarty resztę. Który z robotników wykonał największą, a który najmniejszą część pracy? A. Największą pierwszy, najmniejszą czwarty, B. Największą drugi, najmniejszą pierwszy, C. Największą trzeci, najmniejszą czwarty, D. Największą trzeci, najmniejszą pierwszy, 8. Które zdania są prawdziwe? I. Suma godziny i godziny, to 69 minut? II. Różnica 1 godziny i godziny jest o 5 minut mniejsza od jednej godziny? III. 2,4 godziny, to 2 godziny i 40 minut? IV. Lekcja trwa dłużej niż godziny, a krócej niż godziny? A. I i II B. I i III C. I i II i IV D. I i II i III 9. Suma cyfr liczby ( - ) wynosi A. 2 B. 27 C. 7 D Suma wszystkich liczb pierwszych, które są dzielnikami liczby 330 wynosi: A. 10 B. 16 C. 21 D. 14

5 Zad. 1. (1pkt ) Jaką cyfrę jedności ma suma pięciu kolejnych liczb nieparzystych? A 7 B 12 C 25 D 5 Zad. 2. (1pkt ) Poniżej, podano według pewnej reguły, cztery wskazania zegara. 3 : 12 4 :20 5 : 30 6 : 42 Odgadnij tę regułę i wskaż zgodnie z nią kolejne wskazanie zegara. A 7 : 50 B 7 :52 C 7 : 33 D 7 : 56 Zad. 3. (1pkt ) Było 7 patyków, ale niektóre z nich połamano na trzy części i teraz jest siedemnaście patyków. Ile patyków połamano? A 4 B 5 C 6 D 3 Zad. 4. (1pkt ) Ile może być niedziel w roku? A 52 B 52 lub 53 C więcej niż 52 D mniej niż 53 Zad. 5. (1pkt ) W pewnym trójkącie każdy kąt jest mniejszy od sumy dwóch pozostałych kątów. Jaki to trójkąt? A prostokątny B rozwartokątny C ostrokątny D nie ma takiego trójkąta Zad. 6. (1pkt ) W pewnym czworokącie, każdy następny kąt jest dwa razy większy od poprzedniego. Miara najmniejszego kąta wynosi: A 20 B 30 C 24 D 36 Zad. 7. (1pkt ) Na diagramie wystarczy zmienić jedną cyfrę i wówczas każde dwie sąsiednie cyfry będą wyznaczały dwucyfrową liczbę pierwszą. Która cyfrę należy zmienić? A 5 B 1 C 3 D 7 Zad. 8. (1pkt ) Kwadrat podzielono na dwa prostokąty, z których jeden ma obwód 32 cm, a drugi 28 cm. Pole kwadratu jest równe:

6 A 100cm² B 64cm² C 49cm² D 36cm² Zad. 9. (1pkt ) Długości boków trójkąta równoramiennego wyrażają się liczbami całkowitymi. Jeden bok ma długość 2 cm, drugi 5 cm. Obwód tego trójkąta wynosi: A 8 cm B 9 cm C 10 cm D 12 cm Zad. 10. (1pkt ) Która liczba oznacza zapis MCDLX? A 1460 B 452 C 56 D MDCCL

KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych 24 stycznia 2015 r. zawody II stopnia (rejonowe)

KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych 24 stycznia 2015 r. zawody II stopnia (rejonowe) Kod ucznia Liczba zdobytych punktów KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych 24 stycznia 205 r. zawody II stopnia (rejonowe) Drogi Uczniu, przed Tobą test składający się z 3 zadań.

Bardziej szczegółowo

Życzymy powodzenia w rozwiązywaniu zadań!

Życzymy powodzenia w rozwiązywaniu zadań! Kod Ucznia Porąbka Uszewska, 21 maja 2014 r. Test Liczba punktów za zadanie otwarte Zad. 1-13 1 2 3 4 5 6 7 8 9 10 razem POWIATOWY KONKURS MATEMATYCZNY DLA UCZNIÓW KLAS V ETAP FINAŁOWY Celem obliczeń nie

Bardziej szczegółowo

KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych 24 marca 2017 r. zawody III stopnia (wojewódzkie)

KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych 24 marca 2017 r. zawody III stopnia (wojewódzkie) Kod ucznia Liczba zdobytych punktów KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych 24 marca 2017 r. zawody III stopnia (wojewódzkie) Drogi Uczniu, przed Tobą test składający się z 24

Bardziej szczegółowo

P o w o d z e n i a!

P o w o d z e n i a! Powiatowy Konkurs Matematyczny dla uczniów klas V Etap finałowy Imię i nazwisko Szkoła Miejscowość Gratulujemy Ci zakwalifikowania się do etapu finałowego konkursu. Na rozwiązanie 14 zadań masz 75 minut.

Bardziej szczegółowo

ZADANIA KONKURSOWE Z MATEMATYKI dla klasy IV szkoły podstawowej

ZADANIA KONKURSOWE Z MATEMATYKI dla klasy IV szkoły podstawowej XVI MIĘDZYSZKOLONA LIGA PRZEDMIOTOWA PŁOCK 2010 ZADANIA KONKURSOWE Z MATEMATYKI dla klasy IV szkoły podstawowej Opracowanie: mgr Władysława Paczesna 1 Zapraszamy Cię do wzięcia udziału w Międzyszkolnej

Bardziej szczegółowo

2a a a + 5 = 27 6a + 9 = % 18 = = 54

2a a a + 5 = 27 6a + 9 = % 18 = = 54 Wojewódzki Konkurs matematyczny dla uczniów szkół podstawowych od klas IV województwa pomorskiego, rok szkolny 2017/2018 Etap II - rejonowy W kluczu przedstawiono przykładowe rozwiązania oraz prawidłowe

Bardziej szczegółowo

x Kryteria oceniania

x Kryteria oceniania Wojewódzki Konkurs z matematyki dla uczniów szkół podstawowych rok szkolny 216/21 Etap I - szkolny W kluczu przedstawiono przykładowe rozwiązania oraz prawidłowe odpowiedzi. Za każdą inną poprawną metodę

Bardziej szczegółowo

Szkolna Liga Matematyczna zestaw nr 3 dla klasy 3

Szkolna Liga Matematyczna zestaw nr 3 dla klasy 3 zestaw nr 3 dla klasy 3 W magazynie stoją dwa worki z ryżem. W pierwszym worku jest trzykrotnie więcej ryżu niż w drugim, a w drugim o 24 kg mniej niż w pierwszym. Ile ryżu znajduje się łącznie w obydwu

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY

WOJEWÓDZKI KONKURS MATEMATYCZNY WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM W ROKU SZKOLNYM 2018/2019 Schemat punktowania zadania zamknięte Za każdą poprawną odpowiedź uczeń otrzymuje 1 punkt. Numer zadania Poprawna odpowiedź

Bardziej szczegółowo

Sprawdzian 1. Zadanie 3. (0 1). Dokończ poniższe zdanie wybierz odpowiedź spośród podanych.

Sprawdzian 1. Zadanie 3. (0 1). Dokończ poniższe zdanie wybierz odpowiedź spośród podanych. Sprawdzian Zadanie. (0 ). Podaj poprawne wartości poniższych wyrażeń arytmetycznych. Wybierz liczbę spośród oznaczonych literami A i B oraz liczbę spośród oznaczonych literami C i D. 27 7 2 A / B A. 3

Bardziej szczegółowo

KONKURS MATEMATYCZNY DLA KLASY IV

KONKURS MATEMATYCZNY DLA KLASY IV DLA KLASY IV Zadanie 1. Wartość wyrażenia ( 2 ) : + (100 : 4 +2 6)= wynosi: a)1 b) c) 2 d) 41 Zadanie 2. Klientka płaci banknotem 100- złotowym za 2 kostki masła po zł, 6 jajek po 40 gr., bułek po 1zł,

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2017/2018

WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2017/2018 Etap szkolny 20 listopada 2017 r. Godzina 9.00 Imię/ Imiona ucznia - Nazwisko ucznia - klasa - Instrukcja dla ucznia 1. Sprawdź, czy zestaw zawiera 7 stron. Ewentualny brak stron lub inne usterki zgłoś

Bardziej szczegółowo

Sprawdzian z matematyki na rozpoczęcie nauki w pierwszej klasie gimnazjum

Sprawdzian z matematyki na rozpoczęcie nauki w pierwszej klasie gimnazjum WYPEŁNIA UCZEŃ Kod ucznia Sprawdzian z matematyki na rozpoczęcie nauki w pierwszej klasie gimnazjum Informacje dla ucznia. Sprawdź, czy sprawdzian ma 7 stron. Ewentualny brak stron lub inne usterki zgłoś

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2015/2016

WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2015/2016 Etap wojewódzki 20 lutego 2016 r. Godzina 11.00 Kod ucznia Instrukcja dla ucznia Zanim przystąpisz do rozwiązywania arkusza przepisz na tę stronę Kod ucznia z karty kodowej. 1, Sprawdź, czy zestaw zawiera

Bardziej szczegółowo

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH Etap Wojewódzki

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH Etap Wojewódzki Kod ucznia - - Dzień Miesiąc Rok pieczątka WKK DATA URODZENIA UCZNIA KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH Etap Wojewódzki Drogi Uczniu Witaj na III etapie konkursu matematycznego. Przeczytaj

Bardziej szczegółowo

PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa V szkoła podstawowa 2016r.

PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa V szkoła podstawowa 2016r. PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa V szkoła podstawowa 2016r. KARTA PUNKTACJI ZADAŃ (wypełnia komisja konkursowa): Numer zadania Zad. 1 Zad. 2 Zad. 3 Zad. 4 SUMA PUNKTÓW Poprawna Zad.

Bardziej szczegółowo

KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych województwa lubuskiego 14 stycznia 2012 r. zawody II stopnia (rejonowe)

KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych województwa lubuskiego 14 stycznia 2012 r. zawody II stopnia (rejonowe) Kod ucznia Ilość zdobytych punktów KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych województwa lubuskiego stycznia 0 r. zawody II stopnia (rejonowe) Drogi Uczniu, przed Tobą test składający

Bardziej szczegółowo

Kuratorium Oświaty w Lublinie ZESTAW ZADAŃ KONKURSOWYCH Z MATEMATYKI DLA UCZNIÓW SZKOŁY PODSTAWOWEJ ROK SZKOLNY 2014/2015 ETAP WOJEWÓDZKI

Kuratorium Oświaty w Lublinie ZESTAW ZADAŃ KONKURSOWYCH Z MATEMATYKI DLA UCZNIÓW SZKOŁY PODSTAWOWEJ ROK SZKOLNY 2014/2015 ETAP WOJEWÓDZKI Kuratorium Oświaty w Lublinie KOD UCZNIA ZESTAW ZADAŃ KONKURSOWYCH Z MATEMATYKI DLA UCZNIÓW SZKOŁY PODSTAWOWEJ ROK SZKOLNY 2014/2015 ETAP WOJEWÓDZKI Instrukcja dla ucznia 1. Zestaw konkursowy zawiera 14

Bardziej szczegółowo

6 MARCA 2018 BIALSKA LIGA MATEMATYCZNA PUBLICZNE GIMNAZJUM NR 2 W BIAŁEJ PODLASKIEJ VI EDYCJA 3 ETAP KLASA IV SZKOŁA

6 MARCA 2018 BIALSKA LIGA MATEMATYCZNA PUBLICZNE GIMNAZJUM NR 2 W BIAŁEJ PODLASKIEJ VI EDYCJA 3 ETAP KLASA IV SZKOŁA GRUPA A 6 MARCA 2018 BIALSKA LIGA MATEMATYCZNA PUBLICZNE GIMNAZJUM NR 2 W BIAŁEJ PODLASKIEJ VI EDYCJA 3 ETAP KLASA IV IMIĘ I NAZWISKO SZKOŁA KLASA Masz do rozwiązania 12 zadań, za które możesz otrzymać

Bardziej szczegółowo

PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa IV szkoła podstawowa 2012

PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa IV szkoła podstawowa 2012 PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa IV szkoła podstawowa 202 KARTA PUNKTACJI ZADAŃ (wypełnia komisja konkursowa): Numer zadania Zad. Zad. 2 Zad. 3 Zad. 4 Poprawna odpowiedź Zad. 5 Zad.

Bardziej szczegółowo

Małopolski Konkurs Matematyczny r. etap wojewódzki

Małopolski Konkurs Matematyczny r. etap wojewódzki Kod ucznia Miejsce na metryczkę ucznia Drogi Uczniu! Małopolski Konkurs Matematyczny dla uczniów szkół podstawowych województwa małopolskiego Etap wojewódzki rok szkolny 2014/2015 1. Przed Tobą zestaw

Bardziej szczegółowo

KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych 9 stycznia 2016 r. zawody II stopnia (rejonowe)

KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych 9 stycznia 2016 r. zawody II stopnia (rejonowe) Kod ucznia Liczba zdobytych punktów KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych 9 stycznia 2016 r. zawody II stopnia (rejonowe) Drogi Uczniu, przed Tobą test składający się z 31 zadań.

Bardziej szczegółowo

Małe olimpiady przedmiotowe

Małe olimpiady przedmiotowe Małe olimpiady przedmiotowe Test z matematyki Organizatorzy: Wydział Edukacji Urzędu Miasta Centrum Edukacji Nauczycieli Szkoła Podstawowa Nr 17 Szkoła Podstawowa Nr 18 Drogi Uczniu, przeczytaj uwaŝnie

Bardziej szczegółowo

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ...... kod pracy ucznia pieczątka nagłówkowa szkoły KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP SZKOLNY Drogi Uczniu, witaj na I etapie konkursu matematycznego. Przeczytaj uważnie instrukcję

Bardziej szczegółowo

Szkolna Liga Matematyczna zestaw nr 4 dla klasy 3

Szkolna Liga Matematyczna zestaw nr 4 dla klasy 3 zestaw nr 4 dla klasy 3 Muchy mają po 6 nóg. Ile par butów potrzebuje rodzina much złożona z mamy, taty i dziecka? Jeśli teraz wskazówka minutowa zegarka jest na czwórce, to za ile minut będzie na ósemce?

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY

WOJEWÓDZKI KONKURS MATEMATYCZNY Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJÓW W ROKU SZKOLNYM 2017/2018 04.01.2018 1. Test konkursowy zawiera 20 zadań. Są to zadania zamknięte i otwarte. Na ich rozwiązanie

Bardziej szczegółowo

PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa V szkoła podstawowa marzec 2015

PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa V szkoła podstawowa marzec 2015 PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa V szkoła podstawowa marzec 205 KARTA PUNKTACJI ZADAŃ (wypełnia komisja konkursowa): Numer zadania Zad. Zad. 2 Zad. 3 Zad. 4 Zad. 5 Zad. 6 Zad. 7

Bardziej szczegółowo

WIOLETTA NAWROCKA nauczyciel matematyki w Zespole Szkół w Choczewie IDĘ DO GIMNAZJUM ZADANIA TESTOWE Z MATEMATYKI DLA UCZNIÓW KL. VI.

WIOLETTA NAWROCKA nauczyciel matematyki w Zespole Szkół w Choczewie IDĘ DO GIMNAZJUM ZADANIA TESTOWE Z MATEMATYKI DLA UCZNIÓW KL. VI. WIOLETTA NAWROCKA nauczyciel matematyki w Zespole Szkół w Choczewie IDĘ DO GIMNAZJUM ZADANIA TESTOWE Z MATEMATYKI DLA UCZNIÓW KL. VI. Przeczytaj uważnie pytanie. Chwilę zastanów się. Masz do wyboru cztery

Bardziej szczegółowo

ZADANIA MATEMATYCZNE DLA UCZNIÓW KLAS VI zestaw drugi.

ZADANIA MATEMATYCZNE DLA UCZNIÓW KLAS VI zestaw drugi. ZADANIA MATEMATYCZNE DLA UCZNIÓW KLAS VI zestaw drugi. 21. Za bilety wstępu do pijalni wód mineralnych dla 4 osób dorosłych i 40 dzieci zapłacono 106 zł. Bilet dla osoby dorosłej kosztował 3,50 zł. Ile

Bardziej szczegółowo

EGZAMIN ÓSMOKLASISTY MATEMATYKA

EGZAMIN ÓSMOKLASISTY MATEMATYKA www.galileusz.com.pl EGZAMIN ÓSMOKLASISTY MATEMATYKA ARKUSZ 100 minut 30 Zadanie 1. (0-1) Dane są liczby:,,,. Suma trzech spośród nich wynosi. Którą liczbę należy odrzucić, aby suma pozostałych trzech

Bardziej szczegółowo

MATEMATYKA. Pierwszy próbny sprawdzian w szóstej klasie szkoły podstawowej. Karty pracy

MATEMATYKA. Pierwszy próbny sprawdzian w szóstej klasie szkoły podstawowej. Karty pracy MATEMATYKA Pierwszy próbny sprawdzian w szóstej klasie szkoły podstawowej Karty pracy Copyright by Wydawnictwa Szkolne i Pedagogiczne sp. z o.o., Warszawa 2011 Test Zadania wyrównujące Numer zadania Karty

Bardziej szczegółowo

Zestaw powtórzeniowy z matematyki dla uczniów kl II PG nr 3. Część 2 (własności i pola figur płaskich, wyrażenia algebraiczne)

Zestaw powtórzeniowy z matematyki dla uczniów kl II PG nr 3. Część 2 (własności i pola figur płaskich, wyrażenia algebraiczne) Zestaw powtórzeniowy z matematyki dla uczniów kl II PG nr 3 Część 2 (własności i pola figur płaskich, wyrażenia algebraiczne) 1. W którym przypadku z podanych odcinków można zbudować trójkąt? a) 8cm; 1,2dm

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne

Wymagania na poszczególne oceny szkolne Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane poszczególnym

Bardziej szczegółowo

Bukiety matematyczne dla szkoły podstawowej

Bukiety matematyczne dla szkoły podstawowej Bukiety matematyczne dla szkoły podstawowej http://www.mat.uni.torun.pl/~kolka/ 8 X 2002 Bukiet 1 Dany jest sześciokąt ABCDEF, którego wszystkie kąty są równe 120. Proste AB i CD przecinają się w punkcie

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów rok szkolny 2015/2016 Etap I szkolny

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów rok szkolny 2015/2016 Etap I szkolny Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów rok szkolny 2015/2016 Etap I szkolny W kluczu przedstawiono przykładowe rozwiązania oraz prawidłowe odpowiedzi. Za każdą inną poprawną metodę rozwiązania

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne

Wymagania na poszczególne oceny szkolne Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane poszczególnym

Bardziej szczegółowo

KONKURS MATEMATYCZNY dla uczniów szkół podstawowych w roku szkolnym 2013/2014. I stopień zawodów ( szkolny) 15 października 2013

KONKURS MATEMATYCZNY dla uczniów szkół podstawowych w roku szkolnym 2013/2014. I stopień zawodów ( szkolny) 15 października 2013 KONKURS MTEMTYZNY dla uczniów szkół podstawowych w roku szkolnym 201/201 I stopień zawodów ( szkolny) 15 października 201 Propozycja punktowania rozwiązań zadań Uwaga: Za każde poprawne rozwiązanie inne

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Szkolny 16 listopada 2018 Rozwiązania i punktacja

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Szkolny 16 listopada 2018 Rozwiązania i punktacja Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Szkolny 16 listopada 018 Rozwiązania i punktacja ZADANIA ZAMKNIĘTE W zadaniach od 1. do 10. wybierz i zaznacz na karcie odpowiedzi jedną poprawną

Bardziej szczegółowo

Międzyszkolne Zawody Matematyczne Klasa I LO i I Technikum - zakres podstawowy Etap wojewódzki 02.04.2005 rok Czas rozwiązywania zadań 150 minut

Międzyszkolne Zawody Matematyczne Klasa I LO i I Technikum - zakres podstawowy Etap wojewódzki 02.04.2005 rok Czas rozwiązywania zadań 150 minut Klasa I - zakres podstawowy Etap wojewódzki 17.04.004 rok Zad 1 ( 6 pkt) Znajdź wszystkie liczby czterocyfrowe podzielne przez 15, w których cyfrą tysięcy jest jeden, a cyfrą dziesiątek dwa. Odpowiedź

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY

WOJEWÓDZKI KONKURS MATEMATYCZNY Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2015/2016 12 STYCZNIA 2016 1. Test konkursowy zawiera 24 zadania. Są to zadania zamknięte i otwarte.

Bardziej szczegółowo

Test z matematyki. Małe olimpiady przedmiotowe. Imię i nazwisko. Drogi Uczniu,

Test z matematyki. Małe olimpiady przedmiotowe. Imię i nazwisko. Drogi Uczniu, Małe olimpiady przedmiotowe Test z matematyki ORGANIZATORZY: Wydział Edukacji Urzędu Miasta w Koszalinie Centrum Edukacji Nauczycieli w Koszalinie Imię i nazwisko. Szkoła Szkoła Podstawowa nr 7 w Koszalinie

Bardziej szczegółowo

Próbny Egzamin Gimnazjalny z Matematyki Zestaw przygotowany przez serwis 28 marca 2015 Czas pracy: 90 minut

Próbny Egzamin Gimnazjalny z Matematyki Zestaw przygotowany przez serwis  28 marca 2015 Czas pracy: 90 minut /Gimnazjum Próbny Egzamin Gimnazjalny z Matematyki Zestaw przygotowany przez serwis www.zadania.info 28 marca 2015 Czas pracy: 90 minut Zadanie 1 (1 pkt) Na diagramie przedstawiono wysokość miesięcznych

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2014/2015

WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2014/2015 Etap wojewódzki 21 lutego 2015 r. Kod ucznia Godzina 11.00 Instrukcja dla ucznia Zanim przystąpisz do rozwiązywania arkusza przepisz na tę stronę Kod ucznia z karty kodowej. 1, Sprawdź, czy zestaw zawiera

Bardziej szczegółowo

CO DWIE GŁOWY TO NIE JEDNA

CO DWIE GŁOWY TO NIE JEDNA PRZYKŁADOWE ZADANIA DO POWIATOWEGO KONKURSU MATEMATYCZNEGO CO DWIE GŁOWY TO NIE JEDNA KOD. INTRUZ W każdym czterowyrazowym zestawie ukrył się wyraz INTRUZ, który nie pasuje do pozostałych. Znajdźcie go

Bardziej szczegółowo

14:00 15:00 16:00. Godzina Turysta A. Godzina. Oceń prawdziwość podanych zdań. Wybierz P, jeśli zdanie jest prawdziwe, albo F jeśli jest fałszywe.

14:00 15:00 16:00. Godzina Turysta A. Godzina. Oceń prawdziwość podanych zdań. Wybierz P, jeśli zdanie jest prawdziwe, albo F jeśli jest fałszywe. Zadanie 1. (0 1) Turysta A szedł ze schroniska w kierunku szczytu, natomiast turysta B schodził ze szczytu w kierunku schroniska. Obaj szli tym samym szlakiem i tego samego dnia. Wykresy przedstawiają,

Bardziej szczegółowo

KONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM

KONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM ... pieczątka nagłówkowa szkoły... kod pracy ucznia KONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY Drogi Uczniu Witaj na I etapie konkursu matematycznego. Przeczytaj uważnie instrukcję

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego Kod ucznia Data urodzenia ucznia Dzień miesiąc rok Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów ETAP SZKOLNY Rok szkolny 2017/2018 Instrukcja dla ucznia 1. Sprawdź, czy test zawiera 12 stron.

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów Etap Szkolny 27 listopada 2012 Czas 90 minut

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów Etap Szkolny 27 listopada 2012 Czas 90 minut Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów Etap Szkolny 27 listopada 2012 Czas 90 minut 1. Otrzymujesz do rozwiązania 10 zadań zamkniętych oraz 5 zadań otwartych. 2. Obok każdego zadania podana

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap szkolny 4 listopada 2014 Rozwiązania zadań

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap szkolny 4 listopada 2014 Rozwiązania zadań Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap szkolny 4 listopada 014 Rozwiązania zadań ZADANIA ZAMKNIĘTE Zadanie 1. (1 punkt) Jaka jest cyfra jedności liczby 3 014 + 3 01? a) 0 b) 1 c) 3

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne

Wymagania na poszczególne oceny szkolne Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. Zgodnie z przyjętymi założeniami w programie nauczania

Bardziej szczegółowo

II POWIATOWY KONKURS MATEMATYCZNY DLA KLAS CZWARTYCH SZKÓŁ PODSTAWOWYCH CO DWIE GŁOWY TO NIE JEDNA 2012 R.

II POWIATOWY KONKURS MATEMATYCZNY DLA KLAS CZWARTYCH SZKÓŁ PODSTAWOWYCH CO DWIE GŁOWY TO NIE JEDNA 2012 R. II POWIATOWY KONKURS MATEMATYCZNY DLA KLAS CZWARTYCH SZKÓŁ PODSTAWOWYCH CO DWIE GŁOWY TO NIE JEDNA 2012 R. I ETAP KOD. PIRAMIDA ( 4 pkt ) Dodaj sąsiednie liczby w każdym wierszu i wejdź na szczyt piramidy.

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY

WOJEWÓDZKI KONKURS MATEMATYCZNY Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2017/2018 14.02.2018 1. Test konkursowy zawiera 23 zadania. Są to zadania zamknięte i otwarte. Na

Bardziej szczegółowo

Dolna stacja. Zadanie 1. (0 1) Jak długo trwa przejazd kolejki od górnej stacji do punktu K? Wybierz właściwą odpowiedź spośród podanych.

Dolna stacja. Zadanie 1. (0 1) Jak długo trwa przejazd kolejki od górnej stacji do punktu K? Wybierz właściwą odpowiedź spośród podanych. Informacje do zadań 1. i 2. Każda z dwóch kolejek górskich przebywa drogę 150 metrów w ciągu minuty. Na schemacie zaznaczono niektóre długości trasy pokonywanej przez kolejki. Górna stacja 750 m 120 m

Bardziej szczegółowo

Egzamin w klasie III gimnazjum Część matematyczna

Egzamin w klasie III gimnazjum Część matematyczna Egzamin w klasie III gimnazjum Część matematyczna Szkice rozwiązań zadań Zadanie 1. Ponieważ harcerze zaczęli marsz o 13:00, a skończyli o 15:30 więc rzeczywiście maszerowali 2,5 godziny Z autobusu do

Bardziej szczegółowo

~ A ~ PANGEA KONKURS MATEMATYCZNY

~ A ~ PANGEA KONKURS MATEMATYCZNY PANGEA KONKURS MATEMATYCZNY Piątek, 17kwietnia 2015 Czas pracy: 90 minut 1. Ogólne zasady 1.1 W czasie testu nie wolno używać kalkulatorów ani innych pomocy naukowych. 1.2 Zadania mają formę testu jednokrotnego

Bardziej szczegółowo

KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych 5 marca 2015 r. zawody III stopnia (wojewódzkie)

KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych 5 marca 2015 r. zawody III stopnia (wojewódzkie) Kod ucznia Liczba zdobytych punktów KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych 5 marca 2015 r. zawody III stopnia (wojewódzkie) Drogi Uczniu, przed Tobą test składający się z 22 zadań.

Bardziej szczegółowo

Zadania z konkursu ZOSTAŃ PITAGORASEM-MUM 4 czerwca 2011

Zadania z konkursu ZOSTAŃ PITAGORASEM-MUM 4 czerwca 2011 Młodzieżowe Uniwersytety Matematyczne Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Zadania z konkursu ZOSTAŃ PITAGORASEM-MUM 4 czerwca 2011 Zadanie 1. (1pkt)

Bardziej szczegółowo

P o w o d z e n i a!

P o w o d z e n i a! Powiatowy Konkurs Matematyczny Dla uczniów klas V Etap finałowy Imię i nazwisko Szkoła Miejscowość Gratulujemy Ci zakwalifikowania się do etapu finałowego konkursu. Na rozwiązanie 17 zadań masz 75 minut.

Bardziej szczegółowo

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP REJONOWY

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP REJONOWY Kod ucznia - - pieczątka WKK Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Drogi Uczniu ETAP REJONOWY Witaj na II etapie konkursu matematycznego. Przeczytaj uważnie

Bardziej szczegółowo

KL. I. ZAD. 2 Zapytano rybaka, ile waży złowiona przez niego rybka. Rybak odpowiedział:

KL. I. ZAD. 2 Zapytano rybaka, ile waży złowiona przez niego rybka. Rybak odpowiedział: KL. I ZAD. 1 2 3 0,5 x 3 5 Oblicz x : 1, 2 7 3 1 1,4 : 2 20 4 ZAD. 2 Zapytano rybaka, ile waży złowiona przez niego rybka. Rybak odpowiedział: 2 2 kg i jeszcze 2 razy po swojej masy. Ile waży złowiona

Bardziej szczegółowo

Matematyka test dla uczniów klas piątych

Matematyka test dla uczniów klas piątych Matematyka test dla uczniów klas piątych szkół podstawowych w roku szkolnym 2010/2011 Etap szkolny (60 minut) Dysleksja [suma punktów] Imię i nazwisko... kl.5... Asia postanowiła sprawdzić, ile czasu poświęca

Bardziej szczegółowo

Międzyszkolne Zawody Matematyczne Klasa I LO i I Technikum - zakres podstawowy Etap rejonowy rok Czas rozwiązywania zadań 150 minut

Międzyszkolne Zawody Matematyczne Klasa I LO i I Technikum - zakres podstawowy Etap rejonowy rok Czas rozwiązywania zadań 150 minut Międzyszkolne Zawody Matematyczne Klasa I LO i I Technikum - zakres podstawowy Etap rejonowy 0..005 rok Czas rozwiązywania zadań 50 minut Zadanie ( pkt) a b a Wiedząc, że dla b 0. Oblicz b a b Zadanie

Bardziej szczegółowo

Małopolski Konkurs Matematyczny etap szkolny

Małopolski Konkurs Matematyczny etap szkolny Kod ucznia Miejsce na metryczkę ucznia Liczba punktów moŝliwa do uzyskania 26 Uzyskana liczba punktów Drogi Uczniu! Zanim przystąpisz do rozwiązywania testu, wpisz swoje imię i nazwisko, datę oraz miejsce

Bardziej szczegółowo

TEST DO KLASY MATEMATYCZNO FIZYCZNEJ VI 2013 Kod ucznia:

TEST DO KLASY MATEMATYCZNO FIZYCZNEJ VI 2013 Kod ucznia: TEST DO KLASY MATEMATYCZNO FIZYCZNEJ VI 2013 Kod ucznia: W zadaniach od 1 do 10 tylko jedna odpowiedź jest prawidłowa. Za poprawną odpowiedź otrzymasz 1 punkt; za brak odpowiedzi lub złą odpowiedź 0 punktów;

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki 17 lutego 2016 Czas 90 minut

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki 17 lutego 2016 Czas 90 minut kod ucznia Zadanie 1-10 11 12 13 14 15 suma punkty (wypełnia komisja) Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki 17 lutego 2016 Czas 90 minut 1. Otrzymujesz do rozwiązania 10

Bardziej szczegółowo

TERMIN ODDAWANIA PRAC 22 GRUDNIA

TERMIN ODDAWANIA PRAC 22 GRUDNIA KLASA IV Pojemnik zawierał 70 litrów płynu. Po pewnym czasie w pojemniku zostało 5 razy mniej płynu niż było na początku. Ile litrów płynu zużyto? Jak zmieni się suma trzech liczb, jeżeli pierwszą zwiększymy

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2016/2017 STOPIEŃ WOJEWÓDZKI

WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2016/2017 STOPIEŃ WOJEWÓDZKI Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2016/2017 17.02.2017 1. Test konkursowy zawiera 23 zadania. Są to zadania zamknięte i otwarte. Na

Bardziej szczegółowo

ZADANIA PRZYGOTOWAWCZE

ZADANIA PRZYGOTOWAWCZE Kraj bez matematyki nie wytrzyma współzawodnictwa z tymi krajami, które matematykę uprawiają Hugo Steinhause X I Dąbrowski Konkurs Matematyczny Dla uczniów klas pierwszych szkół ponad gimnazjalnych Konkurs

Bardziej szczegółowo

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH Kod ucznia - - pieczątka WKK Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP REJONOWY Drogi Uczniu! Witaj na etapie rejonowym konkursu matematycznego. Przeczytaj

Bardziej szczegółowo

KONKURS OMNIBUS MATEMATYCZNY rok szkolny 2016/2017

KONKURS OMNIBUS MATEMATYCZNY rok szkolny 2016/2017 Drogi Uczniu, KONKURS OMNIBUS MATEMATYCZNY rok szkolny 2016/2017 Finał 5 maja 2017 r. Zestaw dla uczniów klas VI witaj na finale konkursu Omnibus Matematyczny. Przeczytaj uważnie instrukcję i postaraj

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY

WOJEWÓDZKI KONKURS MATEMATYCZNY Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2017/2018 13.04.2018 R. 1. Test konkursowy zawiera 24 zadania. Są to zadania zamknięte i otwarte.

Bardziej szczegółowo

Internetowe Kółko Matematyczne 2003/2004

Internetowe Kółko Matematyczne 2003/2004 Internetowe Kółko Matematyczne 2003/2004 http://www.mat.uni.torun.pl/~kolka/ Zadania dla szkoły podstawowej Zestaw I (5 IX) Zadanie 1. Znajdź 5 kolejnych liczb naturalnych, których suma wynosi 500. Zadanie

Bardziej szczegółowo

KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH

KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH ...... kod pracy ucznia pieczątka nagłówkowa szkoły KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH ETAP SZKOLNY Drogi Uczniu, witaj na I etapie konkursu matematycznego. Przeczytaj uważnie instrukcję

Bardziej szczegółowo

KONKURS ZOSTAŃ EUKLIDESEM CZĘŚĆ I

KONKURS ZOSTAŃ EUKLIDESEM CZĘŚĆ I Odpowiedzi Młodzieżowe Uniwersytety Matematyczne Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego KONKURS ZOSTAŃ EUKLIDESEM CZĘŚĆ I Imię i nazwisko:..............................................

Bardziej szczegółowo

Matematyka test dla uczniów klas piątych

Matematyka test dla uczniów klas piątych Matematyka test dla uczniów klas piątych szkół podstawowych w roku szkolnym 2010/2011 Etap międzyszkolny (60 minut) [suma punktów]..... Imię i nazwisko Nazwa (numer) szkoły, miejscowość W sklepie sportowym

Bardziej szczegółowo

I POLA FIGUR zadania średnie i trudne

I POLA FIGUR zadania średnie i trudne I POLA FIGUR zadania średnie i trudne EWA MOLL- RYDZEWSKA IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Uzasadnij, że w dowolnym trapezie dwusieczne kątów leżących przy jednym ramieniu są prostopadłe. 2. Działka

Bardziej szczegółowo

III POWIATOWY KONKURS MATEMATYCZNY DLA KLAS CZWARTYCH CO DWIE GŁOWY TO NIE JEDNA 2013 R.

III POWIATOWY KONKURS MATEMATYCZNY DLA KLAS CZWARTYCH CO DWIE GŁOWY TO NIE JEDNA 2013 R. III POWIATOWY KONKURS MATEMATYCZNY DLA KLAS CZWARTYCH CO DWIE GŁOWY TO NIE JEDNA 2013 R. CZĘŚĆ I 7 KONKURENCJI ( CZAS 45 MINUT) DO ZDOBYCIA 25 PUNKTÓW KWADRAT MAGICZNY (3 pkt) INTRUZ (4 pkt) PIRAMIDA (3

Bardziej szczegółowo

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH 2012/2013

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH 2012/2013 .... pieczątka WKK Kod ucznia Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH 2012/2013 ETAP WOJEWÓDZKI Drogi Uczniu! Witaj na etapie wojewódzkim konkursu matematycznego.

Bardziej szczegółowo

Astr. 1/5. Klasa 5. Figury na płaszczyźnie. 8,5 cm. 7 cm. 4,5 cm. 3,5 cm 7 cm. 1. Oblicz obwód siedmiokąta, którego każdy bok ma długość 11 cm.

Astr. 1/5. Klasa 5. Figury na płaszczyźnie. 8,5 cm. 7 cm. 4,5 cm. 3,5 cm 7 cm. 1. Oblicz obwód siedmiokąta, którego każdy bok ma długość 11 cm. Klasa 5. Figury na płaszczyźnie Astr. 1/5... imię i nazwisko...... klasa data 1. Oblicz obwód siedmiokąta, którego każdy bok ma długość 11 cm. 2. Narysuj sześciokąt o dokładnie dwóch kątach ostrych. 3.

Bardziej szczegółowo

SZKOLNY KONKURS MATEMATYCZNY MATMIX 2007 DROGI UCZNIU!

SZKOLNY KONKURS MATEMATYCZNY MATMIX 2007 DROGI UCZNIU! Wersja A klasy I II SZKOLNY KONKURS MATEMATYCZNY MATMIX 007 DROGI UCZNIU! Masz do rozwiązania 8 zadań testowych, na rozwiązanie których masz 90 minut. Punktacja rozwiązań: - zadania od do 7 - punkty -

Bardziej szczegółowo

II WOJEWÓDZKI KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH

II WOJEWÓDZKI KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH II WOJEWÓDZKI KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ ODSTAWOWYCH ETA I - SZKOLNY 14 listopada 2017 r. Godz.10:00 Kod pracy ucznia Suma punktów Czas pracy: 90 minut Liczba punktów możliwych do uzyskania:

Bardziej szczegółowo

MARATON MATEMATYCZNY-MARZEC 2015 KLASA I. Zadanie 1. Zadanie 2

MARATON MATEMATYCZNY-MARZEC 2015 KLASA I. Zadanie 1. Zadanie 2 MARATON MATEMATYCZNY-MARZEC 2015 KLASA I Obwód poniższej figury wynosi: Zredukuj wyrażenia Zadanie 2 Uprość wyrażenia, a następnie oblicz ich wartości dla: a = -1, b = 2 Wyłącz wspólny czynnik przed nawias.

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne w klasie V

Wymagania na poszczególne oceny szkolne w klasie V Wymagania na poszczególne oceny szkolne w klasie V Wymagania Dział 1. Liczby naturalne i dziesiętne. Działania na liczbach naturalnych i dziesiętnych Uczeń: Zastosowania matematyki praktycznych liczbę

Bardziej szczegółowo

I POLA FIGUR zadania łatwe i średnie

I POLA FIGUR zadania łatwe i średnie I POLA FIGUR zadania łatwe i średnie EWA MOLL- RYDZEWSKA IMIĘ I NAZWISKO: KLASA: GRUPA A 1. W trójkącie boki mają długości a = 9 cm i b = 6 cm. Wysokość poprowadzona na bok a ma długość 4 cm. Jaką długość

Bardziej szczegółowo

PRÓBNY EGZAMIN GIMNAZJALNY

PRÓBNY EGZAMIN GIMNAZJALNY PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO 28 MARCA 2015 CZAS PRACY: 90 MINUT 1 ZADANIE 1 (1 PKT) Na diagramie przedstawiono wysokość miesięcznych zarobków

Bardziej szczegółowo

KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH

KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH Kod ucznia - - Dzień Miesiąc Rok pieczątka WKK DATA URODZENIA UCZNIA KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH ETAP REJONOWY Drogi Uczniu, witaj na II etapie konkursu matematycznego. Przeczytaj

Bardziej szczegółowo

Zadanie 1. ( 0-5. ) Oceń prawdziwość zdań. Wybierz P, jeśli zdanie jest prawdziwe lub F jeśli jest fałszywe.

Zadanie 1. ( 0-5. ) Oceń prawdziwość zdań. Wybierz P, jeśli zdanie jest prawdziwe lub F jeśli jest fałszywe. Zadanie 1. ( -5. ) Oceń prawdziwość zdań. Wybierz P, jeśli zdanie jest prawdziwe lub F jeśli jest fałszywe. a) Liczby: 1,15 i 3 1: są równe. P F b) Liczba 5 5 5 jest większa od liczby 6 6. 6 P F c) Średnia

Bardziej szczegółowo

GSP077 Pakiet. KArty pracy. MateMatyka. Ekstraklasa 6klasisty matematyka kpracy 6 pak 1.indd 1

GSP077 Pakiet. KArty pracy. MateMatyka. Ekstraklasa 6klasisty matematyka kpracy 6 pak 1.indd 1 GSP077 klasa Pakiet 6 KArty pracy MateMatyka Ekstraklasa 6klasisty matematyka kpracy 6 pak.indd 9/24/3 2:2 PM Instrukcja matematyka Uważnie czytaj teksty zadań i polecenia. Rozwiązania zapisz długopisem

Bardziej szczegółowo

ZADANIA KONKURSOWE Suma trzech kolejnych liczb nieparzystych jest równa 27. Największa z nich to: A. 11 B. 9 C. 8 D. 7

ZADANIA KONKURSOWE Suma trzech kolejnych liczb nieparzystych jest równa 27. Największa z nich to: A. 11 B. 9 C. 8 D. 7 ZADANIA KONKURSOWE 2019 ZADANIA ZAMKNIĘTE 1. Suma trzech kolejnych liczb nieparzystych jest równa 27. Największa z nich to: A. 11 B. 9 C. 8 D. 7 2. Wszystkich liczb pięciocyfrowych, w których suma cyfr

Bardziej szczegółowo

60 minut. Powodzenia! Pracuj samodzielnie.

60 minut. Powodzenia! Pracuj samodzielnie. Jedlicze, 6.0.202r...... Szkoła Podstawowa w... imię i nazwisko ucznia klasa VIII Edycja Gminnego Turnieju Matematycznego dla uczniów klas VI szkół podstawowych Rachmistrz Gminy Jedlicze Drogi Uczniu Jesteś

Bardziej szczegółowo

Trenuj przed sprawdzianem! Matematyka Test 3

Trenuj przed sprawdzianem! Matematyka Test 3 mię i nazwisko ucznia...................................................................... Klasa............... Numer w dzienniku.............. 1. Dom państwa Wiśniewskich stoi na działce o powierzchni

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie piątej

Wymagania edukacyjne z matematyki w klasie piątej Wymagania edukacyjne z matematyki w klasie piątej Klasa V Wymagania Wymagania ponad Dział 1. Liczby naturalne i dziesiętne. Działania na liczbach naturalnych i dziesiętnych Uczeń: Zastosowania matematyki

Bardziej szczegółowo

TEST MATEMATYCZNY DLA UCZNIÓW KLAS IV - V

TEST MATEMATYCZNY DLA UCZNIÓW KLAS IV - V TEST MTEMTYZNY L UZNIÓW KLS IV - V Zadanie. daś waży 47,09 kg, a Monika 47, kg. Kto ważywięcejioile? Monika o 0,009 kg daś o 0,00 kg Monika o 0,00 kg daś o 0,009 kg Zadanie. Gdyby ciasto francuskie wysokości

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki Rozwiązania i punktacja

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki Rozwiązania i punktacja Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki Rozwiązania i punktacja ZADANIA ZAMKNIĘTE W zadaniach od 1. do 10. wybierz i zaznacz na karcie odpowiedzi jedną poprawną odpowiedź.

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego Data urodzenia ucznia Dzień miesiąc rok Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów ETAP WOJEWÓDZKI Rok szkolny 2012/2013 Instrukcja dla ucznia 1. Sprawdź, czy test zawiera 12 stron. Ewentualny

Bardziej szczegółowo

ZBIÓR ZADAŃ - ROZUMOWANIE I ARGUMENTACJA

ZBIÓR ZADAŃ - ROZUMOWANIE I ARGUMENTACJA ZIÓR ZŃ - ROZUMOWNIE I RGUMENTJ 0--30 Strona ZIÓR ZO O WYMGNI EGZMINYJNEGO - ROZUMOWNIE I RGUMENTJ. Zapisz sumę trzech kolejnych liczb naturalnych, z których najmniejsza jest liczba n. zy suma ta jest

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY

WOJEWÓDZKI KONKURS MATEMATYCZNY Pieczątka szkoły Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2017/2018 5.12.2017 R. 1. Test konkursowy zawiera 24 zadania. Są to zadania zamknięte

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Szkolny 16 listopada 2018 Czas 90 minut

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Szkolny 16 listopada 2018 Czas 90 minut pieczęć szkoły pesel nazwisko imiona Zadanie 1-10 11 12 13 14 15 suma punkty Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Szkolny 16 listopada 2018 Czas 90 minut 1. Otrzymujesz do rozwiązania

Bardziej szczegółowo