Struktury niskowymiarowwe. Nanostruktury druty i kropki kwantowe. Komentarz o paśmie przewodnictwa

Wielkość: px
Rozpocząć pokaz od strony:

Download "Struktury niskowymiarowwe. Nanostruktury druty i kropki kwantowe. Komentarz o paśmie przewodnictwa"

Transkrypt

1 Nanotruktury druty i kroki kwantowe Struktury nikowymiarowe Pełen Hamiltonian w nazym wzechświecie ma 3 wymiary rzetrzenne,,,, 2 Dla 2 mamy:,,,, Wzdłuż kierunków i mamy ruch wobodny:,, ex ex Można okazać (rzy tablicy!), że otatecznie energie włane otencjału ą w otaci: Struktury nikowymiarowwe,,,, ex ex,, ex, Komentarz o aśmie rzewodnictwa W zależności od ółrzewodnika dno ama rzewodnictwa może być zbudowane z różnych dolin ta ama hetereotruktura może być tudnią w jednym aśmie (n. Γ) i barierą w innym (n. )

2 Komentarz o aśmie walencyjnym Obecność tudni zmieni a ymetrię kryztału (n. tudnia kwantowa na kierunku [001] odowiada ciśnieniu jednooiowemu rzyłożonemu rotoadle do wartwy). Trzeba rozwiązać równanie (Chemla 1983): Komentarz o aśmie walencyjnym Obecność tudni zmieni a ymetrię kryztału (n. tudnia kwantowa na kierunku [001] odowiada ciśnieniu jednooiowemu rzyłożonemu rotoadle do wartwy). Trzeba rozwiązać równanie (Chemla 1983): Effect of biaxial train: decreae of the degeneracy of the valence band and change of the effective mae in the Ga x In 1 x A / Ga x In 1 x A y yp 1 y material ytem. 2 2 S.L. Chuang, Phy. Rev. B 43, (1991). 9, Potencjał harmoniczny Kroki kwantowe A e 2 1 A e wielomiany Hermite a / 2! ex

3 Struktury nikowymiarowwe Studnie 2D i 3D,,,, ex ex,, ex, Drut rotokątny rozwiązania tyu:, 2 Czątki A i B mają tę amą energię! htt://wn.com/2d_and_3d_tanding_wave Studnie 2D i 3D Studnie 2D i 3D Drut rotokątny rozwiązania tyu:, 2 Studnia cylindryczna (o niekończonych ścianach) 2 1 1,, 9 2 htt:// głębokość otencjału zależy od, ex Co daje rozwiązania w otaci f. Bela 0 2 /, ex, 2 ~ 2 co Miejca zerowe f. Beela ą w,

4 Studnie 2D i 3D Studnia Cylindryczna Studnie 2D i 3D Studnia Cylindryczna low temerature canning tunneling microcoe (STM) htt:// low temerature canning tunneling microcoe (STM) htt:// Studnie 2D i 3D Studnie 2D i 3D Marc Baldo MIT OenCoureWare Publication May 2011 htt://

5 Druty kwantowe Druty kwantowe Druty kwantowe Druty kwantowe htt:// halle.mg.de/~mbe/ Photo by Peidong Yang/UC Berkeley, courtey of Science Microelectronic Journal 39, 2008,

6 Druty kwantowe Druty kwantowe Miniband roertie of uerlattice quantum dot array fabricated by the edge defined nanowire Miniband roertie of uerlattice quantum dot array fabricated by the edge defined nanowire Microelectronic Journal 39, 2008, Microelectronic Journal 39, 2008, Druty kwantowe Druty kwantowe Marc Baldo MIT OenCoureWare Publication May 2011 Marc Baldo MIT OenCoureWare Publication May

7 Kroki kwantowe Potencjał harmoniczny Quantum Dot 0 cg e 0 1 X htt://hoebe.ifj.edu.l/wyklady/mk.df Potencjał harmoniczny EPITAXIAL LAYER (e.g. InA) Energy GaA InA InGaA QD GaA 50 nm SUBSTRATE (GaA) Iland formation Time GaA 20 nm InGaA QD InGaA 0.25µm x 0.25µm TEM Defect free emiconductor cluter on a 2D quantum well wetting layer nm GaA TEM J.Jaińki AFM IMS-NRC

8 Kroki kwantowe InGaA/GaA Double barrier heterotructure S.Raymond et al Phy. Rev. B 54; (1995) w kierunku i taka ama w Degeneracja?

9 Sektrokoia kroek kwantowych 1 2 w kierunku i taka ama w amle 1 2 7mm 1 Degeneracja? 1 laer beam, 0 (0,0) 1 (1,0) (0,1) 2 (2,0) (1,1) (0,2) 3 (3,0) (2,1) (1,2) (0,3) Sektrokoia kroek kwantowych Sektrokoia kroek kwantowych c575 T=300K Minimum te~50 nm Maximum te ~1 m T=4.2K Minimum te~5 nm Maximum te ~100 nm m PL Intenity (arb. unit) cza E=7meV 3,380 3,385 3,390 3,395 Energy (ev) time 100 X 16 A.Babinki, et al. Phyica E 26 (2005) m FUW Hoża 69 µpl- Katarzyna Surowiecka et al

10 CB Harmonic ocillator model:,, d, hell CB Harmonic ocillator model:,, d, hell Allowed interband tranition Allowed interband tranition VB PL Intenity d f Wetting layer 0.1mW 1mW 0.5 mw 5mW 10mW GaA ubtrate VB PL Intenity d f Wetting layer 0.1mW 1mW 0.5 mw 5mW 10mW GaA ubtrate Energy (mev) Energy (mev) Szkic dowodu Funkcja Blocha nośnika w kryztale:: Ψ,,, CB Dla elektronu: Ψ,,, Dla dziury: Ψ,,, /,/, /,/, Diolowe rzejścia otyczne międzyamowe: VB PL Intenity Zależność od mocy obudzania widm fotoluminecencji otrzymanych w temeraturze blikiej temeratury ciekłego helu (ok. 5 K) dla licznego (wielomilionowego) zbioru kroek kwantowych InA/GaA. Ψ Ψ,,,,,

11 PL Intenity (normalized) #2154 T = 4.2K B = 0T WL d Energy [ev] f Power The electronic tructure of a trained InA (110) yramidal quantum dot embedded within GaA. The train modified band offet are hown above the atomic tructure. They exhibit a well for both heavy hole and electron. Iourface lot of the four highet hole tate and four lowet electron tate, a obtained from eudootential calculation, aear on the left and right. CBM mean conduction band minimum and VBM valence band minimum Adam Babińki MRS Bulletin Vol. 23 No. 2,. 35 (1998) d+ d 0 d- Energy [ev] + - n, m = 0,1,2... L = n m (elektron) Angular Momentum -L Widmo fotoodbicia z temeratury okojowej dla truktury z krokami kwantowymi In A/GaA [W. Rudno Rudzińki, et al. Solid State Commun. 135, 232 (2005)] Zależność od mocy obudzania widm fotoluminecencji otrzymanych w temeraturze blikiej temeratury ciekłego helu (ok. 5 K) dla licznego (wielomilionowego) zbioru kroek kwantowych InA/GaA. Adam Babińki

12 Potencjał harmoniczny 3D w kierunku, i Ważny rzykład czątka w olu magnetycznym. Czętość cyklotronowa 3 2 Degeneracja? htt://www2.warwick.ac.uk/fac/ci/hyic/current/otgraduate/reg/mag/ex5/mag/ ocylacje Shubnikova de Haaa,, 0 (0,0,0) 1 (1,0,0) (0,1,0) (0,0,1) 2 (2,0,0) (0,2,0) (0,0,2) (1,1,0) (1,0,1) (0,1,1) 3 3x(3,0,0) 1x(1,1,1) 6x(2,0,1) Przerwa energetyczna w ferycznych krokach kwantowych [Bru, L. E. J. Phy. Chem. 1986, 90, 2555, Bru. L. E. J. Chem. Phy. 1984, 80, 4403] Przerwa energetyczna w ferycznych krokach kwantowych [Bru, L. E. J. Phy. Chem. 1986, 90, 2555, Bru. L. E. J. Chem. Phy. 1984, 80, 4403] średnica Lokalizacja kwantowa (quantum localization): mniejza czątka więcej wektorów otrzebnych do oiu tanu nośnika. Czyli czątka w tudni! ZWIĘKSZA energie rzerwy 2 2 Część kulombowka oddz. z uwzględnieniem olaryzacji (fera) OBNIŻA energię. Potencjał obliczony dla funkcji w otaci Ψ ( 1) : Ψ in htt://

13 Przerwa energetyczna w ferycznych krokach kwantowych [Bru, L. E. J. Phy. Chem. 1986, 90, 2555, Bru. L. E. J. Chem. Phy. 1984, 80, 4403] Przerwa energetyczna w ferycznych krokach kwantowych [Bru, L. E. J. Phy. Chem. 1986, 90, 2555, Bru. L. E. J. Chem. Phy. 1984, 80, 4403] średnica Lokalizacja kwantowa (quantum localization): mniejza czątka więcej wektorów otrzebnych do oiu tanu nośnika. Czyli czątka w tudni! ZWIĘKSZA energie rzerwy 2 2 Część kulombowka oddz. z uwzględnieniem olaryzacji (fera) OBNIŻA energię. Potencjał obliczony dla funkcji w otaci Ψ ( 1) : Ψ in Przerwa energetyczna CdSe htt:// htt:// medicine/gallery/icture/cientific icture.h Synthei Technique Vaor hae (molecular beam, flame ynthei etc Solution hae ynthei Aqueou Solution Nonaqueou Solution Tyically the raid reduction of organmetallic recuor in hot organic with urfactant Semiconductor Nanoarticle II VI: CdS, CdSe, PbS, ZnS III V: InP, InA MO: TiO 2, ZnO, Fe 2 O 3, PbO, Y 2 O

14 htt:// medicine/gallery/icture/cientific icture.h htt:// htt:// htt:// In vivo molecular and cellular imaging with quantum dot Xiaohu Gao Current Oinion in Biotechnology 2005, 16:63 72 Luminecent quantum dot for multilexed biological detection and imaging W. Chan et al. Current Oinion in Biotechnology 2002, 13:

15 Synthei of multi hell nanocrytal by a ingle te coating roce, Nanotechnology 2006 In vivo molecular and cellular imaging with quantum dot Xiaohu Gao Current Oinion in Biotechnology 2005, 16:63 72 Quantum Yield = wydajność kwantowa Wydajność kwantową fluorecencji definiuje ię jako tounek liczby wyemitowanych fotonów do liczby fotonów romieniowania wzbudzającego, ochłoniętych rzez ubtancję w tym amym czaie i tej amej objętości Current Oinion in Chemical Biology 2006, 10: Nanocale controlled elf aembled monolayer and quantum dot In vivo molecular and cellular imaging with quantum dot Xiaohu Gao Current Oinion in Biotechnology 2005, 16:

16 An Ancient Model Organim to Tet In Vivo Novel Functional Nanocrytal By Claudia Tortiglione "Biomedical Engineering From Theory to Alication", Edited by Reza Fazel Rezai, Figure 1. Anatomical tructure of Hydra vulgari Figure 18. Labelling Hydra with nanocrytal htt:// engineering from theory to alication/an ancientmodel organim to tet in vivo novel functional nanocrytal Jutin Galloway w biol med [1] Kawaaki et al. Nanotechnology, nanomedicine, and the develoment of new, effective theraie for cancer. Nanomedicine: Nanotechnology, Biology, and Medicine. 2005; 1:101, 109 [2] Aliviato, et al. Quantum dot a cellular robe. Annu. Rev. Biomed. Eng. 2005; 7: [3] Chan et al. Luminecent quantum dot for multilexed biological detection and imaging. Current oinion in biotechnology. 2002; 13:40 46 [4] Michalet et al. Quantum dot for live cell, in vivo imaging, and diagnotic. Science. 2005; 307(5709): [5] Aliviato A.P. Semiconductor cluter, nanocrytal, and quantum dot. Science. 1996; 271: [6] Gao et al. In vivo molecular and cellular imaging with quantum dot. Current oinion in biotechnology. 2005; 16: [7] Shin et al. Nanocale controlled elf aembled monolayer and quantum dot. Current oinion in chemical biology. 2006; 10(5): [8] Rogach et al. Infrared emitting colloidal nanocrytal: ynthei, aembly, ectrocoy, and alication. Small. 2007; 3(4): [9] Weng, et al. Luminecent quantum dot: a very attractive and romiing tool in biomedicine. Current medicinal chemitry. 2006; 13: [10] Fu, et al. Semiconductor nanoarticle for biological imaging. Current oinion in neural biology. 2005; 15: [11] Hardman R. A toxicologic review of quantum dot: toxicity deend on hyicochemical and environmental factor. Environmental Health Perective. 2006; 114(2):

Harmonic potential 2D. Nanostructures. Fermi golden rule Transition rate (probability of transition per unit time) : Harmonic oscillator model: CB p

Harmonic potential 2D. Nanostructures. Fermi golden rule Transition rate (probability of transition per unit time) : Harmonic oscillator model: CB p Nanotructure Harmonic otential 2D Harmonic ocillator model: CB,, d, hell Allowed interband tranition VB PL Intenity d f Wetting layer 0.mW mw 0.5 mw 5mW 0mW GaA ubtrate 200 250 300 350 400 450 500 550

Bardziej szczegółowo

Studnia skończona. Heterostruktury półprzewodnikowe studnie kwantowe (cd) Heterostruktury mogą mieć różne masy efektywne w różnych obszarach:

Studnia skończona. Heterostruktury półprzewodnikowe studnie kwantowe (cd) Heterostruktury mogą mieć różne masy efektywne w różnych obszarach: Heterostruktury półprzewodnikowe studnie kwantowe (cd) Studnia skończona Heterostruktury mogą mieć różne masy efektywne w różnych obszarach: V z Okazuje się, że zamiana nie jest dobrym rozwiązaniem problemu

Bardziej szczegółowo

półprzewodniki Plan na dzisiaj Optyka nanostruktur Struktura krystaliczna Dygresja Sebastian Maćkowski

półprzewodniki Plan na dzisiaj Optyka nanostruktur Struktura krystaliczna Dygresja Sebastian Maćkowski Plan na dzisiaj Optyka nanostruktur Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 półprzewodniki

Bardziej szczegółowo

Karol Nogajewski. Wybrane aspekty nanotechnologii. Poziomy Landaua WIELKIE PODSUMOWANIE. Wydział Fizyki UW

Karol Nogajewski. Wybrane aspekty nanotechnologii. Poziomy Landaua WIELKIE PODSUMOWANIE. Wydział Fizyki UW Wybrane aspekty nanotechnologii Karol Nogajewski WIELKIE PODSUMOWANIE Wydział Fizyki UW Jacek.Szczytko@fuw.edu.pl 2013 02 27 2 Poziomy Landaua Poszerzenie poziomów na skutek rozproszeń Γ / to jednocząstkowy

Bardziej szczegółowo

Współczesna fizyka ciała stałego

Współczesna fizyka ciała stałego Współczesna fizyka ciała stałego Struktury półprzewodnikowe o obniŝonej wymiarowości studnie kwantowe, druty kwantowe, kropki kwantowe fulereny, nanorurki, grafen Kwantowe efekty rozmiarowe Ograniczenie

Bardziej szczegółowo

Co to jest kropka kwantowa? Kropki kwantowe - część I otrzymywanie. Co to jest ekscyton? Co to jest ekscyton? e πε. E = n. Sebastian Maćkowski

Co to jest kropka kwantowa? Kropki kwantowe - część I otrzymywanie. Co to jest ekscyton? Co to jest ekscyton? e πε. E = n. Sebastian Maćkowski Co to jest kropka kwantowa? Kropki kwantowe - część I otrzymywanie Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Co to jest ekscyton? Co to jest ekscyton? h 2 2 2 e πε m* 4 0ε s Φ

Bardziej szczegółowo

Plan. Kropki kwantowe - część III spektroskopia pojedynczych kropek kwantowych. Kropki samorosnące. Kropki fluktuacje szerokości

Plan. Kropki kwantowe - część III spektroskopia pojedynczych kropek kwantowych. Kropki samorosnące. Kropki fluktuacje szerokości Plan Kropki kwantowe - część III spektroskopia pojedynczych kropek kwantowych Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika 1. Techniki pomiarowe 2. Podstawowe wyniki 3. Struktura

Bardziej szczegółowo

Kropki samorosnące. Optyka nanostruktur. Gęstość stanów. Kropki fluktuacje szerokości. Sebastian Maćkowski. InAs/GaAs QDs. Si/Ge QDs.

Kropki samorosnące. Optyka nanostruktur. Gęstość stanów. Kropki fluktuacje szerokości. Sebastian Maćkowski. InAs/GaAs QDs. Si/Ge QDs. Kropki samorosnące Optyka nanostruktur InAs/GaAs QDs Si/Ge QDs Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon:

Bardziej szczegółowo

2013 02 27 2 1. Jakie warstwy zostały wyhodowane w celu uzyskania 2DEG? (szkic?) 2. Gdzie było domieszkowanie? Dlaczego jako domieszek użyto w próbce atomy krzemu? 3. Jaki kształt miała próbka? 4. W jaki

Bardziej szczegółowo

Jak TO działa? Co to są półprzewodniki? TRENDY: Prawo Moore a. Google: Jacek Szczytko Login: student Hasło: *******

Jak TO działa?   Co to są półprzewodniki? TRENDY: Prawo Moore a. Google: Jacek Szczytko Login: student Hasło: ******* Co to są półprzewodniki? Jak TO działa? http://www.fuw.edu.pl/~szczytko/ Google: Jacek Szczytko Login: student Hasło: ******* Jacek.Szczytko@fuw.edu.pl Wydział Fizyki UW 2 TRENDY: Prawo Moore a TRENDY:

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 2 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2013/14

Bardziej szczegółowo

Domieszki w półprzewodnikach

Domieszki w półprzewodnikach Domieszki w półprzewodnikach Niebieska optoelektronika Niebieski laser Nie można obecnie wyświetlić tego obrazu. Domieszkowanie m* O Neutralny donor w przybliżeniu masy efektywnej 2 2 0 2 * 2 * 13.6 *

Bardziej szczegółowo

Domieszki w półprzewodnikach

Domieszki w półprzewodnikach Domieszki w półprzewodnikach Niebieska optoelektronika Niebieski laser Elektryczne pobudzanie struktury laserowej Unipress 106 unipress 8 Moc op ptyczna ( mw ) 6 4 2 0 0.0 0.5 1.0 1.5 2.0 Natężenie prądu

Bardziej szczegółowo

Jak TO działa? Nanotechnologia. TRENDY: Prawo Moore a. Kwietniowa Wiedza i Życie 2010

Jak TO działa?   Nanotechnologia. TRENDY: Prawo Moore a. Kwietniowa Wiedza i Życie 2010 Nanotechnologia Jak TO działa? http://www.fuw.edu.pl/~szczytko/ Google: Jacek Szczytko Login: student Hasło: ******* Jacek.Szczytko@fuw.edu.pl Wydział Fizyki UW 2 Kwietniowa Wiedza i Życie 2010 TRENDY:

Bardziej szczegółowo

Mody sprzężone plazmon-fonon w silnych polach magnetycznych

Mody sprzężone plazmon-fonon w silnych polach magnetycznych Mody sprzężone plazmon-fonon w silnych polach magnetycznych Mody sprzężone w półprzewodnikach polarnych + E E pl η = st α = E E pl ξ = p B.B. Varga,, Phys. Rev. 137,, A1896 (1965) A. Mooradian and B. Wright,

Bardziej szczegółowo

Równanie falowe Schrödingera ( ) ( ) Prostokątna studnia potencjału o skończonej głębokości. i 2 =-1 jednostka urojona. Ψ t. V x.

Równanie falowe Schrödingera ( ) ( ) Prostokątna studnia potencjału o skończonej głębokości. i 2 =-1 jednostka urojona. Ψ t. V x. Równanie falowe Schrödingera h Ψ( x, t) + V( x, t) Ψ( x, t) W jednym wymiarze ( ) ( ) gdy V x, t = V x x Ψ = ih t Gdy V(x,t)=V =const cząstka swobodna, na którą nie działa siła Fala biegnąca Ψ s ( x, t)

Bardziej szczegółowo

Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych

Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych Mody sprzęŝone w półprzewodnikach polarnych + E E pl η = st α = E E pl ξ = p B.B. Varga, Phys. Rev. 137,, A1896 (1965) A. Mooradian and B. Wright,

Bardziej szczegółowo

Operacje na spinie pojedynczego elektronu w zastosowaniu do budowy bramek logicznych komputera kwantowego

Operacje na spinie pojedynczego elektronu w zastosowaniu do budowy bramek logicznych komputera kwantowego Stanisław Bednarek Zespół Teorii Nanostruktur i Nanourządzeń Katedra Informatyki Stosowanej i Fizyki Komputerowej WFiIS AGH Operacje na spinie pojedynczego elektronu w zastosowaniu do budowy bramek logicznych

Bardziej szczegółowo

Modele kp Studnia kwantowa

Modele kp Studnia kwantowa Modele kp Studnia kwantowa Przegląd modeli pozwalających obliczyć strukturę pasmową materiałów półprzewodnikowych. Metoda Fal płaskich Transformata Fouriera Przykładowe wyniki Model Kaine Hamiltonian z

Bardziej szczegółowo

Fizyka Laserów wykład 10. Czesław Radzewicz

Fizyka Laserów wykład 10. Czesław Radzewicz Fizyka Laserów wykład 10 Czesław Radzewicz Struktura energetyczna półprzewodników Regularna budowa kryształu okresowy potencjał Funkcja falowa elektronu. konsekwencje: E ψ r pasmo przewodnictwa = u r e

Bardziej szczegółowo

Podstawy fizyki wykład 2

Podstawy fizyki wykład 2 D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 5, PWN, Warszawa 2003. H. D. Young, R. A. Freedman, Sear s & Zemansky s University Physics with Modern Physics, Addison-Wesley Publishing Company,

Bardziej szczegółowo

Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych

Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych Klasyczny przykład pośredniego oddziaływania pola magnetycznego na wzbudzenia fononowe Schemat: pole magnetyczne (siła Lorentza) nośniki (oddziaływanie

Bardziej szczegółowo

Ogniwa fotowoltaiczne

Ogniwa fotowoltaiczne Ogniwa fotowoltaiczne Efekt fotowoltaiczny: Ogniwo słoneczne Symulacja http://www.redarc.com.au/solar/about/solarpanels/ Historia 1839: Odkrycie efektu fotowoltaicznego przez francuza Alexandre-Edmond

Bardziej szczegółowo

InTechFun. Innowacyjne technologie wielofunkcyjnych materiałów i struktur dla nanoelektroniki, fotoniki, spintroniki i technik sensorowych

InTechFun. Innowacyjne technologie wielofunkcyjnych materiałów i struktur dla nanoelektroniki, fotoniki, spintroniki i technik sensorowych Innowacyjne technologie wielofunkcyjnych materiałów i struktur dla nanoelektroniki, fotoniki, spintroniki i technik sensorowych InTechFun Instytut Fizyki Polskiej Akademii Nauk Zbigniew R. Żytkiewicz IF

Bardziej szczegółowo

Atom Mn: wielobit kwantowy. Jan Gaj Instytut Fizyki Doświadczalnej

Atom Mn: wielobit kwantowy. Jan Gaj Instytut Fizyki Doświadczalnej Atom Mn: wielobit kwantowy Jan Gaj Instytut Fizyki Doświadczalnej Tomasz Kazimierczuk Mateusz Goryca Piotr Wojnar (IF PAN) Artur Trajnerowicz Andrzej Golnik Piotr Kossacki Jan Gaj Michał Nawrocki Ostrzeżenia

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 2 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15

Bardziej szczegółowo

Absorpcja związana z defektami kryształu

Absorpcja związana z defektami kryształu W rzeczywistych materiałach sieć krystaliczna nie jest idealna występują różnego rodzaju defekty. Podział najważniejszych defektów ze względu na właściwości optyczne: - inny atom w węźle sieci: C A atom

Bardziej szczegółowo

np. dla elektronów w kryształach; V(x+d) = V(x), d - okres periodyczności = wielkość komórki elementarnej kryształu

np. dla elektronów w kryształach; V(x+d) = V(x), d - okres periodyczności = wielkość komórki elementarnej kryształu Potencjały eriodyczne n. dla elektronów w kryształach; V(x+d) V(x), d - okres eriodyczności wielkość komórki elementarnej kryształu rzyadek kryształu jednowymiarowego sieci z bazą gdy w komórce elementarnej

Bardziej szczegółowo

Układ okresowy Przewidywania teorii kwantowej

Układ okresowy Przewidywania teorii kwantowej Przewiywania teorii kwantowej Chemia kwantowa - oumowanie Czątka w ule Atom wooru Równanie Schroeingera H ˆ = ˆ T e Hˆ = Tˆ e + Vˆ e j Chemia kwantowa - oumowanie rozwiązanie Czątka w ule Atom wooru Ψn

Bardziej szczegółowo

Pomiary widm fotoluminescencji

Pomiary widm fotoluminescencji Fotoluminescencja (PL photoluminescence) jako technika eksperymentalna, oznacza badanie zależności spektralnej rekombinacji promienistej, pochodzącej od nośników wzbudzonych optycznie. Schemat układu do

Bardziej szczegółowo

Repeta z wykładu nr 3. Detekcja światła. Struktura krystaliczna. Plan na dzisiaj

Repeta z wykładu nr 3. Detekcja światła. Struktura krystaliczna. Plan na dzisiaj Repeta z wykładu nr 3 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje:

Bardziej szczegółowo

Fizyka Ciała Stałego

Fizyka Ciała Stałego Fizyka Ciała Stałego c β γ α b a Kryształy.. A Cl - Na + Cl - A A A Na + Cl - Na + F - F - H - A A Cl - Na + Cl - A argon krystaliczny (siły Van der Waalsa) chlorek sodu (wiązanie jonowe) Wiązanie wodorowe

Bardziej szczegółowo

Nadprzewodnictwo w nanostrukturach metalicznych Paweł Wójcik Wydział Fizyki i Informatyki Stosowanej, AGH

Nadprzewodnictwo w nanostrukturach metalicznych Paweł Wójcik Wydział Fizyki i Informatyki Stosowanej, AGH Nadprzewodnictwo w nanostrukturach metalicznych Paweł Wójcik Wydział Fizyki i Informatyki Stosowanej, AGH Współpraca: Akademickie Centrum Materiałów i Nanotechnologii dr Michał Zegrodnik, prof. Józef Spałek

Bardziej szczegółowo

ZASTOSOWANIE SPEKTROSKOPII NMR W MEDYCYNIE

ZASTOSOWANIE SPEKTROSKOPII NMR W MEDYCYNIE ZASTOSOWANIE SPEKTROSKOPII NMR W MEDYCYNIE LITERATURA 1. K.H. Hausser, H.R. Kalbitzer, NMR in medicine and biology. Structure determination, tomography, in vivo spectroscopy. Springer Verlag. Wydanie polskie:

Bardziej szczegółowo

Wykład 12 V = 4 km/s E 0 =.08 e V e = = 1 Å

Wykład 12 V = 4 km/s E 0 =.08 e V e  = = 1 Å Wykład 12 Fale materii: elektrony, neutrony, lekkie atomy Neutrony generowane w reaktorze są spowalniane w wyniku zderzeń z moderatorem (grafitem) do V = 4 km/s, co odpowiada energii E=0.08 ev a energia

Bardziej szczegółowo

Studnia kwantowa. Optyka nanostruktur. Studnia kwantowa. Gęstość stanów. Sebastian Maćkowski

Studnia kwantowa. Optyka nanostruktur. Studnia kwantowa. Gęstość stanów. Sebastian Maćkowski Studnia kwantowa Optyka nanostruktur Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Studnia kwantowa

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej. Mateusz Goryca

Wstęp do Optyki i Fizyki Materii Skondensowanej. Mateusz Goryca Wstęp do Optyki i Fizyki Materii Skondensowanej Mateusz Goryca mgoryca@fuw.edu.pl Uniwersytet Warszawski 2015 Nanotechnologia Uniwersytet Warszawski 2015 T k E E e B c F e T m k n 2 3 2 0 * 2 2 T k E E

Bardziej szczegółowo

Wytwarzanie niskowymiarowych struktur półprzewodnikowych

Wytwarzanie niskowymiarowych struktur półprzewodnikowych Większość struktur niskowymiarowych wytwarzanych jest za pomocą technik epitaksjalnych. Najczęściej wykorzystywane metody wzrostu: - epitaksja z wiązki molekularnej (MBE Molecular Beam Epitaxy) - epitaksja

Bardziej szczegółowo

Współczesna fizyka ciała stałego

Współczesna fizyka ciała stałego Współczesna fizyka ciała stałego Struktury półprzewodnikowe o obniżonej wymiarowości studnie kwantowe, druty kwantowe, kropki kwantowe.. fulereny, nanorurki, grafen. Kwantowe efekty rozmiarowe Ograniczenie

Bardziej szczegółowo

6. Emisja światła, diody LED i lasery polprzewodnikowe

6. Emisja światła, diody LED i lasery polprzewodnikowe 6. Emisja światła, diody LED i lasery polprzewodnikowe Typy rekombinacji Rekombinacja promienista Diody LED Lasery półprzewodnikowe Struktury niskowymiarowe OLEDy 1 Promieniowanie termiczne Rozkład Plancka

Bardziej szczegółowo

Rezonansowe jądrowego rozpraszanie promieniowania synchrotronowego czyli: Druga młodość efektu Mössbauera

Rezonansowe jądrowego rozpraszanie promieniowania synchrotronowego czyli: Druga młodość efektu Mössbauera Rezonansowe jądrowego rozpraszanie promieniowania synchrotronowego czyli: Druga młodość efektu Mössbauera 1 AGH T. Ślęzak W. Karaś K. Matlak M. Ślęzak M. Zając IKiFP Kraków N. Spiridis K. Freindl D. Wilgocka-Ślęzak

Bardziej szczegółowo

Związek klasyfikacji ciał krystalicznych z charakterem wiązań atomowych

Związek klasyfikacji ciał krystalicznych z charakterem wiązań atomowych Związek klasyfikacji ciał krystalicznych z charakterem wiązań atomowych 5 tyów wiązań wodorowe A - H - A, jonowe ( n. KCl molekularne (omiędzy atomami gazów szlachetnych i małymi molekułami kowalencyjne

Bardziej szczegółowo

Wykład Budowa atomu 2

Wykład Budowa atomu 2 Wykład 7.12.2016 Budowa atomu 2 O atomach cd Model Bohra podsumowanie Serie widmowe O czym nie mówi model Bohra Wzbudzenie, emisja, absorpcja O liniach widmowych Kwantowomechaniczny model atomu sformułowanie

Bardziej szczegółowo

Materiały w optoelektronice

Materiały w optoelektronice Materiały w optoelektronice Materiał Typ Podłoże Urządzenie Długość fali (mm) Si SiC Ge GaAs AlGaAs GaInP GaAlInP GaP GaAsP InP InGaAs InGaAsP InAlAs InAlGaAs GaSb/GaAlSb CdHgTe ZnSe ZnS IV IV IV III-V

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 2 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2015/16

Bardziej szczegółowo

Ekscyton w morzu dziur

Ekscyton w morzu dziur Ekscyton w morzu dziur P. Kossacki, P. Płochocka, W. Maślana, A. Golnik, C. Radzewicz and J.A. Gaj Institute of Experimental Physics, Warsaw University S. Tatarenko, J. Cibert Laboratoire de Spectrométrie

Bardziej szczegółowo

Nanostruktury i nanotechnologie

Nanostruktury i nanotechnologie Nanostruktury i nanotechnologie Heterozłącza Efekty kwantowe Nanotechnologie Z. Postawa, "Fizyka powierzchni i nanostruktury" 1 Termin oddania referatów do 19 I 004 Zaliczenie: 1 I 004 Z. Postawa, "Fizyka

Bardziej szczegółowo

Mikroskopia polowa. Efekt tunelowy Historia odkryć Uwagi o tunelowaniu Zastosowane rozwiązania. Bolesław AUGUSTYNIAK

Mikroskopia polowa. Efekt tunelowy Historia odkryć Uwagi o tunelowaniu Zastosowane rozwiązania. Bolesław AUGUSTYNIAK Mikroskopia polowa Efekt tunelowy Historia odkryć Uwagi o tunelowaniu Zastosowane rozwiązania Bolesław AUGUSTYNIAK Efekt tunelowy Efekt kwantowy, którym tłumaczy się przenikanie elektronu w sposób niezgodny

Bardziej szczegółowo

1. Struktura pasmowa from bonds to bands

1. Struktura pasmowa from bonds to bands . Strutura pasmowa from bonds to bands Wiązania owalencyjne w cząsteczach Pasma energetyczne w ciałach stałych Przerwa energetyczna w półprzewodniach Dziura w paśmie walencyjnym Przybliżenie prawie swobodnego

Bardziej szczegółowo

Atom wodoru w mechanice kwantowej. Równanie Schrödingera

Atom wodoru w mechanice kwantowej. Równanie Schrödingera Fizyka atomowa Atom wodoru w mechanice kwantowej Moment pędu Funkcje falowe atomu wodoru Spin Liczby kwantowe Poprawki do równania Schrödingera: struktura subtelna i nadsubtelna; przesunięcie Lamba Zakaz

Bardziej szczegółowo

d dz d dy e r d dx ψ = ψ(r, Θ, ϕ) = R n (r) Y l,m (Θ,ϕ) = ψ n,l,m E n 2 n NAJPROSTSZA CZĄSTECZKA - MOLEKUŁA H 2 Przypomnienie: atom wodoru

d dz d dy e r d dx ψ = ψ(r, Θ, ϕ) = R n (r) Y l,m (Θ,ϕ) = ψ n,l,m E n 2 n NAJPROSTSZA CZĄSTECZKA - MOLEKUŁA H 2 Przypomnienie: atom wodoru NAJPROSTSZA CZĄSTECZKA - MOLEKUŁA H Przomnienie: atom wodoru m d d d d d dz e r Ψ r EΨ r rz rzejściu do wółrzędnch fercznch r, Θ, ϕ ψ ψr, Θ, ϕ R n r Y l,m Θ,ϕ ψ n,l,m liczb kwantowe: n, l, m... l 0,...,n-,

Bardziej szczegółowo

Kwant przewodnictwa. Pola. Studnia trójkątna Metoda przybliżona WKB (Wentzel Krammers Brillouin) dla potencjału wolnozmiennego

Kwant przewodnictwa. Pola. Studnia trójkątna Metoda przybliżona WKB (Wentzel Krammers Brillouin) dla potencjału wolnozmiennego Pola Kwant przewodnictwa 2, 2 2 38,7 To są różne definicje częściej jest z 2: 2 77,4 Wzór Landauera (Landauer formula) gdy mamy do czynienia z wieloma kanałami przewodnictwa Trzeba uważać na definicję!

Bardziej szczegółowo

Przejścia kwantowe w półprzewodnikach (kryształach)

Przejścia kwantowe w półprzewodnikach (kryształach) Przejścia kwantowe w półprzewodnikach (kryształach) Rozpraszanie na nieruchomej sieci krystalicznej (elektronów, neutronów, fotonów) zwykłe odbicie Bragga (płaszczyzny krystaliczne odgrywają rolę rys siatki

Bardziej szczegółowo

RÓWNANIE SCHRÖDINGERA NIEZALEŻNE OD CZASU

RÓWNANIE SCHRÖDINGERA NIEZALEŻNE OD CZASU X. RÓWNANIE SCHRÖDINGERA NIEZALEŻNE OD CZASU Równanie Schrődingera niezależne od czasu to równanie postaci: ħ 2 2m d 2 x dx 2 V xx = E x (X.1) Warunki regularności na x i a) skończone b) ciągłe c) jednoznaczne

Bardziej szczegółowo

NanoTechnologia Wydział Fizyki Uniwersytetu Warszawskiego Zakład Fizyki Ciała Stałego

NanoTechnologia  Wydział Fizyki Uniwersytetu Warszawskiego Zakład Fizyki Ciała Stałego NanoTechnologia Jacek.Szczytko@fuw.edu.pl http://www.fuw.edu.pl/~szczytko Wydział Fizyki Uniwersytetu Warszawskiego Zakład Fizyki Ciała Stałego. Nanotechnologia na codzień 2. Jak działa komputer? a) Trochę

Bardziej szczegółowo

Wykład IV. Półprzewodniki samoistne i domieszkowe

Wykład IV. Półprzewodniki samoistne i domieszkowe Wykład IV Półprzewodniki samoistne i domieszkowe Półprzewodniki (Si, Ge, GaAs) Konfiguracja elektronowa Si : 1s 2 2s 2 2p 6 3s 2 3p 2 = [Ne] 3s 2 3p 2 4 elektrony walencyjne Półprzewodnik samoistny Talent

Bardziej szczegółowo

Tunelowanie. Pola. Tunelowanie Przykłady: Tunelowanie. bariera. obszar 1 obszar 2. W drugą stronę: Poziomy nieskończonej anty studni! sin. sin.

Tunelowanie. Pola. Tunelowanie Przykłady: Tunelowanie. bariera. obszar 1 obszar 2. W drugą stronę: Poziomy nieskończonej anty studni! sin. sin. Pola Tunelowanie bariera obszar obszar 2 0 / / / / 0 0 0 0 0 0 W drugą stronę: 0 / / / / 2 Tunelowanie Przykłady: Tunelowanie Poziomy nieskończonej anty studni! 4 4 sin sin 4 4 4 sinh 4 sinh exp 2 2 4

Bardziej szczegółowo

Few-fermion thermometry

Few-fermion thermometry Few-fermion thermometry Phys. Rev. A 97, 063619 (2018) Tomasz Sowiński Institute of Physics of the Polish Academy of Sciences Co-authors: Marcin Płodzień Rafał Demkowicz-Dobrzański FEW-BODY PROBLEMS FewBody.ifpan.edu.pl

Bardziej szczegółowo

Fizyka 3. Konsultacje: p. 329, Mechatronika

Fizyka 3. Konsultacje: p. 329, Mechatronika Fizyka 3 Konsultacje: p. 39, Mechatronika marzan@mech.pw.edu.pl Zaliczenie: 1 sprawdzian 30 pkt 15.1 18 3.0 18.1 1 3.5 1.1 4 4.0 4.1 7 4.5 7.1 30 5.0 http:\\adam.mech.pw.edu.pl\~marzan Program: - elementy

Bardziej szczegółowo

Wprowadzenie do struktur niskowymiarowych

Wprowadzenie do struktur niskowymiarowych Wprowadzenie do struktur niskowymiarowych W litym krysztale ruch elektronów i dziur nie jest ograniczony przestrzennie. Struktury niskowymiarowe pozwalają na ograniczenie (częściowe lub całkowite) ruchu

Bardziej szczegółowo

Perydynina-chlorofil-białko. Optyka nanostruktur. Perydynina-chlorofil-białko. Rekonstytucja Chl a. Sebastian Maćkowski.

Perydynina-chlorofil-białko. Optyka nanostruktur. Perydynina-chlorofil-białko. Rekonstytucja Chl a. Sebastian Maćkowski. Perydynina-chlorofil-białko struktura (krystalografia promieni X) Optyka nanostruktur Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 3 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet

Bardziej szczegółowo

SPM Scanning Probe Microscopy Mikroskopia skanującej sondy STM Scanning Tunneling Microscopy Skaningowa mikroskopia tunelowa AFM Atomic Force

SPM Scanning Probe Microscopy Mikroskopia skanującej sondy STM Scanning Tunneling Microscopy Skaningowa mikroskopia tunelowa AFM Atomic Force SPM Scanning Probe Microscopy Mikroskopia skanującej sondy STM Scanning Tunneling Microscopy Skaningowa mikroskopia tunelowa AFM Atomic Force Microscopy Mikroskopia siły atomowej MFM Magnetic Force Microscopy

Bardziej szczegółowo

ĆWICZENIE Nr 4 LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH. Badanie krawędzi absorpcji podstawowej w kryształach półprzewodników POLITECHNIKA ŁÓDZKA

ĆWICZENIE Nr 4 LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH. Badanie krawędzi absorpcji podstawowej w kryształach półprzewodników POLITECHNIKA ŁÓDZKA POLITECHNIKA ŁÓDZKA INSTYTUT FIZYKI LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH ĆWICZENIE Nr 4 Badanie krawędzi absorpcji podstawowej w kryształach półprzewodników I. Cześć doświadczalna. 1. Uruchomić Spekol

Bardziej szczegółowo

Fizyka klasyczna. - Mechanika klasyczna prawa Newtona - Elektrodynamika prawa Maxwella - Fizyka statystyczna -Hydrtodynamika -Astronomia

Fizyka klasyczna. - Mechanika klasyczna prawa Newtona - Elektrodynamika prawa Maxwella - Fizyka statystyczna -Hydrtodynamika -Astronomia Fizyka klasyczna - Mechanika klasyczna prawa Newtona - Elektrodynamika prawa Maxwella - Fizyka statystyczna -Hydrtodynamika -Astronomia Zaczniemy historię od optyki W połowie XiX wieku Maxwell wprowadził

Bardziej szczegółowo

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science Proposal of thesis topic for mgr in (MSE) programme 1 Topic: Monte Carlo Method used for a prognosis of a selected technological process 2 Supervisor: Dr in Małgorzata Langer 3 Auxiliary supervisor: 4

Bardziej szczegółowo

Pytać! Nanotechnologie (II) Jeszcze o teoriach (nie tylko fizycznych)

Pytać! Nanotechnologie (II) Jeszcze o teoriach (nie tylko fizycznych) Nanotechnologie (II) Jeszcze o teoriach (nie tylko fizycznych) Rys. źródło: Internet Jacek.Szczytko@fuw.edu.pl http://www.fuw.edu.pl/~szczytko Półprzewodniki a.studnie i.studnie i ekscytony ii.lasery iii.dwuwymiarowe

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 4 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2013/14

Bardziej szczegółowo

Metody analizy pierwiastków z zastosowaniem wtórnego promieniowania rentgenowskiego. XRF, SRIXE, PIXE, SEM (EPMA)

Metody analizy pierwiastków z zastosowaniem wtórnego promieniowania rentgenowskiego. XRF, SRIXE, PIXE, SEM (EPMA) Metody analizy pierwiastków z zastosowaniem wtórnego promieniowania rentgenowskiego. XRF, SRIXE, PIXE, SEM (EPMA) Promieniowaniem X nazywa się promieniowanie elektromagnetyczne o długości fali od około

Bardziej szczegółowo

Poprawa charakterystyk promieniowania diod laserowych dużej mocy poprzez zastosowanie struktur periodycznych w płaszczyźnie złącza

Poprawa charakterystyk promieniowania diod laserowych dużej mocy poprzez zastosowanie struktur periodycznych w płaszczyźnie złącza Poprawa charakterystyk promieniowania diod laserowych dużej mocy poprzez zastosowanie struktur periodycznych w płaszczyźnie złącza Grzegorz Sobczak, Elżbieta Dąbrowska, Marian Teodorczyk, Joanna Kalbarczyk,

Bardziej szczegółowo

Atom wodoru. Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu:

Atom wodoru. Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu: ATOM WODORU Atom wodoru Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu: U = 4πε Opis kwantowy: wykorzystując zasadę odpowiedniości

Bardziej szczegółowo

FALE MECHANICZNE C.D. W przypadku fal mechanicznych energia fali składa się z energii kinetycznej i energii

FALE MECHANICZNE C.D. W przypadku fal mechanicznych energia fali składa się z energii kinetycznej i energii FALE MECHANICZNE CD Gętość energii ruchu alowego otencjalnej W rzyadku al mechanicznych energia ali kłada ię z energii kinetycznej i energii Energia kinetyczna Energia kinetyczna małego elementu ośrodka

Bardziej szczegółowo

STRUKTURA PASM ENERGETYCZNYCH

STRUKTURA PASM ENERGETYCZNYCH PODSTAWY TEORII PASMOWEJ Struktura pasm energetycznych Teoria wa Struktura wa stałych Półprzewodniki i ich rodzaje Półprzewodniki domieszkowane Rozkład Fermiego - Diraca Złącze p-n (dioda) Politechnika

Bardziej szczegółowo

The role of band structure in electron transfer kinetics at low dimensional carbons

The role of band structure in electron transfer kinetics at low dimensional carbons The role of band structure in electron transfer kinetics at low dimensional carbons Paweł Szroeder Instytut Fizyki, Uniwersytet Mikołaja Kopernika, ul. Grudziądzka 5/7, 87-100 Toruń, Poland Reakcja przeniesienia

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 2 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet

Bardziej szczegółowo

Heterostruktury półprzewodnikowe studnie kwantowe (cd) Studnia nieskończona Wewnątrz studni:

Heterostruktury półprzewodnikowe studnie kwantowe (cd) Studnia nieskończona Wewnątrz studni: Heterostruktury półprzewodnikowe studnie kwantowe (cd) Studnia nieskończona Wewnątrz studni:, sin 013 0 7 Studnia nieskończona Wewnątrz studni: Studnia nieskończona Wewnątrz studni:, sin, sin 9 9 013 0

Bardziej szczegółowo

Techniki próżniowe (ex situ)

Techniki próżniowe (ex situ) Techniki próżniowe (ex situ) Oddziaływanie promieniowania X z materią rearrangement X-ray photon X-ray emission b) rearrangement a) photoemission photoelectron Auger electron c) Auger/X-ray emission a)

Bardziej szczegółowo

gęstością prawdopodobieństwa

gęstością prawdopodobieństwa Funkcja falowa Zgodnie z hipotezą de Broglie'a, cząstki takie jak elektron czy proton, mają własności falowe. Własności falowe cząstki (lub innego obiektu) w mechanice kwantowej opisuje tzw. funkcja falowa(,t)

Bardziej szczegółowo

Nanostruktury krystaliczne

Nanostruktury krystaliczne Nanostruktury krystaliczne Jacek.Szczytko@fuw.edu.pl http://www.fuw.edu.pl/~szczytko/nt 1. Nanotechnologia na codzień 2. Prawo Moora i jego konsekwencje a) Więcej! Szybciej! Taniej! b) Wyzwania i problemy

Bardziej szczegółowo

IX. DIODY PÓŁPRZEWODNIKOWE Janusz Adamowski

IX. DIODY PÓŁPRZEWODNIKOWE Janusz Adamowski IX. DIODY PÓŁPRZEWODNIKOWE Janusz Adamowski 1 1 Dioda na złączu p n Zgodnie z wynikami, otrzymanymi na poprzednim wykładzie, natężenie prądu I przepływającego przez złącze p n opisane jest wzorem Shockleya

Bardziej szczegółowo

TEORIA PASMOWA CIAŁ STAŁYCH

TEORIA PASMOWA CIAŁ STAŁYCH TEORIA PASMOWA CIAŁ STAŁYCH Skolektywizowane elektrony w metalu Weźmy pod uwagę pewną ilość atomów jakiegoś metalu, np. sodu. Pojedynczy atom sodu zawiera 11 elektronów o konfiguracji 1s 2 2s 2 2p 6 3s

Bardziej szczegółowo

Teoretyczna interpretacja widma elektroabsorpcji 2,2 :5,2 :5,2 - kwatertiofenu

Teoretyczna interpretacja widma elektroabsorpcji 2,2 :5,2 :5,2 - kwatertiofenu Teoretyczna interpretacja widma elektroabsorpcji 2,2 :5,2 :5,2 - kwatertiofenu Kraków, 17.05.2006 Obiekt badań 2,2 :5,2 :5,2 - kwatertiofen α-tetratiofen (α-4t) Obiekt badań Faza niskotemperaturowa [7]

Bardziej szczegółowo

Nanofizyka co wiemy, a czego jeszcze szukamy?

Nanofizyka co wiemy, a czego jeszcze szukamy? Nanofizyka co wiemy, a czego jeszcze szukamy? Maciej Maśka Zakład Fizyki Teoretycznej UŚ Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego ...czyli dlaczego NANO

Bardziej szczegółowo

Mechanika klasyczna zasada zachowania energii. W obszarze I cząstka biegnie z prędkością v I, Cząstka przechodzi z obszaru I do II.

Mechanika klasyczna zasada zachowania energii. W obszarze I cząstka biegnie z prędkością v I, Cząstka przechodzi z obszaru I do II. Próg potencjału Mecanika klasyczna zasada zacowania energii mvi mv E + V W obszarze I cząstka biegnie z prędkością v I, E > V w obszarze cząstka biegnie z prędkością v Cząstka przecodzi z obszaru I do.

Bardziej szczegółowo

Materiały używane w elektronice

Materiały używane w elektronice Materiały używane w elektronice Typ Rezystywność [Wm] Izolatory (dielektryki) Over 10 5 półprzewodniki 10-5 10 5 przewodniki poniżej 10-5 nadprzewodniki (poniżej 20K) poniżej 10-15 Model pasm energetycznych

Bardziej szczegółowo

THEORETICAL STUDIES ON CHEMICAL SHIFTS OF 3,6 DIIODO 9 ETHYL 9H CARBAZOLE

THEORETICAL STUDIES ON CHEMICAL SHIFTS OF 3,6 DIIODO 9 ETHYL 9H CARBAZOLE THEORETICAL STUDIES ON CHEMICAL SHIFTS OF 3,6 DIIODO 9 ETHYL 9H CARBAZOLE Teobald Kupkaa, Klaudia Radula-Janika, Krzysztof Ejsmonta, Zdzisław Daszkiewicza, Stephan P. A. Sauerb a Faculty of Chemistry,

Bardziej szczegółowo

Repeta z wykładu nr 4. Detekcja światła. Dygresja. Plan na dzisiaj

Repeta z wykładu nr 4. Detekcja światła. Dygresja. Plan na dzisiaj Repeta z wykładu nr 4 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje:

Bardziej szczegółowo

Rozwiązania zadań z podstaw fizyki kwantowej

Rozwiązania zadań z podstaw fizyki kwantowej Rozwiązania zadań z podstaw fizyki kwantowej Jacek Izdebski 5 stycznia roku Zadanie 1 Funkcja falowa Ψ(x) = A n sin( πn x) jest zdefiniowana jedynie w obszarze

Bardziej szczegółowo

S. Baran - Podstawy fizyki materii skondensowanej Półprzewodniki. Półprzewodniki

S. Baran - Podstawy fizyki materii skondensowanej Półprzewodniki. Półprzewodniki Półprzewodniki Definicja i własności Półprzewodnik materiał, którego przewodnictwo rośnie z temperaturą (opór maleje) i w temperaturze pokojowej wykazuje wartości pośrednie między przewodnictwem metali,

Bardziej szczegółowo

Plan. 2. Fizyka heterozłącza a. proste modele kwantowe b. n-wymiarowy gaz elektronowy

Plan. 2. Fizyka heterozłącza a. proste modele kwantowe b. n-wymiarowy gaz elektronowy Plan 1. Przegląd struktur niskowymiarowych a. studnie kwantowe, supersieci, wytwarzanie b. druty kwantowe, kropki kwantowe; wytwarzanie nanokryształy struktury samorosnące c. charakter widm optycznych

Bardziej szczegółowo

Lasery półprzewodnikowe. przewodnikowe. Bernard Ziętek

Lasery półprzewodnikowe. przewodnikowe. Bernard Ziętek Lasery półprzewodnikowe przewodnikowe Bernard Ziętek Plan 1. Rodzaje półprzewodników 2. Parametry półprzewodników 3. Złącze p-n 4. Rekombinacja dziura-elektron 5. Wzmocnienie 6. Rezonatory 7. Lasery niskowymiarowe

Bardziej szczegółowo

Tytuł pracy w języku angielskim: Microstructural characterization of Ag/X/Ag (X = Sn, In) joints obtained as the effect of diffusion soledering.

Tytuł pracy w języku angielskim: Microstructural characterization of Ag/X/Ag (X = Sn, In) joints obtained as the effect of diffusion soledering. Dr inż. Przemysław Skrzyniarz Kierownik pracy: Prof. dr hab. inż. Paweł Zięba Tytuł pracy w języku polskim: Charakterystyka mikrostruktury spoin Ag/X/Ag (X = Sn, In) uzyskanych w wyniku niskotemperaturowego

Bardziej szczegółowo

W stronę plazmonowego wzmocnienia efektów magnetooptycznych

W stronę plazmonowego wzmocnienia efektów magnetooptycznych W stronę plazmonowego wzmocnienia efektów magnetooptycznych Joanna Papierska J. Suffczyński, M. Koperski, P. Nowicki, B. Witkowski, M. Godlewski, A. Navarro-Quezada, A. Bonanni Warsztaty NanoWorld 2011,

Bardziej szczegółowo

Fizyka silnie skorelowanych elektronów na przykładzie międzymetalicznych związków ceru

Fizyka silnie skorelowanych elektronów na przykładzie międzymetalicznych związków ceru Fizyka silnie skorelowanych elektronów na przykładzie międzymetalicznych związków ceru Rafał Kurleto 4.3.216 ZFCS IF UJ Rafał Kurleto Sympozjum doktoranckie 4.3.216 1 / 15 Współpraca dr hab. P. Starowicz

Bardziej szczegółowo

Własności transportowe niejednorodnych nanodrutów półprzewodnikowych

Własności transportowe niejednorodnych nanodrutów półprzewodnikowych Własności transportowe niejednorodnych nanodrutów półprzewodnikowych Maciej Wołoszyn współpraca: Janusz Adamowski Bartłomiej Spisak Paweł Wójcik Seminarium WFiIS AGH 13 stycznia 2017 Streszczenie nanodruty

Bardziej szczegółowo

Faculty of Applied Physics and Mathematics -> Department of Solid State Physics. dydaktycznych, objętych planem studiów

Faculty of Applied Physics and Mathematics -> Department of Solid State Physics. dydaktycznych, objętych planem studiów Nazwa i kod przedmiotu Kierunek studiów Mechanika kwantowa, NAN1B0051 Nanotechnologia Poziom studiów I stopnia - inżynierskie Typ przedmiotu obowiąkowy Forma studiów stacjonarne Sposób realizacji na uczelni

Bardziej szczegółowo

Wstęp do astrofizyki I

Wstęp do astrofizyki I Wstęp do astrofizyki I Wykład 8 Tomasz Kwiatkowski 24 listopad 2010 r. Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 8 1/24 Plan wykładu Efekt fotoelektryczny wewnętrzny Matryca CCD Budowa piksela

Bardziej szczegółowo

Kryształy, półprzewodniki, nanotechnologie. Dr inż. KAROL STRZAŁKOWSKI Instytut Fizyki UMK w Toruniu

Kryształy, półprzewodniki, nanotechnologie. Dr inż. KAROL STRZAŁKOWSKI Instytut Fizyki UMK w Toruniu Kryształy, półprzewodniki, nanotechnologie. Dr inż. KAROL STRZAŁKOWSKI Instytut Fizyki UMK w Toruniu skaroll@fizyka.umk.pl http://www.rk.kujawsko-pomorskie.pl/ Organizacja zajęć Kurs trwa 20 godzin lekcyjnych,

Bardziej szczegółowo

POLITECHNIKA GDAŃSKA WYDZIAŁ FIZYKI TECHNICZNEJ I MATEMATYKI STOSOWANEJ EKSCYTONY. Seminarium z Molekularnego Ciała a Stałego Jędrzejowski Jaromir

POLITECHNIKA GDAŃSKA WYDZIAŁ FIZYKI TECHNICZNEJ I MATEMATYKI STOSOWANEJ EKSCYTONY. Seminarium z Molekularnego Ciała a Stałego Jędrzejowski Jaromir POLITECHNIKA GDAŃSKA WYDZIAŁ FIZYKI TECHNICZNEJ I MATEMATYKI STOSOWANEJ EKSCYTONY W CIAŁACH ACH STAŁYCH Seminarium z Molekularnego Ciała a Stałego Jędrzejowski Jaromir Co to sąs ekscytony? ekscyton to

Bardziej szczegółowo

Powierzchnie cienkie warstwy nanostruktury. Józef Korecki, C1, II p., pok. 207

Powierzchnie cienkie warstwy nanostruktury. Józef Korecki, C1, II p., pok. 207 Powierzchnie cienkie warstwy nanostruktury Józef Korecki, C1, II p., pok. 207 korecki@uci.agh.edu.pl http://korek.uci.agh.edu.pl/priv/jk.htm Obiekty niskowymiarowe Powierzchnia Cienkie warstwy Wielowarstwy

Bardziej szczegółowo