Atom Mn: wielobit kwantowy. Jan Gaj Instytut Fizyki Doświadczalnej

Save this PDF as:
Wielkość: px
Rozpocząć pokaz od strony:

Download "Atom Mn: wielobit kwantowy. Jan Gaj Instytut Fizyki Doświadczalnej"

Transkrypt

1 Atom Mn: wielobit kwantowy Jan Gaj Instytut Fizyki Doświadczalnej

2 Tomasz Kazimierczuk Mateusz Goryca Piotr Wojnar (IF PAN) Artur Trajnerowicz Andrzej Golnik Piotr Kossacki Jan Gaj Michał Nawrocki

3 Ostrzeżenia Będą uproszczenia. Wykrycie najbardziej skandalicznego może być nagrodzone. Decyzja należy do większości bez prawa veta wykładowcy. Będą pytania. Odpowiedź, która się najbardziej spodoba, może zostać nagrodzona. Decyzja należy do większości.

4 Motywacja: informatyka kwantowa Informatyka klasyczna: bit, przyjmuje dwie wartości: 0, 1 Informatyka kwantowa: qubit, występuje w stanach α 0 + β 1 ; α 2 + β 2 = 1 Komputera kwantowego dotychczas nie ma, ale jeśli powstanie, będzie rewolucja

5 Nagroda Fundacji na rzecz Nauki Polskiej 2008 Został uhonorowany wkład prof. Ryszarda Horodeckiego w stworzenie podstaw teoretycznych informatyki kwantowej, a w szczególności za wypracowanie podstaw praktycznej detekcji kwantowego splątania i odkrycie splątania związanego - "czarnych dziur w kwantowej teorii informacji.

6 Fundamentalna praca Science Citation Index 12/12/2008 Cited References Separability of mixed states: Necessary and sufficient conditions Horodecki M, Horodecki P, Horodecki R PHYSICS LETTERS A 223 (1-2): 1-8 NOV Document type: Article Language: English Cited References: 22 Times Cited: 849 Abstract: We provide necessary and sufficient conditions for the separability of mixed states. As a result we obtain a simple criterion of the separability for 2 x 2 and 2 x 3 systems. Here, the positivity of the partial transposition of a state is necessary and sufficient for its separability. However, this is not the case in general. Some examples of mixtures which demonstrate the utility of the criterion are considered.

7 Plan O qubicie O kropce kwantowej i ekscytonach Atom manganu w kropce Wykrywanie stanu (spinowego) manganu Jak sterować spinem manganu?

8 Jak zbudować qubit? Układ kwantowy o dwóch stanach własnych Dobra pamięć Szybka manipulacja Przykład: spin elektronu w kropce kwantowej Jon Mn: sześć stanów

9 Co to jest kropka kwantowa? Więzienie dla elektronów (dziur)

10 Półprzewodnik 1 Półprzewodnik 2 Półprzewodnik 1 T. Kazimierczuk

11 cqd.eecs.northwestern.edu

12 Jak zrobić kropkę kwantową?

13 MBE Epitaksja z wiązki molekularnej

14 Aparatura MBE

15 Samorosnące kropki kwantowe CdTe/ZnTe Wyhodowane przez Piotra Wojnara (IF PAN)

16 Jak obejrzeć kropki kwantowe? AFM Atomic Force Microscopy HRTEM High Resolution Transmission Electron Microscopy 2 nm 20 nm S. Kret, P. Dłużewski (IPPT PAN) P. Wojnar (IF PAN)

17 Jak pobudzić kropkę kwantową do świecenia?

18 Laser argonowy Pump laser Laser Dye laser barwnikowy T=1.5K Monochromator Spektrometr + CCD camera P1 P2 rozdzielczość przestrzenna 0.5 μm pole magnetyczne do 6T Cryostat Kriostatwith microscope objective T. Kazimierczuk

19 Jak badać świecenie jednej kropki?

20 -PL Intensity (arb. units) Mikrofotoluminescencja kropek kwantowych Mikroskop (rozdzielczość <1µm) T = 1.7K P = 700nW single QD emission CX XX CX' X

21 4000 P L intensity trion ujemny Xbiekscyton XX trion dodatni X+ ekscyton X biekscyton ujemny XX detection energy (mev) 1930 T. Kazimierczuk et al., 2008

22 Jak rozpoznać stan spinowy ekscytonu w kropce? Po polaryzacji kołowej fotonu σ+ σ-

23 polarization destroyed conserved reversed Lost (singlet) Jak się to mierzy? T. Kazimierczuk et al., 2008

24 Cy można przekazać spin z kropki do kropki? σ+ σ+ σ- σ-

25 Jak zrobić kropkę z jednym atomem Mn? CdTe (2 ml) (Cd,Mn)Te (0.05% Mn) CdTe (2 ml) cap layer (100 nm) (Cd,Zn)Te (0.8μm) CdTe (4μm) substrate (GaAs) Number of Mn ions in a single dot: ~1 Piotr Wojnar

26 Jak rozpoznać czy w kropce jest atom Mn?

27 X photoluminescence (arb. u.) XX CX energy (ev) 1.92 M. Goryca et al., 2008

28 E = Jσ X S Mn X Mn 5/2 3/2 σ+ 1/2-1/2-3/2-5/2 6 równoodległych stanów Energia przejścia spin manganu L. Besombes et al., PRL 93, (2004).

29 Jak rozpoznać stan spinowy atomu manganu w kropce? Dzięki oddziaływaniu ekscyton - mangan

30 Mn 5/2 3/2 σ+ 1/2-1/2-3/2-5/2 photoluminescence (arb. u.) X energy (ev) 6 równoodległych stanów Energia przejścia spin manganu M. Goryca et al., 2008

31 Odczytać widmo świecenia ekscytonu exc σ + exc linear 500 0T exc σ 500 X Mn 5/2 3/2 250 σ /2-1/2-3/ / E = Jσ X S Mn /2 3/2 σ /2-1/2-3/ E (ev) / M. Goryca et al., 2008

32 Jak wpływać na stan spinowy atomu manganu w kropce?

33 Natężenie luminescencji Mn E T. Kazimierczuk

34 Natężenie luminescencji Mn E T. Kazimierczuk

35 photoluminescence (arb. u.) B=+4.5T B=-4.5T Metoda działa, ale... wymaga sporego pola magnetycznego zmiana pola jest bardzo wolna energy (ev) M. Goryca et al., 2008

36 Jak inaczej wpływać na stan spinowy atomu manganu w kropce? Światłem (spolaryzowanym)

37 Światło kreuje nośniki o zadanym spinie Atom manganu jest Mn w otoczeniu spinowo spolaryzowanym Może się dostosuje? T. Kazimierczuk et al., arxiv: v1

38 Energia pobudzania (mev) Pobudzanie rezonansowe 2157 XX CX X Energia emisji (mev) M. Goryca et al., arxiv: v1

39 X Mn Jak szybko potrafimy zmieniać stan Mn? Pobudzanie σ+ Pobudzanie π B=1T Pobudzanie σ Energia emisji (mev) M. Goryca et al., 2008

40 Pamięć: setki µs I pobudzanie σ+ σ- σ+ T=1.5K, B=1T 42.9ns 1.0 PL intensity (arb.u.) t Manipulacja: dziesiątki ns ns 367ns 15.8ns exc 30µ w exc 10µ w exc 2.2µ w time (ns) 3000 M. Goryca et al., arxiv: v1

41 Emisja światła zdradza obecność ekscytonu w kropce kwantowej Polaryzacja światła świadczy o spinie ekscytonu Wykrywamy kropki z jednym atomem Mn Ustawiamy światłem spin atomu manganu Atom długo pamięta swój stan spinowy

42 Dziękuję za uwagę Nanoworld 2009, Kraków 9-11 stycznia

Ekscyton w morzu dziur

Ekscyton w morzu dziur Ekscyton w morzu dziur P. Kossacki, P. Płochocka, W. Maślana, A. Golnik, C. Radzewicz and J.A. Gaj Institute of Experimental Physics, Warsaw University S. Tatarenko, J. Cibert Laboratoire de Spectrométrie

Bardziej szczegółowo

Plan. Kropki kwantowe - część III spektroskopia pojedynczych kropek kwantowych. Kropki samorosnące. Kropki fluktuacje szerokości

Plan. Kropki kwantowe - część III spektroskopia pojedynczych kropek kwantowych. Kropki samorosnące. Kropki fluktuacje szerokości Plan Kropki kwantowe - część III spektroskopia pojedynczych kropek kwantowych Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika 1. Techniki pomiarowe 2. Podstawowe wyniki 3. Struktura

Bardziej szczegółowo

Kropki samorosnące. Optyka nanostruktur. Gęstość stanów. Kropki fluktuacje szerokości. Sebastian Maćkowski. InAs/GaAs QDs. Si/Ge QDs.

Kropki samorosnące. Optyka nanostruktur. Gęstość stanów. Kropki fluktuacje szerokości. Sebastian Maćkowski. InAs/GaAs QDs. Si/Ge QDs. Kropki samorosnące Optyka nanostruktur InAs/GaAs QDs Si/Ge QDs Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon:

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 2 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2013/14

Bardziej szczegółowo

Co to jest kropka kwantowa? Kropki kwantowe - część I otrzymywanie. Co to jest ekscyton? Co to jest ekscyton? e πε. E = n. Sebastian Maćkowski

Co to jest kropka kwantowa? Kropki kwantowe - część I otrzymywanie. Co to jest ekscyton? Co to jest ekscyton? e πε. E = n. Sebastian Maćkowski Co to jest kropka kwantowa? Kropki kwantowe - część I otrzymywanie Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Co to jest ekscyton? Co to jest ekscyton? h 2 2 2 e πε m* 4 0ε s Φ

Bardziej szczegółowo

Mody sprzężone plazmon-fonon w silnych polach magnetycznych

Mody sprzężone plazmon-fonon w silnych polach magnetycznych Mody sprzężone plazmon-fonon w silnych polach magnetycznych Mody sprzężone w półprzewodnikach polarnych + E E pl η = st α = E E pl ξ = p B.B. Varga,, Phys. Rev. 137,, A1896 (1965) A. Mooradian and B. Wright,

Bardziej szczegółowo

Współczesna fizyka ciała stałego

Współczesna fizyka ciała stałego Współczesna fizyka ciała stałego Struktury półprzewodnikowe o obniŝonej wymiarowości studnie kwantowe, druty kwantowe, kropki kwantowe fulereny, nanorurki, grafen Kwantowe efekty rozmiarowe Ograniczenie

Bardziej szczegółowo

Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych

Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych Mody sprzęŝone w półprzewodnikach polarnych + E E pl η = st α = E E pl ξ = p B.B. Varga, Phys. Rev. 137,, A1896 (1965) A. Mooradian and B. Wright,

Bardziej szczegółowo

Pomiary widm fotoluminescencji

Pomiary widm fotoluminescencji Fotoluminescencja (PL photoluminescence) jako technika eksperymentalna, oznacza badanie zależności spektralnej rekombinacji promienistej, pochodzącej od nośników wzbudzonych optycznie. Schemat układu do

Bardziej szczegółowo

Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych

Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych Klasyczny przykład pośredniego oddziaływania pola magnetycznego na wzbudzenia fononowe Schemat: pole magnetyczne (siła Lorentza) nośniki (oddziaływanie

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 2 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15

Bardziej szczegółowo

Repeta z wykładu nr 11. Detekcja światła. Fluorescencja. Eksperyment optyczny. Sebastian Maćkowski

Repeta z wykładu nr 11. Detekcja światła. Fluorescencja. Eksperyment optyczny. Sebastian Maćkowski Repeta z wykładu nr 11 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 CCD (urządzenie

Bardziej szczegółowo

Studnia kwantowa. Optyka nanostruktur. Studnia kwantowa. Gęstość stanów. Sebastian Maćkowski

Studnia kwantowa. Optyka nanostruktur. Studnia kwantowa. Gęstość stanów. Sebastian Maćkowski Studnia kwantowa Optyka nanostruktur Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Studnia kwantowa

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 2 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet

Bardziej szczegółowo

Wzrost pseudomorficzny. Optyka nanostruktur. Mody wzrostu. Ekscyton. Sebastian Maćkowski

Wzrost pseudomorficzny. Optyka nanostruktur. Mody wzrostu. Ekscyton. Sebastian Maćkowski Wzrost pseudomorficzny Optyka nanostruktur Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 naprężenie

Bardziej szczegółowo

Podstawy informatyki kwantowej

Podstawy informatyki kwantowej Wykład 6 27 kwietnia 2016 Podstawy informatyki kwantowej dr hab. Łukasz Cywiński lcyw@ifpan.edu.pl http://info.ifpan.edu.pl/~lcyw/ Wykłady: 6, 13, 20, 27 kwietnia oraz 4 maja (na ostatnim wykładzie będzie

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 2 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2015/16

Bardziej szczegółowo

Informatyka kwantowa i jej fizyczne podstawy Rezonans spinowy, bramki dwu-kubitowe

Informatyka kwantowa i jej fizyczne podstawy Rezonans spinowy, bramki dwu-kubitowe Wykład 4 29 kwietnia 2015 Informatyka kwantowa i jej fizyczne podstawy Rezonans spinowy, bramki dwu-kubitowe Łukasz Cywiński lcyw@ifpan.edu.pl http://info.ifpan.edu.pl/~lcyw/ Dobra lektura: Michel Le Bellac

Bardziej szczegółowo

Nierównowagowe kondensaty polarytonów ekscytonowych z gigantycznym rozszczepieniem Zeemana w mikrownękach półprzewodnikowych

Nierównowagowe kondensaty polarytonów ekscytonowych z gigantycznym rozszczepieniem Zeemana w mikrownękach półprzewodnikowych Nierównowagowe kondensaty polarytonów ekscytonowych z gigantycznym rozszczepieniem Zeemana w mikrownękach półprzewodnikowych B. Piętka, M. Król, R. Mirek, K. Lekenta, J. Szczytko J.-G. Rousset, M. Nawrocki,

Bardziej szczegółowo

Współczesna fizyka ciała stałego

Współczesna fizyka ciała stałego Współczesna fizyka ciała stałego Struktury półprzewodnikowe o obniżonej wymiarowości studnie kwantowe, druty kwantowe, kropki kwantowe.. fulereny, nanorurki, grafen. Kwantowe efekty rozmiarowe Ograniczenie

Bardziej szczegółowo

Domieszki w półprzewodnikach

Domieszki w półprzewodnikach Domieszki w półprzewodnikach Niebieska optoelektronika Niebieski laser Nie można obecnie wyświetlić tego obrazu. Domieszkowanie m* O Neutralny donor w przybliżeniu masy efektywnej 2 2 0 2 * 2 * 13.6 *

Bardziej szczegółowo

UNIWERSYTET SZCZECIŃSKI INSTYTUT FIZYKI ZAKŁAD FIZYKI CIAŁA STAŁEGO. Ćwiczenie laboratoryjne Nr.2. Elektroluminescencja

UNIWERSYTET SZCZECIŃSKI INSTYTUT FIZYKI ZAKŁAD FIZYKI CIAŁA STAŁEGO. Ćwiczenie laboratoryjne Nr.2. Elektroluminescencja UNIWERSYTET SZCZECIŃSKI INSTYTUT FIZYKI ZAKŁAD FIZYKI CIAŁA STAŁEGO Ćwiczenie laboratoryjne Nr.2 Elektroluminescencja SZCZECIN 2002 WSTĘP Mianem elektroluminescencji określamy zjawisko emisji spontanicznej

Bardziej szczegółowo

Domieszki w półprzewodnikach

Domieszki w półprzewodnikach Domieszki w półprzewodnikach Niebieska optoelektronika Niebieski laser Elektryczne pobudzanie struktury laserowej Unipress 106 unipress 8 Moc op ptyczna ( mw ) 6 4 2 0 0.0 0.5 1.0 1.5 2.0 Natężenie prądu

Bardziej szczegółowo

półprzewodniki Plan na dzisiaj Optyka nanostruktur Struktura krystaliczna Dygresja Sebastian Maćkowski

półprzewodniki Plan na dzisiaj Optyka nanostruktur Struktura krystaliczna Dygresja Sebastian Maćkowski Plan na dzisiaj Optyka nanostruktur Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 półprzewodniki

Bardziej szczegółowo

W5. Komputer kwantowy

W5. Komputer kwantowy W5. Komputer kwantowy Komputer klasyczny: Informacja zapisana w postaci bitów (binary digit) (sygnał jest albo go nie ma) W klasycznych komputerach wartość bitu jest określona przez stan pewnego elementu

Bardziej szczegółowo

Wysokowydajne falowodowe źródło skorelowanych par fotonów

Wysokowydajne falowodowe źródło skorelowanych par fotonów Wysokowydajne falowodowe źródło skorelowanych par fotonów Michał Karpioski * Konrad Banaszek, Czesław Radzewicz * * Instytut Fizyki Doświadczalnej, Instytut Fizyki Teoretycznej Wydział Fizyki Uniwersytet

Bardziej szczegółowo

Idea przyłączenie chromoforu (fluoryzującego) do biomolekuły

Idea przyłączenie chromoforu (fluoryzującego) do biomolekuły markery, nanocząstki, kropki kwantowe Idea przyłączenie chromoforu (fluoryzującego) do biomolekuły sondy fluorescencyjnej wizualizacja przez oświetlenie odpow. światłem obrazowanie (możliwe poniżej dyfrakcyjnego

Bardziej szczegółowo

Operacje na spinie pojedynczego elektronu w zastosowaniu do budowy bramek logicznych komputera kwantowego

Operacje na spinie pojedynczego elektronu w zastosowaniu do budowy bramek logicznych komputera kwantowego Stanisław Bednarek Zespół Teorii Nanostruktur i Nanourządzeń Katedra Informatyki Stosowanej i Fizyki Komputerowej WFiIS AGH Operacje na spinie pojedynczego elektronu w zastosowaniu do budowy bramek logicznych

Bardziej szczegółowo

Wykład 12 V = 4 km/s E 0 =.08 e V e = = 1 Å

Wykład 12 V = 4 km/s E 0 =.08 e V e  = = 1 Å Wykład 12 Fale materii: elektrony, neutrony, lekkie atomy Neutrony generowane w reaktorze są spowalniane w wyniku zderzeń z moderatorem (grafitem) do V = 4 km/s, co odpowiada energii E=0.08 ev a energia

Bardziej szczegółowo

W stronę plazmonowego wzmocnienia efektów magnetooptycznych

W stronę plazmonowego wzmocnienia efektów magnetooptycznych W stronę plazmonowego wzmocnienia efektów magnetooptycznych Joanna Papierska J. Suffczyński, M. Koperski, P. Nowicki, B. Witkowski, M. Godlewski, A. Navarro-Quezada, A. Bonanni Warsztaty NanoWorld 2011,

Bardziej szczegółowo

Jak TO działa? Co to są półprzewodniki? TRENDY: Prawo Moore a. Google: Jacek Szczytko Login: student Hasło: *******

Jak TO działa?   Co to są półprzewodniki? TRENDY: Prawo Moore a. Google: Jacek Szczytko Login: student Hasło: ******* Co to są półprzewodniki? Jak TO działa? http://www.fuw.edu.pl/~szczytko/ Google: Jacek Szczytko Login: student Hasło: ******* Jacek.Szczytko@fuw.edu.pl Wydział Fizyki UW 2 TRENDY: Prawo Moore a TRENDY:

Bardziej szczegółowo

Autoreferat. 1. Imię i Nazwisko Posiadane dyplomy, stopnie naukowe... 2

Autoreferat. 1. Imię i Nazwisko Posiadane dyplomy, stopnie naukowe... 2 Piotr Wojnar Instytut Fizyki, Polskiej Akademii Nauk Warszawa, 2016 Autoreferat Spis treści: 1. Imię i Nazwisko... 2 2. Posiadane dyplomy, stopnie naukowe... 2 3. Informacja o dotychczasowym zatrudnieniu

Bardziej szczegółowo

II.6 Atomy w zewnętrznym polu magnetycznym

II.6 Atomy w zewnętrznym polu magnetycznym II.6 Atomy w zewnętrznym polu magnetycznym 1. Kwantowanie przestrzenne w zewnętrznym polu magnetycznym. Model wektorowy raz jeszcze 2. Zjawisko Zeemana Normalne zjawisko Zeemana i jego wyjaśnienie w modelu

Bardziej szczegółowo

Fluorescencyjna detekcja śladów cząstek jądrowych przy użyciu kryształów fluorku litu

Fluorescencyjna detekcja śladów cząstek jądrowych przy użyciu kryształów fluorku litu Fluorescencyjna detekcja śladów cząstek jądrowych przy użyciu kryształów fluorku litu Paweł Bilski Zakład Fizyki Radiacyjnej i Dozymetrii (NZ63) IFJ PAN Fluorescenscent Nuclear Track Detectors (FNTD) pierwsza

Bardziej szczegółowo

Podstawy fizyki wykład 2

Podstawy fizyki wykład 2 D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 5, PWN, Warszawa 2003. H. D. Young, R. A. Freedman, Sear s & Zemansky s University Physics with Modern Physics, Addison-Wesley Publishing Company,

Bardziej szczegółowo

POLITECHNIKA GDAŃSKA WYDZIAŁ FIZYKI TECHNICZNEJ I MATEMATYKI STOSOWANEJ EKSCYTONY. Seminarium z Molekularnego Ciała a Stałego Jędrzejowski Jaromir

POLITECHNIKA GDAŃSKA WYDZIAŁ FIZYKI TECHNICZNEJ I MATEMATYKI STOSOWANEJ EKSCYTONY. Seminarium z Molekularnego Ciała a Stałego Jędrzejowski Jaromir POLITECHNIKA GDAŃSKA WYDZIAŁ FIZYKI TECHNICZNEJ I MATEMATYKI STOSOWANEJ EKSCYTONY W CIAŁACH ACH STAŁYCH Seminarium z Molekularnego Ciała a Stałego Jędrzejowski Jaromir Co to sąs ekscytony? ekscyton to

Bardziej szczegółowo

Własności optyczne półprzewodników

Własności optyczne półprzewodników Własności optyczne półprzewodników Andrzej Wysmołek Wykład przygotowany w oparciu o wykłady prowadzone na Wydziale Fizyki UW przez prof. Mariana Grynberga oraz prof. Romana Stępniewskiego Klasyfikacja

Bardziej szczegółowo

Teoria Orbitali Molekularnych. tworzenie wiązań chemicznych

Teoria Orbitali Molekularnych. tworzenie wiązań chemicznych Teoria Orbitali Molekularnych tworzenie wiązań chemicznych Zbliżanie się atomów aż do momentu nałożenia się ich orbitali H a +H b H a H b Wykres obrazujący zależność energii od odległości atomów długość

Bardziej szczegółowo

Uniwersytet Warszawski Wydział Fizyki. Badanie efektu Faraday a w kryształach CdTe i CdMnTe

Uniwersytet Warszawski Wydział Fizyki. Badanie efektu Faraday a w kryształach CdTe i CdMnTe Uniwersytet Warszawski Wydział Fizyki Marcin Polkowski 251328 Badanie efektu Faraday a w kryształach CdTe i CdMnTe Pracownia Fizyczna dla Zaawansowanych ćwiczenie F8 w zakresie Fizyki Ciała Stałego Streszczenie

Bardziej szczegółowo

Świat klasyczny i kwantowy por. WYKŁAD nr 2. Splątane stany - EPR. por. WYKŁAD nr 2. Kwantowa kryptografia i teleportacja. Splątanie kwantowe

Świat klasyczny i kwantowy por. WYKŁAD nr 2. Splątane stany - EPR. por. WYKŁAD nr 2. Kwantowa kryptografia i teleportacja. Splątanie kwantowe Kwantowa kryptografia i teleportacja. Splątanie kwantowe Świat klasyczny i kwantowy por. WYKŁAD nr a. Poplątane stany. i. Eksperyment EPR. ii. Eksperyment Bella b. Star-Trec, czyli teleportujcie mnie!

Bardziej szczegółowo

Nanofizyka co wiemy, a czego jeszcze szukamy?

Nanofizyka co wiemy, a czego jeszcze szukamy? Nanofizyka co wiemy, a czego jeszcze szukamy? Maciej Maśka Zakład Fizyki Teoretycznej UŚ Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego ...czyli dlaczego NANO

Bardziej szczegółowo

II.4 Kwantowy moment pędu i kwantowy moment magnetyczny w modelu wektorowym

II.4 Kwantowy moment pędu i kwantowy moment magnetyczny w modelu wektorowym II.4 Kwantowy moment pędu i kwantowy moment magnetyczny w modelu wektorowym Jan Królikowski Fizyka IVBC 1 II.4.1 Ogólne własności wektora kwantowego momentu pędu Podane poniżej własności kwantowych wektorów

Bardziej szczegółowo

WYBRANE TECHNIKI SPEKTROSKOPII LASEROWEJ ROZDZIELCZEJ W CZASIE prof. Halina Abramczyk Laboratory of Laser Molecular Spectroscopy

WYBRANE TECHNIKI SPEKTROSKOPII LASEROWEJ ROZDZIELCZEJ W CZASIE prof. Halina Abramczyk Laboratory of Laser Molecular Spectroscopy WYBRANE TECHNIKI SPEKTROSKOPII LASEROWEJ ROZDZIELCZEJ W CZASIE 1 Ze względu na rozdzielczość czasową metody, zależną od długości trwania impulsu, spektroskopię dzielimy na: nanosekundową (10-9 s) pikosekundową

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 1 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2015/16

Bardziej szczegółowo

fotony i splątanie Jacek Matulewski Karolina Słowik Jarosław Zaremba Jacek Jurkowski MECHANIKA KWANTOWA DLA NIEFIZYKÓW

fotony i splątanie Jacek Matulewski Karolina Słowik Jarosław Zaremba Jacek Jurkowski MECHANIKA KWANTOWA DLA NIEFIZYKÓW fotony i splątanie Jacek Matulewski Karolina Słowik Jarosław Zaremba Jacek Jurkowski MECHANIKA KWANTOWA DLA NIEFIZYKÓW wektory pojedyncze fotony paradoks EPR Wielkości wektorowe w fizyce punkt zaczepienia

Bardziej szczegółowo

Podstawy fizyki ciała stałego półprzewodniki domieszkowane

Podstawy fizyki ciała stałego półprzewodniki domieszkowane Podstawy fizyki ciała stałego półprzewodniki domieszkowane Półprzewodnik typu n IV-Ge V-As Jeżeli pięciowartościowy atom V-As zastąpi w sieci atom IV-Ge to cztery elektrony biorą udział w wiązaniu kowalentnym,

Bardziej szczegółowo

Widmo promieniowania elektromagnetycznego Czułość oka człowieka

Widmo promieniowania elektromagnetycznego Czułość oka człowieka dealna charakterystyka prądowonapięciowa złącza p-n ev ( V ) = 0 exp 1 kbt Przebicie złącza przy polaryzacji zaporowej Przebicie Zenera tunelowanie elektronów przez wąską warstwę zaporową w złączu silnie

Bardziej szczegółowo

2013 02 27 2 1. Jakie warstwy zostały wyhodowane w celu uzyskania 2DEG? (szkic?) 2. Gdzie było domieszkowanie? Dlaczego jako domieszek użyto w próbce atomy krzemu? 3. Jaki kształt miała próbka? 4. W jaki

Bardziej szczegółowo

Własności optyczne półprzewodników

Własności optyczne półprzewodników Własności optyczne półprzewodników Andrzej Wysmołek Wykład przygotowany w oparciu o wykłady prowadzone na Wydziale Fizyki Uniwersytetu Warszawakiego przez prof. Mariana Grynberga oraz prof. Romana Stępniewskiego

Bardziej szczegółowo

Nanostruktury, spintronika, komputer kwantowy

Nanostruktury, spintronika, komputer kwantowy Nanostruktury, spintronika, komputer kwantowy Wykªad dla uczniów Gimnazjum Nr 2 w Krakowie I. Nanostruktury Skala mikrometrowa 1µm (mikrometr) = 1 milionowa cz ± metra = 10 6 m obiekty mikrometrowe, np.

Bardziej szczegółowo

Atom wodoru. Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu:

Atom wodoru. Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu: ATOM WODORU Atom wodoru Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu: U = 4πε Opis kwantowy: wykorzystując zasadę odpowiedniości

Bardziej szczegółowo

- wiązki pompująca & próbkująca oddziaływanie selektywne prędkościowo widma bezdopplerowskie T. 0 k. z L 0 k. L 0 k

- wiązki pompująca & próbkująca oddziaływanie selektywne prędkościowo widma bezdopplerowskie T. 0 k. z L 0 k. L 0 k Podsumowanie W1 Lasery w spektroskopii atomowej/molekularnej a) spektroskopia klasyczna b) spektroskopia bezdopplerowska 1. Spektroskopia nasyceniowa - wiązki pompująca & próbkująca oddziaływanie selektywne

Bardziej szczegółowo

Henryk Szymczak Instytut Fizyki PAN

Henryk Szymczak Instytut Fizyki PAN NNnnNowe kwazicząstki w magnetykach Henryk Szymczak Instytut Fizyki PAN Zjazd Fizyków 2015 1 Enrico Fermi: nigdy nie należy lekceważyć przyjemności, jaką każdy z nas odczuwa, słysząc coś, o czym już wie

Bardziej szczegółowo

SPM Scanning Probe Microscopy Mikroskopia skanującej sondy STM Scanning Tunneling Microscopy Skaningowa mikroskopia tunelowa AFM Atomic Force

SPM Scanning Probe Microscopy Mikroskopia skanującej sondy STM Scanning Tunneling Microscopy Skaningowa mikroskopia tunelowa AFM Atomic Force SPM Scanning Probe Microscopy Mikroskopia skanującej sondy STM Scanning Tunneling Microscopy Skaningowa mikroskopia tunelowa AFM Atomic Force Microscopy Mikroskopia siły atomowej MFM Magnetic Force Microscopy

Bardziej szczegółowo

Pytać! Nanotechnologie (II) Jeszcze o teoriach (nie tylko fizycznych)

Pytać! Nanotechnologie (II) Jeszcze o teoriach (nie tylko fizycznych) Nanotechnologie (II) Jeszcze o teoriach (nie tylko fizycznych) Rys. źródło: Internet Jacek.Szczytko@fuw.edu.pl http://www.fuw.edu.pl/~szczytko Półprzewodniki a.studnie i.studnie i ekscytony ii.lasery iii.dwuwymiarowe

Bardziej szczegółowo

WYZNACZANIE STAŁEJ PLANCKA Z POMIARU CHARAKTERYSTYK PRĄDOWO-NAPIĘCIOWYCH DIOD ELEKTROLUMINESCENCYJNYCH. Irena Jankowska-Sumara, Magdalena Krupska

WYZNACZANIE STAŁEJ PLANCKA Z POMIARU CHARAKTERYSTYK PRĄDOWO-NAPIĘCIOWYCH DIOD ELEKTROLUMINESCENCYJNYCH. Irena Jankowska-Sumara, Magdalena Krupska 1 II PRACOWNIA FIZYCZNA: FIZYKA ATOMOWA Z POMIARU CHARAKTERYSTYK PRĄDOWO-NAPIĘCIOWYCH DIOD ELEKTROLUMINESCENCYJNYCH Irena Jankowska-Sumara, Magdalena Krupska Cel ćwiczenia Celem ćwiczenia jest wyznaczenie

Bardziej szczegółowo

Korelacje przestrzenne między nośnikami uwięzionymi w półprzewodnikowych kropkach kwantowych. Bartłomiej Szafran

Korelacje przestrzenne między nośnikami uwięzionymi w półprzewodnikowych kropkach kwantowych. Bartłomiej Szafran Korelacje przestrzenne między nośnikami uwięzionymi w półprzewodnikowych kropkach kwantowych (wybrane wyniki z rozprawy habilitacyjnej) Kraków 12.05.2006 Bartłomiej Szafran Półprzewodnikowe kropki kwantowe

Bardziej szczegółowo

I. PROMIENIOWANIE CIEPLNE

I. PROMIENIOWANIE CIEPLNE I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.

Bardziej szczegółowo

Wykład IV. Półprzewodniki samoistne i domieszkowe

Wykład IV. Półprzewodniki samoistne i domieszkowe Wykład IV Półprzewodniki samoistne i domieszkowe Półprzewodniki (Si, Ge, GaAs) Konfiguracja elektronowa Si : 1s 2 2s 2 2p 6 3s 2 3p 2 = [Ne] 3s 2 3p 2 4 elektrony walencyjne Półprzewodnik samoistny Talent

Bardziej szczegółowo

Wytwarzanie niskowymiarowych struktur półprzewodnikowych

Wytwarzanie niskowymiarowych struktur półprzewodnikowych Większość struktur niskowymiarowych wytwarzanych jest za pomocą technik epitaksjalnych. Najczęściej wykorzystywane metody wzrostu: - epitaksja z wiązki molekularnej (MBE Molecular Beam Epitaxy) - epitaksja

Bardziej szczegółowo

MIKROSKOPIA ELEKTRONOWA. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

MIKROSKOPIA ELEKTRONOWA. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego MIKROSKOPIA ELEKTRONOWA Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Tło historyczne Pod koniec XIX wieku stosowanie mikroskopów świetlnych w naukach

Bardziej szczegółowo

Repeta z wykładu nr 8. Detekcja światła. Przypomnienie. Efekt fotoelektryczny

Repeta z wykładu nr 8. Detekcja światła. Przypomnienie. Efekt fotoelektryczny Repeta z wykładu nr 8 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 przegląd detektorów

Bardziej szczegółowo

Spektroskopia Ramanowska

Spektroskopia Ramanowska Spektroskopia Ramanowska Część A 1.Krótki wstęp historyczny 2.Oddziaływanie światła z osrodkiem materialnym (rozpraszanie światła) 3.Opis klasyczny zjawiska Ramana 4. Widmo ramanowskie. 5. Opis półklasyczny

Bardziej szczegółowo

Półprzewodnikowe kropki kwantowe

Półprzewodnikowe kropki kwantowe Jest to zapis odczytu wygłoszonego na XXXIII Szkole Matematyki Poglądowej Metody klasyczne i współczesne, sierpień 2004. Rys. 1. Kolejne fazy wzrostu kryształu metodą Czochralskiego Półprzewodnikowe kropki

Bardziej szczegółowo

Fizyka 2. Janusz Andrzejewski

Fizyka 2. Janusz Andrzejewski Fizyka 2 wykład 14 Janusz Andrzejewski Atom wodoru Wczesne modele atomu -W czasach Newtona atom uważany była za małą twardą kulkę co dość dobrze sprawdzało się w rozważaniach dotyczących kinetycznej teorii

Bardziej szczegółowo

Początek XX wieku. Dualizm korpuskularno - falowy

Początek XX wieku. Dualizm korpuskularno - falowy Początek XX wieku Światło: fala czy cząstka? Kwantowanie energii promieniowania termicznego postulat Plancka efekt fotoelektryczny efekt Comptona Fale materii de Broglie a Dualizm korpuskularno - falowy

Bardziej szczegółowo

Świat klasyczny i kwantowy

Świat klasyczny i kwantowy Kwantowa kryptografia i teleportacja. Splątanie kwantowe Prawo Moore a Jacek.Szczytko@fuw.edu.pl http://www.fuw.edu.pl/~szczytko/nt.4. Prace zaliczeniowe! Zadania Studenckie Do zaliczenia wykładu wymagana

Bardziej szczegółowo

Wprowadzenie do ekscytonów

Wprowadzenie do ekscytonów Proces absorpcji można traktować jako tworzenie się, pod wpływem zewnętrznego pola elektrycznego, pary elektron-dziura, które mogą być opisane w przybliżeniu jednoelektronowym. Dokładniejszym podejściem

Bardziej szczegółowo

INSTYTUT FIZYKI POLSKIEJ AKADEMII NAUK

INSTYTUT FIZYKI POLSKIEJ AKADEMII NAUK INSTYTUT FIZYKI POLSKIEJ AKADEMII NAUK INSTITUTE OF PHYSICS, POLISH ACADEMY OF SCIENCES 02-668 WARSZAWA, Al. LOTNIKÓW 32/46 fax: + (48-22) 843-0926; http://info.ifpan.edu.pl LABORATORY OF GROWTH AND PHYSICS

Bardziej szczegółowo

Repeta z wykładu nr 4. Detekcja światła. Dygresja. Plan na dzisiaj

Repeta z wykładu nr 4. Detekcja światła. Dygresja. Plan na dzisiaj Repeta z wykładu nr 4 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje:

Bardziej szczegółowo

Prezentacja aparatury zakupionej przez IKiFP. Mikroskopy LEEM i PEEM

Prezentacja aparatury zakupionej przez IKiFP. Mikroskopy LEEM i PEEM Prezentacja aparatury zakupionej przez IKiFP Mikroskopy LEEM i PEEM Cechy ogólne mikroskopów do badania powierzchni; czułość Å - nm szeroka gama kontrastów topograficzny strukturalny chemiczny magnetyczny

Bardziej szczegółowo

Efektywne symulacje mikromagnetyczne układów magnonicznych przy wykorzystaniu GPGPU.

Efektywne symulacje mikromagnetyczne układów magnonicznych przy wykorzystaniu GPGPU. Efektywne symulacje mikromagnetyczne układów magnonicznych przy wykorzystaniu GPGPU. Mateusz Zelent, Paweł Gruszecki, Michał Mruczkiewicz, Maciej Krawczyk Wydział Fizyki, Zakład Fizyki Nanomateriałów Fale

Bardziej szczegółowo

Bity, P-bity, Q-bity. Quantum Computer II (QC) Bramki kubitowe. Bramki kubitowe HARDWARE. Jacek.Szczytko@fuw.edu.pl. Jacek.Szczytko@fuw.edu.

Bity, P-bity, Q-bity. Quantum Computer II (QC) Bramki kubitowe. Bramki kubitowe HARDWARE. Jacek.Szczytko@fuw.edu.pl. Jacek.Szczytko@fuw.edu. Quantum Computer II (QC) Jacek Szczytko, Wydział Fizyki UW. a. Logika bramek b. Kwantowe algorytmy c. Jak zbudować taki komputer? HARDWARE Bity, P-bity, Q-bity Kwantowym odpowiednikiem klasycznego bitu

Bardziej szczegółowo

InTechFun. Innowacyjne technologie wielofunkcyjnych materiałów i struktur dla nanoelektroniki, fotoniki, spintroniki i technik sensorowych

InTechFun. Innowacyjne technologie wielofunkcyjnych materiałów i struktur dla nanoelektroniki, fotoniki, spintroniki i technik sensorowych Innowacyjne technologie wielofunkcyjnych materiałów i struktur dla nanoelektroniki, fotoniki, spintroniki i technik sensorowych InTechFun Instytut Fizyki Polskiej Akademii Nauk Zbigniew R. Żytkiewicz IF

Bardziej szczegółowo

Wady ostrza. Ponieważ ostrze ma duży promień niektóre elementy ukształtowania powierzchni nie są rejestrowane (fioletowy element)

Wady ostrza. Ponieważ ostrze ma duży promień niektóre elementy ukształtowania powierzchni nie są rejestrowane (fioletowy element) Wady ostrza Ponieważ ostrze ma duży promień niektóre elementy ukształtowania powierzchni nie są rejestrowane (fioletowy element) Ponieważ ostrze ma kilka zakończeń w obrazie pojawiają się powtórzone struktury

Bardziej szczegółowo

Spintronika fotonika: analogie

Spintronika fotonika: analogie : analogie Paweł Wójcik, Maciej Wołoszyn, Bartłomiej Spisak W oparciu o wykład wygłoszony podczas konferencji 2nd World Congress of Smart Materials, Singapur, March 2-6, 2016 Wprowadzenie dla niespecjalistów

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Mateusz Winkowski, Jan Szczepanek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Mateusz Winkowski, Jan Szczepanek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 2, 06.10.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Jan Szczepanek Radosław Łapkiewicz Równania Maxwella r-nie

Bardziej szczegółowo

Oddziaływanie atomu z kwantowym polem E-M: C.D.

Oddziaływanie atomu z kwantowym polem E-M: C.D. Oddziaływanie atomu z kwantowym polem E-M: C.D. 1 atom jakoźródło 1 fotonu. Emisja spontaniczna wg. złotej reguły Fermiego. Absorpcja i emisja kolektywna ˆ E( x,t)=i λ Powtórzenie d 3 ω k k 2ǫ(2π) 3 e

Bardziej szczegółowo

Metody optyczne w badaniach półprzewodników Przykładami różnymi zilustrowane. Piotr Perlin Instytut Wysokich Ciśnień PAN

Metody optyczne w badaniach półprzewodników Przykładami różnymi zilustrowane. Piotr Perlin Instytut Wysokich Ciśnień PAN Metody optyczne w badaniach półprzewodników Przykładami różnymi zilustrowane Piotr Perlin Instytut Wysokich Ciśnień PAN Jak i czym scharakteryzować kryształ półprzewodnika Struktura dyfrakcja rentgenowska

Bardziej szczegółowo

Stałe : h=6, Js h= 4, eVs 1eV= J nie zależy

Stałe : h=6, Js h= 4, eVs 1eV= J nie zależy T_atom-All 1 Nazwisko i imię klasa Stałe : h=6,626 10 34 Js h= 4,14 10 15 evs 1eV=1.60217657 10-19 J Zaznacz zjawiska świadczące o falowej naturze światła a) zjawisko fotoelektryczne b) interferencja c)

Bardziej szczegółowo

WYKŁAD 2 Podstawy spektroskopii wibracyjnej, model oscylatora harmonicznego i anharmonicznego. Częstość oscylacji a struktura molekuły Prof. dr hab.

WYKŁAD 2 Podstawy spektroskopii wibracyjnej, model oscylatora harmonicznego i anharmonicznego. Częstość oscylacji a struktura molekuły Prof. dr hab. WYKŁAD 2 Podstawy spektroskopii wibracyjnej, model oscylatora harmonicznego i anharmonicznego. Częstość oscylacji a struktura molekuły Prof. dr hab. Halina Abramczyk POLITECHNIKA ŁÓDZKA Wydział Chemiczny

Bardziej szczegółowo

Podsumowanie W Spektroskopia dwufotonowa. 1. Spektroskopia nasyceniowa. selekcja prędkości. nasycenie. ω 0 ω Laser. ω 21 2ω.

Podsumowanie W Spektroskopia dwufotonowa. 1. Spektroskopia nasyceniowa. selekcja prędkości. nasycenie. ω 0 ω Laser. ω 21 2ω. Podsumowanie W1 Lasery w spektroskopii atomowej/molekularnej a) spektroskopia klasyczna b) spektroskopia bezdopplerowska 1. Spektroskopia nasyceniowa nasycenie selekcja prędkości - wiązki pompująca & próbkująca

Bardziej szczegółowo

Spektroskopia charakterystycznych strat energii elektronów EELS (Electron Energy-Loss Spectroscopy)

Spektroskopia charakterystycznych strat energii elektronów EELS (Electron Energy-Loss Spectroscopy) Spektroskopia charakterystycznych strat energii elektronów EELS (Electron Energy-Loss Spectroscopy) Oddziaływanie elektronów ze stałą, krystaliczną próbką wstecznie rozproszone elektrony elektrony pierwotne

Bardziej szczegółowo

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania (3.7), pomimo swojej prostoty, nie posiadają poza nielicznymi przypadkami ścisłych rozwiązań,

Bardziej szczegółowo

Tak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman ( ) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd.

Tak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman ( ) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd. Tak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman (1918-1988) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd. Równocześnie Feynman podkreślił, że obliczenia mechaniki

Bardziej szczegółowo

III Pracownia Półprzewodnikowa

III Pracownia Półprzewodnikowa Pomiary czasowo-rozdzielcze nanostruktur azotkowych. Ćwiczenie będzie polegało na zmierzeniu czasowo-rozdzielonej fotoluminescencji przy użyciu kamery smugowej, a następnie na analizie otrzymanych danych.

Bardziej szczegółowo

- wiązki pompująca & próbkująca oddziaływanie selektywne prędkościowo widma bezdopplerowskie. 0 k. z L 0 k. L 0 k

- wiązki pompująca & próbkująca oddziaływanie selektywne prędkościowo widma bezdopplerowskie. 0 k. z L 0 k. L 0 k Podsumowanie W1 Lasery w spektroskopii atomowej/molekularnej a) spektroskopia klasyczna b) spektroskopia bezdopplerowska 1. Spektroskopia nasyceniowa nasycenie selekcja prędkości - wiązki pompująca & próbkująca

Bardziej szczegółowo

Cel wykładu. Detekcja światła. Cel wykładu. Światło. Sebastian Maćkowski

Cel wykładu. Detekcja światła. Cel wykładu. Światło. Sebastian Maćkowski Cel wykładu Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje: czwartek

Bardziej szczegółowo

Podsumowanie W9. Wojciech Gawlik - Wstęp do Fizyki Atomowej, 2003/04. wykład 12 1

Podsumowanie W9. Wojciech Gawlik - Wstęp do Fizyki Atomowej, 2003/04. wykład 12 1 Podsumowanie W9 Obserwacja przejść rezonansowych wymuszonych przez pole EM jest moŝliwa tylko, gdy istnieje róŝnica populacji. Tymczasem w zakresie fal radiowych poziomy są prawie jednakowo obsadzone.

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 2, 17.02.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Równania Maxwella r-nie falowe

Bardziej szczegółowo

III Pracownia Półprzewodnikowa

III Pracownia Półprzewodnikowa Pomiary czasowo-rozdzielcze nanostruktur azotkowych. Ćwiczenie będzie polegało na zmierzeniu czasowo-rozdzielonej fotoluminescencji przy użyciu kamery smugowej, a następnie na analizie otrzymanych danych.

Bardziej szczegółowo

Charakteryzacja właściwości elektronowych i optycznych struktur AlGaN GaN Dagmara Pundyk

Charakteryzacja właściwości elektronowych i optycznych struktur AlGaN GaN Dagmara Pundyk Charakteryzacja właściwości elektronowych i optycznych struktur AlGaN GaN Dagmara Pundyk Promotor: dr hab. inż. Bogusława Adamowicz, prof. Pol. Śl. Zadania pracy Pomiary transmisji i odbicia optycznego

Bardziej szczegółowo

Atomy w zewnętrznym polu magnetycznym i elektrycznym

Atomy w zewnętrznym polu magnetycznym i elektrycznym Atomy w zewnętrznym polu magnetycznym i elektrycznym 1. Kwantowanie przestrzenne momentów magnetycznych i rezonans spinowy 2. Efekt Zeemana (normalny i anomalny) oraz zjawisko Paschena-Backa 3. Efekt Starka

Bardziej szczegółowo

V. KWANTOWE BRAMKI LOGICZNE Janusz Adamowski

V. KWANTOWE BRAMKI LOGICZNE Janusz Adamowski V. KWANTOWE BRAMKI LOGICZNE Janusz Adamowski 1 1 Wprowadzenie Wykład ten poświęcony jest dokładniejszemu omówieniu własności kwantowych bramek logicznych (kwantowych operacji logicznych). Podstawowymi

Bardziej szczegółowo

UMO-2011/01/B/ST7/06234

UMO-2011/01/B/ST7/06234 Załącznik nr 7 do sprawozdania merytorycznego z realizacji projektu badawczego Szybka nieliniowość fotorefrakcyjna w światłowodach półprzewodnikowych do zastosowań w elementach optoelektroniki zintegrowanej

Bardziej szczegółowo

WYKŁAD 8. Maria Krawczyk, Wydział Fizyki UW. Oddziaływania słabe

WYKŁAD 8. Maria Krawczyk, Wydział Fizyki UW. Oddziaływania słabe Wszechświat cząstek elementarnych WYKŁAD 8 Maria Krawczyk, Wydział Fizyki UW Oddziaływania słabe Cztery podstawowe siłyprzypomnienie Oddziaływanie grawitacyjne Działa między wszystkimi cząstkami, jest

Bardziej szczegółowo

ostawa. Fizyka powierzchni i nanostruktury 4

ostawa. Fizyka powierzchni i nanostruktury 4 Obrazy dyfrakcyjne elektronów Jak badać strukturę powierzchni? Własności: Dyfrakcja elektronowa cd. Dyfrakcja zachowuje symetrię. Duże odległości w obrazie dyfrakcyjnym oznaczają małe odległości na powierzchni.

Bardziej szczegółowo

Historia. Zasada Działania

Historia. Zasada Działania Komputer kwantowy układ fizyczny do opisu którego wymagana jest mechanika kwantowa, zaprojektowany tak, aby wynik ewolucji tego układu reprezentował rozwiązanie określonego problemu obliczeniowego. Historia

Bardziej szczegółowo

Propozycje tematów prac licencjackich dla studentów studiów indywidualnych z ZFCS na rok 2016/17

Propozycje tematów prac licencjackich dla studentów studiów indywidualnych z ZFCS na rok 2016/17 Propozycje tematów prac licencjackich dla studentów studiów indywidualnych z ZFCS na rok 2016/17 Rentgenowskie badania interkalowanych wielowarstw grafenowych. Opiekun: dr hab. Grzegorz Kowalski, tel.

Bardziej szczegółowo

Kwantowe stany splątane. Karol Życzkowski Instytut Fizyki, Uniwersytet Jagielloński 25 kwietnia 2017

Kwantowe stany splątane. Karol Życzkowski Instytut Fizyki, Uniwersytet Jagielloński 25 kwietnia 2017 B l i ż e j N a u k i Kwantowe stany splątane Karol Życzkowski Instytut Fizyki, Uniwersytet Jagielloński 25 kwietnia 2017 Co to jest fizyka? Kopnij piłkę! Co to jest fizyka? Kopnij piłkę! Kup lody i poczekaj

Bardziej szczegółowo