Obliczenia Wysokiej Wydajności

Wielkość: px
Rozpocząć pokaz od strony:

Download "Obliczenia Wysokiej Wydajności"

Transkrypt

1 Obliczenia wysokiej wydajności 1

2 Wydajność obliczeń Wydajność jest (obok poprawności, niezawodności, bezpieczeństwa, ergonomiczności i łatwości stosowania i pielęgnacji) jedną z najważniejszych charakterystyk każdego oprogramowania Niniejsze wykłady przedstawiają sposoby analizy i osiągania wysokiej wydajności w programach Tradycyjnie zagadnieniom wysokiej wydajności najwięcej uwagi poświęca się w ramach specjalnej dziedziny informatyki: Obliczeń Wysokiej Wydajności (High Performance Computing) Wyniki osiągnięte w ramach HPC mają swoje zastosowanie we wszystkich dziedzinach informatyki 2

3 Wykład OWW Osiąganie wysokiej wydajności Wydajność aplikacji: Języki i środowiska wysokiego poziomu abstrakcji i złożoności: SQL i systemy baz danych OpenGL, DirectX i systemy graficzne HTML, PHP i aplikacje internetowe Java, C# i ich środowiska wykonania Języki relatywnie niskiego poziomu blisko sprzętu C Asemblery Ze względu na rozmaitość języków i środowisk wysokiego poziomu oraz asemblerów daleko wykraczającą poza ograniczenia czasowe jednego przedmiotu wykład koncentruje się na programowaniu w języku C 3

4 C (źródło 4

5 Wykład OWW Osiąganie wysokiej wydajności programy w C Analiza wydajności dla architektur sprzętowych obejmujących procesory (CPU, GPU), układ pamięci, układ komunikacji międzyprocesorowej Optymalizacja wykonywania instrukcji: kod źródłowy kod assemblera wykonanie przez procesor Optymalizacja dostępu do pamięci: komunikacja w systemach z pamięcią rozproszoną dostęp do pamięci wspólnej w systemach wieloprocesorowych i wielordzeniowych funkcjonowanie hierarchii pamięci w CPU i GPU (pamięć podręczna, ewentualne inne formy pamięci lokalnej, pamięć globalna) sprzętowa organizacja pamięci i jej funkcjonowanie 5

6 Obliczenia wysokiej wydajności Obliczenia wysokiej wydajności to obliczenia, w których stara się uzyskać maksymalną szybkość przetwarzania Maksymalizacja szybkości przetwarzania ma doprowadzić do minimalizacji czasu rozwiązania danego problemu (time to solution) Zależnie od rodzaju wykonywanych obliczeń, stosuje się różne miary szybkości przetwarzania Najpopularniejszą miarą (zwłaszcza w dziedzinie obliczeń naukowo technicznych) jest liczba wykonywanych operacji zmiennoprzecinkowych na sekundę (FLOPS) Inne możliwe miary to np. liczba wykonywanych w sekundzie instrukcji, liczba przetwarzanych transakcji na sekundę, liczba wyświetlanych pikseli na sekundę itp. 6

7 Numbers everyone should know Google forum L1 cache reference 0.5 ns Branch mispredict 5 ns L2 cache reference 7 ns Mutex lock/unlock 100 ns Main memory reference 100 ns Compress 1K bytes with Zippy 10,000 ns Send 2K bytes over 1 Gbps network 20,000 ns Read 1 MB sequentially from memory 250,000 ns Round trip within same datacenter 500,000 ns Disk seek 10,000,000 ns Read 1 MB sequentially from network 10,000,000 ns Read 1 MB sequentially from disk 30,000,000 ns Send packet CA >Netherlands >CA 150,000,000 ns 7

8 Historia obliczeń wysokiej wydajności komputery macierzowe komputery wektorowe komputery masowo równoległe klastry 8

9 Komputery macierzowe (SIMD) Odrębny procesor przetwarzający rozkazy Macierz procesorów przetwarzających dane Illiac IV, ~100 MFLOPS, ~ USD 9

10 Komputery macierzowe Dzisiejsze zastosowania: rozkazy SIMD w procesorach ogólnego przeznaczenia przetwarzanie sygnałów procesory graficzne, GPU superkomputery specjalnego przeznaczenia (np. apenext SPMD komputer do symulacji w dziedzinie LQCD, 4096 procesorów, 7 TFLOPS) 10

11 11

12 Komputery wektorowe Podstawowy element procesor wektorowy: rejestry wektorowe przetwarzanie potokowe operacji zmiennoprzecinkowych kilka potoków i jednostek funkcjonalnych Współczesne zastosowania: przetwarzanie superskalarne i potokowe w procesorach ogólnego przeznaczenia superkomputery Cray-1, 1975 ~100 MFLOPS, ~ USD Cray 2, ~2 GFLOPS 12

13 Komputery wektorowe w procesorze jednostki skalarne i wektorowe (czasem adresowe) operacje wektorowe (w tym operacje redukcji) op V > V (np. a[i]:= b[i]) op V > S redukcja (np. r:=max(b[i])) V op V > V (np. a[i]:=b[i]+c[i]) V op S > V (np. a[i]:= s*b[i]) dostęp do pamięci: wielobankowość, przeplot, potoki rejestry wektorowe (długość 64 do 128) w tym maska potokowe jednostki funkcjonalne łączenie operacji w łańcuchy (chaining) (a[i] := b[i] + s*c[i] ) 13

14 14

15 Earth Simulator 5120 procesorów ~ 35 TFLOPS 15

16 Earth Simulator 16

17 Earth Simulator 17

18 Komputery masowo równoległe Komputery posiadające setki, tysiące i więcej procesorów (komputery wektorowe kilkadziesiąt) Komputery złożone z niezależnych procesorów, najczęściej wyposażonych w indywidualną pamięć CM-2, procesorów CM-5, 1991, 512 węzłów ~65.5 GFLOPS,~ USD 18

19 IBM Blue Gene/L Architektura Blue Gene węzłów obliczeniowych 280 TFLOPS 64 szafy 1.2 MW

20 20

21 Klastry Niezależne komputery połączone siecią Silna integracja poprzez specjalne oprogramowanie Do kilku tysięcy komputerów Relatywnie tanie (kilka tysięcy USD / komputer) 21

22 And the winner is... TOP500 najpopularniejsza klasyfikacja najpotężniejszych systemów komputerowych świata Dokonywana dwa razy w roku (w czerwcu i listopadzie) od 1993 Klasyfikacja oparta na szybkości rozwiązywania układu równań liniowych metodą Gaussa Tylko systemy ogólnego przeznaczenia 22

23 Lista Top500 23

24 Czy to już wszystko? Systemy umieszczone na liście TOP 500 nie są jedynymi potężnymi systemami obliczeniowymi świata Równie potężne bywają organizowane ad hoc zespoły rozproszonych po całym świecie i połączonych siecią różnorodnych komputerów Projekt SETI@home (obecnie jako BOINC, projekt Folding@home ( kilkaset tysięcy komputerów na całym świecie kilka PFLOPS łącznej mocy obliczeniowej 24

25 Systemy równoległe wysokiej wydajności 25

26 Gdzie potrzebne są wysokie moce obliczeniowe? Internet & Ecommerce Aerodynamika Nauki biologiczne CAD/CAM Wojskowość Medycyna 26

27 Gdzie potrzebne są wysokie moce obliczeniowe? 27

28 Znaczenie algebry liniowej 28

Obliczenia Wysokiej Wydajności

Obliczenia Wysokiej Wydajności Obliczenia wysokiej wydajności 1 Wydajność obliczeń Wydajność jest (obok poprawności, niezawodności, bezpieczeństwa, ergonomiczności oraz łatwości stosowania i pielęgnacji) jedną z najważniejszych charakterystyk

Bardziej szczegółowo

Organizacja pamięci współczesnych systemów komputerowych : pojedynczy procesor wielopoziomowa pamięć podręczna pamięć wirtualna

Organizacja pamięci współczesnych systemów komputerowych : pojedynczy procesor wielopoziomowa pamięć podręczna pamięć wirtualna Pamięć Wydajność obliczeń Dla wielu programów wydajność obliczeń może być określana poprzez pobranie danych z pamięci oraz wykonanie operacji przez procesor Często istnieją algorytmy, których wydajność

Bardziej szczegółowo

Architektury komputerów Architektury i wydajność. Tomasz Dziubich

Architektury komputerów Architektury i wydajność. Tomasz Dziubich Architektury komputerów Architektury i wydajność Tomasz Dziubich Przetwarzanie potokowe Przetwarzanie sekwencyjne Przetwarzanie potokowe Architektura superpotokowa W przetwarzaniu potokowym podczas niektórych

Bardziej szczegółowo

Dr inż. hab. Siergiej Fialko, IF-PK,

Dr inż. hab. Siergiej Fialko, IF-PK, Dr inż. hab. Siergiej Fialko, IF-PK, http://torus.uck.pk.edu.pl/~fialko sfialko@riad.pk.edu.pl 1 Osobliwości przedmiotu W podanym kursie główna uwaga będzie przydzielona osobliwościom symulacji komputerowych

Bardziej szczegółowo

Zapoznanie z technikami i narzędziami programistycznymi służącymi do tworzenia programów współbieżnych i obsługi współbieżności przez system.

Zapoznanie z technikami i narzędziami programistycznymi służącymi do tworzenia programów współbieżnych i obsługi współbieżności przez system. Wstęp Zapoznanie z technikami i narzędziami programistycznymi służącymi do tworzenia programów współbieżnych i obsługi współbieżności przez system. Przedstawienie architektur sprzętu wykorzystywanych do

Bardziej szczegółowo

PROGRAMOWANIE WSPÓŁCZESNYCH ARCHITEKTUR KOMPUTEROWYCH DR INŻ. KRZYSZTOF ROJEK

PROGRAMOWANIE WSPÓŁCZESNYCH ARCHITEKTUR KOMPUTEROWYCH DR INŻ. KRZYSZTOF ROJEK 1 PROGRAMOWANIE WSPÓŁCZESNYCH ARCHITEKTUR KOMPUTEROWYCH DR INŻ. KRZYSZTOF ROJEK POLITECHNIKA CZĘSTOCHOWSKA 2 Część teoretyczna Informacje i wstępne wymagania Cel przedmiotu i zakres materiału Zasady wydajnego

Bardziej szczegółowo

16. Taksonomia Flynn'a.

16. Taksonomia Flynn'a. 16. Taksonomia Flynn'a. Taksonomia systemów komputerowych według Flynna jest klasyfikacją architektur komputerowych, zaproponowaną w latach sześćdziesiątych XX wieku przez Michaela Flynna, opierająca się

Bardziej szczegółowo

Tworzenie programów równoległych cd. Krzysztof Banaś Obliczenia równoległe 1

Tworzenie programów równoległych cd. Krzysztof Banaś Obliczenia równoległe 1 Tworzenie programów równoległych cd. Krzysztof Banaś Obliczenia równoległe 1 Metodologia programowania równoległego Przykłady podziałów zadania na podzadania: Podział ze względu na funkcje (functional

Bardziej szczegółowo

i3: internet - infrastruktury - innowacje

i3: internet - infrastruktury - innowacje i3: internet - infrastruktury - innowacje Wykorzystanie procesorów graficznych do akceleracji obliczeń w modelu geofizycznym EULAG Roman Wyrzykowski Krzysztof Rojek Łukasz Szustak [roman, krojek, lszustak]@icis.pcz.pl

Bardziej szczegółowo

Programowanie równoległe i rozproszone. Praca zbiorowa pod redakcją Andrzeja Karbowskiego i Ewy Niewiadomskiej-Szynkiewicz

Programowanie równoległe i rozproszone. Praca zbiorowa pod redakcją Andrzeja Karbowskiego i Ewy Niewiadomskiej-Szynkiewicz Programowanie równoległe i rozproszone Praca zbiorowa pod redakcją Andrzeja Karbowskiego i Ewy Niewiadomskiej-Szynkiewicz 23 października 2009 Spis treści Przedmowa...................................................

Bardziej szczegółowo

Mikroprocesory rodziny INTEL 80x86

Mikroprocesory rodziny INTEL 80x86 Mikroprocesory rodziny INTEL 80x86 Podstawowe wła ciwo ci procesora PENTIUM Rodzina procesorów INTEL 80x86 obejmuje mikroprocesory Intel 8086, 8088, 80286, 80386, 80486 oraz mikroprocesory PENTIUM. Wprowadzając

Bardziej szczegółowo

Podstawy Informatyki Systemy sterowane przepływem argumentów

Podstawy Informatyki Systemy sterowane przepływem argumentów Podstawy Informatyki alina.momot@polsl.pl http://zti.polsl.pl/amomot/pi Plan wykładu 1 Komputer i jego architektura Taksonomia Flynna 2 Komputer i jego architektura Taksonomia Flynna Komputer Komputer

Bardziej szczegółowo

Klasyfikacja sprzętu i oprogramowania nowoczesnego banku. Informatyka bankowa, AE w Poznaniu, dr Grzegorz Kotliński

Klasyfikacja sprzętu i oprogramowania nowoczesnego banku. Informatyka bankowa, AE w Poznaniu, dr Grzegorz Kotliński 1 Klasyfikacja sprzętu i oprogramowania nowoczesnego banku Informatyka bankowa, AE w Poznaniu, dr Grzegorz Kotliński 2 Podstawowe typy komputerów Mikrokomputery Minikomputery Mainframe Superkomputery Rodzaj

Bardziej szczegółowo

Nowoczesne technologie przetwarzania informacji

Nowoczesne technologie przetwarzania informacji Projekt Nowe metody nauczania w matematyce Nr POKL.09.04.00-14-133/11 Nowoczesne technologie przetwarzania informacji Mgr Maciej Cytowski (ICM UW) Lekcja 2: Podstawowe mechanizmy programowania równoległego

Bardziej szczegółowo

Wydajność systemów a organizacja pamięci. Krzysztof Banaś, Obliczenia wysokiej wydajności. 1

Wydajność systemów a organizacja pamięci. Krzysztof Banaś, Obliczenia wysokiej wydajności. 1 Wydajność systemów a organizacja pamięci Krzysztof Banaś, Obliczenia wysokiej wydajności. 1 Motywacja - memory wall Krzysztof Banaś, Obliczenia wysokiej wydajności. 2 Organizacja pamięci Organizacja pamięci:

Bardziej szczegółowo

Wydajność systemów a organizacja pamięci, czyli dlaczego jednak nie jest aż tak źle. Krzysztof Banaś, Obliczenia wysokiej wydajności.

Wydajność systemów a organizacja pamięci, czyli dlaczego jednak nie jest aż tak źle. Krzysztof Banaś, Obliczenia wysokiej wydajności. Wydajność systemów a organizacja pamięci, czyli dlaczego jednak nie jest aż tak źle Krzysztof Banaś, Obliczenia wysokiej wydajności. 1 Organizacja pamięci Organizacja pamięci współczesnych systemów komputerowych

Bardziej szczegółowo

Programowanie procesorów graficznych GPGPU

Programowanie procesorów graficznych GPGPU Programowanie procesorów graficznych GPGPU 1 GPGPU Historia: lata 80 te popularyzacja systemów i programów z graficznym interfejsem specjalistyczne układy do przetwarzania grafiki 2D lata 90 te standaryzacja

Bardziej szczegółowo

Obliczenia równoległe i rozproszone. Praca zbiorowa pod redakcją Andrzeja Karbowskiego i Ewy Niewiadomskiej-Szynkiewicz

Obliczenia równoległe i rozproszone. Praca zbiorowa pod redakcją Andrzeja Karbowskiego i Ewy Niewiadomskiej-Szynkiewicz Obliczenia równoległe i rozproszone Praca zbiorowa pod redakcją Andrzeja Karbowskiego i Ewy Niewiadomskiej-Szynkiewicz 15 czerwca 2001 Spis treści Przedmowa............................................

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Architektura komputerów Tydzień 14 Procesory równoległe Klasyfikacja systemów wieloprocesorowych Luźno powiązane systemy wieloprocesorowe Każdy procesor ma własną pamięć główną i kanały wejścia-wyjścia.

Bardziej szczegółowo

Numeryczna algebra liniowa

Numeryczna algebra liniowa Numeryczna algebra liniowa Numeryczna algebra liniowa obejmuje szereg algorytmów dotyczących wektorów i macierzy, takich jak podstawowe operacje na wektorach i macierzach, a także rozwiązywanie układów

Bardziej szczegółowo

Tworzenie programów równoległych. Krzysztof Banaś Obliczenia równoległe 1

Tworzenie programów równoległych. Krzysztof Banaś Obliczenia równoległe 1 Tworzenie programów równoległych Krzysztof Banaś Obliczenia równoległe 1 Tworzenie programów równoległych W procesie tworzenia programów równoległych istnieją dwa kroki o zasadniczym znaczeniu: wykrycie

Bardziej szczegółowo

Systemy wbudowane. Uproszczone metody kosyntezy. Wykład 11: Metody kosyntezy systemów wbudowanych

Systemy wbudowane. Uproszczone metody kosyntezy. Wykład 11: Metody kosyntezy systemów wbudowanych Systemy wbudowane Wykład 11: Metody kosyntezy systemów wbudowanych Uproszczone metody kosyntezy Założenia: Jeden procesor o znanych parametrach Znane parametry akceleratora sprzętowego Vulcan Początkowo

Bardziej szczegółowo

Zrównoleglenie i przetwarzanie potokowe

Zrównoleglenie i przetwarzanie potokowe Zrównoleglenie i przetwarzanie potokowe Zrównoleglenie wysoka wydajność pozostaje osiągnięta w efekcie jednoczesnego wykonania różnych części zagadnienia. Przetwarzanie potokowe proces jest rozdzielony

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Architektura komputerów Wykład 13 Jan Kazimirski 1 KOMPUTERY RÓWNOLEGŁE 2 Klasyfikacja systemów komputerowych SISD Single Instruction, Single Data stream SIMD Single Instruction, Multiple Data stream MISD

Bardziej szczegółowo

Architektura systemów komputerowych. Przetwarzanie potokowe I

Architektura systemów komputerowych. Przetwarzanie potokowe I Architektura systemów komputerowych Plan wykładu. Praca potokowa. 2. Projekt P koncepcja potoku: 2.. model ścieżki danych 2.2. rejestry w potoku, 2.3. wykonanie instrukcji, 2.3. program w potoku. Cele

Bardziej szczegółowo

Komputery równoległe. Zbigniew Koza. Wrocław, 2012

Komputery równoległe. Zbigniew Koza. Wrocław, 2012 Komputery równoległe Zbigniew Koza Wrocław, 2012 Po co komputery równoległe? Przyspieszanie obliczeń np. diagnostyka medyczna; aplikacje czasu rzeczywistego Przetwarzanie większej liczby danych Przykład:

Bardziej szczegółowo

Informatyka I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny) niestacjonarne (stacjonarne / niestacjonarne)

Informatyka I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny) niestacjonarne (stacjonarne / niestacjonarne) KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod modułu Nazwa modułu Architektura systemów komputerowych 2 Nazwa modułu w języku angielskim Computer

Bardziej szczegółowo

Wydajność systemów a organizacja pamięci. Krzysztof Banaś, Obliczenia wysokiej wydajności. 1

Wydajność systemów a organizacja pamięci. Krzysztof Banaś, Obliczenia wysokiej wydajności. 1 Wydajność systemów a organizacja pamięci Krzysztof Banaś, Obliczenia wysokiej wydajności. 1 Wydajność obliczeń Dla wielu programów wydajność obliczeń można traktować jako wydajność pobierania z pamięci

Bardziej szczegółowo

Budowa Mikrokomputera

Budowa Mikrokomputera Budowa Mikrokomputera Wykład z Podstaw Informatyki dla I roku BO Piotr Mika Podstawowe elementy komputera Procesor Pamięć Magistrala (2/16) Płyta główna (ang. mainboard, motherboard) płyta drukowana komputera,

Bardziej szczegółowo

Wykład I. Podstawowe pojęcia. Studia Podyplomowe INFORMATYKA Architektura komputerów

Wykład I. Podstawowe pojęcia. Studia Podyplomowe INFORMATYKA Architektura komputerów Studia Podyplomowe INFORMATYKA Architektura komputerów Wykład I Podstawowe pojęcia 1, Cyfrowe dane 2 Wewnątrz komputera informacja ma postać fizycznych sygnałów dwuwartościowych (np. dwa poziomy napięcia,

Bardziej szczegółowo

3.Przeglądarchitektur

3.Przeglądarchitektur Materiały do wykładu 3.Przeglądarchitektur Marcin Peczarski Instytut Informatyki Uniwersytet Warszawski 24 stycznia 2009 Architektura a organizacja komputera 3.1 Architektura komputera: atrybuty widzialne

Bardziej szczegółowo

Budowa komputera. Magistrala. Procesor Pamięć Układy I/O

Budowa komputera. Magistrala. Procesor Pamięć Układy I/O Budowa komputera Magistrala Procesor Pamięć Układy I/O 1 Procesor to CPU (Central Processing Unit) centralny układ elektroniczny realizujący przetwarzanie informacji Zmiana stanu tranzystorów wewnątrz

Bardziej szczegółowo

GRIDY OBLICZENIOWE. Piotr Majkowski

GRIDY OBLICZENIOWE. Piotr Majkowski GRIDY OBLICZENIOWE Piotr Majkowski Wstęp Podział komputerów Co to jest grid? Różne sposoby patrzenia na grid Jak zmierzyć moc? Troszkę dokładniej o gridach Projekt EGEE Klasyfikacja Flynn a (1972) Instrukcje

Bardziej szczegółowo

USŁUGI HIGH PERFORMANCE COMPUTING (HPC) DLA FIRM. Juliusz Pukacki,PCSS

USŁUGI HIGH PERFORMANCE COMPUTING (HPC) DLA FIRM. Juliusz Pukacki,PCSS USŁUGI HIGH PERFORMANCE COMPUTING (HPC) DLA FIRM Juliusz Pukacki,PCSS Co to jest HPC (High Preformance Computing)? Agregowanie dużych zasobów obliczeniowych w sposób umożliwiający wykonywanie obliczeń

Bardziej szczegółowo

Systemy operacyjne i sieci komputerowe Szymon Wilk Superkomputery 1

Systemy operacyjne i sieci komputerowe Szymon Wilk Superkomputery 1 i sieci komputerowe Szymon Wilk Superkomputery 1 1. Superkomputery to komputery o bardzo dużej mocy obliczeniowej. Przeznaczone są do symulacji zjawisk fizycznych prowadzonych głównie w instytucjach badawczych:

Bardziej szczegółowo

Zagadnienia egzaminacyjne INFORMATYKA. Stacjonarne. I-go stopnia. (INT) Inżynieria internetowa STOPIEŃ STUDIÓW TYP STUDIÓW SPECJALNOŚĆ

Zagadnienia egzaminacyjne INFORMATYKA. Stacjonarne. I-go stopnia. (INT) Inżynieria internetowa STOPIEŃ STUDIÓW TYP STUDIÓW SPECJALNOŚĆ (INT) Inżynieria internetowa 1. Tryby komunikacji między procesami w standardzie Message Passing Interface 2. HTML DOM i XHTML cel i charakterystyka 3. Asynchroniczna komunikacja serwerem HTTP w technologii

Bardziej szczegółowo

PROGRAMOWANIE WSPÓŁCZESNYCH ARCHITEKTUR KOMPUTEROWYCH DR INŻ. KRZYSZTOF ROJEK

PROGRAMOWANIE WSPÓŁCZESNYCH ARCHITEKTUR KOMPUTEROWYCH DR INŻ. KRZYSZTOF ROJEK 1 PROGRAMOWANIE WSPÓŁCZESNYCH ARCHITEKTUR KOMPUTEROWYCH DR INŻ. KRZYSZTOF ROJEK POLITECHNIKA CZĘSTOCHOWSKA 2 Trendy rozwoju współczesnych procesorów Budowa procesora CPU na przykładzie Intel Kaby Lake

Bardziej szczegółowo

Procesory wielordzeniowe (multiprocessor on a chip) Krzysztof Banaś, Obliczenia wysokiej wydajności.

Procesory wielordzeniowe (multiprocessor on a chip) Krzysztof Banaś, Obliczenia wysokiej wydajności. Procesory wielordzeniowe (multiprocessor on a chip) 1 Procesory wielordzeniowe 2 Procesory wielordzeniowe 3 Intel Nehalem 4 5 NVIDIA Tesla 6 ATI FireStream 7 NVIDIA Fermi 8 Sprzętowa wielowątkowość 9 Architektury

Bardziej szczegółowo

Programowanie Rozproszone i Równoległe. Edward Görlich http://th.if.uj.edu.pl/~gorlich goerlich@th.if.uj.edu.pl

Programowanie Rozproszone i Równoległe. Edward Görlich http://th.if.uj.edu.pl/~gorlich goerlich@th.if.uj.edu.pl Programowanie Rozproszone i Równoległe Edward Görlich http://th.if.uj.edu.pl/~gorlich goerlich@th.if.uj.edu.pl Motywacja wyboru Programowanie rozproszone równoległość (wymuszona) Oprogramowanie równoległe/rozproszone:

Bardziej szczegółowo

Sprzęt komputerowy 2. Autor prezentacji: 1 prof. dr hab. Maria Hilczer

Sprzęt komputerowy 2. Autor prezentacji: 1 prof. dr hab. Maria Hilczer Sprzęt komputerowy 2 Autor prezentacji: 1 prof. dr hab. Maria Hilczer Budowa komputera Magistrala Procesor Pamięć Układy I/O 2 Procesor to CPU (Central Processing Unit) centralny układ elektroniczny realizujący

Bardziej szczegółowo

Architektura Systemów Komputerowych. Rozwój architektury komputerów klasy PC

Architektura Systemów Komputerowych. Rozwój architektury komputerów klasy PC Architektura Systemów Komputerowych Rozwój architektury komputerów klasy PC 1 1978: Intel 8086 29tys. tranzystorów, 16-bitowy, współpracował z koprocesorem 8087, posiadał 16-bitową szynę danych (lub ośmiobitową

Bardziej szczegółowo

Programowanie niskopoziomowe. dr inż. Paweł Pełczyński ppelczynski@swspiz.pl

Programowanie niskopoziomowe. dr inż. Paweł Pełczyński ppelczynski@swspiz.pl Programowanie niskopoziomowe dr inż. Paweł Pełczyński ppelczynski@swspiz.pl 1 Literatura Randall Hyde: Asembler. Sztuka programowania, Helion, 2004. Eugeniusz Wróbel: Praktyczny kurs asemblera, Helion,

Bardziej szczegółowo

Zagadnienia egzaminacyjne INFORMATYKA. stacjonarne. I-go stopnia. (INT) Inżynieria internetowa STOPIEŃ STUDIÓW TYP STUDIÓW SPECJALNOŚĆ

Zagadnienia egzaminacyjne INFORMATYKA. stacjonarne. I-go stopnia. (INT) Inżynieria internetowa STOPIEŃ STUDIÓW TYP STUDIÓW SPECJALNOŚĆ (INT) Inżynieria internetowa 1.Tryby komunikacji między procesami w standardzie Message Passing Interface. 2. HTML DOM i XHTML cel i charakterystyka. 3. Asynchroniczna komunikacja serwerem HTTP w technologii

Bardziej szczegółowo

Programowanie w modelu równoległości danych oraz dzielonej globalnej pamięci wspólnej. Krzysztof Banaś Obliczenia równoległe 1

Programowanie w modelu równoległości danych oraz dzielonej globalnej pamięci wspólnej. Krzysztof Banaś Obliczenia równoległe 1 Programowanie w modelu równoległości danych oraz dzielonej globalnej pamięci wspólnej Krzysztof Banaś Obliczenia równoległe 1 Model równoległości danych Model SPMD (pierwotnie dla maszyn SIMD) Zrównoleglenie

Bardziej szczegółowo

Budowa komputera. Magistrala. Procesor Pamięć Układy I/O

Budowa komputera. Magistrala. Procesor Pamięć Układy I/O Budowa komputera Magistrala Procesor Pamięć Układy I/O 1 Procesor to CPU (Central Processing Unit) centralny układ elektroniczny realizujący przetwarzanie informacji Zmiana stanu tranzystorów wewnątrz

Bardziej szczegółowo

Kierunek: Informatyka Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. Wykład Ćwiczenia

Kierunek: Informatyka Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. Wykład Ćwiczenia Wydział: Informatyki, Elektroniki i Telekomunikacji Kierunek: Informatyka Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne Rocznik: 2016/2017 Język wykładowy: Polski Semestr 1 IIN-1-103-s

Bardziej szczegółowo

Technologie Informacyjne

Technologie Informacyjne POLITECHNIKA KRAKOWSKA - WIEiK - KATEDRA AUTOMATYKI Technologie Informacyjne www.pk.edu.pl/~zk/ti_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 3: Wprowadzenie do algorytmów i ich

Bardziej szczegółowo

Architektura mikroprocesorów TEO 2009/2010

Architektura mikroprocesorów TEO 2009/2010 Architektura mikroprocesorów TEO 2009/2010 Plan wykładów Wykład 1: - Wstęp. Klasyfikacje mikroprocesorów Wykład 2: - Mikrokontrolery 8-bit: AVR, PIC Wykład 3: - Mikrokontrolery 8-bit: 8051, ST7 Wykład

Bardziej szczegółowo

Tworzenie programów równoległych. Krzysztof Banaś Obliczenia równoległe 1

Tworzenie programów równoległych. Krzysztof Banaś Obliczenia równoległe 1 Tworzenie programów równoległych Krzysztof Banaś Obliczenia równoległe 1 Tworzenie programów równoległych W procesie tworzenia programów równoległych istnieją dwa kroki o zasadniczym znaczeniu: wykrycie

Bardziej szczegółowo

Procesory wielordzeniowe (multiprocessor on a chip) Krzysztof Banaś, Obliczenia wysokiej wydajności.

Procesory wielordzeniowe (multiprocessor on a chip) Krzysztof Banaś, Obliczenia wysokiej wydajności. Procesory wielordzeniowe (multiprocessor on a chip) 1 Procesory wielordzeniowe 2 Procesory wielordzeniowe 3 Konsekwencje prawa Moore'a 4 Procesory wielordzeniowe 5 Intel Nehalem 6 Architektura Intel Nehalem

Bardziej szczegółowo

Optymalizacja skalarna. Piotr Bała. bala@mat.uni.torun.pl. Wykład wygłoszony w ICM w czercu 2000

Optymalizacja skalarna. Piotr Bała. bala@mat.uni.torun.pl. Wykład wygłoszony w ICM w czercu 2000 Optymalizacja skalarna - czerwiec 2000 1 Optymalizacja skalarna Piotr Bała bala@mat.uni.torun.pl Wykład wygłoszony w ICM w czercu 2000 Optymalizacja skalarna - czerwiec 2000 2 Optymalizacja skalarna Czas

Bardziej szczegółowo

Systemy wieloprocesorowe i wielokomputerowe

Systemy wieloprocesorowe i wielokomputerowe Systemy wieloprocesorowe i wielokomputerowe Taksonomia Flynna Uwzględnia następujące czynniki: Liczbę strumieni instrukcji Liczbę strumieni danych Klasyfikacja bierze się pod uwagę: Jednostkę przetwarzającą

Bardziej szczegółowo

Wydajność systemów a organizacja pamięci. Krzysztof Banaś, Obliczenia wysokiej wydajności. 1

Wydajność systemów a organizacja pamięci. Krzysztof Banaś, Obliczenia wysokiej wydajności. 1 Wydajność systemów a organizacja pamięci Krzysztof Banaś, Obliczenia wysokiej wydajności. 1 Wydajność obliczeń Dla wielu programów wydajność obliczeń można traktować jako wydajność pobierania z pamięci

Bardziej szczegółowo

3.Przeglądarchitektur

3.Przeglądarchitektur Materiały do wykładu 3.Przeglądarchitektur Marcin Peczarski Instytut Informatyki Uniwersytet Warszawski 17 marca 2014 Architektura a organizacja komputera 3.1 Architektura komputera: atrybuty widzialne

Bardziej szczegółowo

10/14/2013 Przetwarzanie równoległe - wstęp 1. Zakres przedmiotu

10/14/2013 Przetwarzanie równoległe - wstęp 1. Zakres przedmiotu Literatura 1. Introduction to Parallel Computing; Grama, Gupta, Karypis, Kumar; Addison Wesley 2003 2. Wprowadzenie do obliczeń równoległych, Zbigniew Czech, Wydawnictwo Naukowe PWN, 2010. 3. Designing

Bardziej szczegółowo

Budowa i użytkowanie klastrów w opaciu o układy Cell BE oraz GPU

Budowa i użytkowanie klastrów w opaciu o układy Cell BE oraz GPU Budowa i użytkowanie klastrów w opaciu o układy Cell BE oraz GPU Daniel Kubiak Wydział Inżynierii Mechanicznej i Informatyki Kierunek informatyka, Rok V sor@czlug.icis.pcz.pl Streszczenie Celem pracy jest

Bardziej szczegółowo

Przygotowanie kilku wersji kodu zgodnie z wymogami wersji zadania,

Przygotowanie kilku wersji kodu zgodnie z wymogami wersji zadania, Przetwarzanie równoległe PROJEKT OMP i CUDA Temat projektu dotyczy analizy efektywności przetwarzania równoległego realizowanego przy użyciu komputera równoległego z procesorem wielordzeniowym z pamięcią

Bardziej szczegółowo

Architektura Komputerów

Architektura Komputerów 1/3 Architektura Komputerów dr inż. Robert Jacek Tomczak Uniwersytet Przyrodniczy w Poznaniu Architektura a organizacja komputera 3.1 Architektura komputera: atrybuty widzialne dla programisty, atrybuty

Bardziej szczegółowo

Literatura. 11/16/2016 Przetwarzanie równoległe - wstęp 1

Literatura. 11/16/2016 Przetwarzanie równoległe - wstęp 1 Literatura 1. Wprowadzenie do obliczeń równoległych, Zbigniew Czech, Wydawnictwo Naukowe PWN, 2010, 2013 2. Introduction to Parallel Computing; Grama, Gupta, Karypis, Kumar; Addison Wesley 2003 3. Designing

Bardziej szczegółowo

Kierunek:Informatyka- - inż., rok I specjalność: Grafika komputerowa

Kierunek:Informatyka- - inż., rok I specjalność: Grafika komputerowa :Informatyka- - inż., rok I specjalność: Grafika komputerowa Rok akademicki 018/019 Metody uczenia się i studiowania. 1 Podstawy prawne. 1 Podstawy ekonomii. 1 Matematyka dyskretna. 1 30 Wprowadzenie do

Bardziej szczegółowo

Programowanie współbieżne Wykład 2. Iwona Kochańska

Programowanie współbieżne Wykład 2. Iwona Kochańska Programowanie współbieżne Wykład 2 Iwona Kochańska Miary skalowalności algorytmu równoległego Przyspieszenie Stały rozmiar danych N T(1) - czas obliczeń dla najlepszego algorytmu sekwencyjnego T(p) - czas

Bardziej szczegółowo

Wydajność programów sekwencyjnych. Krzysztof Banaś Obliczenia Wysokiej Wydajności 1

Wydajność programów sekwencyjnych. Krzysztof Banaś Obliczenia Wysokiej Wydajności 1 Wydajność programów sekwencyjnych Krzysztof Banaś Obliczenia Wysokiej Wydajności 1 Wydajność obliczeń Dla wielu programów wydajność obliczeń można traktować jako wydajność pobierania z pamięci i przetwarzania

Bardziej szczegółowo

HPC na biurku. Wojciech De bski

HPC na biurku. Wojciech De bski na biurku Wojciech De bski 22.01.2015 - co to jest? High Performance Computing most generally refers to the practice of aggregating computing power in a way that delivers much higher performance than one

Bardziej szczegółowo

Przetwarzanie Równoległe i Rozproszone

Przetwarzanie Równoległe i Rozproszone POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI I TECHNOLOGII INFORMACYJNYCH Przetwarzanie Równoległe i Rozproszone www.pk.edu.pl/~zk/prir_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl

Bardziej szczegółowo

Architektura mikroprocesorów z rdzeniem ColdFire

Architektura mikroprocesorów z rdzeniem ColdFire Architektura mikroprocesorów z rdzeniem ColdFire 1 Rodzina procesorów z rdzeniem ColdFire Rdzeń ColdFire V1: uproszczona wersja rdzenia ColdFire V2. Tryby adresowania, rozkazy procesora oraz operacje MAC/EMAC/DIV

Bardziej szczegółowo

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU I. KARTA PRZEDMIOTU 1. Nazwa przedmiotu: TECHNOLOGIA INFORMACYJNA 2. Kod przedmiotu: Ot 3. Jednostka prowadząca: Wydział Mechaniczno-Elektryczny 4. Kierunek: Automatyka i Robotyka 5. Specjalność: Informatyka

Bardziej szczegółowo

Larrabee GPGPU. Zastosowanie, wydajność i porównanie z innymi układami

Larrabee GPGPU. Zastosowanie, wydajność i porównanie z innymi układami Larrabee GPGPU Zastosowanie, wydajność i porównanie z innymi układami Larrabee a inne GPU Różnią się w trzech podstawowych aspektach: Larrabee a inne GPU Różnią się w trzech podstawowych aspektach: Larrabee

Bardziej szczegółowo

Programowanie współbieżne i rozproszone

Programowanie współbieżne i rozproszone Programowanie współbieżne i rozproszone WYKŁAD 1 dr inż. Literatura ogólna Ben-Ari, M.: Podstawy programowania współbieżnego i rozproszonego. Wydawnictwa Naukowo-Techniczne, Warszawa, 2009. Czech, Z.J:

Bardziej szczegółowo

Kierunek:Informatyka- - inż., rok I specjalność: Grafika komputerowa i multimedia

Kierunek:Informatyka- - inż., rok I specjalność: Grafika komputerowa i multimedia :Informatyka- - inż., rok I specjalność: Grafika komputerowa i multimedia Podstawy prawne. 1 15 1 Podstawy ekonomii. 1 15 15 2 Metody uczenia się i studiowania. 1 15 1 Środowisko programisty. 1 30 3 Komputerowy

Bardziej szczegółowo

Oprogramowanie komputerów

Oprogramowanie komputerów Oprogramowanie komputerów wer. 10 z drobnymi modyfikacjami! Wojciech Myszka 2018-11-04 20:13:59 +0100 Od czego zależy szybkość komputerów? Od czego zależy szybkość komputerów? 1. Częstość zegara. Od czego

Bardziej szczegółowo

Kierunek: Informatyka Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. Wykład Ćwiczenia

Kierunek: Informatyka Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. Wykład Ćwiczenia Wydział: Informatyki, Elektroniki i Telekomunikacji Kierunek: Informatyka Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne Rocznik: 2016/2017 Język wykładowy: Polski Semestr 1 IIN-1-103-s

Bardziej szczegółowo

Zegar - układ wysyłający regularne impulsy o stałej szerokości (J) i częstotliwości (f)

Zegar - układ wysyłający regularne impulsy o stałej szerokości (J) i częstotliwości (f) Zegar Zegar - układ wysyłający regularne impulsy o stałej szerokości (J) i częstotliwości (f) http://en.wikipedia.org/wiki/computer_clock umożliwia kontrolę relacji czasowych w CPU pobieranie, dekodowanie,

Bardziej szczegółowo

Program Obliczeń Wielkich Wyzwań Nauki i Techniki (POWIEW)

Program Obliczeń Wielkich Wyzwań Nauki i Techniki (POWIEW) Program Obliczeń Wielkich Wyzwań Nauki i Techniki (POWIEW) Maciej Cytowski, Maciej Filocha, Maciej E. Marchwiany, Maciej Szpindler Interdyscyplinarne Centrum Modelowania Matematycznego i Komputerowego

Bardziej szczegółowo

Magistrala. Magistrala (ang. Bus) służy do przekazywania danych, adresów czy instrukcji sterujących w różne miejsca systemu komputerowego.

Magistrala. Magistrala (ang. Bus) służy do przekazywania danych, adresów czy instrukcji sterujących w różne miejsca systemu komputerowego. Plan wykładu Pojęcie magistrali i jej struktura Architektura pamięciowo-centryczna Architektura szynowa Architektury wieloszynowe Współczesne architektury z połączeniami punkt-punkt Magistrala Magistrala

Bardziej szczegółowo

dr inż. Rafał Klaus Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia i ich zastosowań w przemyśle" POKL

dr inż. Rafał Klaus Zajęcia finansowane z projektu Rozwój i doskonalenie kształcenia i ich zastosowań w przemyśle POKL Architektura komputerów wprowadzenie materiał do wykładu 3/3 dr inż. Rafał Klaus Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Architektura komputerów Wykład 7 Jan Kazimirski 1 Pamięć podręczna 2 Pamięć komputera - charakterystyka Położenie Procesor rejestry, pamięć podręczna Pamięć wewnętrzna pamięć podręczna, główna Pamięć zewnętrzna

Bardziej szczegółowo

Budowa komputera Komputer computer computare

Budowa komputera Komputer computer computare 11. Budowa komputera Komputer (z ang. computer od łac. computare obliczać) urządzenie elektroniczne służące do przetwarzania wszelkich informacji, które da się zapisać w formie ciągu cyfr albo sygnału

Bardziej szczegółowo

Sprzęt komputerowy 2. Autor prezentacji: 1 prof. dr hab. Maria Hilczer

Sprzęt komputerowy 2. Autor prezentacji: 1 prof. dr hab. Maria Hilczer Sprzęt komputerowy 2 Autor prezentacji: 1 prof. dr hab. Maria Hilczer Budowa komputera Magistrala Procesor Pamięć Układy I/O 2 Procesor to CPU (Central Processing Unit) centralny układ elektroniczny realizujący

Bardziej szczegółowo

Klaster obliczeniowy

Klaster obliczeniowy Warsztaty promocyjne Usług kampusowych PLATON U3 Klaster obliczeniowy czerwiec 2012 Przemysław Trzeciak Centrum Komputerowe Politechniki Łódzkiej Agenda (czas: 20min) 1) Infrastruktura sprzętowa wykorzystana

Bardziej szczegółowo

Wprowadzenie. Klastry komputerowe. Superkomputery. informatyka +

Wprowadzenie. Klastry komputerowe. Superkomputery. informatyka + Wprowadzenie Klastry komputerowe Superkomputery Wprowadzenie Klastry komputerowe Superkomputery Wprowadzenie Filozofia przetwarzania równoległego polega na podziale programu na fragmenty, z których każdy

Bardziej szczegółowo

Wprowadzenie. Dariusz Wawrzyniak. Miejsce, rola i zadania systemu operacyjnego w oprogramowaniu komputera

Wprowadzenie. Dariusz Wawrzyniak. Miejsce, rola i zadania systemu operacyjnego w oprogramowaniu komputera Dariusz Wawrzyniak Plan wykładu Definicja, miejsce, rola i zadania systemu operacyjnego Klasyfikacja systemów operacyjnych Zasada działania systemu operacyjnego (2) Definicja systemu operacyjnego (1) Miejsce,

Bardziej szczegółowo

Programowanie współbieżne Wykład 1. Rafał Skinderowicz

Programowanie współbieżne Wykład 1. Rafał Skinderowicz Programowanie współbieżne Wykład 1 Rafał Skinderowicz Wprowadzenie Plan wykładu Historia, znaczenie i cele współbieżności w informatyce. Podstawowe pojęcia, prawo Moore a i bariery technologiczne. Sposoby

Bardziej szczegółowo

Wprowadzenie. Dariusz Wawrzyniak. Miejsce, rola i zadania systemu operacyjnego w oprogramowaniu komputera

Wprowadzenie. Dariusz Wawrzyniak. Miejsce, rola i zadania systemu operacyjnego w oprogramowaniu komputera Dariusz Wawrzyniak Plan wykładu Definicja, miejsce, rola i zadania systemu operacyjnego Klasyfikacja systemów operacyjnych Zasada działania systemu operacyjnego (2) Miejsce, rola i zadania systemu operacyjnego

Bardziej szczegółowo

Literatura. 3/26/2018 Przetwarzanie równoległe - wstęp 1

Literatura. 3/26/2018 Przetwarzanie równoległe - wstęp 1 Literatura 1. Wprowadzenie do obliczeń równoległych, Zbigniew Czech, Wydawnictwo Naukowe PWN, 2010, 2013 2. Introduction to Parallel Computing; Grama, Gupta, Karypis, Kumar; Addison Wesley 2003 3. Designing

Bardziej szczegółowo

SUPERKOMPUTER OKEANOS BADAWCZE GRANTY OBLICZENIOWEWE

SUPERKOMPUTER OKEANOS BADAWCZE GRANTY OBLICZENIOWEWE SUPERKOMPUTER OKEANOS BADAWCZE GRANTY OBLICZENIOWEWE SUPERKOMPUTER OKEANOS Z początkiem lipca 2016 roku ICM UW udostępni naukowcom superkomputer Okeanos system wielkoskalowego przetwarzania Cray XC40.

Bardziej szczegółowo

Systemy operacyjne. Wprowadzenie. Wykład prowadzą: Jerzy Brzeziński Dariusz Wawrzyniak

Systemy operacyjne. Wprowadzenie. Wykład prowadzą: Jerzy Brzeziński Dariusz Wawrzyniak Wprowadzenie Wykład prowadzą: Jerzy Brzeziński Dariusz Wawrzyniak Plan wykładu Definicja, miejsce, rola i zadania systemu operacyjnego Klasyfikacja systemów operacyjnych Zasada działania systemu operacyjnego

Bardziej szczegółowo

Architektura komputerów II - opis przedmiotu

Architektura komputerów II - opis przedmiotu Architektura komputerów II - opis przedmiotu Informacje ogólne Nazwa przedmiotu Architektura komputerów II Kod przedmiotu 11.3-WI-INFP-AK-II Wydział Kierunek Wydział Informatyki, Elektrotechniki i Automatyki

Bardziej szczegółowo

Moc płynąca z kart graficznych

Moc płynąca z kart graficznych Moc płynąca z kart graficznych Cuda za darmo! Czyli programowanie generalnego przeznaczenia na kartach graficznych (GPGPU) 22 października 2013 Paweł Napieracz /20 Poruszane aspekty Przetwarzanie równoległe

Bardziej szczegółowo

Programowanie Rozproszone i Równoległe

Programowanie Rozproszone i Równoległe Programowanie Rozproszone i Równoległe OpenMP (www.openmp.org) API do pisania wielowątkowych aplikacji Zestaw dyrektyw kompilatora oraz procedur bibliotecznych dla programistów Ułatwia pisanie programów

Bardziej szczegółowo

Programowanie współbieżne Wykład 1. Rafał Skinderowicz

Programowanie współbieżne Wykład 1. Rafał Skinderowicz Programowanie współbieżne Wykład 1 Rafał Skinderowicz Plan wykładu Historia, znaczenie i cele współbieżności w informatyce. Podstawowe pojęcia, prawo Moore a i bariery technologiczne. Sposoby realizacji

Bardziej szczegółowo

Wysokowydajna implementacja kodów nadmiarowych typu "erasure codes" z wykorzystaniem architektur wielordzeniowych

Wysokowydajna implementacja kodów nadmiarowych typu erasure codes z wykorzystaniem architektur wielordzeniowych Wysokowydajna implementacja kodów nadmiarowych typu "erasure codes" z wykorzystaniem architektur wielordzeniowych Ł. Kuczyński, M. Woźniak, R. Wyrzykowski Instytut Informatyki Teoretycznej i Stosowanej

Bardziej szczegółowo

PODSTAWY PRZETWARZANIA RÓWNOLEGŁEGO INFORMACJI

PODSTAWY PRZETWARZANIA RÓWNOLEGŁEGO INFORMACJI ZESZYTY NAUKOWE 105-114 Dariusz CHAŁADYNIAK 1 PODSTAWY PRZETWARZANIA RÓWNOLEGŁEGO INFORMACJI Streszczenie W artykule poruszono wybrane podstawowe zagadnienia związane z przetwarzaniem równoległym. Przedstawiono

Bardziej szczegółowo

Projektowanie algorytmów równoległych. Zbigniew Koza Wrocław 2012

Projektowanie algorytmów równoległych. Zbigniew Koza Wrocław 2012 Projektowanie algorytmów równoległych Zbigniew Koza Wrocław 2012 Spis reści Zadniowo-kanałowy (task-channel) model algorytmów równoległych Projektowanie algorytmów równoległych metodą PACM Task-channel

Bardziej szczegółowo

Tesla. Architektura Fermi

Tesla. Architektura Fermi Tesla Architektura Fermi Tesla Tesla jest to General Purpose GPU (GPGPU), GPU ogólnego przeznaczenia Obliczenia dotychczas wykonywane na CPU przenoszone są na GPU Możliwości jakie daje GPU dla grafiki

Bardziej szczegółowo

Programowanie z wykorzystaniem technologii CUDA i OpenCL Wykład 1

Programowanie z wykorzystaniem technologii CUDA i OpenCL Wykład 1 Programowanie z wykorzystaniem technologii CUDA i OpenCL Wykład 1 Organizacja przedmiotu Dr inż. Robert Banasiak Dr inż. Paweł Kapusta 1 2 Nasze kompetencje R n D Tomografia 3D To nie tylko statyczny obraz!

Bardziej szczegółowo

Implementacja sieci neuronowych na karcie graficznej. Waldemar Pawlaszek

Implementacja sieci neuronowych na karcie graficznej. Waldemar Pawlaszek Implementacja sieci neuronowych na karcie graficznej Waldemar Pawlaszek Motywacja Czyli po co to wszystko? Motywacja Procesor graficzny GPU (Graphics Processing Unit) Wydajność Elastyczność i precyzja

Bardziej szczegółowo

Programowanie w modelu równoległości danych oraz dzielonej globalnej pamięci wspólnej. Krzysztof Banaś Obliczenia równoległe 1

Programowanie w modelu równoległości danych oraz dzielonej globalnej pamięci wspólnej. Krzysztof Banaś Obliczenia równoległe 1 Programowanie w modelu równoległości danych oraz dzielonej globalnej pamięci wspólnej Krzysztof Banaś Obliczenia równoległe 1 Model równoległości danych Model SPMD (pierwotnie dla maszyn SIMD) Zrównoleglenie

Bardziej szczegółowo

Podstawy programowania obliczeń równoległych

Podstawy programowania obliczeń równoległych Podstawy programowania obliczeń równoległych Uniwersytet Marii Curie-Skłodowskiej Wydział Matematyki, Fizyki i Informatyki Instytut Informatyki Podstawy programowania obliczeń równoległych Przemysław

Bardziej szczegółowo

Wydajność obliczeń a architektura procesorów. Krzysztof Banaś Obliczenia Wysokiej Wydajności 1

Wydajność obliczeń a architektura procesorów. Krzysztof Banaś Obliczenia Wysokiej Wydajności 1 Wydajność obliczeń a architektura procesorów Krzysztof Banaś Obliczenia Wysokiej Wydajności 1 Wydajność komputerów Modele wydajności-> szacowanie czasu wykonania zadania Wydajność szybkość realizacji wyznaczonych

Bardziej szczegółowo

Historia modeli programowania

Historia modeli programowania Języki Programowania na Platformie.NET http://kaims.eti.pg.edu.pl/ goluch/ goluch@eti.pg.edu.pl Maszyny z wbudowanym oprogramowaniem Maszyny z wbudowanym oprogramowaniem automatyczne rozwiązywanie problemu

Bardziej szczegółowo