Julia 4D - raytracing

Wielkość: px
Rozpocząć pokaz od strony:

Download "Julia 4D - raytracing"

Transkrypt

1 i przykładowa implementacja w asemblerze Politechnika Śląska Instytut Informatyki 27 sierpnia 2009

2 A teraz... 1 Fraktale Julia Przykłady Wstęp teoretyczny Rendering za pomocą śledzenia promieni 2 Implementacja Profiling i testy Porównanie osiągnięć Demonstracja, kod i pytania

3 2D Kolor na podstawie szybkości ucieczki

4 4D Algorytm: maszerujące sześciany

5 4D Algorytm: śledzenie promieni

6 A teraz... 1 Fraktale Julia Przykłady Wstęp teoretyczny Rendering za pomocą śledzenia promieni 2 Implementacja Profiling i testy Porównanie osiągnięć Demonstracja, kod i pytania

7 Julia dwuwymiarowa Zbiór Julii tworzą punkty P(x, y) Z Takie, że ciąg: { z0 = x + yi = z 2 n + c z n+1 nie dąży do nieskończoności. Parametr fraktala c = c 1 + c 2 i (1)

8 Julia czterowymiarowa Rozszerzenie polegające na zamianie liczb zespolonych na kwaterniony. Analogicznie: Zbiór Julii tworzą punkty P(x, y, z, w) Z Takie, że ciąg: { z0 = x + yi + zj + wk = z 2 n + c z n+1 nie dąży do nieskończoności. Parametr fraktala c = c 1 + c 2 i + c 3 j + c 4 k Więcej różnic można się spodziewać w definicji działań mnożenia i dodawania. (2)

9 Wstęp do renderowania Iteracja po pikselach obrazu. Przeliczanie współrzędnych obrazu na współrzędne zespolone. Heurystyczne określanie zbieżności ciągu. Przypisanie koloru do piksela. Zastosowanie analogicznego próbkowania w renderingu 3D Próbkowanie przestrzeni Julii celem określenia zbioru punktów przestrzeni należących do fraktala. Tworzenie siatek trójkątów za pomocą algorytmu maszerujących sześcianów i rendering np. za pomocą OpenGL.

10 Wstęp do renderowania Iteracja po pikselach obrazu. Przeliczanie współrzędnych obrazu na współrzędne zespolone. Heurystyczne określanie zbieżności ciągu. Przypisanie koloru do piksela. Zastosowanie analogicznego próbkowania w renderingu 3D Próbkowanie przestrzeni Julii celem określenia zbioru punktów przestrzeni należących do fraktala. Tworzenie siatek trójkątów za pomocą algorytmu maszerujących sześcianów i rendering np. za pomocą OpenGL.

11 Problem złożoności obliczeniowej Mnożenie liczb zespolonych s = z d: { sx = z x d x z y d y s y = z y d x + z x d y Mnożenie kwaternionów s = z d: s x = z x d x z y d y z z d z z w d w s y = z x d y + z y d x + z z d w z w d z s z = z x d z z y d w + z z d x + z w d y s w = z x d w + z y d z z z d y + z w d x Jak widać ilość obliczeń potrzebnych dla Julii kwaternionów jest o wiele większa.

12 Ilość operacji Ile operacji mnożenia trzeba wykonać żeby wygenerować wizualizację dwuwymiarową zbioru Julii bez antyaliasingu? Obrazek 640x480 to pikseli. Każdy piksel wymaga około 10 iteracji równania?? celem określenia czy granica jest właściwa. W sumie około * 10 * 3 = mnożeń i dodawań. To dużo.

13 A teraz... 1 Fraktale Julia Przykłady Wstęp teoretyczny Rendering za pomocą śledzenia promieni 2 Implementacja Profiling i testy Porównanie osiągnięć Demonstracja, kod i pytania

14 Podstawy algorytmu Tworzenie promieni kamera i jej opis. Wykrywanie kolizji promieni z fraktalem. Metoda krokowa: Obliczanie wektora normalnego do fraktala Określenie koloru wynikowego piksela

15 Ulepszenie algorytmu Unbounding volumes, czyli estymacja odległości promienia od Julii.

16 Jeszcze trochę matematyki W celu estymacji dolnej granicy odległości punktu do Julii, prócz obliczania granicy ciągu z n musimy również oszacować granicę funkcji pochodnej. { d0 = 1 + 0i + 0j + 0k d n+1 = 2z n d n (3) I ostatecznie obliczyć odległość ze wzoru: l = z log z (4) 2 d

17 Co zrobić ze znalezioną kolizją promień Julia? Obliczenie wektora normalnego. Wykorzystanie bufora głębokości (Z-Buffer) Z gradientu pola skalarnego Model oświetlenia Phong: Ambient, diffuse, specular

18 A teraz... 1 Fraktale Julia Przykłady Wstęp teoretyczny Rendering za pomocą śledzenia promieni 2 Implementacja Profiling i testy Porównanie osiągnięć Demonstracja, kod i pytania

19 Co warto zoptymalizować

20 Czyli konkretnie co? 1 s t a t i c i n l i n e T j u l i a l i m i t c ( const Q point ) 2 { 3 Q d = { 1. 0, 0., 0., 0. }, z = point ; 4 T z l ; 5 i n t i ; 6 f o r ( i =0; i<j u l i a i t e r ; i ++) { 7 mul(&z, &d ) ; mul c(&d, 2. 0 ) ; 8 9 sqr(&z ) ; add(&z, &j u l i a c ) ; z l = len2(&z ) ; 12 i f ( z l > j u l i a i n f ) 13 break ; 14 } 15 z l = sqrtt ( z l ) ; 16 return 0. 5 z l logt ( z l ) / l e n (&d ) ; 17 }

21 Jak warto zoptymalizować Przepisując często wywoływane funkcje do assemblera. Ograniczając dokładność renderowanego obrazu. Wykorzystując procesor macierzowy umożliwiającym wielopotokowe przetwarzanie danych (np. graficzny). Wykorzystanie przetwarzania SIMD dostępnego na architekturze x86 SSE. Umożliwiając przetwarzanie danych na wielu procesorach jednocześnie.

22 Podział pracy na wątki Niezależność renderowania poszczególnych pikseli. Dzielenie ekranu na pionowe lub poziome paski, które są renderowane niezależnie przez wątki. Optymalizacja podziału ekranu + pozostałe dane.

23 A teraz... 1 Fraktale Julia Przykłady Wstęp teoretyczny Rendering za pomocą śledzenia promieni 2 Implementacja Profiling i testy Porównanie osiągnięć Demonstracja, kod i pytania

24 1 klatka, 1 wątek, 6 próbek Stanowisko: CPU: 2 x Intel Xeon X5365, 3GHz; Quad core GPU: nvidia Corporation Quadro NVS 290

25 Czas pracy w zależności od podziału na wątki

26 Renderowanie 200 klatek animacji 640x480

27 Różnice w implementacji IEEE754

28 A teraz... 1 Fraktale Julia Przykłady Wstęp teoretyczny Rendering za pomocą śledzenia promieni 2 Implementacja Profiling i testy Porównanie osiągnięć Demonstracja, kod i pytania

29 Podsumowanie Demonstracja programu. Analiza kodu źródłowego. Pytania?

która metoda jest najlepsza

która metoda jest najlepsza która metoda jest najlepsza dr inż. Marek Żabka Instytut Matematyki Wydział Matematyki Stosowanej Politechnika Śląska 20 września 2012r Nowa metoda tworzenia grafiki na stronie internetowej: element,,canvas

Bardziej szczegółowo

Plan wykładu. Akcelerator 3D Potok graficzny

Plan wykładu. Akcelerator 3D Potok graficzny Plan wykładu Akcelerator 3D Potok graficzny Akcelerator 3D W 1996 r. opracowana została specjalna karta rozszerzeń o nazwie marketingowej Voodoo, którą z racji wspomagania procesu generowania grafiki 3D

Bardziej szczegółowo

GRK 4. dr Wojciech Palubicki

GRK 4. dr Wojciech Palubicki GRK 4 dr Wojciech Palubicki Uproszczony Potok Graficzny (Rendering) Model Matrix View Matrix Projection Matrix Viewport Transform Object Space World Space View Space Clip Space Screen Space Projection

Bardziej szczegółowo

CUDA Median Filter filtr medianowy wykorzystujący bibliotekę CUDA sprawozdanie z projektu

CUDA Median Filter filtr medianowy wykorzystujący bibliotekę CUDA sprawozdanie z projektu CUDA Median Filter filtr medianowy wykorzystujący bibliotekę CUDA sprawozdanie z projektu inż. Daniel Solarz Wydział Fizyki i Informatyki Stosowanej AGH 1. Cel projektu. Celem projektu było napisanie wtyczki

Bardziej szczegółowo

Programowanie z wykorzystaniem technologii CUDA i OpenCL Wykład 1

Programowanie z wykorzystaniem technologii CUDA i OpenCL Wykład 1 Programowanie z wykorzystaniem technologii CUDA i OpenCL Wykład 1 Organizacja przedmiotu Dr inż. Robert Banasiak Dr inż. Paweł Kapusta 1 2 Nasze kompetencje R n D Tomografia 3D To nie tylko statyczny obraz!

Bardziej szczegółowo

Programowanie gier komputerowych Tomasz Martyn Wykład 6. Materiały informacje podstawowe

Programowanie gier komputerowych Tomasz Martyn Wykład 6. Materiały informacje podstawowe Programowanie gier komputerowych Tomasz Martyn Wykład 6. Materiały informacje podstawowe Czym są tekstury? Tekstury są tablicowymi strukturami danych o wymiarze od 1 do 3, których elementami są tzw. teksele.

Bardziej szczegółowo

Synteza i obróbka obrazu. Tekstury. Opracowanie: dr inż. Grzegorz Szwoch Politechnika Gdańska Katedra Systemów Multimedialnych

Synteza i obróbka obrazu. Tekstury. Opracowanie: dr inż. Grzegorz Szwoch Politechnika Gdańska Katedra Systemów Multimedialnych Synteza i obróbka obrazu Tekstury Opracowanie: dr inż. Grzegorz Szwoch Politechnika Gdańska Katedra Systemów Multimedialnych Tekstura Tekstura (texture) obraz rastrowy (mapa bitowa, bitmap) nakładany na

Bardziej szczegółowo

Oświetlenie obiektów 3D

Oświetlenie obiektów 3D Synteza i obróbka obrazu Oświetlenie obiektów 3D Opracowanie: dr inż. Grzegorz Szwoch Politechnika Gdańska Katedra Systemów Multimedialnych Rasteryzacja Spłaszczony po rzutowaniu obraz siatek wielokątowych

Bardziej szczegółowo

Przegląd architektury PlayStation 3

Przegląd architektury PlayStation 3 Przegląd architektury PlayStation 3 1 Your Name Your Title Your Organization (Line #1) Your Organization (Line #2) Sony PlayStation 3 Konsola siódmej generacji Premiera: listopad 2006 33,5 mln sprzedanych

Bardziej szczegółowo

RDZEŃ x86 x86 rodzina architektur (modeli programowych) procesorów firmy Intel, należących do kategorii CISC, stosowana w komputerach PC,

RDZEŃ x86 x86 rodzina architektur (modeli programowych) procesorów firmy Intel, należących do kategorii CISC, stosowana w komputerach PC, RDZEŃ x86 x86 rodzina architektur (modeli programowych) procesorów firmy Intel, należących do kategorii CISC, stosowana w komputerach PC, zapoczątkowana przez i wstecznie zgodna z 16-bitowym procesorem

Bardziej szczegółowo

Oświetlenie. Modelowanie oświetlenia sceny 3D. Algorytmy cieniowania.

Oświetlenie. Modelowanie oświetlenia sceny 3D. Algorytmy cieniowania. Oświetlenie. Modelowanie oświetlenia sceny 3D. Algorytmy cieniowania. Chcąc osiągnąć realizm renderowanego obrazu, należy rozwiązać problem świetlenia. Barwy, faktury i inne właściwości przedmiotów postrzegamy

Bardziej szczegółowo

Język ludzki kod maszynowy

Język ludzki kod maszynowy Język ludzki kod maszynowy poziom wysoki Język ludzki (mowa) Język programowania wysokiego poziomu Jeśli liczba punktów jest większa niż 50, test zostaje zaliczony; w przeciwnym razie testu nie zalicza

Bardziej szczegółowo

Spis treści. I. Skuteczne. Od autora... Obliczenia inżynierskie i naukowe... Ostrzeżenia...XVII

Spis treści. I. Skuteczne. Od autora... Obliczenia inżynierskie i naukowe... Ostrzeżenia...XVII Spis treści Od autora..................................................... Obliczenia inżynierskie i naukowe.................................. X XII Ostrzeżenia...................................................XVII

Bardziej szczegółowo

MMX i SSE. Zbigniew Koza. Wydział Fizyki i Astronomii Uniwersytet Wrocławski. Wrocław, 10 marca 2011. Zbigniew Koza (WFiA UWr) MMX i SSE 1 / 16

MMX i SSE. Zbigniew Koza. Wydział Fizyki i Astronomii Uniwersytet Wrocławski. Wrocław, 10 marca 2011. Zbigniew Koza (WFiA UWr) MMX i SSE 1 / 16 MMX i SSE Zbigniew Koza Wydział Fizyki i Astronomii Uniwersytet Wrocławski Wrocław, 10 marca 2011 Zbigniew Koza (WFiA UWr) MMX i SSE 1 / 16 Spis treści Spis treści 1 Wstęp Zbigniew Koza (WFiA UWr) MMX

Bardziej szczegółowo

RENDERING W CZASIE RZECZYWISTYM. Michał Radziszewski

RENDERING W CZASIE RZECZYWISTYM. Michał Radziszewski RENDERING W CZASIE RZECZYWISTYM Michał Radziszewski Plan wykładu Opóźnione cieniowanie wprowadzenie Koszt obliczeniowy cieniowania Cieniowanie jedno- i wieloprzebiegowe Cieniowanie opóźnione Schemat opóźnionego

Bardziej szczegółowo

Grafika komputerowa i wizualizacja

Grafika komputerowa i wizualizacja Grafika komputerowa i wizualizacja Radosław Mantiuk ( rmantiuk@wi.zut.edu.pl, p. 315 WI2) http://rmantiuk.zut.edu.pl Katedra Systemów Multimedialnych Wydział Informatyki, Zachodniopomorski Uniwersytet

Bardziej szczegółowo

Teselacja i uzupełnienia do grafiki

Teselacja i uzupełnienia do grafiki Teselacja i uzupełnienia do grafiki Marcin Orchel 1 Wstęp 1.1 Antyaliasing Techniki wygładzania krawędzi, usunięcie zjawiska schodków, postrzępionych krawędzi, aliasingu. Różne techniki. Wielopróbkowanie

Bardziej szczegółowo

Scena 3D. Cieniowanie (ang. Shading) Scena 3D - Materia" Obliczenie koloru powierzchni (ang. Lighting)

Scena 3D. Cieniowanie (ang. Shading) Scena 3D - Materia Obliczenie koloru powierzchni (ang. Lighting) Zbiór trójwymiarowych danych wej$ciowych wykorzystywanych do wygenerowania obrazu wyj$ciowego 2D. Cieniowanie (ang. Shading) Rados"aw Mantiuk Wydzia" Informatyki Zachodniopomorski Uniwersytet Technologiczny

Bardziej szczegółowo

Za pierwszy niebanalny algorytm uważa się algorytm Euklidesa wyszukiwanie NWD dwóch liczb (400 a 300 rok przed narodzeniem Chrystusa).

Za pierwszy niebanalny algorytm uważa się algorytm Euklidesa wyszukiwanie NWD dwóch liczb (400 a 300 rok przed narodzeniem Chrystusa). Algorytmy definicja, cechy, złożoność. Algorytmy napotykamy wszędzie, gdziekolwiek się zwrócimy. Rządzą one wieloma codziennymi czynnościami, jak np. wymiana przedziurawionej dętki, montowanie szafy z

Bardziej szczegółowo

zajęcia 1. Bartosz Górski, Tomasz Kulczyński, Błażej Osiński

zajęcia 1. Bartosz Górski, Tomasz Kulczyński, Błażej Osiński zajęcia 1. Bartosz Górski, Tomasz Kulczyński, Błażej Osiński Geometria dla informatyka wyłacznie obliczenia wszystko oparte na liczbach, współrzędnych, miarach programista i/lub użytkownik musi przełożyć

Bardziej szczegółowo

Uwaga! Upadek! Opis zadania konkursowego

Uwaga! Upadek! Opis zadania konkursowego Uwaga! Upadek! Opis zadania konkursowego Zadanie Opracowanie algorytmu automatycznie rozpoznającego upadek osoby na nagraniu wideo i wdrożenie stworzonego rozwiązania jako usługi na superkomputerowej platformie

Bardziej szczegółowo

Architektura Procesorów Graficznych

Architektura Procesorów Graficznych Architektura Procesorów Graficznych Referat: Rendering 3D: potok 3D, możliwości wsparcia sprzętowego, możliwości przyspieszenia obliczeń. Grupa wyrównawcza Cezary Sosnowski 1. Renderowanie Renderowanie

Bardziej szczegółowo

Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych

Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych Piotr Modliński Wydział Geodezji i Kartografii PW 13 stycznia 2012 P. Modliński, GiK PW Rozw.

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x WYMAGANIA EDUACYJNE Z MATEMATYI LASA III ZARES ROZSZERZONY (90 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry); D wymagania

Bardziej szczegółowo

Baltie 3. Podręcznik do nauki programowania dla klas I III gimnazjum. Tadeusz Sołtys, Bohumír Soukup

Baltie 3. Podręcznik do nauki programowania dla klas I III gimnazjum. Tadeusz Sołtys, Bohumír Soukup Baltie 3 Podręcznik do nauki programowania dla klas I III gimnazjum Tadeusz Sołtys, Bohumír Soukup Czytanie klawisza lub przycisku myszy Czytaj klawisz lub przycisk myszy - czekaj na naciśnięcie Polecenie

Bardziej szczegółowo

FRAKTALE I SAMOPODOBIEŃSTWO

FRAKTALE I SAMOPODOBIEŃSTWO FRAKTALE I SAMOPODOBIEŃSTWO Mariusz Gromada marzec 2003 mariusz.gromada@wp.pl http://multifraktal.net 1 Wstęp Fraktalem nazywamy każdy zbiór, dla którego wymiar Hausdorffa-Besicovitcha (tzw. wymiar fraktalny)

Bardziej szczegółowo

Obraz jako funkcja Przekształcenia geometryczne

Obraz jako funkcja Przekształcenia geometryczne Cyfrowe przetwarzanie obrazów I Obraz jako funkcja Przekształcenia geometryczne dr. inż Robert Kazała Definicja obrazu Obraz dwuwymiarowa funkcja intensywności światła f(x,y); wartość f w przestrzennych

Bardziej szczegółowo

Grafika komputerowa. Model oświetlenia. emisja światła przez źródła światła. interakcja światła z powierzchnią. absorbcja światła przez sensor

Grafika komputerowa. Model oświetlenia. emisja światła przez źródła światła. interakcja światła z powierzchnią. absorbcja światła przez sensor Model oświetlenia emisja światła przez źródła światła interakcja światła z powierzchnią absorbcja światła przez sensor Radiancja radiancja miara światła wychodzącego z powierzchni w danym kącie bryłowym

Bardziej szczegółowo

BIBLIOTEKA PROGRAMU R - BIOPS. Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat

BIBLIOTEKA PROGRAMU R - BIOPS. Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat BIBLIOTEKA PROGRAMU R - BIOPS Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat Biblioteka biops zawiera funkcje do analizy i przetwarzania obrazów. Operacje geometryczne (obrót, przesunięcie,

Bardziej szczegółowo

Wykorzystanie architektury Intel MIC w obliczeniach typu stencil

Wykorzystanie architektury Intel MIC w obliczeniach typu stencil Wykorzystanie architektury Intel MIC w obliczeniach typu stencil Kamil Halbiniak Wydział Inżynierii Mechanicznej i Informatyki Kierunek informatyka, Rok IV Instytut Informatyki Teoretycznej i Stosowanej

Bardziej szczegółowo

Programowanie procesorów graficznych GPGPU

Programowanie procesorów graficznych GPGPU Programowanie procesorów graficznych GPGPU 1 GPGPU Historia: lata 80 te popularyzacja systemów i programów z graficznym interfejsem specjalistyczne układy do przetwarzania grafiki 2D lata 90 te standaryzacja

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI

EGZAMIN MATURALNY Z INFORMATYKI ARKUSZ ZAWIERA INORMACJE RAWNIE CHRONIONE DO MOMENTU ROZOCZĘCIA EGZAMINU! Miejsce na naklejkę EGZAMIN MATURALNY Z INORMATYKI MIN-R1_1-092 MAJ ROK 2009 OZIOM ROZSZERZONY CZĘŚĆ I Czas pracy 90 minut Instrukcja

Bardziej szczegółowo

Implementacja sieci neuronowych na karcie graficznej. Waldemar Pawlaszek

Implementacja sieci neuronowych na karcie graficznej. Waldemar Pawlaszek Implementacja sieci neuronowych na karcie graficznej Waldemar Pawlaszek Motywacja Czyli po co to wszystko? Motywacja Procesor graficzny GPU (Graphics Processing Unit) Wydajność Elastyczność i precyzja

Bardziej szczegółowo

Co to jest algorytm? przepis prowadzący do rozwiązania zadania, problemu,

Co to jest algorytm? przepis prowadzący do rozwiązania zadania, problemu, wprowadzenie Co to jest algorytm? przepis prowadzący do rozwiązania zadania, problemu, w przepisie tym podaje się opis czynności, które trzeba wykonać, oraz dane, dla których algorytm będzie określony.

Bardziej szczegółowo

Kompresja sekwencji obrazów - algorytm MPEG-2

Kompresja sekwencji obrazów - algorytm MPEG-2 Kompresja sekwencji obrazów - algorytm MPEG- Moving Pictures Experts Group (MPEG) - 988 ISO - International Standard Organisation CCITT - Comité Consultatif International de Téléphonie et TélégraphieT

Bardziej szczegółowo

1. Informatyka - dyscyplina naukowa i techniczna zajmująca się przetwarzaniem informacji.

1. Informatyka - dyscyplina naukowa i techniczna zajmująca się przetwarzaniem informacji. Temat: Technologia informacyjna a informatyka 1. Informatyka - dyscyplina naukowa i techniczna zajmująca się przetwarzaniem informacji. Technologia informacyjna (ang.) Information Technology, IT jedna

Bardziej szczegółowo

Wprowadzenie do UML, przykład użycia kolizja

Wprowadzenie do UML, przykład użycia kolizja Bogdan Kreczmer bogdan.kreczmer@pwr.wroc.pl Zakład Podstaw Cybernetyki i Robotyki Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska Kurs: Copyright c 2012 Bogdan Kreczmer Niniejszy dokument

Bardziej szczegółowo

Obliczenia Wysokiej Wydajności

Obliczenia Wysokiej Wydajności Obliczenia wysokiej wydajności 1 Wydajność obliczeń Wydajność jest (obok poprawności, niezawodności, bezpieczeństwa, ergonomiczności i łatwości stosowania i pielęgnacji) jedną z najważniejszych charakterystyk

Bardziej szczegółowo

Podstawy OpenCL część 2

Podstawy OpenCL część 2 Podstawy OpenCL część 2 1. Napisz program dokonujący mnożenia dwóch macierzy w wersji sekwencyjnej oraz OpenCL. Porównaj czasy działania obu wersji dla różnych wielkości macierzy, np. 16 16, 128 128, 1024

Bardziej szczegółowo

Ćwiczenie 1. Wprowadzenie do programu Octave

Ćwiczenie 1. Wprowadzenie do programu Octave Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 1. Wprowadzenie do programu Octave Mimo że program Octave został stworzony do

Bardziej szczegółowo

Przetwarzanie obrazów rastrowych macierzą konwolucji

Przetwarzanie obrazów rastrowych macierzą konwolucji Przetwarzanie obrazów rastrowych macierzą konwolucji 1 Wstęp Obrazy rastrowe są na ogół reprezentowane w dwuwymiarowych tablicach złożonych z pikseli, reprezentowanych przez liczby określające ich jasność

Bardziej szczegółowo

CUDA PROGRAMOWANIE PIERWSZE PROSTE PRZYKŁADY RÓWNOLEGŁE. Michał Bieńkowski Katarzyna Lewenda

CUDA PROGRAMOWANIE PIERWSZE PROSTE PRZYKŁADY RÓWNOLEGŁE. Michał Bieńkowski Katarzyna Lewenda PROGRAMOWANIE RÓWNOLEGŁE PIERWSZE PROSTE PRZYKŁADY Michał Bieńkowski Katarzyna Lewenda Programowanie równoległe Dodawanie wektorów SPIS TREŚCI Fraktale Podsumowanie Ćwiczenia praktyczne Czym jest? PROGRAMOWANIE

Bardziej szczegółowo

i proste algorytmy numeryczne LABORKA Piotr Ciskowski

i proste algorytmy numeryczne LABORKA Piotr Ciskowski Macierze i proste algorytmy numeryczne LABORKA Piotr Ciskowski przykład 1. zabawy z macierzami wygeneruj macierze Pascala różnych rozmiarów, wydedukuj z nich zasadę tworzenia» pascal ( 5 ) przykład 1.

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI WYBRANE: ... (system operacyjny) ... (program użytkowy) ... (środowisko programistyczne)

EGZAMIN MATURALNY Z INFORMATYKI WYBRANE: ... (system operacyjny) ... (program użytkowy) ... (środowisko programistyczne) Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MIN 2017 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z INFORMATYKI POZIOM ROZSZERZONY CZĘŚĆ I DATA: 10

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV Zna zależności wartości cyfry od jej położenia w liczbie Zna kolejność działań bez użycia nawiasów Zna algorytmy czterech działań pisemnych

Bardziej szczegółowo

Obliczenia Naukowe. Wykład 12: Zagadnienia na egzamin. Bartek Wilczyński

Obliczenia Naukowe. Wykład 12: Zagadnienia na egzamin. Bartek Wilczyński Obliczenia Naukowe Wykład 12: Zagadnienia na egzamin Bartek Wilczyński 6.6.2016 Tematy do powtórki Arytmetyka komputerów Jak wygląda reprezentacja liczb w arytmetyce komputerowej w zapisie cecha+mantysa

Bardziej szczegółowo

WYDZIAŁ MECHANICZNO-ENERGETYCZNY KARTA PRZEDMIOTU

WYDZIAŁ MECHANICZNO-ENERGETYCZNY KARTA PRZEDMIOTU Zał. nr 4 do ZW WYDZIAŁ MECHANICZNO-ENERGETYCZNY KARTA PRZEDMIOTU Nazwa w języku polskim MATEMATYKA Nazwa w języku angielskim Calculus Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy): Stopień

Bardziej szczegółowo

Liczby zespolone. Magdalena Nowak. 23 marca Uniwersytet Śląski

Liczby zespolone. Magdalena Nowak. 23 marca Uniwersytet Śląski Uniwersytet Śląski 23 marca 2012 Ciało liczb zespolonych Rozważmy zbiór C = R R, czyli C = {(x, y) : x, y R}. W zbiorze C definiujemy następujące działania: dodawanie: mnożenie: (a, b) + (c, d) = (a +

Bardziej szczegółowo

Operator rozciągania. Obliczyć obraz q i jego histogram dla p 1 =4, p 2 =8; Operator redukcji poziomów szarości

Operator rozciągania. Obliczyć obraz q i jego histogram dla p 1 =4, p 2 =8; Operator redukcji poziomów szarości Operator rozciągania q = 15 ( p p1 ) ( p p ) 0 2 1 dla p < p p 1 2 dla p p, p > p 1 2 Obliczyć obraz q i jego histogram dla p 1 =4, p 2 =8; Operator redukcji poziomów szarości q = 0 dla p p1 q2 dla p1

Bardziej szczegółowo

OpenGL i wprowadzenie do programowania gier

OpenGL i wprowadzenie do programowania gier OpenGL i wprowadzenie do programowania gier Wojciech Sterna Bartosz Chodorowski OpenGL i wprowadzenie do programowania gier Autorstwo rozdziałów: 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 Wojciech Sterna

Bardziej szczegółowo

Laboratorium technik optymalizacji

Laboratorium technik optymalizacji Laboratorium technik optymalizacji Marek Kubiak 1 Opis zajęć Zakres zajęć laboratoryjnych jest podzielony na 2 części: realizację algorytmu przeszukiwania lokalnego i wizualizacji jego działania dla zadanego

Bardziej szczegółowo

Transformacja Fouriera i biblioteka CUFFT 3.0

Transformacja Fouriera i biblioteka CUFFT 3.0 Transformacja Fouriera i biblioteka CUFFT 3.0 Procesory Graficzne w Zastosowaniach Obliczeniowych Karol Opara Warszawa, 14 kwietnia 2010 Transformacja Fouriera Definicje i Intuicje Transformacja z dziedziny

Bardziej szczegółowo

Animowana grafika 3D. Opracowanie: J. Kęsik.

Animowana grafika 3D. Opracowanie: J. Kęsik. Animowana grafika 3D Opracowanie: J. Kęsik kesik@cs.pollub.pl Śledzenie promieni Ray tracing jest techniką renderowania będącą obecnie podstawą wielu algorytmów fotorealistycznych Po raz pierwszy wykorzystana

Bardziej szczegółowo

Transformacje obiektów 3D

Transformacje obiektów 3D Synteza i obróbka obrazu Transformacje obiektów 3D Opracowanie: dr inż. Grzegorz Szwoch Politechnika Gdańska Katedra Systemów Multimedialnych Lokalny układ współrzędnych Tworząc model obiektu, zapisujemy

Bardziej szczegółowo

Synteza i obróbka obrazu. Algorytmy oświetlenia globalnego

Synteza i obróbka obrazu. Algorytmy oświetlenia globalnego Synteza i obróbka obrazu Algorytmy oświetlenia globalnego Algorytmy oświetlenia Algorytmy oświetlenia bezpośredniego (direct illumination) tylko światło poadające bezpośrednio na obiekty, mniejszy realizm,

Bardziej szczegółowo

1 Temat: Wprowadzenie do biblioteki OpenCV

1 Temat: Wprowadzenie do biblioteki OpenCV Instrukcja Zaawansowane przetwarzanie obrazów 1 Temat: Wprowadzenie do biblioteki OpenCV Przygotował: mgr inż. Tomasz Michno 1 Wstęp 1.1 OpenCV - krótki wstęp OpenCV (Open Source Computer Vision) jest

Bardziej szczegółowo

Grafika Komputerowa Wybrane definicje. Katedra Informatyki i Metod Komputerowych Uniwersytet Pedagogiczny im. KEN w Krakowie apw@up.krakow.

Grafika Komputerowa Wybrane definicje. Katedra Informatyki i Metod Komputerowych Uniwersytet Pedagogiczny im. KEN w Krakowie apw@up.krakow. Grafika Komputerowa Wybrane definicje Katedra Informatyki i Metod Komputerowych Uniwersytet Pedagogiczny im. KEN w Krakowie apw@up.krakow.pl Spis pojęć Grafika komputerowa Grafika wektorowa Grafika rastrowa

Bardziej szczegółowo

Algorytmy równoległe. Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka 2010

Algorytmy równoległe. Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka 2010 Algorytmy równoległe Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka Znajdowanie maksimum w zbiorze n liczb węzły - maksimum liczb głębokość = 3 praca = 4++ = 7 (operacji) n - liczność

Bardziej szczegółowo

Podstawy Informatyki Systemy sterowane przepływem argumentów

Podstawy Informatyki Systemy sterowane przepływem argumentów Podstawy Informatyki alina.momot@polsl.pl http://zti.polsl.pl/amomot/pi Plan wykładu 1 Komputer i jego architektura Taksonomia Flynna 2 Komputer i jego architektura Taksonomia Flynna Komputer Komputer

Bardziej szczegółowo

Trójwymiarowa wizualizacja danych przestrzennych

Trójwymiarowa wizualizacja danych przestrzennych Trójwymiarowa wizualizacja danych przestrzennych Wykład Kolokwium pod koniec listopada: 30 pkt. (egzamin?) Próg zaliczenia: 15 pkt Wymagana obecność* Laboratorium Siedem ćwiczeń po 5 pkt., Wymagane zdobycie

Bardziej szczegółowo

Usuwanie tła z wykorzystaniem GPU raport z projektu

Usuwanie tła z wykorzystaniem GPU raport z projektu Usuwanie tła z wykorzystaniem GPU raport z projektu Szymon Wąsik, czerwiec 007 Założenia projektu Cele i opis projektu Celem projektu było stworzenie aplikacji, która z filmu wczytanego z pliku bądź kamery

Bardziej szczegółowo

Metoda określania pozycji wodnicy statków na podstawie pomiarów odległości statku od głowic laserowych

Metoda określania pozycji wodnicy statków na podstawie pomiarów odległości statku od głowic laserowych inż. Marek Duczkowski Metoda określania pozycji wodnicy statków na podstawie pomiarów odległości statku od głowic laserowych słowa kluczowe: algorytm gradientowy, optymalizacja, określanie wodnicy W artykule

Bardziej szczegółowo

LABORATORIUM 3 ALGORYTMY OBLICZENIOWE W ELEKTRONICE I TELEKOMUNIKACJI. Wprowadzenie do środowiska Matlab

LABORATORIUM 3 ALGORYTMY OBLICZENIOWE W ELEKTRONICE I TELEKOMUNIKACJI. Wprowadzenie do środowiska Matlab LABORATORIUM 3 ALGORYTMY OBLICZENIOWE W ELEKTRONICE I TELEKOMUNIKACJI Wprowadzenie do środowiska Matlab 1. Podstawowe informacje Przedstawione poniżej informacje maja wprowadzić i zapoznać ze środowiskiem

Bardziej szczegółowo

Różne rodzaje efektów

Różne rodzaje efektów Title Subtitle Wstęp Wykorzystywanie możliwości GPU Głównie gry Także nowe wersje programów graficznych, video (Adobe Photoshop, Ahead Nero) Będę głównie opowiadał o zastosowaniach w grach (chociaż można

Bardziej szczegółowo

Wydajność systemów a organizacja pamięci, czyli dlaczego jednak nie jest aż tak źle. Krzysztof Banaś, Obliczenia wysokiej wydajności.

Wydajność systemów a organizacja pamięci, czyli dlaczego jednak nie jest aż tak źle. Krzysztof Banaś, Obliczenia wysokiej wydajności. Wydajność systemów a organizacja pamięci, czyli dlaczego jednak nie jest aż tak źle Krzysztof Banaś, Obliczenia wysokiej wydajności. 1 Organizacja pamięci Organizacja pamięci współczesnych systemów komputerowych

Bardziej szczegółowo

Wybrane wyniki w zakresie umiejętności matematycznych

Wybrane wyniki w zakresie umiejętności matematycznych Wybrane wyniki w zakresie umiejętności matematycznych Struktura badanych umiejętności matematycznych Umiejętności narzędziowe, stosowane w sytuacji typowej stosowane w sytuacji nietypowej Umiejętności

Bardziej szczegółowo

KRYTERIA OCEN DLA KLASY VI. Zespół Szkolno-Przedszkolny nr 1

KRYTERIA OCEN DLA KLASY VI. Zespół Szkolno-Przedszkolny nr 1 KRYTERIA OCEN DLA KLASY VI Zespół Szkolno-Przedszkolny nr 1 2 3 KRYTERIA OCEN Z MATEMATYKI DLA KLASY VI LICZBY NATURALNE I UŁAMKI Na ocenę dopuszczającą uczeń powinien: - znać algorytm czterech

Bardziej szczegółowo

Diagramy UML, przykład problemu kolizji

Diagramy UML, przykład problemu kolizji Bogdan Kreczmer bogdan.kreczmer@pwr.edu.pl Katedra Cybernetyki i Robotyki Wydział Elektroniki Politechnika Wrocławska Kurs: Copyright c 2015 Bogdan Kreczmer Niniejszy dokument zawiera materiały do wykładu

Bardziej szczegółowo

Algorytmy numeryczne 1

Algorytmy numeryczne 1 Algorytmy numeryczne 1 Wprowadzenie Obliczenie numeryczne są najważniejszym zastosowaniem komputerów równoległych. Przykładem są symulacje zjawisk fizycznych, których przeprowadzenie sprowadza się do rozwiązania

Bardziej szczegółowo

Technologie Informacyjne

Technologie Informacyjne POLITECHNIKA KRAKOWSKA - WIEiK - KATEDRA AUTOMATYKI Technologie Informacyjne www.pk.edu.pl/~zk/ti_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 3: Wprowadzenie do algorytmów i ich

Bardziej szczegółowo

Rysowanie punktów na powierzchni graficznej

Rysowanie punktów na powierzchni graficznej Rysowanie punktów na powierzchni graficznej Tworzenie biblioteki rozpoczniemy od podstawowej funkcji graficznej gfxplot() - rysowania pojedynczego punktu na zadanych współrzędnych i o zadanym kolorze RGB.

Bardziej szczegółowo

Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych

Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka 2014/15 Znajdowanie maksimum w zbiorze

Bardziej szczegółowo

Libra.cs.put.poznan.pl/mailman/listinfo/skisrkolo.

Libra.cs.put.poznan.pl/mailman/listinfo/skisrkolo. Konrad Szałkowski Libra.cs.put.poznan.pl/mailman/listinfo/skisrkolo Skisr-kolo@libra.cs.put.poznan.pl Po co? Krótka prezentacja Skąd? Dlaczego? Gdzie? Gdzie nie? Jak? CPU Pamięć DDR3-19200 19,2 GB/s Wydajność

Bardziej szczegółowo

Moc płynąca z kart graficznych

Moc płynąca z kart graficznych Moc płynąca z kart graficznych Cuda za darmo! Czyli programowanie generalnego przeznaczenia na kartach graficznych (GPGPU) 22 października 2013 Paweł Napieracz /20 Poruszane aspekty Przetwarzanie równoległe

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne z. matematyki. dla uczniów klasy IIIa i IIIb. Gimnazjum im. Jana Pawła II w Mętowie. w roku szkolnym 2015/2016

Wymagania na poszczególne oceny szkolne z. matematyki. dla uczniów klasy IIIa i IIIb. Gimnazjum im. Jana Pawła II w Mętowie. w roku szkolnym 2015/2016 Wymagania na poszczególne oceny szkolne z matematyki dla uczniów klasy IIIa i IIIb Gimnazjum im. Jana Pawła II w Mętowie w roku szkolnym 2015/2016 DZIAŁ 1. FUNKCJE (11h) Uczeń: poda definicję funkcji (2)

Bardziej szczegółowo

GRAFIKA KOMPUTEROWA. Plan wykładu. 1. Początki grafiki komputerowej. 2. Grafika komputerowa a dziedziny pokrewne. 3. Omówienie programu przedmiotu

GRAFIKA KOMPUTEROWA. Plan wykładu. 1. Początki grafiki komputerowej. 2. Grafika komputerowa a dziedziny pokrewne. 3. Omówienie programu przedmiotu GRAFIKA KOMPUTEROWA 1. Układ przedmiotu semestr VI - 20000 semestr VII - 00200 Dr inż. Jacek Jarnicki Instytut Cybernetyki Technicznej p. 226 C-C 3, tel. 320-28-2323 jacek@ict.pwr.wroc.pl www.zsk.ict.pwr.wroc.pl

Bardziej szczegółowo

KADD Minimalizacja funkcji

KADD Minimalizacja funkcji Minimalizacja funkcji Poszukiwanie minimum funkcji Foma kwadratowa Metody przybliżania minimum minimalizacja Minimalizacja w n wymiarach Metody poszukiwania minimum Otaczanie minimum Podział obszaru zawierającego

Bardziej szczegółowo

GRAFIKA KOMPUTEROWA. Rozwiązania sprzętowe i programowe. Przyspieszanie sprzętowe. Synteza i obróbka obrazu

GRAFIKA KOMPUTEROWA. Rozwiązania sprzętowe i programowe. Przyspieszanie sprzętowe. Synteza i obróbka obrazu Synteza i obróbka obrazu GRAFIKA KOMPUTEROWA Rozwiązania sprzętowe i programowe Przyspieszanie sprzętowe Generowanie obrazu 3D wymaga złożonych obliczeń, szczególnie jeżeli chodzi o generowanie płynnej

Bardziej szczegółowo

OpenGL - Open Graphics Library. Programowanie grafiki komputerowej. OpenGL 3.0. OpenGL - Architektura (1)

OpenGL - Open Graphics Library. Programowanie grafiki komputerowej. OpenGL 3.0. OpenGL - Architektura (1) OpenGL - Open Graphics Library Programowanie grafiki komputerowej Rados$aw Mantiuk Wydzia$ Informatyki Zachodniopomorski Uniwersytet Technologiczny! OpenGL: architektura systemu do programowania grafiki

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni ,5 1

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni ,5 1 Zał. nr 4 do ZW WYDZIAŁ ***** KARTA PRZEDMIOTU Nazwa w języku polskim ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ B Nazwa w języku angielskim Algebra and Analytic Geometry B Kierunek studiów (jeśli dotyczy): Specjalność

Bardziej szczegółowo

MATEMATYKA KLASA II LICEUM OGÓLNOKSZTAŁCĄCEGO

MATEMATYKA KLASA II LICEUM OGÓLNOKSZTAŁCĄCEGO 2016-09-01 MATEMATYKA KLASA II LICEUM OGÓLNOKSZTAŁCĄCEGO SZKOŁY BENEDYKTA Ramowy rozkład materiału Klasa II I. Trójmian kwadratowy II. Wielomiany III. Funkcja wymierna IV. Funkcje dowolnego argumentu V.

Bardziej szczegółowo

Programowanie procesorów graficznych NVIDIA (rdzenie CUDA) Wykład nr 1

Programowanie procesorów graficznych NVIDIA (rdzenie CUDA) Wykład nr 1 Programowanie procesorów graficznych NVIDIA (rdzenie CUDA) Wykład nr 1 Wprowadzenie Procesory graficzne GPU (Graphics Processing Units) stosowane są w kartach graficznych do przetwarzania grafiki komputerowej

Bardziej szczegółowo

Wprowadzenie do programowania w języku Visual Basic. Podstawowe instrukcje języka

Wprowadzenie do programowania w języku Visual Basic. Podstawowe instrukcje języka Wprowadzenie do programowania w języku Visual Basic. Podstawowe instrukcje języka 1. Kompilacja aplikacji konsolowych w środowisku programistycznym Microsoft Visual Basic. Odszukaj w menu startowym systemu

Bardziej szczegółowo

Programowanie strukturalne i obiektowe. Funkcje

Programowanie strukturalne i obiektowe. Funkcje Funkcje Często w programach spotykamy się z sytuacją, kiedy chcemy wykonać określoną czynność kilka razy np. dodać dwie liczby w trzech miejscach w programie. Oczywiście moglibyśmy to zrobić pisząc trzy

Bardziej szczegółowo

Opis efektów kształcenia dla modułu zajęć

Opis efektów kształcenia dla modułu zajęć Nazwa modułu: Grafika komputerowa Rok akademicki: 2015/2016 Kod: ITE-1-514-s Punkty ECTS: 5 Wydział: Informatyki, Elektroniki i Telekomunikacji Kierunek: Teleinformatyka Specjalność: - Poziom studiów:

Bardziej szczegółowo

Praca dyplomowa magisterska

Praca dyplomowa magisterska Praca dyplomowa magisterska Implementacja algorytmów filtracji adaptacyjnej o strukturze transwersalnej na platformie CUDA Dyplomant: Jakub Kołakowski Opiekun pracy: dr inż. Michał Meller Plan prezentacji

Bardziej szczegółowo

Podstawy grafiki komputerowej

Podstawy grafiki komputerowej Podstawy grafiki komputerowej Krzysztof Gracki K.Gracki@ii.pw.edu.pl tel. (22) 6605031 Instytut Informatyki Politechniki Warszawskiej 2 Sprawy organizacyjne Krzysztof Gracki k.gracki@ii.pw.edu.pl tel.

Bardziej szczegółowo

a. Czym różni się sposób liczenia odbicia zwierciadlanego zaproponowany przez Phonga od zaproponowanego przez Blinna?

a. Czym różni się sposób liczenia odbicia zwierciadlanego zaproponowany przez Phonga od zaproponowanego przez Blinna? 1. Oświetlenie lokalne a. Czym różni się sposób liczenia odbicia zwierciadlanego zaproponowany przez Phonga od zaproponowanego przez Blinna? b. Co reprezentują argumenty i wartość funkcji BRDF? Na czym

Bardziej szczegółowo

Karta graficzna karta rozszerzeo odpowiedzialna generowanie sygnału graficznego dla ekranu monitora. Podstawowym zadaniem karty graficznej jest

Karta graficzna karta rozszerzeo odpowiedzialna generowanie sygnału graficznego dla ekranu monitora. Podstawowym zadaniem karty graficznej jest KARTA GRAFICZNA Karta graficzna karta rozszerzeo odpowiedzialna generowanie sygnału graficznego dla ekranu monitora. Podstawowym zadaniem karty graficznej jest odbiór i przetwarzanie otrzymywanych od komputera

Bardziej szczegółowo

Podstawy MATLABA, cd.

Podstawy MATLABA, cd. Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Przetwarzanie Sygnałów Studia Podyplomowe, Automatyka i Robotyka Podstawy MATLABA, cd. 1. Wielomiany 1.1. Definiowanie

Bardziej szczegółowo

Analiza moż liwości i porównanie nowych ję zyków do programowania grafiki

Analiza moż liwości i porównanie nowych ję zyków do programowania grafiki Analiza moż liwości i porównanie nowych ję zyków do programowania grafiki Na przykładzie C for Graphics i OpenGL 2.0 Shading Language autor: Marcin Rociek promotor: dr inż. Witold Alda 1 Wprowadzenie 2

Bardziej szczegółowo

Spis treści 1. Wstęp 2. Ćwiczenia laboratoryjne LPM

Spis treści 1. Wstęp 2. Ćwiczenia laboratoryjne LPM Spis treści 1. Wstęp... 9 2. Ćwiczenia laboratoryjne... 12 2.1. Środowisko projektowania Quartus II dla układów FPGA Altera... 12 2.1.1. Cel ćwiczenia... 12 2.1.2. Wprowadzenie... 12 2.1.3. Przebieg ćwiczenia...

Bardziej szczegółowo

Załącznik KARTA PRZEDMIOTU. KARTA PRZEDMIOTU Wydział Automatyki, Elektroniki i Informatyki, Rok akademicki: 2009/2010 KOMPUTEROWA

Załącznik KARTA PRZEDMIOTU. KARTA PRZEDMIOTU Wydział Automatyki, Elektroniki i Informatyki, Rok akademicki: 2009/2010 KOMPUTEROWA 1/1 Wydział Automatyki, Elektroniki i Informatyki, Rok akademicki: 2009/2010 Nazwa przedmiotu: Kierunek: Specjalność: Tryb studiów: GRAFIKA KOMPUTEROWA INFORMATYKA Kod/nr GK PRZEDMIOT OBOWIĄZKOWY DLA WSZYSTKICH

Bardziej szczegółowo

Ćwiczenie 4 - Podstawy materiałów i tekstur. Renderowanie obrazu i animacji

Ćwiczenie 4 - Podstawy materiałów i tekstur. Renderowanie obrazu i animacji Ćwiczenie 4 - Podstawy materiałów i tekstur. Renderowanie obrazu i animacji Materiał jest zbiorem informacji o właściwościach powierzchni. Składa się na niego kolor, sposób odbijania światła i sposób nakładania

Bardziej szczegółowo

Architektura systemów komputerowych Ćwiczenie 3

Architektura systemów komputerowych Ćwiczenie 3 Architektura systemów komputerowych Ćwiczenie 3 Komputer widziany oczami użytkownika Karta graficzna DirectX technologie łączenia kart 1 dr Artur Bartoszewski - Architektura systemów komputerowych - ćwiczenia

Bardziej szczegółowo

Kompresja sekwencji obrazów

Kompresja sekwencji obrazów Kompresja sekwencji obrazów - algorytm MPEG-2 Moving Pictures Experts Group (MPEG) - 1988 ISO - International Standard Organisation CCITT - Comité Consultatif International de Téléphonie T et TélégraphieT

Bardziej szczegółowo

Spis treści. Wstęp... 11

Spis treści. Wstęp... 11 Księgarnia PWN: Jacek Matulewski, Tomasz Dziubak, Marcin Sylwestrzak, Radosław Płoszajczak - Grafika. Fizyka. Metody numeryczne Wstęp... 11 Część I. Grafika trójwymiarowa w OpenGL... 13 Rozdział 1. Inicjacja

Bardziej szczegółowo

Schematy blokowe I. 1. Dostępne bloki: 2. Prosty program drukujący tekst.

Schematy blokowe I. 1. Dostępne bloki: 2. Prosty program drukujący tekst. Schematy blokowe I Jeżeli po schematach blokowych będzie używany język C, to należy używać operatorów: '&&', ' ', '!=', '%' natomiast jeśli Ruby to 'and', 'or', '%', '!='. 1. Dostępne bloki: a) początek:

Bardziej szczegółowo

Proste metody przetwarzania obrazu

Proste metody przetwarzania obrazu Operacje na pikselach obrazu (operacje punktowe, bezkontekstowe) Operacje arytmetyczne Dodanie (odjęcie) do obrazu stałej 1 Mnożenie (dzielenie) obrazu przez stałą Operacje dodawania i mnożenia są operacjami

Bardziej szczegółowo