LXV Olimpiada Matematyczna
|
|
- Ludwik Mróz
- 7 lat temu
- Przeglądów:
Transkrypt
1 Zadanie 1. LXV Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia pierwszego I i II seria (1 września 2013 r. 4 listopada 2013 r.) Wykazać, że jeśli liczby całkowite a, b, c spełniają równanie (a+3) 2 +(b+4) 2 (c+5) 2 = a 2 +b 2 c 2, to wspólna wartość obu stron jest kwadratem liczby całkowitej. Rozwińmy kwadraty stojące po lewej stronie danego równania, uzyskując a 2 +6a+9+b 2 +8b+16 c 2 10c 25 = a 2 +b 2 c 2. Po redukcji wyrazów podobnych dostajemy 6a+8b 10c=0, skąd c= 3 5 a+ 4 5 b. Prawą stronę rozważanego równania przekształcamy teraz następująco: a 2 +b 2 c 2 = a 2 +b 2 ( 3 5 a+ 4 5 b)2 = a 2 +b a ab 25 b2 = = a ab b2 = ( 4 5 a 3 5 b)2. Do zakończenia rozwiązania pozostaje jeszcze uzasadnić, że liczba 4 5 a 3 5 b jest całkowita. W tym celu korzystamy znów ze związku c = 3 5 a+ 4 5b, otrzymując 4 5 a 3 5 b = a+ 5 b a 3b = 3( 3 5 a+ 4 5b) a 3b = 3c a 3b. Zatem liczba a 2 +b 2 c 2 jest kwadratem liczby całkowitej 3c a 3b. Zadanie 2. Dane są trzy różne liczby całkowite a,b,c > 1 spełniające warunek NWD(a, b, c) = 1. Znaleźć wszystkie możliwe wartości liczby NWD(a 2 b+b 2 c+c 2 a, ab 2 +bc 2 +ca 2, a+b+c). Niech d oznacza największy wspólny dzielnik liczb K = a 2 b+b 2 c+c 2 a, L = ab 2 +bc 2 +ca 2 oraz M = a+b+c. Wykażemy najpierw, że liczby a, b, c są względnie pierwsze z liczbą d. Przypuśćmy bowiem, że liczby a i d mają wspólny dzielnik pierwszy p; jest on wtedy także dzielnikiem liczb K i M. Różnica K a(ab + c 2 ) = b 2 c jest zatem podzielna przez p, czyli jedna z liczb b, c jest podzielna przez liczbę pierwszą p. Wobec tego suma M = a+b+c oraz jej dwa składniki są podzielne przez p. Stąd wniosek, że każda z liczb a, b, c jest podzielna przez p, wbrew założeniu NWD(a,b,c) = 1. To dowodzi, że NWD(a,d) = 1 i podobnie uzasadniamy zależności NWD(b, d) = NWD(c, d) = 1. Z drugiej strony, liczba (ab + bc + ca)m K L = 3abc jest podzielna przez d. ponieważ liczby a, b, c są względnie pierwsze z liczbą d, więc podzielność liczby 3abc przez d pociąga za sobą podzielność liczby 3 przez d, skąd d = 1 lub d = 3. Obie te wartości są możliwe do uzyskania: 1
2 dla (a,b,c) = (2,3,4) otrzymujemy NWD(K,L,M) = NWD(80,82,9) = 1; dla (a,b,c)=(2,5,8) dostajemy NWD(K,L,M)=NWD(348,402,15)=3. Odpowiedź: Szukanymi możliwymi wartościami są 1 i 3. Zadanie 3. Na tablicy napisano słowo abdc. W jednym ruchu możemy dopisać lub usunąć (na początku, w środku lub na końcu) palindrom parzystej długości utworzony z liter a, b, c, d. Rozstrzygnąć, czy po skończonej liczbie ruchów możemy uzyskać słowo bacd. (Uwaga: Palindromem nazywamy słowo, które czytane od lewej do prawej jest takie samo jak czytane od prawej do lewej, np. abba, cc, daaaad.) Dla dowolnego słowa w utworzonego z liter a, b, c, d niech N(w) oznacza liczbę pozycji nieparzystych, a P (w) liczbę pozycji parzystych, na których w słowie w występuje litera a. (Pozycje w słowie numerujemy od lewej strony kolejno liczbami 1, 2, 3,..., a więc np. N(abaacd) = 2 i P (abaacd) = 1.) Oznaczmy wreszcie R(w) = N(w) P (w). Wykażemy, że jeżeli w wyniku wykonania ruchu ze słowa w powstaje słowo v, to prawdziwy jest związek R(v) = R(w). Istotnie, dłuższe ze słów w, v otrzymujemy z krótszego poprzez dopisanie palindromu o parzystej długości. Dla ustalenia uwagi przyjmijmy, że słowo v uzyskujemy ze słowa w wstawiając w pewnym jego miejscu (na początku, w środku lub na końcu) palindrom postaci p 1 p 2...p k 1 p k p k p k 1...p 2 p 1, gdzie każdy z symboli p 1, p 2,..., p k jest jedną z liter a, b, c, d. W wyniku tego wstawienia dotychczasowe litery słowa w albo pozostają w słowie v na tej samej pozycji, albo też przesuwają się o 2k pozycji w prawo. Stąd wniosek, że słowo w zawiera tyle samo liter a na pozycjach nieparzystych, co słowo v poza dopisanym palindromem; podobnie dla pozycji parzystych. Niech z kolei m oznacza liczbę wystąpień litery a w ciągu p 1, p 2,..., p k. Dla i = 1,2,...,k symbol p i występuje w dopisanym palindromie dwukrotnie raz na pozycji nieparzystej, a raz na parzystej. W konsekwencji dokładnie połowa spośród 2m liter a występujących w rozważanym palindromie stoi na pozycjach nieparzystych, a druga połowa na pozycjach parzystych. Wobec tego N(v) = N(w) + m i P (v) = P (w) + m, co pociąga za sobą postulowany związek R(v) = R(w). Zatem dowolne słowo w, które można otrzymać na tablicy po skończonej liczbie ruchów, spełnia zależność R(w)=R(abdc)=1 0=1. Stąd i z równości R(bacd) = 0 1 = 1 wynika przecząca odpowiedź na postawione pytanie. Odpowiedź: Uzyskanie słowa bacd nie jest możliwe. Zadanie 4. Na bokach,, trójkąta ostrokątnego leżą odpowiednio punkty D, E, F, przy czym F =F E oraz F =F D. Udowodnić, że punkt przecięcia wysokości trójkąta leży na okręgu przechodzącym przez punkty, D, E. 2
3 Niech K i L będą spodkami wysokości trójkąta opuszczonych odpowiednio z wierzchołków i oraz niech H będzie punktem przecięcia tych wysokości. Odbijmy symetrycznie punkt względem punktu L oraz punkt względem punktu K, otrzymując odpowiednio punkty M oraz N (rys. 1). Wówczas proste K i L są symetralnymi odpowiednio odcinków N i M. M L N E H D K F rys. 1 Punkt leży na symetralnej odcinka M, więc trójkąt M jest równoramienny. Ponadto trójkąty równoramienne F E i M mają wspólny kąt między ramieniem a podstawą przy wierzchołku. W rezultacie są one jednokładne względem tego wierzchołka. nalogicznie trójkąty F D i N są jednokładne względem punktu. Stąd uzyskujemy równości stosunków E (1) EM = F F = ND D. Z drugiej strony, punkt H leży na symetralnych odcinków M i N. Zatem trójkąty HM i NH są równoramienne. o więcej, miary ich kątów między ramieniem a podstawą są równe, gdyż <)HM = <)K = 90 <) = <)L = <)HN. W efekcie trójkąty te są podobne. Na mocy zależności (1) podobieństwo, które przeprowadza wierzchołki, H, M odpowiednio na wierzchołki N, H,, przekształca punkt E na punkt D. Wobec tego <)HEM = <)HD, czyli <)HE = 180 <)HD. Na czworokącie HDE można więc opisać okrąg, co kończy rozwiązanie. Zadanie 5. Wyznaczyć wszystkie funkcje f określone na zbiorze liczb całkowitych i przyjmujące wartości całkowite, spełniające warunek (1) f(a+b) 3 f(a) 3 f(b) 3 = 3f(a)f(b)f(a+b) dla każdej pary liczb całkowitych a, b. 3
4 Przyjmując a = b = 0 w zależności (1) uzyskujemy f(0) 3 = 3f(0) 3, skąd (2) f(0) = 0. Niech n będzie dowolną liczbą całkowitą. W myśl równości (2) związek (1) dla wartości a = n i b = n przybiera postać f(n) 3 f( n) 3 = 0. Zatem (3) f( n) = f(n) dla każdego n. Przypuśćmy wreszcie, że istnieje liczba całkowita d 0, dla której f(d) = 0. Wtedy dla dowolnej liczby całkowitej n z zależności (1) dla a = n oraz b = d dostajemy f(n+d) 3 f(n) 3 = 0, czyli f(n+d) = f(n). W rezultacie (4) jeśli f(d) = 0, to f(n+d) = f(n) dla każdego n. Jeżeli f(1) = 0, to związek (4) dowodzi, że f(n+1) = f(n) dla każdego n. Stąd funkcja f jest stała, a wobec równości (2) zerowa. W dalszej części zakładamy, że k=f(1) 0. Podstawiając a=b=1 w warunku (1) stwierdzamy, że liczba x = f(2) jest pierwiastkiem równania x 3 2k 3 = 3k 2 x. Z rozkładu x 3 3k 2 x 2k 3 = (x 2k)(x 2 +2kx+k 2 ) = (x 2k)(x+k) 2 wynika więc, że f(2)=2k albo f(2)= k. Zbadamy oddzielnie oba przypadki. Przypadek 1. f(2) = 2k. Wówczas równość (5) f(n) = kn jest spełniona dla n = 0, n = 1 oraz n = 2. Wykażemy indukcyjnie, że jest ona prawdziwa dla dowolnej nieujemnej liczby całkowitej n i w konsekwencji, na podstawie związku (3), dla dowolnej liczby całkowitej n. Przypuśćmy w tym celu, że f(m) = km dla pewnej liczby całkowitej m 2. Korzystając z zależności (1) dla a = m i b = 1 wnioskujemy, że liczba y=f(m+1) jest pierwiastkiem równania y 3 m 3 k 3 k 3 =3mk 2 y. W rozkładzie y 3 3mk 2 y k 3 (m 3 +1) = [y k(m+1)][y 2 +k(m+1)y +k 2 (m 2 m+1)] drugi czynnik jako trójmian kwadratowy zmiennej y ma wyróżnik równy = k 2 (m+1) 2 4k 2 (m 2 m+1) = k 2 ( 3m 2 +6m 3) = 3k 2 (m 1) 2 < 0, czyli czynnik ten jest stale dodatni. Zatem y=k(m+1), co dowodzi słuszności związku (5) dla n = m+1 i kończy rozumowanie indukcyjne. Przypadek 2. f(2) = k. Wtedy warunek (1) dla wartości a = 2 oraz b = 1 prowadzi do równości f(3) 3 = 3k 2 f(3). Jej strony miałyby przeciwne znaki, gdyby f(3) 0, a więc f(3)=0. W oparciu o zależność (4) otrzymujemy teraz związek f(n+3)=f(n) dla każdego n, który pociąga za sobą wzór 0, gdy liczba n jest podzielna przez 3, (6) f(n) = k, gdy liczba n daje resztę 1 z dzielenia przez 3, k, gdy liczba n daje resztę 2 z dzielenia przez 3. 4
5 Pozostaje sprawdzić, że dla każdej liczby całkowitej k funkcja f określona jednym ze wzorów (5), (6) spełnia tożsamość (1). 1. Dla funkcji f(n)=kn obie strony warunku (1) wynoszą k 3 (3a 2 b+3ab 2 ). 2. Funkcja f zadana wzorem (6) ma własność (3). Zatem wprowadzając oznaczenie c = (a+b) możemy przepisać dowodzoną zależność (1) w postaci (7) f(a) 3 +f(b) 3 +f(c) 3 = 3f(a)f(b)f(c). Jeżeli co najmniej jedna z liczb a, b, c jest podzielna przez 3, to prawa strona oraz pewien składnik lewej strony warunku (7) są równe zeru, a pozostałe dwa składniki znoszą się wzajemnie. W przeciwnym razie związek a+b+c = 0 oznacza, że liczby a, b, c dają tę samą resztę (1 lub 2) z dzielenia przez 3, skąd f(a) = f(b) = f(c). W obu przypadkach równość (7) jest prawdziwa. Odpowiedź: Wszystkie funkcje f o żądanej własności są opisane wzorami (5) i (6), w których parametr k może być dowolną liczbą całkowitą. Zadanie 6. Dowieść, że nie istnieją dodatnie liczby całkowite x, y, z, dla których (3x+4y)(4x+5y) = 7 z. Przypuśćmy, że dodatnie liczby całkowite x, y, z spełniają daną równość. Ponieważ liczba 7 jest jedynym dzielnikiem pierwszym prawej strony, więc 3x+4y = 7 a oraz 4x+5y = 7 b dla pewnych nieujemnych liczb całkowitych a i b o sumie równej z. Nierówność 3x+4y < 4x+5y pociąga za sobą związek a < b. Wobec tego b a+1, skąd 4x+5y = 7 b 7 7 a = 7(3x+4y) = 21x+28y > 4x+5y. Uzyskaliśmy sprzeczność, która dowodzi tezy zadania. Zadanie 7. Dany jest okrąg o i jego cięciwa niebędąca średnicą. Na okręgu o wybieramy punkt P, różny od punktów i. Punkty Q i R leżą odpowiednio na prostych P i P, przy czym QP =Q oraz RP =R. Punkt M jest środkiem odcinka QR. Wykazać, że wszystkie uzyskane w ten sposób proste P M (odpowiadające różnym położeniom punktu P na okręgu o) mają punkt wspólny. Udowodnimy, że szukanym punktem wspólnym jest punkt, w którym przecinają się styczne do okręgu o w punktach i (rys. 2 i 3). Trójkąty, RP i QP są równoramienne. Wykażemy, że mają one jednakowe miary kątów między ramieniem a podstawą. Istotnie, przyjmijmy oznaczenie α=<) =<). Na mocy twierdzenia o kącie między styczną a cięciwą kąt wpisany oparty na krótszym łuku okręgu o ma miarę α. Jeżeli więc punkt P leży na owym krótszym łuku (rys. 2), to <)P R = <)P Q = 180 <)P = α, 5
6 jeżeli zaś punkt P leży na dłuższym łuku okręgu o (rys. 3), to <)P R = <)P Q = <)P = α. Wobec tego rozważane trzy trójkąty równoramienne są podobne. Q R M R P Q M o rys. 2 o P rys. 3 Trójkąty równoramienne RP i są zbudowane na dwóch bokach trójkąta P jako na podstawach, przy czym jeden do wewnątrz, a drugi na zewnątrz trójkąta P. W obu przypadkach z podobieństwa tych trójkątów równoramiennych i równości <) RP = <) wynikają zależności R = P oraz <)R = <)P. Zatem trójkąty R i P są podobne (cecha bok-kąt-bok). nalogicznie trójkąty Q i P są podobne. Stąd trójkąty R i Q są podobne, a więc przystające, gdyż ich odpowiadające boki i mają równe długości. W efekcie Q = R = RP i analogicznie dowodzimy, że R = P Q. Półproste P Q i P R albo przecinają odpowiednio odcinki i (rys. 2), albo też przechodzą odpowiednio przez punkty i (rys. 3). W obu sytuacjach punkty Q i R leżą po przeciwnych stronach prostej P, a równości Q = RP i R = P Q oznaczają, że punkty P, Q,, R są kolejnymi wierzchołkami równoległoboku. Punkt M jest zaś środkiem jego przekątnej QR, czyli prosta P M przechodzi przez wierzchołek, tak jak twierdziliśmy. Zadanie 8. W czworościanie D płaszczyzna dwusieczna kąta dwuściennego o krawędzi przecina krawędź D w punkcie P, zaś punkt Q jest rzutem prostokątnym punktu P na prostą. Udowodnić, że <)QP = <)P QD. Oznaczmy symbolem ϕ symetrię względem prostej P Q, czyli obrót wokół tej prostej o kąt 180 (rys. 4). 6
7 D P Q rys. 4 Prosta przecina prostą P Q pod kątem prostym, a więc przechodzi przy symetrii ϕ na siebie. Wobec tego ϕ przeprowadza dowolną płaszczyznę π zawierającą prostą na pewną płaszczyznę zawierającą prostą, a ściślej na płaszczyznę symetryczną do π względem płaszczyzny P. Na mocy warunków zadania płaszczyzny i D są symetryczne względem płaszczyzny P. Zatem ϕ przekształca płaszczyznę na D. Z kolei płaszczyzna QD przechodzi przy symetrii ϕ na siebie, gdyż zawiera oś tej symetrii. Stąd ϕ odwzorowuje przekrój płaszczyzn i QD (prostą Q) na przekrój płaszczyzn D i QD (prostą DQ). W rezultacie proste Q i DQ są symetryczne względem prostej P Q, skąd wynika teza. Zadania z poprzednich Olimpiad Matematycznych oraz bieżące informacje można znaleźć w Internecie pod adresem: 7
LXV Olimpiada Matematyczna
Zadanie 1. LXV Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia pierwszego (1 września 2013 r. 4 grudnia 2013 r.) Wykazać, że jeśli liczby całkowite a, b, c spełniają równanie (a+3)
LXV Olimpiada Matematyczna
LXV Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 8 kwietnia 2014 r. (pierwszy dzień zawodów) Zadanie 1. Dane są względnie pierwsze liczby całkowite k,n 1. Na tablicy
LX Olimpiada Matematyczna
LX Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia drugiego 13 lutego 2009 r. (pierwszy dzień zawodów) Zadanie 1. Liczby rzeczywiste a 1, a 2,..., a n (n 2) spełniają warunek a 1
XII Olimpiada Matematyczna Juniorów Zawody stopnia pierwszego część korespondencyjna (1 września 2016 r. 17 października 2016 r.)
XII Olimpiada Matematyczna Juniorów Zawody stopnia pierwszego część korespondencyjna ( września 06 r. 7 października 06 r.) Szkice rozwiązań zadań konkursowych. Liczby wymierne a, b, c spełniają równanie
LVIII Olimpiada Matematyczna
LVIII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 18 kwietnia 2007 r. (pierwszy dzień zawodów) Zadanie 1. W trójkącie ostrokątnym A punkt O jest środkiem okręgu opisanego,
LXIII Olimpiada Matematyczna
1 Zadanie 1. LXIII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia drugiego 17 lutego 2012 r. (pierwszy dzień zawodów) Rozwiązać w liczbach rzeczywistych a, b, c, d układ równań a
LXI Olimpiada Matematyczna
1 Zadanie 1. LXI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 21 kwietnia 2010 r. (pierwszy dzień zawodów) Dana jest liczba całkowita n > 1 i zbiór S {0,1,2,...,n 1}
XI Olimpiada Matematyczna Gimnazjalistów
www.omg.edu.pl I Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część korespondencyjna (1 września 2015 r. 12 października 2015 r.) Szkice rozwiązań zadań konkursowych 1. Wykaż, że istnieje
LXIX Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 18 kwietnia 2018 r. (pierwszy dzień zawodów)
LXIX Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 18 kwietnia 2018 r. (pierwszy dzień zawodów) 1. Dany jest trójkąt ostrokątny ABC, w którym AB < AC. Dwusieczna kąta
XIV Olimpiada Matematyczna Juniorów Zawody stopnia pierwszego część korespondencyjna (1 września 2018 r. 15 października 2018 r.)
XIV Olimpiada Matematyczna Juniorów Zawody stopnia pierwszego część korespondencyjna ( września 0 r. października 0 r.) Szkice rozwiązań zadań konkursowych. Liczbę naturalną n pomnożono przez, otrzymując
VII Olimpiada Matematyczna Gimnazjalistów
VII Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa, test próbny www.omg.edu.pl (wrzesień 2011 r.) Rozwiązania zadań testowych 1. Liczba krawędzi pewnego ostrosłupa jest o
VII Olimpiada Matematyczna Gimnazjalistów
VII Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa www.omg.edu.pl (29 września 2011 r.) Rozwiązania zadań testowych 1. Istnieje taki graniastosłup, którego liczba krawędzi
LVIII Olimpiada Matematyczna
LVIII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia drugiego 23 lutego 2007 r. (pierwszy dzień zawodów) Zadanie. Wielomian P (x) ma współczynniki całkowite. Udowodnić, że jeżeli
XIII Olimpiada Matematyczna Juniorów
XIII Olimpiada atematyczna Juniorów Zawody stopnia pierwszego część korespondencyjna (1 września 2017 r. 16 października 2017 r.) 1. iczby a, b, c spełniają zależności Wykaż, że a 2 +b 2 = c 2. Szkice
LI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 3 kwietnia 2000 r. (pierwszy dzień zawodów)
LI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 3 kwietnia 2000 r. (pierwszy dzień zawodów) Zadanie 1. Dana jest liczba całkowita n 2. Wyznaczyć liczbę rozwiązań (x 1,x
X Olimpiada Matematyczna Gimnazjalistów
X Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa www.omg.edu.pl (27 listopada 2014 r.) Rozwiązania zadań testowych 1. Istnieje ostrosłup, który ma dokładnie 15 14 a) wierzchołków;
LVII Olimpiada Matematyczna
Zadanie 1. LVII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 5 kwietnia 2006 r. (pierwszy dzień zawodów) Rozwiązać w liczbach rzeczywistych a, b, c, d, e układ równań
Internetowe Ko³o M a t e m a t yc z n e
Internetowe Ko³o M a t e m a t yc z n e Stowarzyszenie na rzecz Edukacji Matematycznej Zestaw 2 szkice rozwiązań zadań 1. Dana jest taka liczba rzeczywista, której rozwinięcie dziesiętne jest nieskończone
Bukiety matematyczne dla gimnazjum
Bukiety matematyczne dla gimnazjum http://www.mat.uni.torun.pl/~kolka/ 5 IX rok 2003/2004 Bukiet 1 1. W trójkącie ABC prosta równoległa do boku AB przecina boki AC i BC odpowiednio w punktach D i E. Zauważ,
VIII Olimpiada Matematyczna Gimnazjalistów
VIII Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa www.omg.edu.pl (18 października 01 r.) Rozwiązania zadań testowych 1. Miary α, β, γ kątów pewnego trójkąta spełniają warunek
LXII Olimpiada Matematyczna
1 Zadanie 1. LXII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia drugiego 18 lutego 2011 r. (pierwszy dzień zawodów) Rozwiązać w liczbach rzeczywistych układ równań { (x y)(x 3 +y
LV Olimpiada Matematyczna
LV Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 15 kwietnia 004 r. (pierwszy dzień zawodów) Zadanie 1. Punkt D leży na boku AB trójkąta ABC. Okręgi styczne do prostych
Obóz Naukowy Olimpiady Matematycznej Gimnazjalistów
Obóz Naukowy Olimpiady Matematycznej Gimnazjalistów Liga zadaniowa 202/203 Seria VI (grudzień 202) rozwiązania zadań 26. Udowodnij, że istnieje 0 00 kolejnych liczb całkowitych dodatnich nie większych
IX Olimpiada Matematyczna Gimnazjalistów
IX Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa www.omg.edu.pl (3 października 2013 r.) Rozwiązania zadań testowych 1. Liczba 3 9 3 27 jest a) niewymierna; b) równa 3 27;
GEOMETRIA ELEMENTARNA
Bardo, 7 11 XII A. D. 2016 I Uniwersytecki Obóz Olimpiady Matematycznej GEOMETRIA ELEMENTARNA materiały przygotował Antoni Kamiński na podstawie zbiorów zadań: Przygotowanie do olimpiad matematycznych
Ćwiczenia z Geometrii I, czerwiec 2006 r.
Waldemar ompe echy przystawania trójkątów 1. unkt leży na przekątnej kwadratu (rys. 1). unkty i R są rzutami prostokątnymi punktu odpowiednio na proste i. Wykazać, że = R. R 2. any jest trójkąt ostrokątny,
XI Olimpiada Matematyczna Gimnazjalistów
XI Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa www.omg.edu.pl (24 września 2015 r.) Rozwiązania zadań testowych 1. Dane są takie dodatnie liczby a i b, że 30% liczby a
Treści zadań Obozu Naukowego OMJ
STOWARZYSZENIE NA RZECZ EDUKACJI MATEMATYCZNEJ KOMITET GŁÓWNY OLIMPIADY MATEMATYCZNEJ JUNIORÓW Treści zadań Obozu Naukowego OMJ Poziom OM 2017 rok SZCZYRK 2017 Olimpiada Matematyczna Juniorów jest wspó³finansowana
LVIII Olimpiada Matematyczna
Zadanie 1. LVIII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia pierwszego (11 września 2006 r. 4 grudnia 2006 r.) Rozwiązać w liczbach rzeczywistych x, y, z układ równań x 2 +2yz
LXI Olimpiada Matematyczna
1 Zadanie 1. LXI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia drugiego 19 lutego 2010 r. (pierwszy dzień zawodów) Rozwiązać w liczbach rzeczywistych x, y, z układ równań x 2 (y
Zbiór zadań z geometrii przestrzennej. Michał Kieza
Zbiór zadań z geometrii przestrzennej Michał Kieza Zbiór zadań z geometrii przestrzennej Michał Kieza Wydawca: Netina Sp. z o.o. ISN 978-83-7521-522-9 c 2015, Wszelkie Prawa Zastrzeżone Zabrania się modyfikowania
LXIII Olimpiada Matematyczna
1 LXIII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 18 kwietnia 2012 r. (pierwszy dzień zawodów) Zadanie 1. Rozstrzygnąć, czy istnieje taka dodatnia liczba wymierna
Zadania, które zaproponowałem na różne konkursy Olimpiada Matematyczna. bc(b 3 + c 3 ) + c4 + a 4. ca(c 3 + a 3 ) 1. c + ca + cab 1 ( 1
Zadania, które zaproponowałem na różne konkursy Olimpiada Matematyczna. (57-II-3) Liczby dodatnie a, b, c spełniają warunek ab + bc + ca = abc. Dowieść, że a 4 + b 4 ab(a 3 + b 3 ) + b4 + c 4 bc(b 3 +
XII Olimpiada Matematyczna Juniorów
XII Olimpiada Matematyczna Juniorów Zawody stopnia pierwszego część testowa (29 września 2016 r.) Rozwiązania zadań testowych 1. odatnia liczba a powiększona o 50% jest równa dodatniej liczbie b pomniejszonej
Cztery punkty na okręgu
Tomasz Szymczyk V LO w ielsku-iałej ztery punkty na okręgu Przydatne fakty: (1) kąty wpisane w okrąg oparte na łukach przystających są równe, (2) czworokąt jest wpisany w okrąg wtedy i tylko wtedy, gdy
W. Guzicki Próbna matura, grudzień 2014 r. poziom rozszerzony 1
W. Guzicki Próbna matura, grudzień 01 r. poziom rozszerzony 1 Próbna matura rozszerzona (jesień 01 r.) Zadanie 18 kilka innych rozwiązań Wojciech Guzicki Zadanie 18. Okno na poddaszu ma mieć kształt trapezu
X Olimpiada Matematyczna Gimnazjalistów
www.omg.edu.pl X Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część korespondencyjna (10 listopada 01 r. 15 grudnia 01 r.) Szkice rozwiązań zadań konkursowych 1. nia rozmieniła banknot
Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria
Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć
XIII Olimpiada Matematyczna Juniorów
XIII Olimpiada Matematyczna Juniorów Zawody stopnia pierwszego część testowa (8 września 017 r.) Rozwiązania zadań testowych 1. W każdym z trzech lat 018, 019 i 00 pensja pana Antoniego będzie o 5% większa
Matematyka rozszerzona matura 2017
Matematyka rozszerzona matura 017 Zadanie 1 Liczba ( 3 + 3) jest równa A. B. 4 C. 3 D. 3 ( 3 + 3) = 3 ( 3)( + 3) + + 3 = A. 3 4 3 + + 3 = 4 1 = 4 = Zadanie. Nieskończony ciąg liczbowy jest określony wzorem
Jarosław Wróblewski Matematyka Elementarna, zima 2011/12
168. Uporządkować podane liczby w kolejności niemalejącej. sin50, cos80, sin170, cos200, sin250, cos280. 169. Naszkicować wykres funkcji f zdefiniowanej wzorem a) f(x) = sin2x b) f(x) = cos3x c) f(x) =
G i m n a z j a l i s t ó w
Ko³o Matematyczne G i m n a z j a l i s t ó w Stowarzyszenie na rzecz Edukacji Matematycznej Zestaw 10 szkice rozwiazań zadań 1. Rozwiąż układ równań: (x+y)(x+y +z) = 72 (y +z)(x+y +z) = 120 (z +x)(x+y
XV Olimpiada Matematyczna Juniorów
XV Olimpiada Matematyczna Juniorów Zawody stopnia pierwszego część testowa (26 września 209 r.) Rozwiązania zadań testowych. odatnia liczba a jest mniejsza od. Wynika z tego, że a) a 2 > a; b) a > a; c)
LXVIII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia drugiego 24 lutego 2017 r. (pierwszy dzień zawodów)
LXVIII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia drugiego 4 lutego 017 r. (pierwszy dzień zawodów) 1. Wykazać, że dla każdej liczby pierwszej p > istnieje dokładnie jedna taka
Regionalne Koło Matematyczne
Regionalne Koło Matematyczne Uniwersytet Mikołaja Kopernika w Toruniu Wydział Matematyki i Informatyki http://www.mat.umk.pl/rkm/ Lista rozwiązań zadań nr 16 (27.02.2010) Twierdzenia evy i Menelaosa 1.
Indukcja matematyczna
Indukcja matematyczna Zadanie. Zapisać, używając symboli i, następujące wyrażenia (a) n!; (b) sin() + sin() sin() +... + sin() sin()... sin(n); (c) ( + )( + /)( + / + /)... ( + / + / +... + /R). Zadanie.
Tematy: zadania tematyczne
Tematy: zadania tematyczne 1. Ciągi liczbowe zadania typu udowodnij 1) Udowodnij, Ŝe jeŝeli liczby,, tworzą ciąg arytmetyczny ), to liczby,, takŝe tworzą ciąg arytmetyczny. 2) Ciąg jest ciągiem geometrycznym.
Internetowe Ko³o M a t e m a t yc z n e
Internetowe Ko³o M a t e m a t yc z n e Stowarzyszenie na rzecz Edukacji Matematycznej Zestaw 1 szkice rozwiązań zadań 1 W wierszu zapisano kolejno 2010 liczb Pierwsza zapisana liczba jest równa 7 oraz
Obóz Naukowy Olimpiady Matematycznej Gimnazjalistów
Obóz Naukowy Olimpiady Matematycznej Gimnazjalistów Liga zadaniowa 2012/2013 Seria X (kwiecień 2013) rozwiązania zadań 46. Na szachownicy 75 75 umieszczono 120 kwadratów 3 3 tak, że każdy pokrywa 9 pól.
LXX Olimpiada Matematyczna
LXX Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 3 kwietnia 09 r. (pierwszy dzień zawodów). Punkty X i Y leżą odpowiednio wewnątrz boków i trójkąta ostrokątnego, przy
KONKURS ZOSTAŃ PITAGORASEM MUM. Podstawowe własności figur geometrycznych na płaszczyźnie
KONKURS ZOSTAŃ PITAGORASEM MUM ETAP I TEST II Podstawowe własności figur geometrycznych na płaszczyźnie 1. A. Stosunek pola koła wpisanego w kwadrat o boku długości 6 do pola koła opisanego na tym kwadracie
9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie
9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie Pitagorasa i twierdzenie cosinusów, twierdzenie o kącie wpisanym i środkowym, okrąg wpisany i opisany na wielokącie, wielokąty foremne (c.d).
Internetowe Kółko Matematyczne 2003/2004
Internetowe Kółko Matematyczne 003/004 http://www.mat.uni.torun.pl/~kolka/ Zadania dla szkoły średniej Zestaw I (5 IX) Zadanie 1. Które liczby całkowite można przedstawić w postaci różnicy kwadratów dwóch
XIV Olimpiada Matematyczna Juniorów
XIV Olimpiada Matematyczna Juniorów Zawody stopnia pierwszego część testowa (27 września 2018 r.) Rozwiązania zadań testowych 1. W sklepie U Bronka cena spodni była równa cenie sukienki. Cenę spodni najpierw
Klasa III technikum Egzamin poprawkowy z matematyki sierpień I. CIĄGI LICZBOWE 1. Pojęcie ciągu liczbowego. b) a n =
/9 Narysuj wykres ciągu (a n ) o wyrazie ogólnym: I. CIĄGI LICZBOWE. Pojęcie ciągu liczbowego. a) a n =5n dla n
Przykładowe zadania z teorii liczb
Przykładowe zadania z teorii liczb I. Podzielność liczb całkowitych. Liczba a = 346 przy dzieleniu przez pewną liczbę dodatnią całkowitą b daje iloraz k = 85 i resztę r. Znaleźć dzielnik b oraz resztę
Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym
Zadania rozwiązali: Przykładowe rozwiązania zadań Próbnej Matury 014 z matematyki na poziomie rozszerzonym Małgorzata Zygora-nauczyciel matematyki w II Liceum Ogólnokształcącym w Inowrocławiu Mariusz Walkowiak-nauczyciel
2. Liczby pierwsze i złożone, jednoznaczność rozkładu na czynniki pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność.
2. Liczby pierwsze i złożone, jednoznaczność rozkładu na czynniki pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. 11 października 2008 r. 19. Wskazać takie liczby naturalne m,
Treści zadań Obozu Naukowego OMG
STOWARZYSZENIE NA RZECZ EDUKACJI MATEMATYCZNEJ KOMITET GŁÓWNY OLIMPIADY MATEMATYCZNEJ GIMNAZJALISTÓW Treści zadań Obozu Naukowego OMG Poziom OM 2015 rok SZCZYRK 2015 Pierwsze zawody indywidualne Treści
( ) Arkusz I Zadanie 1. Wartość bezwzględna Rozwiąż równanie. Naszkicujmy wykresy funkcji f ( x) = x + 3 oraz g ( x) 2x
Arkusz I Zadanie. Wartość bezwzględna Rozwiąż równanie x + 3 x 4 x 7. Naszkicujmy wykresy funkcji f ( x) x + 3 oraz g ( x) x 4 uwzględniając tylko ich miejsca zerowe i monotoniczność w ten sposób znajdziemy
V Konkurs Matematyczny Politechniki Białostockiej
V Konkurs Matematyczny Politechniki Białostockiej Rozwiązania - klasy drugie 1. Znaleźć wszystkie pary liczb całkowitych (x, y) spełniające nierówności x + 1 + y 4 x + y 4 5 x 4 + y 1 > 4. Ważne jest zauważenie,
LVII Olimpiada Matematyczna
LVII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia pierwszego (12 września 2005 r 5 grudnia 2005 r) Zadanie 1 Wyznaczyć wszystkie nieujemne liczby całkowite n, dla których liczba
STOWARZYSZENIE NA RZECZ EDUKACJI MATEMATYCZNEJ KOMITET GŁÓWNY OLIMPIADY MATEMATYCZNEJ JUNIORÓW SZCZYRK 2017
STOWARZYSZENIE NA RZECZ EDUKACJI MATEMATYCZNEJ KOMITET GŁÓWNY OLIMPIADY MATEMATYCZNEJ JUNIORÓW Obóz Naukowy OMJ Poziom OMJ 207 rok SZCZYRK 207 Olimpiada Matematyczna Juniorów jest wspó³finansowana ze œrodków
Czworościany ortocentryczne zadania
Czworościany ortocentryczne zadania 1. Wykazać, że nastepujące warunki są równoważne: a) istnieje przecięcie wysokości czworościanu, b) przeciwległe krawędzie są prostopadłe, c) sumy kwadratów długości
Wersja testu A 25 września 2011
1. Czy istnieje liczba całkowita dodatnia o sumie cyfr równej 399, podzielna przez a) 3 ; b) 5 ; c) 6 ; d) 9? 2. Czy równość (a+b) 5 = a 3 +3a 2 b+3ab 2 +b 3 jest prawdziwa dla a) a = 8/7, b = 1/7 ; b)
Zadania otwarte krótkiej odpowiedzi na dowodzenie
Zadania otwarte krótkiej odpowiedzi na dowodzenie Zadanie 1. Na bokach trójkąta równobocznego ABC tak wybrano punkty E, F oraz D, że AE = BF = CD = 1 AB (rysunek obok). a) Udowodnij, że trójkąt EFD jest
A. fałszywa dla każdej liczby x.b. prawdziwa dla C. prawdziwa dla D. prawdziwa dla
Zadanie 1 Liczba jest równa A. B. C. 10 D. Odpowiedź B. Zadanie 2 Liczba jest równa A. 3 B. 2 C. D. Odpowiedź D. Zadanie 3. Liczba jest równa Odpowiedź D. Zadanie 4. Liczba osobników pewnego zagrożonego
XXXVIII Regionalny Konkurs Rozkosze łamania Głowy
XXXVIII Regionalny Konkurs Rozkosze łamania Głowy klasy I i II szkół ponadgimnazjalnych 1. Liczba 2015 2017 + 2 2015 2016 + 2015 2015 jest podzielna przez: A. 2017 B. 2016 C. 2015 2. Układ równań 8 >
EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015
EGZAMIN MATURALNY W ROKU SZKOLNYM 0/0 FORMUŁA OD 0 ( NOWA MATURA ) MATEMATYKA POZIOM PODSTAWOWY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MMA-P CZERWIEC 0 Egzamin maturalny z matematyki nowa formuła Klucz
Projekt Zobaczę-dotknę-wiem i umiem, dofinansowany przez Fundację mbanku w partnerstwie z Fundacją Dobra Sieć
Kartka papieru i własności trójkątów. Ćwiczenie 1 Uczniowie ustalają ile znają rodzajów trójkątów. Podział ze względu na miary kątów Podział ostrokątny prostokątny rozwartokątny ze względu na długości
PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1
PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1 Planimetria to dział geometrii, w którym przedmiotem badań są własności figur geometrycznych leżących na płaszczyźnie (patrz określenie płaszczyzny). Pojęcia
PYTANIA TEORETYCZNE Z MATEMATYKI
Zbiory liczbowe: 1. Wymień znane Ci zbiory liczbowe. 2. Co to są liczby rzeczywiste? 3. Co to są liczby naturalne? 4. Co to są liczby całkowite? 5. Co to są liczby wymierne? 6. Co to są liczby niewymierne?
Elżbieta Świda Elżbieta Kurczab Marcin Kurczab. Zadania otwarte krótkiej odpowiedzi na dowodzenie na obowiązkowej maturze z matematyki
Elżbieta Świda Elżbieta Kurczab Marcin Kurczab Zadania otwarte krótkiej odpowiedzi na dowodzenie na obowiązkowej maturze z matematyki Zadanie Trójkąt ABC jest trójkątem prostokątnym. Z punktu M, należącego
Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 2017/2018.
Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 017/018 19 grudnia 017 1 1 Klasy pierwsze - poziom podstawowy 1. Dane są zbiory
Mini tablice matematyczne. Figury geometryczne
Mini tablice matematyczne Figury geometryczne Spis treści Własności kwadratu Ciekawostka:Kwadrat magiczny Prostokąt Własności prostokąta Trapez Własności trapezu Równoległobok Własności równoległoboku
V Konkurs Matematyczny Politechniki Białostockiej
V Konkurs Matematyczny Politechniki iałostockiej Rozwiązania - klasy pierwsze 27 kwietnia 2013 r. 1. ane są cztery liczby dodatnie a b c d. Wykazać że przynajmniej jedna z liczb a + b + c d b + c + d a
Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 2015/16) Wykaz zakładanych osiągnięć ucznia klasy I liceum
Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 05/6) Wykaz zakładanych osiągnięć ucznia klasy I liceum (osiągnięcia ucznia w zakresie podstawowym) I. Liczby rzeczywiste. Język
6. Liczby wymierne i niewymierne. Niewymierność pierwiastków i logarytmów (c.d.).
6. Liczby wymierne i niewymierne. Niewymierność pierwiastków i logarytmów (c.d.). 0 grudnia 008 r. 88. Obliczyć podając wynik w postaci ułamka zwykłego a) 0,(4)+ 3 3,374(9) b) (0,(9)+1,(09)) 1,() c) (0,(037))
1. ODPOWIEDZI DO ZADAŃ TESTOWYCH
R O Z W I A Z A N I A 1. ODPOWIEDZI DO ZADAŃ TESTOWYCH 1. Dla dowolnych zbiorów A, B, C zachodzi równość (A B) (B C) (C A) = (A B C) (A B C), A (B C) = (A B) (A C), A (B C) = (A B) (A C). 2. Wyrażenie
LXIII Olimpiada Matematyczna
Zadanie 1. LXIII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia pierwszego (1 września 2011 r. 6 grudnia 2011 r.) Rozwiązać w liczbach rzeczywistych układ równań (x+y) 3 = 8z (y
LXII Olimpiada Matematyczna
LXII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia pierwszego (1 września 2010 r. 6 grudnia 2010 r.) Zadanie 1. Wyznaczyć wszystkie takie pary (a, b) liczb wymiernych dodatnich,
2. Wykaż, że dla dowolnej wartości zmiennej x wartość liczbowa wyrażenia (x 6)(x + 8) 2(x 25) jest dodatnia.
1. Wykaż, że liczba 2 2 jest odwrotnością liczby 1 2. 2. Wykaż, że dla dowolnej wartości zmiennej x wartość liczbowa wyrażenia (x 6)(x + 8) 2(x 25) jest dodatnia. 3. Wykaż, że dla każdej liczby całkowitej
Uniwersytet Mikołaja Kopernika w Toruniu. Egzamin wstępny z matematyki
Uniwersytet Mikołaja Kopernika w Toruniu Egzamin wstępny z matematyki lipca 2006 roku Zestaw I wariant A Czas trwania egzaminu: 240 minut 1. Dane są zbiory liczbowe A = {x; x R x < 2}, B = {x; x R x +
LIV Olimpiada Matematyczna
Zadanie LIV Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia pierwszego września 2002 r 0 grudnia 2002 r Znaleźć wszystkie pary liczb całkowitych dodatnich x, y spełniających równanie
XXV Rozkosze Łamania Głowy konkurs matematyczny dla klas I i III szkół ponadgimnazjalnych. zestaw A klasa I
XXV Rozkosze Łamania Głowy konkurs matematyczny dla klas I i III szkół ponadgimnazjalnych zestaw A klasa I 1. Zbiór wszystkich środków okręgów (leżących na jednej płaszczyźnie) przechodzących przez: a)
MATEMATYKA WYDZIAŁ MATEMATYKI - TEST 1
Wszelkie prawa zastrzeżone. Rozpowszechnianie, wypożyczanie i powielanie niniejszych testów w jakiejkolwiek formie surowo zabronione. W przypadku złamania zakazu mają zastosowanie przepisy dotyczące naruszenia
Wskazówki do zadań testowych. Matura 2016
Wskazówki do zadań testowych. Matura 2016 Zadanie 1 la każdej dodatniej liczby a iloraz jest równy.. C.. Korzystamy ze wzoru Zadanie 2 Liczba jest równa.. 2 C.. 3 Zadanie 3 Liczby a i c są dodatnie. Liczba
Kolorowanie płaszczyzny, prostych i okręgów
Kolorowanie płaszczyzny, prostych i okręgów Jadwiga Czyżewska Pisane pod kierunkiem W.Guzickiego W 2013 roku na II etapie VIII edycji Olimpiady Matematycznej Gimnazjalistów pojawiło się zadanie o następującej
Treści zadań Obozu Naukowego OMG
STOWARZYSZENIE NA RZECZ EDUKACJI MATEMATYCZNEJ KOMITET GŁÓWNY OLIMPIADY MATEMATYCZNEJ GIMNAZJALISTÓW Treści zadań Obozu Naukowego OMG Poziom OMG 2016 rok SZCZYRK 2016 Pierwsze zawody indywidualne Treści
Inwersja w przestrzeni i rzut stereograficzny zadania
Inwersja w przestrzeni i rzut stereograficzny zadania Rozważmy sferę S o środku O i promieniu R. Inwersją względem sfery S nazywamy przekształcenie, które przekształca punkt A na punkt A leżący na półprostej
Wielkopolskie Mecze Matematyczne
Wielkopolskie Mecze Matematyczne edycja druga 3 kwietnia 2015r. W okresie renesansu we Włoszech matematycy stworzyli ciekawą formę rywalizacji intelektualnej. Wymieniali się zadaniami, a po kilku tygodniach
11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2).
1. Narysuj poniższe figury: a), b), c) 2. Punkty A = (0;1) oraz B = (-1;0) należą do okręgu którego środek należy do prostej o równaniu x-2 = 0. Podaj równanie okręgu. 3. Znaleźć równanie okręgu przechodzącego
Zadania na dowodzenie Opracowała: Ewa Ślubowska
Egzamin Gimnazjalny Zadania na dowodzenie Opracowała: Ewa Ślubowska W nauczaniu matematyki ważne jest rozwijanie różnych aktywności umysłu. Ma temu służyć min. rozwiązywanie jednego zadania czy dowodzenie
LIX Olimpiada Matematyczna
LIX Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia pierwszego (10 września 2007 r. 10 grudnia 2007 r.) Zadanie 1. Rozwiązać w liczbach rzeczywistych x, y, z układ równań x 5 = 5y
Matura próbna 2014 z matematyki-poziom podstawowy
Matura próbna 2014 z matematyki-poziom podstawowy Klucz odpowiedzi do zadań zamkniętych zad 1 2 3 4 5 6 7 8 9 10 11 12 odp A C C C A A B B C B D A 13 14 15 16 17 18 19 20 21 22 23 24 25 C C A B A D C B
MATEMATYKA Przed próbną maturą. Sprawdzian 3. (poziom podstawowy) Rozwiązania zadań
MTMTYK Przed próbną maturą. Sprawdzian. (poziom podstawowy) Rozwiązania zadań Zadanie. ( pkt) P.. Uczeń używa wzorów skróconego mnożenia na (a ± b) oraz a b. Zapisujemy równość w postaci (a b) + (c d)
Podstawowe pojęcia geometryczne
PLANIMETRIA Podstawowe pojęcia geometryczne Geometria (słowo to pochodzi z języka greckiego i oznacza mierzenie ziemi) jest jednym z działów matematyki, którego przedmiotem jest badanie figur geometrycznych
Zadania do samodzielnego rozwiązania
Zadania do samodzielnego rozwiązania I. Podzielność liczb całkowitych 1. Pewna liczba sześciocyfrowa a kończy się cyfrą 5. Jeśli tę cyfrę przestawimy na miejsce pierwsze ze strony lewej, to otrzymamy nową
Regionalne Koło Matematyczne
Regionalne Koło Matematyczne Uniwersytet Mikołaja Kopernika w Toruniu Wydział Matematyki i Informatyki http://www.mat.umk.pl/rkm/ Lista rozwiązań zadań nr 3 (2-26.0.2009) Omówienie zadań I serii zawodów
LVI Olimpiada Matematyczna
Zadanie 1. LVI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia pierwszego (11 września 2004 r. 10 grudnia 2004 r.) Rozwiązać w liczbach rzeczywistych x, y, z układ równań x 2 = yz