Promieniowanie synchrotronowe i jego zastosowania

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Promieniowanie synchrotronowe i jego zastosowania"

Transkrypt

1 Universias Jagellonica Cracoviensis Promieniowanie synchroronowe i jego zasosowania Wykład II J.J. Kołodziej Pokój: G--11, IFUJ Łojasiewicza 11 Tel Wykłady na WFAiS, semesr leni 16/17

2

3 W laboraorium naukowym porzebne są wiazki o jak największej jasności (radiancji) ponieważ ylko akie dają się ławo formować lekromagneyczne promieniowanie synchroronowe jes emiowane w posaci słabo rozbieżnej wiązki (o bardzo dużej radiancji) o szerokim zakresie widmowym Promieniowanie synchroronowe o bardzo jasne wiązki promieniowania w zakresach UV, X, Ir, Thz Jeśli mamy synchroron i undulaor o (np. w mikroskopii) zbieramy dane 1 14 x szybciej To znaczy, 1 sekunda zamias 3 la!!!

4 Króka lisa urządzeń wywarzających wiązki promieniowania elekromagneycznego pierwonie skolimowane : 1. Lasery (w zakresach widzialnym, bliskie UV i IR). Synchrorony (w całym zakresie )

5 Lasery misja wymuszona: 1. Aom wzbudzony i foon. Wymuszona deekscyacja aomu 3. Aom w sanie podsawowym i idenyczne foony Musi być spełniony warunek: 1 h Tzw. akcja laserowa (w odpowiednio wzbudzonym ośrodku) prowadzi do powsania dużej liczby idenycznych foonów (równoległa wiązka promieniowania): Do laserów jeszcze wrócimy

6 Promieniowanie synchroronowe jak powsaje? Ulrarelaywisyczne elekrony Obserwaor widzi świało ylko gdy parzy sycznie do orbiy na nadbiegające elekrony Nadbiegający elekron wysyła skolimowane promieniowanie elekromagneyczne super!!! A zaem mamy elekron poruszający się po łuku w próżni jak u powsaje aka superwiązka promieniowania elekromagneycznego? Będziemy eraz po kolei omawiać? Opis ruchu elekronów na orbicie akceleraora Falę elekromagneyczną i jej właściwości Pole elekryczne ładunku Procesy emisji promieniowania elekromagneycznego niesacjonarnych ładunków Relaywisyczne ransformacje wiązki promieniowania z układu elekronu do układu laboraoryjnego

7 Dynamika relaywisyczna cząski z ładunkiem w polu elekromagneycznym: d d p q v B Gdzie p jes pędem relaywisycznym: mv mv p mv mv v 1 1 c W polu magneyczny nie mamy zmiany energii cząski. Zaem sprawa jes szczególnie prosa bo g (i masa) są eż niezmienne cząska relaywisyczna zachowuje się w polu magneycznym jak cząska klasyczna o powiększonej masie.

8 Jak skłonić elekron do ruchu po łuku ruch cykloronowy (elekron w sałym polu magneycznym) B e, m y v F F e( v B) Pole magneyczne nie zmienia prędkości elekronu bo siła zawsze prosopadła do prędkości R v x A zaem warość siły eż jes sała. => ruch po okręgu mv mv evb R R eb v eb c R m m m Orbia Larmora, promień Larmora, częsość Larmora

9 Będziemy ilusrować zjawiska i wielkości na przykładzie synchroronu SOLARIS Paramery SOLARIS nergia Prąd Obwód miancja horyzonalna (goła sieć) Rozmiar wiązki w cenrum sekcji prosej Całkowiy czas życia 1,5 GeV 5 ma 96 m 6 nm rad 184 µm x13 µm (horiz x ver) 13 h

10 Wyliczmy warości czynników relaywisycznych i dla SOLARIS: 1, 1 v c nergia kineyczna jes równa: relaywisyczna energia całkowia energia spoczynkowa k mc m c m c [ MeV ] k 1. 5 GeV Sąd: 933 Sąd: I jeszcze promień orbiy cykloronowej w magnesie zakrzywiającym or: 31 8 mv mc [ kg] 31 [ m / s] R 3. 85m 19 eb eb 1.61 [ C] 1.3[ T] Przyjeo ypowe pole magneyczne odpowiadające nasyceniu ferromagneyka Fe : 1.3 T orbia elekronu w SOLARIS jes figurą złożoną z odcinków prosych i łuków o wyliczonym promieniu

11 Fragmen pierścienia SOLARIS Magnes zakrzywiające (bending magnes, dipole magnes) SOLARIS są wbudowane w zinegrowaną srukurę wielu magnesów szary kszał o blok ferromagneyczny kolorowe elemeny o komora próżniowa zakrzywione są ylko krókie fragmeny orbiy. Pominięo uzwojenia. do konsrukcji synchroronu SOLARIS wrócimy później

12 Opis pola elekromagneycznego równania Maxwella (r. Maxwella sanowią kompleny opis pola elekromagneycznego) W próżni pole elekrosayczne opisane jes komplenie poprzez wekor bedący funkcją położenia i czasu, pole elekrosayczne opisane jes komplenie poprzez wekor B bedący funkcją położenia i czasu 1. W próżni w obszarze ładunków i prądów: J B B B,,,. W próżni w obszarze bez ładunków i prądów: B B B,,, Prawo Gaussa: Prawo indukcji Faradaya: Prawo Ampera: Równanie falowe w próżni bez ładunków i pradów 3 r. Maxwella obkładamy obusronnie operaorem roacji jes on przemienny z operaorem różniczkowania po czasie korzysamy z własciwości podwójnej roacji pola:, nasępnie wykorzysujemy i 3 r. Maxwella i orzymujemy : ) ( z y x W karezjańskim układzie współrzędnych:, wedy: Podobne równanie można orzymać na B ale i B sa ściśle od siebie zależne (r. Maxwella) wysarczy nam jedno ),,, ( ),,,, ( z y x B B z y x

13 Właściwości fali M (równania falowego, rozwiązań r. falowego) Rozwiązaniem równania falowego na jes pole wekorowe zmienne w czasie zn. rozwiązanie podaje nam warości wekora w każdym punkcie rozważanego obszaru, w dowolnym czasie. Równanie jes liniowe dlaego jeśli pola wekorowe 1 i są rozwiązaniami równania o pole 3 = 1 + eż jes rozwiązaniem równania. (superpozycja) y Wiązka równoległa (spójna i spolaryzowana, Fala płaska) r ( x, y, z) x x W płaszczyźnie yz pole nie zależy od położenia zaem: Rozwiązaniem jes fala biegnąca w 1 D inaczej fala płaska : wekor położenia z ( r, ) sin( kr ) sin( kr) sin( kx); r ( x, y, z) częsość kołowa fali wekor falowy zwrócony w kierunku w kórym fala biegnie k ck ph f f c

14 Płaska fala biegnąca przesrzenny rozkład wekorów pola: y z c=3 m/s Fala płaska biegnie w kierunku obserwaora z prędkością świała obserwaor rejesruje pole elekryczne szybko oscylujące w kierunku prosopadłym do kierunku rozchodzenia się fali x Częsoliwość [Hz]

15 nergia pola elekromagneycznego: By zbudować pole elekryczne porzebna jes energia a energia pozosaje w polu gęsość energii pola elekrycznego u w próżni jes równa: u 1 (Można o sobie wyprowadzić obliczając energię zgromadzoną w kondensaorze płaskim) Podobnie dla pola magneycznego gęsość energii pola magneycznego u w próżni jes równa: um 1 B (Można o sobie wyprowadzić obliczając energię zgromadzoną w cewce indukcyjnej) nergia pola elekromagneycznego: u M 1 1 B

16 nergia pola elekromagneycznego fali płaskiej: ); sin( ), ( ),, ( ); sin( ), ( kx B r B z y x r kx r ) ( sin 1 ) ( sin 1 kx B kx u M Dla fali płaskiej: c B / Chwilowa gęsość energii w punkcie r : ) sin ( kx u M 1 ) ( sin 1 ) ( sin 1 ) ( sin 1 c kx kx c kx u M 1 c

17 nergia w polu fali elekromagneycznej u M ( r, ) sin ( kx ) Gęsość energii pola jes duża am gdzie warość naężenie pola elekrycznego jes duża c=3 m/s Fala płaska biegnie w kierunku obserwaora z prędkością świała obserwaora mijają kolejne warswy w kórych gęsość energii pola jes duża fala elekromagneyczna unosi energię ze źródła Możemy eraz wyliczyć gęsość powierzchniową srumienia mocy (S) mijającego obserwaora czyli irradiancję wiązki Uśredniamy gęsość energii w przesrzeni: u M Mnożymy uśrednioną gęsość przez prędkość świała: S c / / Bardziej ogólnie (nieuśrednioną ) gęsość powierzchniową srumienia mocy pola elekromagneycznego określa zw. wekor Poyninga: S 1 B

18 Pole elekryczne ładunku punkowego (np. elekronu) r q ( r) 1 4 q r r r

19 Pole elekryczne ładunku punkowego (np. elekronu) - reprezenacja przez linie pola Pole elekryczne jes źródłowe - linie kończą/zaczynają się na ładunkach linie pokazują kierunek wekora naężenia pola (), warość naężenia jes określona przez gęsość linii naychmias eż możemy wyprowadzić np. prawo Gaussa (posłużyć się wersją całkową) e linie sanowią kompleny opis pola elekrycznego

20 Poruszajacy się ładunek i reardacja pola x - - x -1-1 x R - R -1 v R R 1; ; 1 ( x ( x c c 1; ; x x 1 ) / v ) / v Ładunek porusza się ruchem jednosajnym w chwili znajduje się w punkcie x pole elekryczne, kórego en ładunek jes źródłem rozprzesrzenia się z prędkością świała (niesie energię czyli jes o obiek fizyczny ). Zaem pole na powłoce R - pochodzi od ładunku w położeniu x -, w chwili czasu -. Podobnie pole na powłoce R -1 pochodzi od ładunku w położeniu x -1, w chwili czasu -1 id

21 Linie pola elekrycznego ładunku poruszającego się jednosajnie? v, v. 8c (pokaz ruchomy RadiaionD) Linie pola zagęszczają się w kierunkach poprzecznych do kierunku ruchu obszar zagęszczonych linii przesuwa się razem z ładunkiem w układzie laboraoryjnym mamy przepływ energii (kóra płynie razem z ładunkiem). Poza ym jednak nic się nie zmienia... a w szczególności energia całkowia układu. Poruszający się jednosajnie ladunek nie promieniuje energii (oczywiście ak musi być bo w swoim układzie odniesienia (inercjalnym) elekron spoczywa a fak promieniowania energii nie może zależeć od układu)

22 Linie pola elekrycznego ładunku podlegającego przyśpieszeniu (pokaz ruchomy RadiaionD) Począkowo spoczywający ładunek wykonał ruch x am i z powroem, w kierunku pionowym, a nasępnie zarzymał się... ruch ładunku był zmienny a zaem przez chwilę podlegał on przyśpieszeniom w ej krókiej chwili zosała wyworzona powłoka pola elekrycznego wyraźnie widoczna w reprezenacji linii, kóra puchnie z prędkością świała

23 ładunek wykonał ruch zmienny obserwaor zaobserwuje za chwilę mijające go zagęszczenia linii pola skierowanych w kierunku prosopadłym do kierunku obserwacji (na ładunek) akie zagęszczenia linii inerpreujemy jako silne oscylacje pola elekrycznego gęsość energii pola jes duża am gdzie są gęse linie (czyli duże naężenie pola elekrycznego)... obszar niosący energię ucieka od ładunku z prędkością świała. Promieniowanie energii! Fala elekromagneyczna!

24 Promieniowanie ładunku podlegającego drganiom elemenarnym: r( ) r sin (pokaz ruchomy RadiaionD;,4:.4) Położenie ładunku oscyluje w kierunku pionowym w całym obszarze drgania pola elekrycznego zachodzą z częsoliwością drgań ładunku

25 Promieniowanie ładunku podlegającego drganiom elemenarnym: r( ) r sin Obserwaor w kierunku drgań ładunku (pionowym) nie widzi żadnych drgań pola elekrycznego obserwaor w płaszczyźnie prosopadłej do kierunku drgań ładunku (poziomej) widzi najsilniejsze drgania mijają go obszary pola skierowanego naprzemiennnie w górę i w dół. widzi zaem coś co bardzo blisko przypomina falę płaską

26 Promieniowanie niesacjonarnego ładunku (J.D. Jackson: lekrodynamika klasyczna ) Ładunek podlega chwilowemu przyśpieszeniu: a = dv/d): Rozkład kąowy mocy wypromieniowanej (dp/d ) : a dp d e dv 3 4c d sin miowane promieniowanie jes spolaryzowane zgodnie z kierunkiem przyśpieszenia zauważmy eż że rozkład kąowy nie zależy od charakeru ruchu. Czy o będą drgania harmoniczne czy eż krókorwały impuls przyśpieszenia zawsze mamy aki sam rozkład kąowy promieniowania. c: prędkość świała,: ką zenialny mierzony do wekora a

27 Jak przyśpieszyć elekron? W polu elekrycznym -> promieniowanie z aneny radiowej Zderzając elekron z innymi cząskami (eż oddziaływania elekromagneyczne ) -> źródła ermiczne, plazmowe, lampa rengenowska w polu magneycznym -> promieniowanie synchroronowe Problemem jes duża rozbieżność wiązki promieniowania. pamięamy, że jasna wiązka musi być wyworzona od poczaku jako skolimowana.

ψ przedstawia zależność

ψ przedstawia zależność Ruch falowy 4-4 Ruch falowy Ruch falowy polega na rozchodzeniu się zaburzenia (odkszałcenia) w ośrodku sprężysym Wielkość zaburzenia jes, podobnie jak w przypadku drgań, funkcją czasu () Zaburzenie rozchodzi

Bardziej szczegółowo

Fale elektromagnetyczne spektrum

Fale elektromagnetyczne spektrum Fale elekroagneyczne spekru w próżni wszyskie fale e- rozchodzą się z prędkością c 3. 8 /s Jaes Clerk Mawell (w połowie XIX w.) wykazał, że świało jes falą elekroagneyczną rozprzesrzeniającą się falą ziennego

Bardziej szczegółowo

I. KINEMATYKA I DYNAMIKA

I. KINEMATYKA I DYNAMIKA piagoras.d.pl I. KINEMATYKA I DYNAMIKA KINEMATYKA: Położenie ciała w przesrzeni można określić jedynie względem jakiegoś innego ciała lub układu ciał zwanego układem odniesienia. Ruch i spoczynek są względne

Bardziej szczegółowo

WSTĘP DO ELEKTRONIKI

WSTĘP DO ELEKTRONIKI WSTĘP DO ELEKTRONIKI Część I Napięcie, naężenie i moc prądu elekrycznego Sygnały elekryczne i ich klasyfikacja Rodzaje układów elekronicznych Janusz Brzychczyk IF UJ Elekronika Dziedzina nauki i echniki

Bardziej szczegółowo

ĆWICZENIE 7 WYZNACZANIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA. Wprowadzenie

ĆWICZENIE 7 WYZNACZANIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA. Wprowadzenie ĆWICZENIE 7 WYZNACZIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA Wprowadzenie Ciało drgające w rzeczywisym ośrodku z upływem czasu zmniejsza ampliudę drgań maleje energia mechaniczna

Bardziej szczegółowo

Ruch płaski. Bryła w ruchu płaskim. (płaszczyzna kierująca) Punkty bryły o jednakowych prędkościach i przyspieszeniach. Prof.

Ruch płaski. Bryła w ruchu płaskim. (płaszczyzna kierująca) Punkty bryły o jednakowych prędkościach i przyspieszeniach. Prof. Ruch płaski Ruchem płaskim nazywamy ruch, podczas kórego wszyskie punky ciała poruszają się w płaszczyznach równoległych do pewnej nieruchomej płaszczyzny, zwanej płaszczyzną kierującą. Punky bryły o jednakowych

Bardziej szczegółowo

DYNAMIKA KONSTRUKCJI

DYNAMIKA KONSTRUKCJI 10. DYNAMIKA KONSTRUKCJI 1 10. 10. DYNAMIKA KONSTRUKCJI 10.1. Wprowadzenie Ogólne równanie dynamiki zapisujemy w posaci: M d C d Kd =P (10.1) Zapis powyższy oznacza, że równanie musi być spełnione w każdej

Bardziej szczegółowo

Rozważania rozpoczniemy od fal elektromagnetycznych w próżni. Dla próżni równania Maxwella w tzw. postaci różniczkowej są następujące:

Rozważania rozpoczniemy od fal elektromagnetycznych w próżni. Dla próżni równania Maxwella w tzw. postaci różniczkowej są następujące: Rozważania rozpoczniemy od fal elektromagnetycznych w próżni Dla próżni równania Maxwella w tzw postaci różniczkowej są następujące:, gdzie E oznacza pole elektryczne, B indukcję pola magnetycznego a i

Bardziej szczegółowo

Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017

Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017 Optyka Wykład V Krzysztof Golec-Biernat Fale elektromagnetyczne Uniwersytet Rzeszowski, 8 listopada 2017 Wykład V Krzysztof Golec-Biernat Optyka 1 / 17 Plan Swobodne równania Maxwella Fale elektromagnetyczne

Bardziej szczegółowo

RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego?

RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? RÓWNANIA MAXWELLA Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? Wykład 3 lato 2012 1 Doświadczenia Wykład 3 lato 2012 2 1

Bardziej szczegółowo

Fale mechaniczne i akustyczne

Fale mechaniczne i akustyczne Fale mechaniczne i akusyczne Zadania z rozwiązaniami Projek współfinansowany przez Unię uropejską w ramach uropejskiego Funduszu Społecznego Projek współfinansowany przez Unię uropejską w ramach uropejskiego

Bardziej szczegółowo

Laseryimpulsowe-cotojest?

Laseryimpulsowe-cotojest? Laseryimpulsowe-coojes? Pior Migdał marca5 Laseryciągłe Prawie każdy widział laser, choćby w posaci breloczka z odpowiednią diodą LED. Co jes charakerysyczne dla promienia emiowanego z akiego urządzenia?

Bardziej szczegółowo

Wykład 9: Fale cz. 1. dr inż. Zbigniew Szklarski

Wykład 9: Fale cz. 1. dr inż. Zbigniew Szklarski Wykład 9: Fale cz. 1 dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Klasyfikacja fal fale mechaniczne zaburzenie przemieszczające się w ośrodku sprężystym, fale elektromagnetyczne

Bardziej szczegółowo

E5. KONDENSATOR W OBWODZIE PRĄDU STAŁEGO

E5. KONDENSATOR W OBWODZIE PRĄDU STAŁEGO E5. KONDENSATOR W OBWODZIE PRĄDU STAŁEGO Marek Pękała i Jadwiga Szydłowska Procesy rozładowania kondensaora i drgania relaksacyjne w obwodach RC należą do szerokiej klasy procesów relaksacyjnych. Procesy

Bardziej szczegółowo

Fale elektromagnetyczne

Fale elektromagnetyczne Fale elektromagnetyczne dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Plan wykładu Spis treści 1. Analiza pola 2 1.1. Rozkład pola...............................................

Bardziej szczegółowo

I. PROMIENIOWANIE CIEPLNE

I. PROMIENIOWANIE CIEPLNE I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.

Bardziej szczegółowo

Zasada pędu i popędu, krętu i pokrętu, energii i pracy oraz d Alemberta bryły w ruchu postępowym, obrotowym i płaskim

Zasada pędu i popędu, krętu i pokrętu, energii i pracy oraz d Alemberta bryły w ruchu postępowym, obrotowym i płaskim Zasada pędu i popędu, kręu i pokręu, energii i pracy oraz d Alembera bryły w ruchu posępowym, obroowym i płaskim Ruch posępowy bryły Pęd ciała w ruchu posępowym obliczamy, jak dla punku maerialnego, skupiając

Bardziej szczegółowo

Kinematyka W Y K Ł A D I. Ruch jednowymiarowy. 2-1 Przemieszczenie, prędkość. x = x 2 - x x t

Kinematyka W Y K Ł A D I. Ruch jednowymiarowy. 2-1 Przemieszczenie, prędkość. x = x 2 - x x t Wykład z fizyki. Pior Posmykiewicz W Y K Ł A D I Ruch jednowymiarowy Kinemayka Zaczniemy wykład z fizyki od badania przedmioów będących w ruchu. Dział fizyki, kóry zajmuje się badaniem ruchu ciał bez wnikania

Bardziej szczegółowo

Rozkład i Wymagania KLASA III

Rozkład i Wymagania KLASA III Rozkład i Wymagania KLASA III 10. Prąd Lp. Tema lekcji Wymagania konieczne 87 Prąd w mealach. Napięcie elekryczne opisuje przepływ w przewodnikach, jako ruch elekronów swobodnych posługuje się inuicyjnie

Bardziej szczegółowo

Wymagania przedmiotowe z fizyki - klasa III (obowiązujące w roku szkolnym 2013/2014)

Wymagania przedmiotowe z fizyki - klasa III (obowiązujące w roku szkolnym 2013/2014) Wymagania przedmioowe z izyki - klasa III (obowiązujące w roku szkolnym 013/014) 8. Drgania i ale sprężyse!wskazuje w ooczeniu przykłady ciał wykonujących ruch drgający!podaje znaczenie pojęć: położenie

Bardziej szczegółowo

Głównie występuje w ośrodkach gazowych i ciekłych.

Głównie występuje w ośrodkach gazowych i ciekłych. W/g ermodynamiki - ciepło jes jednym ze sposobów ransporu energii do/z bila, zysy przepływ ciepła może wysąpić jedynie w ciałach sałych pozosających w spoczynku. Proces wymiany ciepla: przejmowanie ciepła

Bardziej szczegółowo

Wyznaczanie stosunku e/m elektronu

Wyznaczanie stosunku e/m elektronu Ćwiczenie 27 Wyznaczanie stosunku e/m elektronu 27.1. Zasada ćwiczenia Elektrony przyspieszane w polu elektrycznym wpadają w pole magnetyczne, skierowane prostopadle do kierunku ich ruchu. Wyznacza się

Bardziej szczegółowo

Energia w ruchu harmonicznym

Energia w ruchu harmonicznym Energia w ruchu haroniczn cos 1 kx x k E p 1 1 kx x v E k k p kx E E E Fale przkład Fala echaniczna poprzeczna Fala echaniczna podłużna Fala echaniczna akusczna Fala elekroagneczna np. radiowa świało Fale:

Bardziej szczegółowo

Fale biegnące. y t=0 vt. y = f(x), t = 0 y = f(x - vt), t ogólne równanie fali biegnącej w prawo

Fale biegnące. y t=0 vt. y = f(x), t = 0 y = f(x - vt), t ogólne równanie fali biegnącej w prawo ale (mechaniczne) ala - rozchodzenie się się zaburzenia (w maerii) nie dzięki ruchowi posępowemu samej maerii ale dzięki oddziałwaniu (sprężsemu) Rodzaje i cech fal Rodzaj zaburzenia mechaniczne elekromagneczne

Bardziej szczegółowo

Elementy fizyki relatywistycznej

Elementy fizyki relatywistycznej Elementy fizyki relatywistycznej Transformacje Galileusza i ich konsekwencje Transformacje Lorentz'a skracanie przedmiotów w kierunku ruchu dylatacja czasu nowe składanie prędkości Szczególna teoria względności

Bardziej szczegółowo

39 DUALIZM KORPUSKULARNO FALOWY.

39 DUALIZM KORPUSKULARNO FALOWY. Włodzimierz Wolczyński 39 DUALIZM KORPUSKULARNO FALOWY. ZJAWISKO FOTOELEKTRYCZNE. FALE DE BROGILE Fale radiowe Fale radiowe ultrakrótkie Mikrofale Podczerwień IR Światło Ultrafiolet UV Promienie X (Rentgena)

Bardziej szczegółowo

5.1. Powstawanie i rozchodzenie się fal mechanicznych.

5.1. Powstawanie i rozchodzenie się fal mechanicznych. 5. Fale mechaniczne 5.1. Powstawanie i rozchodzenie się fal mechanicznych. Ruch falowy jest zjawiskiem bardzo rozpowszechnionym w przyrodzie. Spotkałeś się z pewnością w życiu codziennym z takimi pojęciami

Bardziej szczegółowo

Fale elektromagnetyczne w dielektrykach

Fale elektromagnetyczne w dielektrykach Fale elektromagnetyczne w dielektrykach Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Krótka historia odkrycia

Bardziej szczegółowo

Zad. 2 Jaka jest częstotliwość drgań fali elektromagnetycznej o długości λ = 300 m.

Zad. 2 Jaka jest częstotliwość drgań fali elektromagnetycznej o długości λ = 300 m. Segment B.XIV Prądy zmienne Przygotowała: dr Anna Zawadzka Zad. 1 Obwód drgający składa się z pojemności C = 4 nf oraz samoindukcji L = 90 µh. Jaki jest okres, częstotliwość, częstość kątowa drgań oraz

Bardziej szczegółowo

opisuje budowę atomu i jego składniki elektryzuje ciało przez potarcie wskazuje w otoczeniu zjawiska elektryzowania przez tarcie

opisuje budowę atomu i jego składniki elektryzuje ciało przez potarcie wskazuje w otoczeniu zjawiska elektryzowania przez tarcie Wymagania szczegółowe na poszczególne oceny z przedmiou fizyka do programu nauczania Świa fizyki Wymagania dososowane do indywidualnych porzeb i możliwości uczniów. O elekryczności saycznej 81 Elekryzowanie

Bardziej szczegółowo

Wykład FIZYKA II. 4. Indukcja elektromagnetyczna. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 4. Indukcja elektromagnetyczna.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II 4. Indukcja elektromagnetyczna Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ PRAWO INDUKCJI FARADAYA SYMETRIA W FIZYCE

Bardziej szczegółowo

Fala elektromagnetyczna o określonej częstotliwości ma inną długość fali w ośrodku niż w próżni. Jako przykłady policzmy:

Fala elektromagnetyczna o określonej częstotliwości ma inną długość fali w ośrodku niż w próżni. Jako przykłady policzmy: Rozważania rozpoczniemy od ośrodków jednorodnych. W takich ośrodkach zależność między indukcją pola elektrycznego a natężeniem pola oraz między indukcją pola magnetycznego a natężeniem pola opisana jest

Bardziej szczegółowo

II.1. Zagadnienia wstępne.

II.1. Zagadnienia wstępne. II.1. Zagadnienia wsępne. Arysoeles ze Sagiry wyraźnie łączy ruch z czasem: A jes niemożliwe, żeby zaczął się albo usał ruch, gdyż jak powiedzieliśmy ruch jes wieczny, a ak samo i czas, bo czas jes albo

Bardziej szczegółowo

Rys.1. Podstawowa klasyfikacja sygnałów

Rys.1. Podstawowa klasyfikacja sygnałów Kaedra Podsaw Sysemów echnicznych - Podsawy merologii - Ćwiczenie 1. Podsawowe rodzaje i ocena sygnałów Srona: 1 1. CEL ĆWICZENIA Celem ćwiczenia jes zapoznanie się z podsawowymi rodzajami sygnałów, ich

Bardziej szczegółowo

Wykład 14: Indukcja cz.2.

Wykład 14: Indukcja cz.2. Wykład 14: Indukcja cz.. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. -1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 10.05.017 Wydział Informatyki, Elektroniki i 1 Przykład

Bardziej szczegółowo

RUCH HARMONICZNY. sin. (r.j.o) sin

RUCH HARMONICZNY. sin. (r.j.o) sin RUCH DRGJĄCY Ruch harmoniczny Rodzaje drgań Oscylaor harmoniczny Energia oscylaora harmonicznego Wahadło maemayczne i fizyczne Drgania łumione Drgania wymuszone i zjawisko rezonansu RUCH HRMONICZNY Ruch

Bardziej szczegółowo

SPIS TREŚCI ««*» ( # * *»»

SPIS TREŚCI ««*» ( # * *»» ««*» ( # * *»» CZĘŚĆ I. POJĘCIA PODSTAWOWE 1. Co to jest fizyka? 11 2. Wielkości fizyczne 11 3. Prawa fizyki 17 4. Teorie fizyki 19 5. Układ jednostek SI 20 6. Stałe fizyczne 20 CZĘŚĆ II. MECHANIKA 7.

Bardziej szczegółowo

Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki

Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki Spis treści Przedmowa... 11 Wstęp: Czym jest elektrodynamika i jakie jest jej miejsce w fizyce?... 13 1. Analiza wektorowa... 19 1.1. Algebra

Bardziej szczegółowo

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Równanie Schrödingera niezależne od czasu Rozparzmy równanie Schrödingera: Przypuśćmy że funkcję ψ można zapisać jako: Mamy wówczas ( ) ( ) ( ) z y x m h z y x U z y x h i 8 ψ π ψ π = ( ) ( ) ( ) z y x

Bardziej szczegółowo

Wymagania na poszczególne oceny przy realizacji programu i podręcznika Świat fizyki

Wymagania na poszczególne oceny przy realizacji programu i podręcznika Świat fizyki Wymagania na poszczególne oceny przy realizacji i podręcznika Świa fizyki Klasa 3 I semesr 10. Prąd elekryczny Tema według 10.1. Prąd elekryczny w mealach. Napięcie elekryczne podaje jednoskę napięcia

Bardziej szczegółowo

Elementy fizyki relatywistycznej

Elementy fizyki relatywistycznej Elementy fizyki relatywistycznej Transformacje Galileusza i ich konsekwencje Transformacje Lorentz'a skracanie przedmiotów w kierunku ruchu dylatacja czasu nowe składanie prędkości Szczególna teoria względności

Bardziej szczegółowo

drgania h armoniczne harmoniczne

drgania h armoniczne harmoniczne ver-8..7 drgania harmoniczne drgania Fourier: częsość podsawowa + składowe harmoniczne () An cos( nω + ϕ n ) N n Fig (...) analiza Fouriera małe drgania E p E E k E p ( ) jeden sopień swobody: -A A E p

Bardziej szczegółowo

Fale elektromagnetyczne

Fale elektromagnetyczne Fale elektromagnetyczne Ryszard J. Barczyński, 2017 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Krótka historia odkrycia fali elektromagnetycznej

Bardziej szczegółowo

ĆWICZENIE 2. BADANIE WAHADEŁ SPRZĘŻONYCH.

ĆWICZENIE 2. BADANIE WAHADEŁ SPRZĘŻONYCH. ĆWICZENIE BADANIE WAHADEŁ SPRZĘŻONYCH Wahadło sprzężone Weźmy pod uwagę układ złożony z dwóch wahadeł o długościach połączonych sprężyną o współczynniku kierującym k Rys Na wahadło działa siła będąca składową

Bardziej szczegółowo

Wymagania na poszczególne oceny przy realizacji programu i podręcznika Zrozumieć fizykę

Wymagania na poszczególne oceny przy realizacji programu i podręcznika Zrozumieć fizykę Klasa III 10. Prąd elekryczny Tema według 10.1. Prąd elekryczny w mealach. Napięcie elekryczne 10.. Źródła prądu. Obwód elekryczny Wymagania na poszczególne oceny przy realizacji i podręcznika Zrozumieć

Bardziej szczegółowo

Dynamiczne formy pełzania i relaksacji (odprężenia) górotworu

Dynamiczne formy pełzania i relaksacji (odprężenia) górotworu Henryk FILCEK Akademia Górniczo-Hunicza, Kraków Dynamiczne formy pełzania i relaksacji (odprężenia) góroworu Sreszczenie W pracy podano rozważania na ema możliwości wzbogacenia reologicznego równania konsyuywnego

Bardziej szczegółowo

Fale elektromagnetyczne. Gradient pola. Gradient pola... Gradient pola... Notatki. Notatki. Notatki. Notatki. dr inż. Ireneusz Owczarek 2013/14

Fale elektromagnetyczne. Gradient pola. Gradient pola... Gradient pola... Notatki. Notatki. Notatki. Notatki. dr inż. Ireneusz Owczarek 2013/14 dr inż. Ireneusz Owczarek CNMiF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2013/14 1 dr inż. Ireneusz Owczarek Gradient pola Gradient funkcji pola skalarnego ϕ przypisuje każdemu punktowi

Bardziej szczegółowo

Fizyka 2 Wróbel Wojciech

Fizyka 2 Wróbel Wojciech Fizyka w poprzednim odcinku 1 Prawo Faradaya Fizyka B Bd S Strumień magnetyczny Jednostka: Wb (Weber) = T m d SEM B Siła elektromotoryczna Praca, przypadająca na jednostkę ładunku, wykonana w celu wytworzenia

Bardziej szczegółowo

Metody Optyczne w Technice. Wykład 5 Interferometria laserowa

Metody Optyczne w Technice. Wykład 5 Interferometria laserowa Metody Optyczne w Technice Wykład 5 nterferometria laserowa Promieniowanie laserowe Wiązka monochromatyczna Duża koherencja przestrzenna i czasowa Niewielka rozbieżność wiązki Duża moc Największa możliwa

Bardziej szczegółowo

Widmo fal elektromagnetycznych

Widmo fal elektromagnetycznych Czym są fale elektromagnetyczne? Widmo fal elektromagnetycznych dr inż. Romuald Kędzierski Podstawowe pojęcia związane z falami - przypomnienie pole falowe część przestrzeni objęta w danej chwili falą

Bardziej szczegółowo

Moment pędu fali elektromagnetycznej

Moment pędu fali elektromagnetycznej napisał Michał Wierzbicki Moment pędu fali elektromagnetycznej Definicja momentu pędu pola elektromagnetycznego Gęstość momentu pędu pola J w elektrodynamice definuje się za pomocą wzoru: J = r P = ɛ 0

Bardziej szczegółowo

Praca domowa nr 1. Metodologia Fizyki. Grupa 1. Szacowanie wartości wielkości fizycznych Zad Stoisz na brzegu oceanu, pogoda jest idealna,

Praca domowa nr 1. Metodologia Fizyki. Grupa 1. Szacowanie wartości wielkości fizycznych Zad Stoisz na brzegu oceanu, pogoda jest idealna, Praca domowa nr. Meodologia Fizyki. Grupa. Szacowanie warości wielkości fizycznych Zad... Soisz na brzegu oceanu, pogoda jes idealna, powierze przeźroczyse; proszę oszacować jak daleko od Ciebie znajduje

Bardziej szczegółowo

Theory Polish (Poland)

Theory Polish (Poland) Q3-1 Wielki Zderzacz Hadronów (10 points) Przeczytaj Ogólne instrukcje znajdujące się w osobnej kopercie zanim zaczniesz rozwiązywać to zadanie. W tym zadaniu będą rozpatrywane zagadnienia fizyczne zachodzące

Bardziej szczegółowo

Pole elektrostatyczne

Pole elektrostatyczne Termodynamika 1. Układ termodynamiczny 5 2. Proces termodynamiczny 5 3. Bilans cieplny 5 4. Pierwsza zasada termodynamiki 7 4.1 Pierwsza zasada termodynamiki w postaci różniczkowej 7 5. Praca w procesie

Bardziej szczegółowo

Wymagania na poszczególne oceny przy realizacji programu i podręcznika Świat fizyki Klasa III

Wymagania na poszczególne oceny przy realizacji programu i podręcznika Świat fizyki Klasa III 9. O elekryczności saycznej Wymagania na poszczególne oceny przy realizacji i podręcznika Świa fizyki Klasa III Tema według 9.1. Elekryzowanie przez arcie i zeknięcie z ciałem naelekryzowanym opisuje budowę

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap szkolny 5 listopada 2013 Czas 90 minut

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap szkolny 5 listopada 2013 Czas 90 minut Wojewódzki Konkurs Maemayczny dla uczniów gimnazjów. Eap szkolny 5 lisopada 2013 Czas 90 minu ZADANIA ZAMKNIĘTE Zadanie 1. (1 punk) Liczby A = 0, 99, B = 0, 99 2, C = 0, 99 3, D = 0, 99, E=0, 99 1 usawiono

Bardziej szczegółowo

3.5 Wyznaczanie stosunku e/m(e22)

3.5 Wyznaczanie stosunku e/m(e22) Wyznaczanie stosunku e/m(e) 157 3.5 Wyznaczanie stosunku e/m(e) Celem ćwiczenia jest wyznaczenie stosunku ładunku e do masy m elektronu metodą badania odchylenia wiązki elektronów w poprzecznym polu magnetycznym.

Bardziej szczegółowo

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych.

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych. Równania różniczkowe. Lisa nr 2. Lieraura: N.M. Mawiejew, Meody całkowania równań różniczkowych zwyczajnych. W. Krysicki, L. Włodarski, Analiza Maemayczna w Zadaniach, część II 1. Znaleźć ogólną posać

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE

LASERY I ICH ZASTOSOWANIE LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 3 Temat: Efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą modulowania zmiany polaryzacji światła oraz

Bardziej szczegółowo

Podstawy elektrodynamiki / David J. Griffiths. - wyd. 2, dodr. 3. Warszawa, 2011 Spis treści. Przedmowa 11

Podstawy elektrodynamiki / David J. Griffiths. - wyd. 2, dodr. 3. Warszawa, 2011 Spis treści. Przedmowa 11 Podstawy elektrodynamiki / David J. Griffiths. - wyd. 2, dodr. 3. Warszawa, 2011 Spis treści Przedmowa 11 Wstęp: Czym jest elektrodynamika i jakie jest jej miejsce w fizyce? 13 1. Analiza wektorowa 19

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Meody Lagrange a i Hamilona w Mechanice Mariusz Przybycień Wydział Fizyki i Informayki Sosowanej Akademia Górniczo-Hunicza Wykład 7 M. Przybycień (WFiIS AGH) Meody Lagrange a i Hamilona... Wykład 7 1 /

Bardziej szczegółowo

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi)

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi) Kinematyka Mechanika ogólna Wykład nr 7 Elementy kinematyki Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez wnikania w związek

Bardziej szczegółowo

MiBM sem. III Zakres materiału wykładu z fizyki

MiBM sem. III Zakres materiału wykładu z fizyki MiBM sem. III Zakres materiału wykładu z fizyki 1. Dynamika układów punktów materialnych 2. Elementy mechaniki relatywistycznej 3. Podstawowe prawa elektrodynamiki i magnetyzmu 4. Zasady optyki geometrycznej

Bardziej szczegółowo

VII.5. Eksperyment Michelsona-Morleya.

VII.5. Eksperyment Michelsona-Morleya. Janusz. Kępka Ruch absoluny i względny VII.5. Eksperymen Michelsona-Morleya. Zauważmy że pomiar ruchu absolunego jakiegokolwiek obieku maerialnego z założenia musi odnosić się do prędkości fali świelnej

Bardziej szczegółowo

POMIAR INDUKCJI MAGNETYCZNEJ ZA POMOCĄ FLUKSOMETRU

POMIAR INDUKCJI MAGNETYCZNEJ ZA POMOCĄ FLUKSOMETRU Ćwiczenie 56 E. Dudziak POMIAR INDUKCJI MAGNETYCZNEJ ZA POMOCĄ FLUKSOMETRU Cel ćwiczenia: pomiar fluksomerem indukcji maneycznej sałeo pola maneyczneo między nabieunnikami elekromanesu. Zaadnienia: indukcja

Bardziej szczegółowo

Krzywe na płaszczyźnie.

Krzywe na płaszczyźnie. Krzwe na płaszczźnie. Współrzędne paramerczne i biegunowe. Współrzędne biegunowe. Dan jes punk O, zwan biegunem, kór sanowi począek półprosej, zwanej półosią. Dowoln punk P na płaszczźnie można opisać

Bardziej szczegółowo

BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ

BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ ĆWICZENIE 89 BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ Cel ćwiczenia: Zapoznanie się ze zjawiskiem Faradaya. Wyznaczenie stałej Verdeta dla danej próbki. Wyznaczenie wartości ładunku właściwego elektronu

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE FIZYKA STOSOWANA II Liceum Ogólnokształcące im. Adama Asnyka w Bielsku-Białej

WYMAGANIA EDUKACYJNE FIZYKA STOSOWANA II Liceum Ogólnokształcące im. Adama Asnyka w Bielsku-Białej WYMAGANIA EDUKACYJNE FIZYKA STOSOWANA II Liceum Ogólnokształcące im. Adama Asnyka w Bielsku-Białej OSIĄGNIĘCIA UCZNIÓW Z ZAKRESIE KSZTAŁCENIA W kolumnie "wymagania na poziom podstawowy" opisano wymagania

Bardziej szczegółowo

Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu

Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu Ruch falowy Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu Fala rozchodzi się w przestrzeni niosąc ze sobą energię, ale niekoniecznie musi

Bardziej szczegółowo

PDF stworzony przez wersję demonstracyjną pdffactory

PDF stworzony przez wersję demonstracyjną pdffactory Promieniowanie elektromagnetyczne (fala elektromagnetyczna) rozchodzące się w przestrzeni zaburzenie pola elektromagnetycznego. Zaburzenie to ma charakter fali poprzecznej, w której składowa elektryczna

Bardziej szczegółowo

Wykład Budowa atomu 2

Wykład Budowa atomu 2 Wykład 7.12.2016 Budowa atomu 2 O atomach cd Model Bohra podsumowanie Serie widmowe O czym nie mówi model Bohra Wzbudzenie, emisja, absorpcja O liniach widmowych Kwantowomechaniczny model atomu sformułowanie

Bardziej szczegółowo

GŁÓWNE CECHY ŚWIATŁA LASEROWEGO

GŁÓWNE CECHY ŚWIATŁA LASEROWEGO GŁÓWNE CECHY ŚWIATŁA LASEROWEGO Światło może być rozumiane jako: Strumień fotonów o energii E Fala elektromagnetyczna. = hν i pędzie p h = = hν c Najprostszym przypadkiem fali elektromagnetycznej jest

Bardziej szczegółowo

7. Szczególna teoria względności. Wybór i opracowanie zadań : Barbara Kościelska Więcej zadań z tej tematyki znajduje się w II części skryptu.

7. Szczególna teoria względności. Wybór i opracowanie zadań : Barbara Kościelska Więcej zadań z tej tematyki znajduje się w II części skryptu. 7 Szzególna eoria względnośi Wybór i opraowanie zadań 7-79: Barbara Kośielska Więej zadań z ej emayki znajduje się w II zęśi skrypu 7 Czy można znaleźć aki układ odniesienia w kórym Chrzes Polski i Biwa

Bardziej szczegółowo

Prawa Maxwella. C o p y rig h t b y p lec iu g 2.p l

Prawa Maxwella. C o p y rig h t b y p lec iu g 2.p l Prawa Maxwella Pierwsze prawo Maxwella Wyobraźmy sobie sytuację przedstawioną na rysunku. Przewodnik kołowy i magnes zbliżają się do siebie z prędkością v. Sytuację tę można opisać z punktu widzenia dwóch

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE W MEDYCYNIE

LASERY I ICH ZASTOSOWANIE W MEDYCYNIE LASERY I ICH ZASTOSOWANIE W MEDYCYNIE Laboratorium Instrukcja do ćwiczenia nr 4 Temat: Modulacja światła laserowego: efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą

Bardziej szczegółowo

Wydział Elektryczny, Katedra Maszyn, Napędów i Pomiarów Elektrycznych Laboratorium Przetwarzania i Analizy Sygnałów Elektrycznych

Wydział Elektryczny, Katedra Maszyn, Napędów i Pomiarów Elektrycznych Laboratorium Przetwarzania i Analizy Sygnałów Elektrycznych Wydział Elekryczny, Kaedra Maszyn, Napędów i Pomiarów Elekrycznych Laboraorium Przewarzania i Analizy Sygnałów Elekrycznych (bud A5, sala 310) Insrukcja dla sudenów kierunku Auomayka i Roboyka do zajęć

Bardziej szczegółowo

Fizyka elektryczność i magnetyzm

Fizyka elektryczność i magnetyzm Fizyka elektryczność i magnetyzm W5 5. Wybrane zagadnienia z optyki 5.1. Światło jako część widma fal elektromagnetycznych. Fale elektromagnetyczne, które współczesny człowiek potrafi wytwarzać, i wykorzystywać

Bardziej szczegółowo

Podstawy fizyki sezon 2 8. Fale elektromagnetyczne

Podstawy fizyki sezon 2 8. Fale elektromagnetyczne Podstawy fizyki sezon 8. Fale elektromagnetyczne Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Przenoszenie

Bardziej szczegółowo

ĆWICZENIE NR 43 U R I (1)

ĆWICZENIE NR 43 U R I (1) ĆWCZENE N 43 POMY OPO METODĄ TECHNCZNĄ Cel ćwiczenia: wyznaczenie warości oporu oporników poprzez pomiary naężania prądu płynącego przez opornik oraz napięcia na oporniku Wsęp W celu wyznaczenia warości

Bardziej szczegółowo

Powtórzenie wiadomości z klasy II. Elektromagnetyzm pole magnetyczne prądu elektrycznego

Powtórzenie wiadomości z klasy II. Elektromagnetyzm pole magnetyczne prądu elektrycznego Powtórzenie wiadomości z klasy II Elektromagnetyzm pole magnetyczne prądu elektrycznego Doświadczenie Oersteda (1820) 1.Jeśli przez przewodnik płynie prąd, to wokół tego przewodnika powstaje pole magnetyczne.

Bardziej szczegółowo

FIZYKA 2. Janusz Andrzejewski

FIZYKA 2. Janusz Andrzejewski FIZYKA wykład 7 Janusz Andrzejewski Niedoceniany geniusz Nikola Tesla Nikola Tesla wynalazł (lub znakomicie ulepszył) większość urządzeń, które spowodowały to, że prąd zmienny wyparł z naszych domów prąd

Bardziej szczegółowo

Źródła promieniowania X. ciąg dalszy

Źródła promieniowania X. ciąg dalszy Źródła promieniowania X ciąg dalszy Promieniowanie synchrotronowe undulatory i wigglery W pierwszych synchrotronach do produkcji promieniowania używane dipolowe magnesy zakrzywiające. Istnieje dużo bardziej

Bardziej szczegółowo

( 3 ) Kondensator o pojemności C naładowany do różnicy potencjałów U posiada ładunek: q = C U. ( 4 ) Eliminując U z równania (3) i (4) otrzymamy: =

( 3 ) Kondensator o pojemności C naładowany do różnicy potencjałów U posiada ładunek: q = C U. ( 4 ) Eliminując U z równania (3) i (4) otrzymamy: = ROZŁADOWANIE KONDENSATORA I. el ćwiczenia: wyznaczenie zależności napięcia (i/lub prądu I ) rozładowania kondensaora w funkcji czasu : = (), wyznaczanie sałej czasowej τ =. II. Przyrządy: III. Lieraura:

Bardziej szczegółowo

Ćwiczenia z mikroskopii optycznej

Ćwiczenia z mikroskopii optycznej Ćwiczenia z mikroskopii optycznej Anna Gorczyca Rok akademicki 2013/2014 Literatura D. Halliday, R. Resnick, Fizyka t. 2, PWN 1999 r. J.R.Meyer-Arendt, Wstęp do optyki, PWN Warszawa 1979 M. Pluta, Mikroskopia

Bardziej szczegółowo

Elementy optyki relatywistycznej

Elementy optyki relatywistycznej Elementy optyki relatywistycznej O czym będzie wykład? Pojęcie relatywistyczny kojarzy się z bardzo dużymi prędkościami, bliskimi prędkości światła. Tylko, ze światło porusza się zawsze z prędkością światła.

Bardziej szczegółowo

Podstawy Konstrukcji Maszyn

Podstawy Konstrukcji Maszyn Podsawy Konsrukcji Maszyn Wykład 13 Dr inŝ. Jacek Czarnigowski Połączenia w konsrukcji maszyn Połączenia Pośrednie Rozłączne Kszałowe: - wpusowe, - klinowe, - kołkowe Nierozłączne Niowe Bezpośrednie Kszałowe:

Bardziej szczegółowo

ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM ROZSZERZONY

ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM ROZSZERZONY 1 ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM OZSZEZONY 1. ozwiązania poszczególnych zadań i poleceń oceniane są na podsawie punkowych kryeriów oceny.. Podczas oceniania rozwiązań zdających, prosiy o zwrócenie

Bardziej szczegółowo

CZAS I PRZESTRZEŃ EINSTEINA. Szczególna teoria względności. Spotkanie II ( marzec/kwiecień, 2013)

CZAS I PRZESTRZEŃ EINSTEINA. Szczególna teoria względności. Spotkanie II ( marzec/kwiecień, 2013) CZAS I PRZESTRZEŃ EINSTEINA Szczególna teoria względności Spotkanie II ( marzec/kwiecień, 013) u Masa w szczególnej teorii względności u Określenie relatywistycznego pędu u Wyprowadzenie wzoru Einsteina

Bardziej szczegółowo

Ćwiczenie 6 WŁASNOŚCI DYNAMICZNE DIOD

Ćwiczenie 6 WŁASNOŚCI DYNAMICZNE DIOD 1. Cel ćwiczenia Ćwiczenie 6 WŁASNOŚCI DYNAMICZNE DIOD Celem ćwiczenia jes poznanie własności dynamicznych diod półprzewodnikowych. Obejmuje ono zbadanie sanów przejściowych podczas procesu przełączania

Bardziej szczegółowo

Fizyka, wykład 2. Janusz Andrzejewski

Fizyka, wykład 2. Janusz Andrzejewski Fizyka, wykład Plan Wsęp Ruch w jednym kierunku (jednowymiarowy) Wekory Co o jes? Dozwolone operacje Po co? Podsumowanie Nagrody Nobla (wybrane) 01 -SergeHaroche(Francja) i David Wineland(USA) za badania

Bardziej szczegółowo

gdzie M to mówimy, że na tym obszarze jest określone pole skalarne u( M) u( r)

gdzie M to mówimy, że na tym obszarze jest określone pole skalarne u( M) u( r) Wykłady z Maemayki sosowanej w inżynierii środowiska, II sem. Wykład. CAŁKA KRZYWOINIOWA ZORIENTOWANA.. Definicje i własności całek krzywoliniowych zorienowanych... Nekóre zasosowania całek krzywoliniowych

Bardziej szczegółowo

Materiał jest podany zwięźle, konsekwentnie stosuje się w całej książce rachunek wektorowy.

Materiał jest podany zwięźle, konsekwentnie stosuje się w całej książce rachunek wektorowy. W pierwszej części są przedstawione podstawowe wiadomości z mechaniki, nauki o cieple, elektryczności i magnetyzmu oraz optyki. Podano także przykłady zjawisk relatywistycznych, a na końcu książki zamieszczono

Bardziej szczegółowo

KOHERENCJA ŚWIATŁA PODSTAWY OPTYKI STATYSTYCZNEJ

KOHERENCJA ŚWIATŁA PODSTAWY OPTYKI STATYSTYCZNEJ KOHERENCJA ŚWIATŁA PODSTAWY OPTYKI STATYSTYCZNEJ prof. dr hab. inż. Krzyszof Paorski 1. WłaściwoW ciwości saysyczne świała a ermicznego ( losowego( losowego ) A. Naęż ężenie (inensywność ść) ) promieniowania

Bardziej szczegółowo

Podstawy elektrotechniki

Podstawy elektrotechniki Wydział Mechaniczno-Energeyczny Podsawy elekroechniki Prof. dr hab. inż. Juliusz B. Gajewski, prof. zw. PWr Wybrzeże S. Wyspiańskiego 27, 5-37 Wrocław Bud. A4 Sara kołownia, pokój 359 Tel.: 71 32 321 Fax:

Bardziej szczegółowo

Badanie funktorów logicznych TTL - ćwiczenie 1

Badanie funktorów logicznych TTL - ćwiczenie 1 adanie funkorów logicznych TTL - ćwiczenie 1 1. Cel ćwiczenia Zapoznanie się z podsawowymi srukurami funkorów logicznych realizowanych w echnice TTL (Transisor Transisor Logic), ich podsawowymi paramerami

Bardziej szczegółowo

Pobieranie próby. Rozkład χ 2

Pobieranie próby. Rozkład χ 2 Graficzne przedsawianie próby Hisogram Esymaory przykład Próby z rozkładów cząskowych Próby ze skończonej populacji Próby z rozkładu normalnego Rozkład χ Pobieranie próby. Rozkład χ Posać i własności Znaczenie

Bardziej szczegółowo

1

1 WYKŁAD #5 Elekryczność i Magneyzm. Elekrosayka. Elekrodynamika Elekryczność dziedzina zjawisk w kórej isoną rolę odgrywają ładunki lub prądy elekryczne); Elekrosayka (ładunki nie poruszają się); Elekrodynamika

Bardziej szczegółowo

Elektrodynamika Część 6 Elektrodynamika Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 6 Elektrodynamika Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 6 Elektrodynamika Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 7 Elektrodynamika 3 7.1 Siła elektromotoryczna................ 3 7.2

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z FIZYKI WYMAGANIA EDUKACYJNE DLA UCZNIÓW KLAS I

PRZEDMIOTOWY SYSTEM OCENIANIA Z FIZYKI WYMAGANIA EDUKACYJNE DLA UCZNIÓW KLAS I PRZEDMIOTOWY SYSTEM OCENIANIA Z FIZYKI WYMAGANIA EDUKACYJNE DLA UCZNIÓW KLAS I Wymagania konieczne ocena dopuszczająca wie że długość i odległość mierzymy w milimerach cenymerach merach lub kilomerach

Bardziej szczegółowo

PODSTAWY MECHANIKI KWANTOWEJ

PODSTAWY MECHANIKI KWANTOWEJ PODSTAWY MECHANIKI KWANTOWEJ De Broglie, na podstawie analogii optycznych, w roku 194 wysunął hipotezę, że cząstki materialne także charakteryzują się dualizmem korpuskularno-falowym. Hipoteza de Broglie

Bardziej szczegółowo