Laseryimpulsowe-cotojest?

Wielkość: px
Rozpocząć pokaz od strony:

Download "Laseryimpulsowe-cotojest?"

Transkrypt

1 Laseryimpulsowe-coojes? Pior Migdał marca5 Laseryciągłe Prawie każdy widział laser, choćby w posaci breloczka z odpowiednią diodą LED. Co jes charakerysyczne dla promienia emiowanego z akiego urządzenia? Po pierwsze, wiązka jes równoległa- nie zmienia swojej szerokości niezależnie, czy pada na karkę papieru w odległości cm, czy eż ścianę odległą o m. Drugą, wręcz isoniejszą, cechą akiego promienia jes sinusoidalna ampliuda pola elekrycznego. Co za ym idzie- wysępuje ylko jedna częsoliwość drgań. Dzięki emu możemy ławo obserwować inerferencję- gdy nasępuje w danym miejscu wygaszenie, nie jes zasłaniane przez nakładanie się fal innej długości.. Właśnie en efek odpowiada za charakerysyczne iskrzenie plamki lasera- nierówności karki wysarczają, zaobserwować chaoyczną inerferencję. Dodawaniemodów Modemnazywamyjednąskładowąsinusoidalną,czylià i cos(ω i +α i ).Laseropisany w pk. działa w jednym modzie. Zasanówmy się, czy dodawanie akich składowych da jakieś ciekawe efeky. Zobaczmy, co się sanie, gdy dodamy kilka kolejnych modów o jednoskowejampliudzie(ãi=)icałkowiychczęsoliwościach(ω i =i).zbadajmyosobo przypadekα i =orazα i losowego.sumybędąmiałyposać: +σ σ cos(ω i +α i ) Nierudnozauważyćw[rys.],żeoileskładaniemodówzlosowychfazdaje szum, owpewienuporządkowanyukładα i (u:sały)pociągazasobąorzymanieswoisych impulsów-średniaenergia( E )wyraźnieniejessała.

2 Widmo Impulsα i losowe Impulsα i = σ= σ= σ= σ= Rysunek : Wykresy widm oraz odpowiadających drgań, z rozróżnieniem na przypadki losowej i usalonej fazy. 3 Laseryimpulsowe Okazuje się, że mnogość modów w jednym laserze jes osiągalna. Trzeba jednak zapewnić kilka warunków: Wnęka rezonansowa musi wzmacniać wiele częsoliwości. Zymniemaproblemu,niemożebyćjednakzbykróka-wedyodsępymiędzy kolejnymi wzmacnianymi częsoliwościami były by zby duże Emisja wymuszona musi zachodzić dla odpowiednio dużego zakresu częsoliwości. W gazach jes sosunkowo mało poziomów energeycznych- wysępuje ylko kilka linii absorbcyjno-emisyjnych. W prawdzie poruszające się molekuły dają przesuniecie dopplerowskie, jednak jes ono wąskie. Z kolei zarówno w ciele sałym jak i cieczach, na skuek wzajemnych oddziaływań, poziomów energeycznych jes mulum. Jes o powodem szerokiego zasosowania rozworów barwników jako środka wzmacniającego. Faza składowych musi zosać powiązana. Począkowo mody mają różne fazy i rzeba je wzajemnie wyzerować. Większość meod

3 działa w oparciu o eliminowanie szumów i faworyzowanie impulsów- powsanie ich jes ożsame z ułożeniem fazy modów. Zobaczmy widmo oraz pola elekryczne lasera impulsowego[rys. ]. By porównać go z laserem ciągłym wysarczy spojrzeć na pierwszy wiersz z[rys. ] Σ Σ Τ Τ Ã(ω)=e (ω ω ) σ R(())= σe σ cos(ω ) π Rysunek : Czyse widmo lasera femosekundowego i impuls O ile formalne przejście z widma do zw. domeny czasowej wymaga znajomości ransformay Fouriera, można posarać się o jej opowiedzenie, przynajmniej w powyższym przypadku. Skoro widmo jes symeryczne, cały czas oscylacje zachodzą z częsością średnią, ω.jednakczymdalejod=(gdziefazywszyskichmodówsąakiesame)ymbardziej poszczególne składowe się uśredniają, zmniejszając ampliudę obwiedni. Wynika sąd eż wniosek, że czym szersze widmo, ym szybciej zajdzie wygaszenie, a zaem i czas rwania impulsu sanie się krószy. Może paść nasępujące pyanie: czy aki laser emiuje ylko jeden impuls? Nie. Jednak wyżej podany opis jes bardzo wygodny maemaycznie. W rzeczywisości widmo nie jes ciągłe(składa się z bardzo wielu kresek ), co daje pewną perdiodyczność. Czym odsępymiędzyposzczególnymimodami( ω=ω i+ ω i )sąmniejsze,ymwiększyokres sygnału T. Dokładny związek(prawdziwy dla dowolnego impulsu) o: T= π ω, ω i=k ω, i Jes o dość nauralny fak- skoro wszyskie wysępujące częsości są wielokronościami ω, po okresie T faza wszyskich ich wraca do począkowej. Jakowyglądawprakyce?PrzykładowodlajednegozlaserówTi:l O 3 (szafir domieszkowany yanem) znajdującego się w Laboraorium Procesów Ulraszybkich na Wydziale Fizyki UW dane są nasępujące: ω =,35 fs, σ=,8 fs, T=3ns, P r=,3w(średniamoc) Wypadałobyprzypomnieć,żeω odpowiadadługościfaliwpróżniλ=8nmzrozrzuem ±3nm. W prawdzie jes o już bliska podczerwień, ale dla wysępującej średniej mocy 3

4 odbicie od białej karki jes bardzo jasne dla ludzkiego oka. Czas po kórym obwiednia jes mnożonaprzezczynnike,37oτ=3fs.możnaprzyjąć,żeimpulsrwaτ=fs, gdyż w ym czasie znajduje się > 99% przenoszonej przez niego energii. Z akura akiego rzęduczasu 5 s=fsprzyjęłosięnazywaćomawianelaseryfemosekundowymi.nic eraz nie soi na przeszkodzie, by pokusić się o policzenie chwilowej mocy: P imp =P T τ P imp =8, W Biorąc pod uwagę średnicę wiązki, przyjmimy r = mm, chwilowa równowaga zaszła by z ciałem doskonale czarnym o emperaurze kk. Waro zwrócić jednak uwagę, że isnieją sposoby, by T było rzędu miliherców- co pociąga za sobą olbrzymie moce chwilowe! Ciekaweimpulsy Czy isnieje jakiś w miarę prosy sposób na modyfikację widma? Okazuję się, że ak. Monując, jak na[rys. 3], układ z siaki dyfrakcyjnej, lusra wklęsłego i płaskiego wiązka rozszczepia się ze względu na widmo, po czym ponownie łączy. W akim usawieniu nic się specjalnego nie dzieje. le gdy przy samym płaskim zwierciadle umieści się kawałek nieprzeźroczysego maeriału, pochłania on część widma. a) b) Rysunek 3: Schema układu umożliwiającego wybiórcze wycinanie widma. G- siaka dyfrakcyjna,m-lusrowklęsłe,m-lusropłaskie,f-miejscewkóremożnawłożyćfilr. Wiązka wchodząca a) i wychodzące b) są oznaczona czerwonym kolorem. Ką padania jes wiązki na M jes bliski prosemu, jednak nie jes jemu równy, co umożliwia rozdzielenie wiązek wchodzącej od wychodzącej. Obcinając pewne części funkcji Gaussa powsają widma o kszałcie ławo przybliżalnym do prosych figur. Zwracam jednak uwagę, że obcinając widmo, jes ono węższe, a zaem i impuls powinien być dłuższy. W rzeczywisych przypadkach liczba oscylacji w czasie rwania akich sygnałów jes większa niż dla czysego sygnału.

5 Ã(ω)= { ω (ω ;ω ) ω/ (ω ;ω ) Rysunek : Widmo prosokąne -5 5 R(())= cos(ω +ω )sin( ω ω ) π. Prosoką Jednym z narzucających się pomysłów jes symeryczne pozbycie się boków. W efekcie powsaje widmo, kóre można przybliżyć prosokąem. Pole elekryczne saje się dudnieniem malejącym jak odwroność czasu. Nie wysępuje żadna asympoa pionowa wokół =,gdyżdlamałychargumenówsin(x) =x,acozaymidzie sin( (ω ω )) = ω ω. Trójką Ã(ω)= { ω ω ω (ω ;ω ) ω/ (ω ;ω ) -5 5 R(())= sin(ω ω )sin( ω +ω ) + (ω ω )sin(ω ) π π Rysunek 5: Widmo rójkąne Można eż zrobić co innego- obciąć jeden bok, nawe z nadmiarem. Dosajemy coś podobnego do rójkąa- i w isocie akie oszacowanie jes dobre. Sygnał zachowuje się jaksumadudnienia,ymrazemspadającegojak,isinusoidyzmniejszającejsięjak (kóra o dominuje na dalszych dysansach). 5

6 .3 Grzebień Obwiednia gaussowska Suma widm prosokąnych Impulsy gaussowskie Obwiednia jak u widma pros. Rysunek : Widmo sumy prosokąów o obwiedni rozkładu Gaussa Najciekawszym jednak przypadkiem jes funkcja w funkcji - uaj suma widm prosokąnych o ampliudach jak w rozkładzie Gaussa. Ważne, by paski miały aką samą szerokość i były równomiernie rozsawione. Co jes niezwykle ineresujące, dosajemy sumę impulsów gaussowskich(o szerokości i oscylacjach, jakie by wynikały z obwiedni widma) oddalonych od siebie równomiernie. Waro dodać, że czas między nimi spełnia zależność T= π.zkoleiichampliudyzmieniająsięwsposób,jakizachodzidlaobwiednioscylacji ω powsałych z widma prosokąnego! Uzyskaliśmy aki efek, wpierw bez wiedzy o jego wspaniałych konsekwencjach, wkładając w roli filra grzebień(!) kolegi. 5 Faza Zobaczmy, co się dzieje przy przejściu przez jakikolwiek impuls pewnej odległości. Oczywiście, jak dla każdej fali, przesunięcie w przesrzeni jes równoznaczne z opóźnieniem w czasie razy prędkość. Dodakowydrogaopycznaajesprzebywanawczasie= a.toimplikujezmianę c fazy(argumenucosinusa)o α=ω,czyliorzymujemy α= ωa.oznaczao,żeopóź- nienie impulsu powoduje liniową zmianę fazy. Można eż powiedzieć o samo w drugą sronę c - liniowa faza widma mówi o opóźnieniu impulsu. Ono nas jednak w większości zasosowań nie ineresuje- liniowość widma jes więc nieszkodliwa. Można jednak zapyać, co by się sało, gdyby przesunąć ylko część widma. Szczególnie ciekawie przedsawia się możliwość jego zmiany dla połowy rozkładu Gaussa. Jak ego dokonać? Wysarczy zamias filra usawić cienkie płyki(np. szybki do preparaów mikroskopowych). Dbając(ławo sprawdzić przy pomocy inerferencji) by każda z osobna miała wzdłuż jednej linii sałą grubość, można z nich zrobić przesuwacze fazy. Obracając je

7 zmieniamy drogę, jaką w niej przebywa świało. Z uwagi, że mają współczynnik załamania większy od powierza, pole e-m przez nie przechodzące przemierza większą drogę opyczną niż gdyby odbywało ją w powierzu. Jako, że liniowe przesunięcie fazy całości widma nas nie ineresuje, zwracamy uwagę ylko na różnicę przebyej drogi opycznej. Możnaakusawićpłyki,byfazadlaω +σbyłaπ.gdyylkoω >>σwygodnie jesprzybliżyć,żemamydoczynieniazdrugąpołowąwidmawfazieπ-prakycznienie ineresujenaswidmoodleglejszeniżwω+σ. Zprosegozwiązkucos(α+π)= cos(α)wynika,żenależyodpierwszejpołowy krzywej Gaussa odjąć drugą..8.. Π e (ω ω ) e (ω ω ) Ã(ω)= σ ω<ω -.5 σ ω>ω R(())= σ π e Rysunek 7: Widmo z obróconą połową -5 5 σ sin(ω ) σ/ e x dx Chirp Przy przechodzeniu przez grubszą warswę dielekryka, np. kilkucenymerowego kryszałulenkukrzemusio,wyraźnesajesięzw.chirp.ocouchodzi? n fs Rysunek8:ZależnośćwspółczynnikazałamaniaodczęsoscifalidlaSiO ;przybliżeniewokól ω=,35 fs 7

8 Współczynnik załamania zależy od długości fali. Jeśli ineresuje nas ylko mały wycinekzcałegomożliwegospekrum(np.jakna[rys.8],5,5,funkcjaliniowamoże fs byćdobrymprzybliżeniemzależnościn(w).czyli,mającdrogęgeomerycznąa,zapisujemy: W efekcie orzymujemy przesunięcie fazy: a=a n(w) =a (k ω+k ) α= ωa α c = ωa (k ω+k ) = a k c c ω + a k c ω Opóźnienie nas nie ineresuje, więc czynnik liniowy opuszczamy. Współczynnik oznaczamy jako η: α = a k c ω η= a k c α =ηω Ã(ω)=e (ω ω ) σ +ηω R(())= e σ (+η σ ) cos - - ( ) arcg( ησ )+ω ησ (+η σ ) π(η +σ ) / Rysunek 9: Widmo z kwadraową zmianą fazy; zmiana częsości podniesiona o czynnik dla uwidocznienia efeku Należy zwrócić uwagę, że okres drgań cosinusa zależy od czasu. W szczególności można zapisać: ω =ω ησ (+η σ ) Isone jes jeszcze, że z powodu zwiększającego się mianownika w wykładniku cały impuls się wydłuża, co zwykle nie jes pożądanym efekem. 7 Zakończenie Gdzie jednak akie urządzenie może znaleźć swoje zasosowanie? Oóż z połączenia dwóch podsawowych cech lasera femosekundowego, rozpięości widma i krókości impulsu, korzysają chemicy. Mają możliwość zarówno inicjacji reakcji chemicznych jak i szybkiego sprawdzenia co się dzieje przez badanie pochłaniania rozworu. Chciałbym podziękować prof. dr hab. Czesławowi Radzewiczowi oraz Krajowemu Funduszowi na rzecz Dzieci za umożliwienie zagłębienia omawianego zagadnienia. 8

Przykład: Fale anharmoniczne będące sumami oscylacji sinusoidalnych: Fourierowska reprezentacja fali prostokątnej: Analiza Fouriera 1/18/2010

Przykład: Fale anharmoniczne będące sumami oscylacji sinusoidalnych: Fourierowska reprezentacja fali prostokątnej: Analiza Fouriera 1/18/2010 Wykład 3 Wprowadzenie do opyki ulraszybkiej Przykład: Fale anharmoniczne będące sumami oscylacji sinusoidalnych: RozwaŜmy sumę fal sinusoidalnych (o jes harmonicznych) o róŝnych częsościach: O analizie

Bardziej szczegółowo

ANALIZA HARMONICZNA RZECZYWISTYCH PRZEBIEGÓW DRGAŃ

ANALIZA HARMONICZNA RZECZYWISTYCH PRZEBIEGÓW DRGAŃ Ćwiczenie 8 ANALIZA HARMONICZNA RZECZYWISTYCH PRZEBIEGÓW DRGAŃ. Cel ćwiczenia Analiza złożonego przebiegu drgań maszyny i wyznaczenie częsoliwości składowych harmonicznych ego przebiegu.. Wprowadzenie

Bardziej szczegółowo

Ruch płaski. Bryła w ruchu płaskim. (płaszczyzna kierująca) Punkty bryły o jednakowych prędkościach i przyspieszeniach. Prof.

Ruch płaski. Bryła w ruchu płaskim. (płaszczyzna kierująca) Punkty bryły o jednakowych prędkościach i przyspieszeniach. Prof. Ruch płaski Ruchem płaskim nazywamy ruch, podczas kórego wszyskie punky ciała poruszają się w płaszczyznach równoległych do pewnej nieruchomej płaszczyzny, zwanej płaszczyzną kierującą. Punky bryły o jednakowych

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 8 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15

Bardziej szczegółowo

Ćwiczenie 6 WŁASNOŚCI DYNAMICZNE DIOD

Ćwiczenie 6 WŁASNOŚCI DYNAMICZNE DIOD 1. Cel ćwiczenia Ćwiczenie 6 WŁASNOŚCI DYNAMICZNE DIOD Celem ćwiczenia jes poznanie własności dynamicznych diod półprzewodnikowych. Obejmuje ono zbadanie sanów przejściowych podczas procesu przełączania

Bardziej szczegółowo

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych.

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych. Równania różniczkowe. Lisa nr 2. Lieraura: N.M. Mawiejew, Meody całkowania równań różniczkowych zwyczajnych. W. Krysicki, L. Włodarski, Analiza Maemayczna w Zadaniach, część II 1. Znaleźć ogólną posać

Bardziej szczegółowo

Ćwiczenie: "Zagadnienia optyki"

Ćwiczenie: Zagadnienia optyki Ćwiczenie: "Zagadnienia optyki" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1.

Bardziej szczegółowo

Wymagania przedmiotowe z fizyki - klasa III (obowiązujące w roku szkolnym 2013/2014)

Wymagania przedmiotowe z fizyki - klasa III (obowiązujące w roku szkolnym 2013/2014) Wymagania przedmioowe z izyki - klasa III (obowiązujące w roku szkolnym 013/014) 8. Drgania i ale sprężyse!wskazuje w ooczeniu przykłady ciał wykonujących ruch drgający!podaje znaczenie pojęć: położenie

Bardziej szczegółowo

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania z fizyki, wzory fizyczne, fizyka matura

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania z fizyki, wzory fizyczne, fizyka matura 12. Fale elektromagnetyczne zadania z arkusza I 12.5 12.1 12.6 12.2 12.7 12.8 12.9 12.3 12.10 12.4 12.11 12. Fale elektromagnetyczne - 1 - 12.12 12.20 12.13 12.14 12.21 12.22 12.15 12.23 12.16 12.24 12.17

Bardziej szczegółowo

CHARAKTERYSTYKA WIĄZKI GENEROWANEJ PRZEZ LASER

CHARAKTERYSTYKA WIĄZKI GENEROWANEJ PRZEZ LASER CHARATERYSTYA WIĄZI GENEROWANEJ PRZEZ LASER ształt wiązki lasera i jej widmo są rezultatem interferencji promieniowania we wnęce rezonansowej. W wyniku tego procesu powstają charakterystyczne rozkłady

Bardziej szczegółowo

POMIARY CZĘSTOTLIWOŚCI I PRZESUNIĘCIA FAZOWEGO SYGNAŁÓW OKRESOWYCH. Cel ćwiczenia. Program ćwiczenia

POMIARY CZĘSTOTLIWOŚCI I PRZESUNIĘCIA FAZOWEGO SYGNAŁÓW OKRESOWYCH. Cel ćwiczenia. Program ćwiczenia Pomiary częsoliwości i przesunięcia fazowego sygnałów okresowych POMIARY CZĘSOLIWOŚCI I PRZESUNIĘCIA FAZOWEGO SYGNAŁÓW OKRESOWYCH Cel ćwiczenia Poznanie podsawowych meod pomiaru częsoliwości i przesunięcia

Bardziej szczegółowo

VII.5. Eksperyment Michelsona-Morleya.

VII.5. Eksperyment Michelsona-Morleya. Janusz. Kępka Ruch absoluny i względny VII.5. Eksperymen Michelsona-Morleya. Zauważmy że pomiar ruchu absolunego jakiegokolwiek obieku maerialnego z założenia musi odnosić się do prędkości fali świelnej

Bardziej szczegółowo

Matematyka A, kolokwium, 15 maja 2013 rozwia. ciem rozwia

Matematyka A, kolokwium, 15 maja 2013 rozwia. ciem rozwia Maemayka A kolokwium maja rozwia zania Należy przeczyać CA LE zadanie PRZED rozpocze ciem rozwia zywania go!. Niech M. p. Dowieść że dla każdej pary liczb ca lkowiych a b isnieje aka para liczb wymiernych

Bardziej szczegółowo

Rozkład i Wymagania KLASA III

Rozkład i Wymagania KLASA III Rozkład i Wymagania KLASA III 10. Prąd Lp. Tema lekcji Wymagania konieczne 87 Prąd w mealach. Napięcie elekryczne opisuje przepływ w przewodnikach, jako ruch elekronów swobodnych posługuje się inuicyjnie

Bardziej szczegółowo

4.1 Obsługa oscyloskopu(f10)

4.1 Obsługa oscyloskopu(f10) 164 Fale 4.1 Obsługa oscyloskopu(f10) Bezpośrednim celem ćwiczenia jes zapoznanie się z działaniem i obsługą oscyloskopuak,abywprzyszłościmożnabyłoprzyjegopomocywykonywaćpomiary.wym celu należy przeprowadzić

Bardziej szczegółowo

Szkoła z przyszłością. szkolenie współfinansowane przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Szkoła z przyszłością. szkolenie współfinansowane przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Szkoła z przyszłośią szkolenie współfinansowane przez Unię Europejską w ramah Europejskiego Funduszu Społeznego Narodowe Cenrum Badań Jądrowyh, ul. Andrzeja Sołana 7, 05-400 Owok-Świerk ĆWICZENIE a L A

Bardziej szczegółowo

LINIA DŁUGA Konspekt do ćwiczeń laboratoryjnych z przedmiotu TECHNIKA CYFROWA

LINIA DŁUGA Konspekt do ćwiczeń laboratoryjnych z przedmiotu TECHNIKA CYFROWA LINIA DŁUGA Z Z, τ e u u Z L l Konspek do ćwiczeń laboraoryjnych z przedmiou TECHNIKA CYFOWA SPIS TEŚCI. Definicja linii dłuiej... 3. Schema zasępczy linii dłuiej przedsawiony za pomocą elemenów o sałych

Bardziej szczegółowo

Pomiar drogi koherencji wybranych źródeł światła

Pomiar drogi koherencji wybranych źródeł światła Politechnika Gdańska WYDZIAŁ ELEKTRONIKI TELEKOMUNIKACJI I INFORMATYKI Katedra Optoelektroniki i Systemów Elektronicznych Pomiar drogi koherencji wybranych źródeł światła Instrukcja do ćwiczenia laboratoryjnego

Bardziej szczegółowo

Wymagania na poszczególne oceny przy realizacji programu i podręcznika Świat fizyki Klasa III

Wymagania na poszczególne oceny przy realizacji programu i podręcznika Świat fizyki Klasa III 9. O elekryczności saycznej Wymagania na poszczególne oceny przy realizacji i podręcznika Świa fizyki Klasa III Tema według 9.1. Elekryzowanie przez arcie i zeknięcie z ciałem naelekryzowanym opisuje budowę

Bardziej szczegółowo

Wymagania na poszczególne oceny przy realizacji programu i podręcznika Zrozumieć fizykę

Wymagania na poszczególne oceny przy realizacji programu i podręcznika Zrozumieć fizykę Klasa III 10. Prąd elekryczny Tema według 10.1. Prąd elekryczny w mealach. Napięcie elekryczne 10.. Źródła prądu. Obwód elekryczny Wymagania na poszczególne oceny przy realizacji i podręcznika Zrozumieć

Bardziej szczegółowo

Prawa optyki geometrycznej

Prawa optyki geometrycznej Optyka Podstawowe pojęcia Światłem nazywamy fale elektromagnetyczne, o długościach, na które reaguje oko ludzkie, tzn. 380-780 nm. O falowych własnościach światła świadczą takie zjawiska, jak ugięcie (dyfrakcja)

Bardziej szczegółowo

Politechnika Warszawska Instytut Mikroelektroniki i Optoelektroniki Zakład Optoelektroniki

Politechnika Warszawska Instytut Mikroelektroniki i Optoelektroniki Zakład Optoelektroniki Politechnika Warszawska Instytut Mikroelektroniki i Optoelektroniki Zakład Optoelektroniki LASEROWY POMIAR ODLEGŁOŚCI INTERFEROMETREM MICHELSONA Instrukcja wykonawcza do ćwiczenia laboratoryjnego ćwiczenie

Bardziej szczegółowo

Wymagania edukacyjne z fizyki dla klasy III

Wymagania edukacyjne z fizyki dla klasy III edukacyjne z fizyki dla klasy III edukacyjne z fizyki dla klasy III gimnazjum opare na programie nauczania Świa fizyki, auorswa B. Sagnowskiej (wersja 2), wydawnicwa Zamkor, 10. Prąd Tema według 10.1.

Bardziej szczegółowo

OTRZYMYWANIE KRÓTKICH IMPULSÓW LASEROWYCH

OTRZYMYWANIE KRÓTKICH IMPULSÓW LASEROWYCH OTRZYMYWANIE KRÓTKICH IMPULSÓW LASEROWYCH Impulsowe lasery na ciele stałym są najbardziej ważnymi i szeroko rozpowszechnionymi systemami laserowymi. Np laser Nd:YAG jest najczęściej stosowany do znakowania,

Bardziej szczegółowo

Pomiar długości fali świetlnej i stałej siatki dyfrakcyjnej.

Pomiar długości fali świetlnej i stałej siatki dyfrakcyjnej. POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY KATEDRA FIZYKOCHEMII I TECHNOLOGII POLIMERÓW LABORATORIUM Z FIZYKI Pomiar długości fali świetlnej i stałej siatki dyfrakcyjnej. Wprowadzenie Przy opisie zjawisk takich

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 7 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15

Bardziej szczegółowo

DOKŁADNOŚĆ POMIARU DŁUGOŚCI 1

DOKŁADNOŚĆ POMIARU DŁUGOŚCI 1 DOKŁADNOŚĆ POMIARU DŁUGOŚCI 1 I. ZAGADNIENIA TEORETYCZNE Niepewności pomiaru standardowa niepewność wyniku pomiaru wielkości mierzonej bezpośrednio i złożona niepewność standardowa. Przedstawianie wyników

Bardziej szczegółowo

Sprzęganie światłowodu z półprzewodnikowymi źródłami światła (stanowisko nr 5)

Sprzęganie światłowodu z półprzewodnikowymi źródłami światła (stanowisko nr 5) Wojciech Niwiński 30.03.2004 Bartosz Lassak Wojciech Zatorski gr.7lab Sprzęganie światłowodu z półprzewodnikowymi źródłami światła (stanowisko nr 5) Zadanie laboratoryjne miało na celu zaobserwowanie różnic

Bardziej szczegółowo

WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ

WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ ĆWICZENIE 84 WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ Cel ćwiczenia: Wyznaczenie długości fali emisji lasera lub innego źródła światła monochromatycznego, wyznaczenie stałej siatki

Bardziej szczegółowo

Niezwykłe światło. ultrakrótkie impulsy laserowe. Piotr Fita

Niezwykłe światło. ultrakrótkie impulsy laserowe. Piotr Fita Niezwykłe światło ultrakrótkie impulsy laserowe Laboratorium Procesów Ultraszybkich Zakład Optyki Wydział Fizyki Uniwersytetu Warszawskiego Światło Fala elektromagnetyczna Dla światła widzialnego długość

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE

WYMAGANIA EDUKACYJNE GIMNAZJUM NR 2 W RYCZOWIE WYMAGANIA EDUKACYJNE niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z FIZYKI w klasie III gimnazjum sr. 1 7. Przemiany energii w zjawiskach

Bardziej szczegółowo

Szczegółowe wymagania edukacyjne z fizyki dla klas drugich i trzecich gimnazjum

Szczegółowe wymagania edukacyjne z fizyki dla klas drugich i trzecich gimnazjum Szczegółowe wymagania edukacyjne z fizyki dla klas drugich i rzecich gimnazjum 5. Siły w przyrodzie Lp. Tema lekcji Wymagania konieczne 44 Rodzaje i skuki oddziaływań wymienia różne rodzaje oddziaływania

Bardziej szczegółowo

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 6 Temat: Wyznaczenie stałej siatki dyfrakcyjnej i dyfrakcja światła na otworach kwadratowych i okrągłych. 1. Wprowadzenie Fale

Bardziej szczegółowo

ZASTOSOWANIE ZJAWISKA CAŁKOWITEGO WEWNĘTRZNEGO ODBICIA W ŚWIATŁOWODACH

ZASTOSOWANIE ZJAWISKA CAŁKOWITEGO WEWNĘTRZNEGO ODBICIA W ŚWIATŁOWODACH ZASTOSOWANIE ZJAWISKA CAŁKOWITEGO WEWNĘTRZNEGO ODBICIA W ŚWIATŁOWODACH 1. ODBICIE I ZAŁAMANIE ŚWIATŁA 1.1. PRAWO ODBICIE I ZAŁAMANIA ŚWIATŁA Gdy promień światła pada na granicę pomiędzy dwiema różnymi

Bardziej szczegółowo

PODSTAWY FIZYKI LASERÓW Wstęp

PODSTAWY FIZYKI LASERÓW Wstęp PODSTAWY FIZYKI LASERÓW Wstęp LASER Light Amplification by Stimulation Emission of Radiation Składa się z: 1. ośrodka czynnego. układu pompującego 3.Rezonator optyczny - wnęka rezonansowa Generatory: liniowe

Bardziej szczegółowo

Warstwa fizyczna. Model OSI Model TCP/IP. Aplikacji. Aplikacji. Prezentacji. Sesji. Transportowa. Transportowa. Sieciowa. Sieciowa.

Warstwa fizyczna. Model OSI Model TCP/IP. Aplikacji. Aplikacji. Prezentacji. Sesji. Transportowa. Transportowa. Sieciowa. Sieciowa. Warswa fizyczna Model OSI Model TCP/IP Aplikacji Prezenacji Aplikacji Sesji Transporowa Sieciowa Transporowa Sieciowa przesłanie informacji przez nośnik fizyczny Łącza danych Fizyczna Dosępu do sieci Przegląd

Bardziej szczegółowo

WNIOSKOWANIE STATYSTYCZNE

WNIOSKOWANIE STATYSTYCZNE Wnioskowanie saysyczne w ekonomerycznej analizie procesu produkcyjnego / WNIOSKOWANIE STATYSTYCZNE W EKONOMETRYCZNEJ ANAIZIE PROCESU PRODUKCYJNEGO Maeriał pomocniczy: proszę przejrzeć srony www.cyf-kr.edu.pl/~eomazur/zadl4.hml

Bardziej szczegółowo

Dobór przekroju żyły powrotnej w kablach elektroenergetycznych

Dobór przekroju żyły powrotnej w kablach elektroenergetycznych Dobór przekroju żyły powronej w kablach elekroenergeycznych Franciszek pyra, ZPBE Energopomiar Elekryka, Gliwice Marian Urbańczyk, Insyu Fizyki Poliechnika Śląska, Gliwice. Wsęp Zagadnienie poprawnego

Bardziej szczegółowo

Fig. 1. Interferometr A. A. Michelsona.

Fig. 1. Interferometr A. A. Michelsona. Efek Sagnaa dr Janusz. Kępka Wsęp. Jednym z najbardziej reklamowanyh eksperymenów był i jes eksperymen lbera brahama Mihelsona zapoząkowany w 88, i nasępnie powarzany po roku 880 we współpray z Ewardem

Bardziej szczegółowo

Propagacja światła we włóknie obserwacja pól modowych.

Propagacja światła we włóknie obserwacja pól modowych. Propagacja światła we włóknie obserwacja pól modowych. Przy pomocy optyki geometrycznej łatwo można przedstawić efekty propagacji światła tylko w ośrodku nieograniczonym. Nie ukazuje ona jednak interesujących

Bardziej szczegółowo

WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH

WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH SaSof Polska, el. 12 428 43 00, 601 41 41 51, info@sasof.pl, www.sasof.pl WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH Joanna Maych, Krajowy Depozy Papierów

Bardziej szczegółowo

Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki.

Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki. Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki. 1. Równanie soczewki i zwierciadła kulistego. Z podobieństwa trójkątów ABF i LFD (patrz rysunek powyżej) wynika,

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z FIZYKI WYMAGANIA EDUKACYJNE DLA UCZNIÓW KLAS I

PRZEDMIOTOWY SYSTEM OCENIANIA Z FIZYKI WYMAGANIA EDUKACYJNE DLA UCZNIÓW KLAS I PRZEDMIOTOWY SYSTEM OCENIANIA Z FIZYKI WYMAGANIA EDUKACYJNE DLA UCZNIÓW KLAS I Wymagania konieczne ocena dopuszczająca wie że długość i odległość mierzymy w milimerach cenymerach merach lub kilomerach

Bardziej szczegółowo

POMIAR APERTURY NUMERYCZNEJ

POMIAR APERTURY NUMERYCZNEJ ĆWICZENIE O9 POMIAR APERTURY NUMERYCZNEJ ŚWIATŁOWODU KATEDRA FIZYKI 1 Wstęp Prawa optyki geometrycznej W optyce geometrycznej, rozpatrując rozchodzenie się fal świetlnych przyjmuje się pewne założenia

Bardziej szczegółowo

Analiza i Zarządzanie Portfelem cz. 6 R = Ocena wyników zarządzania portfelem. Pomiar wyników zarządzania portfelem. Dr Katarzyna Kuziak

Analiza i Zarządzanie Portfelem cz. 6 R = Ocena wyników zarządzania portfelem. Pomiar wyników zarządzania portfelem. Dr Katarzyna Kuziak Ocena wyników zarządzania porelem Analiza i Zarządzanie Porelem cz. 6 Dr Kaarzyna Kuziak Eapy oceny wyników zarządzania porelem: - (porolio perormance measuremen) - Przypisanie wyników zarządzania porelem

Bardziej szczegółowo

17. Który z rysunków błędnie przedstawia bieg jednobarwnego promienia światła przez pryzmat? A. rysunek A, B. rysunek B, C. rysunek C, D. rysunek D.

17. Który z rysunków błędnie przedstawia bieg jednobarwnego promienia światła przez pryzmat? A. rysunek A, B. rysunek B, C. rysunek C, D. rysunek D. OPTYKA - ĆWICZENIA 1. Promień światła padł na zwierciadło tak, że odbił się od niego tworząc z powierzchnią zwierciadła kąt 30 o. Jaki był kąt padania promienia na zwierciadło? A. 15 o B. 30 o C. 60 o

Bardziej szczegółowo

Transmisja analogowa i cyfrowa. Transmisja analogowa i cyfrowa

Transmisja analogowa i cyfrowa. Transmisja analogowa i cyfrowa Transmisja analogowa i cyfrowa KOSZT TELETRANSMISJI Kosz orów eleransmisyjnych (kable, urządzenia wzmacniające oraz inne) sanowił - w sieci analogowej - około 70-80 % koszów infrasrukury elekomunikacyjnej

Bardziej szczegółowo

4.4. Obliczanie elementów grzejnych

4.4. Obliczanie elementów grzejnych 4.4. Obiczanie eemenów grzejnych Po wyznaczeniu wymiarów przewodu grzejnego naeży zaprojekować eemen grzejny, a więc okreśić wymiary skręki grzejnej czy eemenu faisego (wężownicy grzejnej, meandra grzejnego).

Bardziej szczegółowo

LABORATORIUM PODSTAWY ELEKTRONIKI Badanie Bramki X-OR

LABORATORIUM PODSTAWY ELEKTRONIKI Badanie Bramki X-OR LORTORIUM PODSTWY ELEKTRONIKI adanie ramki X-OR 1.1 Wsęp eoreyczny. ramka XOR ramka a realizuje funkcję logiczną zwaną po angielsku EXLUSIVE-OR (WYŁĄZNIE LU). Polska nazwa brzmi LO. Funkcję EX-OR zapisuje

Bardziej szczegółowo

Wyznaczanie rozmiarów szczelin i przeszkód za pomocą światła laserowego

Wyznaczanie rozmiarów szczelin i przeszkód za pomocą światła laserowego Ćwiczenie O5 Wyznaczanie rozmiarów szczelin i przeszkód za pomocą światła laserowego O5.1. Cel ćwiczenia Celem ćwiczenia jest wykorzystanie zjawiska dyfrakcji i interferencji światła do wyznaczenia rozmiarów

Bardziej szczegółowo

Dzień dobry. Miejsce: IFE - Centrum Kształcenia Międzynarodowego PŁ, ul. Żwirki 36, sala nr 7

Dzień dobry. Miejsce: IFE - Centrum Kształcenia Międzynarodowego PŁ, ul. Żwirki 36, sala nr 7 Dzień dobry BARWA ŚWIATŁA Przemysław Tabaka e-mail: przemyslaw.tabaka@.tabaka@wp.plpl POLITECHNIKA ŁÓDZKA Instytut Elektroenergetyki Co to jest światło? Światło to promieniowanie elektromagnetyczne w zakresie

Bardziej szczegółowo

ZMĘCZENIE MATERIAŁÓW PODSTAWY, KIERUNKI BADAŃ, OCENA STANU USZKODZENIA

ZMĘCZENIE MATERIAŁÓW PODSTAWY, KIERUNKI BADAŃ, OCENA STANU USZKODZENIA ------------------------------------------------------------------------------------------------ Siedemnase Seminarium NIENISZCZĄCE BADANIA MATERIAŁÓW Zakopane, 8-11 marca 211 ------------------------------------------------------------------------------------------------

Bardziej szczegółowo

Sposób wykonania ćwiczenia. Płytka płasko-równoległa. Rys. 1. Wyznaczanie współczynnika załamania materiału płytki : A,B,C,D punkty wbicia szpilek ; s

Sposób wykonania ćwiczenia. Płytka płasko-równoległa. Rys. 1. Wyznaczanie współczynnika załamania materiału płytki : A,B,C,D punkty wbicia szpilek ; s WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU Cel ćwiczenia: 1. Zapoznanie z budową i zasadą działania mikroskopu optycznego.. Wyznaczenie współczynnika załamania światła

Bardziej szczegółowo

Dr inŝ. Janusz Eichler Dr inŝ. Jacek Kasperski. ODSTĘPSTWA RZECZYWISTEGO OBIEGU ABSORPCYJNO-DYFUZYJNEGO OD OBIEGU TEORETYCZNEGO (część I).

Dr inŝ. Janusz Eichler Dr inŝ. Jacek Kasperski. ODSTĘPSTWA RZECZYWISTEGO OBIEGU ABSORPCYJNO-DYFUZYJNEGO OD OBIEGU TEORETYCZNEGO (część I). Dr inŝ Janusz Eichler Dr inŝ Jacek Kasperski Zakład Chłodnicwa i Kriogeniki Insyu echniki Cieplnej i Mechaniki Płynów I-20 Poliechnika Wrocławska ODSĘPSWA RZECZYWISEGO OBIEGU ABSORPCYJNO-DYFUZYJNEGO OD

Bardziej szczegółowo

Ćwiczenie E-5 UKŁADY PROSTUJĄCE

Ćwiczenie E-5 UKŁADY PROSTUJĄCE KŁADY PROSJĄCE I. Cel ćwiczenia: pomiar podsawowych paramerów prosownika jedno- i dwupołówkowego oraz najprosszych filrów. II. Przyrządy: płyka monaŝowa, wolomierz magneoelekryczny, wolomierz elekrodynamiczny

Bardziej szczegółowo

Telewizja część. 1. Kilka faktów z historii telewizji. Jak powstaje, jak jest przesyłany i odtwarzany obraz telewizyjny?

Telewizja część. 1. Kilka faktów z historii telewizji. Jak powstaje, jak jest przesyłany i odtwarzany obraz telewizyjny? Telewizja część Kilka aków z hisorii elewizji Jak powsaje, jak jes przesyłany i odwarzany obraz elewizyjny?. Kilka aków z hisorii elewizji 877 ilozo i psycholog Julian Ochorowicz określi lił ogólne zasady

Bardziej szczegółowo

UMO-2011/01/B/ST7/06234

UMO-2011/01/B/ST7/06234 Załącznik nr 9 do sprawozdania merytorycznego z realizacji projektu badawczego Szybka nieliniowość fotorefrakcyjna w światłowodach półprzewodnikowych do zastosowań w elementach optoelektroniki zintegrowanej

Bardziej szczegółowo

Zaznacz prawdziwą odpowiedź: Fale elektromagnetyczne do rozchodzenia się... ośrodka materialnego A. B.

Zaznacz prawdziwą odpowiedź: Fale elektromagnetyczne do rozchodzenia się... ośrodka materialnego A. B. Imię i nazwisko Pytanie 1/ Zaznacz właściwą odpowiedź: Fale elektromagnetyczne są falami poprzecznymi podłużnymi Pytanie 2/ Zaznacz prawdziwą odpowiedź: Fale elektromagnetyczne do rozchodzenia się... ośrodka

Bardziej szczegółowo

Wyznaczanie prędkości dźwięku

Wyznaczanie prędkości dźwięku Wyznaczanie prędkości dźwięku OPRACOWANIE Jak można wyznaczyć prędkość dźwięku? Wyznaczanie prędkości dźwięku metody doświadczalne. Prędkość dźwięku w powietrzu wynosi około 330 m/s. Dokładniejsze jej

Bardziej szczegółowo

Wydział Mechaniczno-Energetyczny Laboratorium Elektroniki. Badanie zasilaczy ze stabilizacją napięcia

Wydział Mechaniczno-Energetyczny Laboratorium Elektroniki. Badanie zasilaczy ze stabilizacją napięcia Wydział Mechaniczno-Energeyczny Laboraorium Elekroniki Badanie zasilaczy ze sabilizacją napięcia 1. Wsęp eoreyczny Prawie wszyskie układy elekroniczne (zarówno analogowe, jak i cyfrowe) do poprawnej pracy

Bardziej szczegółowo

V OGÓLNOPOLSKI KONKURS Z FIZYKI Fizyka się liczy Eliminacje TEST 27 lutego 2013r.

V OGÓLNOPOLSKI KONKURS Z FIZYKI Fizyka się liczy Eliminacje TEST 27 lutego 2013r. V OGÓLNOPOLSKI KONKURS Z FIZYKI Fizyka się liczy Eliminacje TEST 27 lutego 2013r. 1. Po wirującej płycie gramofonowej idzie wzdłuż promienia mrówka ze stałą prędkością względem płyty. Torem ruchu mrówki

Bardziej szczegółowo

Właściwości światła laserowego

Właściwości światła laserowego Właściwości światła laserowego Cechy charakterystyczne światła laserowego: rozbieżność (równoległość) wiązki, pasmo spektralne, gęstość mocy spójność (koherencja). Równoległość wiązki Dyfrakcyjną rozbieżność

Bardziej szczegółowo

OSCYLOSKOP CEL ĆWICZENIA: PROGRAM ĆWICZENIA

OSCYLOSKOP CEL ĆWICZENIA: PROGRAM ĆWICZENIA OSCYLOSKOP CEL ĆWICZENIA: Celem ćwiczenia jes poznanie budowy, zasady działania i obsługi oscyloskopu oraz sposobów jego właściwego wykorzysania do obserwacji przebiegów czasowych sygnałów elekronicznych.

Bardziej szczegółowo

Podstawy Konstrukcji Maszyn

Podstawy Konstrukcji Maszyn Podsawy Konsrukcji Maszyn Wykład 13 Dr inŝ. Jacek Czarnigowski Połączenia w konsrukcji maszyn Połączenia Pośrednie Rozłączne Kszałowe: - wpusowe, - klinowe, - kołkowe Nierozłączne Niowe Bezpośrednie Kszałowe:

Bardziej szczegółowo

Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne.

Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne. Ćwiczenie 4 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ Wprowadzenie teoretyczne. Soczewka jest obiektem izycznym wykonanym z materiału przezroczystego o zadanym kształcie i symetrii obrotowej. Interesować

Bardziej szczegółowo

+OPTYKA 3.stacjapogody.waw.pl K.M.

+OPTYKA 3.stacjapogody.waw.pl K.M. Zwierciadło płaskie, prawo odbicia. +OPTYKA.stacjapogody.waw.pl K.M. Promień padający, odbity i normalna leżą w jednej płaszczyźnie, prostopadłej do płaszczyzny zwierciadła Obszar widzialności punktu w

Bardziej szczegółowo

Spektroskopia modulacyjna

Spektroskopia modulacyjna Spektroskopia modulacyjna pozwala na otrzymanie energii przejść optycznych w strukturze z bardzo dużą dokładnością. Charakteryzuje się również wysoką czułością, co pozwala na obserwację słabych przejść,

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE

LASERY I ICH ZASTOSOWANIE LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 5 Temat: Interferometr Michelsona 7.. Cel i zakres ćwiczenia 7 INTERFEROMETR MICHELSONA Celem ćwiczenia jest zapoznanie się z budową i

Bardziej szczegółowo

PROJEKT nr 1 Projekt spawanego węzła kratownicy. Sporządził: Andrzej Wölk

PROJEKT nr 1 Projekt spawanego węzła kratownicy. Sporządził: Andrzej Wölk PROJEKT nr 1 Projek spawanego węzła kraownicy Sporządził: Andrzej Wölk Projek pojedynczego węzła spawnego kraownicy Siły: 1 = 10 3 = -10 Kąy: α = 5 o β = 75 o γ = 75 o Schema węzła kraownicy Dane: Grubość

Bardziej szczegółowo

1. Modulacja analogowa, 2. Modulacja cyfrowa

1. Modulacja analogowa, 2. Modulacja cyfrowa MODULACJA W16 SMK 2005-05-30 Jest operacja mnożenia. Jest procesem nakładania informacji w postaci sygnału informacyjnego m.(t) na inny przebieg o wyższej częstotliwości, nazywany falą nośną. Przyczyna

Bardziej szczegółowo

ZESZYT DO ĆWICZEŃ Z BIOFIZYKI

ZESZYT DO ĆWICZEŃ Z BIOFIZYKI ZESZYT DO ĆWCZEŃ Z BOFZYK mię i nazwisko:. Kierunek:.. 1 Regulamin zajęć dydakycznych z biofizyki Wydział Nauk o Zdrowiu UMB, kierunek zdrowie publiczne Sprawy ogólne 1. Zajęcia dydakyczne z biofizyki

Bardziej szczegółowo

Parcie na powierzchnie płaską

Parcie na powierzchnie płaską Parcie na powierzchnie płaską Jednostką parcia jest [N]. Wynika z tego, że parcie jest to siła. Powtórzmy, parcie jest to siła. Siła z jaką oddziaływuje ciecz na ścianki naczynia, w którym się znajduje.

Bardziej szczegółowo

Ćwiczenie 119. Tabela II. Część P19. Wyznaczanie okresu drgań masy zawieszonej na sprężynie. Nr wierzchołka 0 1 2 3 4 5 6 7 8

Ćwiczenie 119. Tabela II. Część P19. Wyznaczanie okresu drgań masy zawieszonej na sprężynie. Nr wierzchołka 0 1 2 3 4 5 6 7 8 2012 Kaedra Fizyki SGGW Nazwisko... Daa... Nr na liście... Imię... Wydział... Dzień yg.... Godzina... Ruch harmoniczny prosy masy na sprężynie Tabela I: Część X19. Wyznaczanie sałej sprężyny Położenie

Bardziej szczegółowo

Analityczny opis łączeniowych strat energii w wysokonapięciowych tranzystorach MOSFET pracujących w mostku

Analityczny opis łączeniowych strat energii w wysokonapięciowych tranzystorach MOSFET pracujących w mostku Pior GRZEJSZCZK, Roman BRLIK Wydział Elekryczny, Poliechnika Warszawska doi:1.15199/48.215.9.12 naliyczny opis łączeniowych sra energii w wysokonapięciowych ranzysorach MOSFET pracujących w mosku Sreszczenie.

Bardziej szczegółowo

Wymagania na poszczególne oceny z fizyki w roku szkolnym 2012/2013 w Gimnazjum nr 2 w Kolbuszowej

Wymagania na poszczególne oceny z fizyki w roku szkolnym 2012/2013 w Gimnazjum nr 2 w Kolbuszowej Wymagania na poszczególne oceny z fizyki w roku szkolnym 2012/2013 w Gimnazjum nr 2 w Kolbuszowej 1. Wykonujemy pomiary Lp. Tema lekcji Wymagania konieczne 2 3 4 5 6 7 8 9 10 11 Wielkości fizyczne, kóre

Bardziej szczegółowo

Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne

Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne POLITECHNIKA POZNAŃSKA INSTYTUT INŻYNIERII ŚRODOWISKA PROWADZĄCY: mgr inż. Łukasz Amanowicz Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne 3 TEMAT ĆWICZENIA: Badanie składu pyłu za pomocą mikroskopu

Bardziej szczegółowo

Ćwiczenie O3-A3 BADANIE DYFRAKCJI NA SZCZELINIE I SIAT- CE DYFRAKCYJNEJ Wstęp teoretyczny

Ćwiczenie O3-A3 BADANIE DYFRAKCJI NA SZCZELINIE I SIAT- CE DYFRAKCYJNEJ Wstęp teoretyczny Ćwiczenie O3-A3 BADANIE DYFRAKCJI NA SZCZELINIE I SIAT- CE DYFRAKCYJNEJ Wstęp teoretyczny Rozważania dotyczące natury światła, doprowadziły do odkrycia i opisania wielu zjawisk związanych z jego rozchodzeniem

Bardziej szczegółowo

DOBÓR PRZEKROJU ŻYŁY POWROTNEJ W KABLACH ELEKTROENERGETYCZNYCH

DOBÓR PRZEKROJU ŻYŁY POWROTNEJ W KABLACH ELEKTROENERGETYCZNYCH Franciszek SPYRA ZPBE Energopomiar Elekryka, Gliwice Marian URBAŃCZYK Insyu Fizyki Poliechnika Śląska, Gliwice DOBÓR PRZEKROJU ŻYŁY POWROTNEJ W KABLACH ELEKTROENERGETYCZNYCH. Wsęp Zagadnienie poprawnego

Bardziej szczegółowo

Falowa natura promieniowania elektromagnetycznego.

Falowa natura promieniowania elektromagnetycznego. Zadanie 1. Falowa natura promieniowania elektromagnetycznego. W telefonii komórkowej poziom bezpieczeństwa (w odniesieniu do szkodliwości oddziaływania promieniowania na materię żywą) określany jest za

Bardziej szczegółowo

Interferencyjny pomiar krzywizny soczewki przy pomocy pierścieni Newtona

Interferencyjny pomiar krzywizny soczewki przy pomocy pierścieni Newtona Interferencyjny pomiar krzywizny soczewki przy pomocy pierścieni Newtona Jakub Orłowski 6 listopada 2012 Streszczenie W doświadczeniu dokonano pomiaru krzywizny soczewki płasko-wypukłej z wykorzystaniem

Bardziej szczegółowo

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej.

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej. Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE Rozwiązania Zadanie 1 Wartość bezwzględna jest odległością na osi liczbowej. Stop Istnieje wzajemnie jednoznaczne przyporządkowanie między punktami

Bardziej szczegółowo

(Plan wynikowy) - zakładane osiągnięcia ucznia Fizyka klasa II

(Plan wynikowy) - zakładane osiągnięcia ucznia Fizyka klasa II (Plan wynikowy) - zakładane osiągnięcia ucznia Fizyka klasa II 1 Zapoznanie z wymaganiami edukacyjnymi i kryeriami oceniania. Regulamin pracowni i przepisy BHP. 1. Jak opisujemy ruch? (1.1, 1., 1.5, 1.6,

Bardziej szczegółowo

LASERY PODSTAWY FIZYCZNE część 1

LASERY PODSTAWY FIZYCZNE część 1 Politechnika Warszawska Instytut Mikroelektroniki i Optoelektroniki Zakład Optoelektroniki dr inż. Jerzy Andrzej Kęsik LASERY PODSTAWY FIZYCZNE część 1 SPIS TREŚCI 1. Wstęp. Mechanizm fizyczny wzmacniania

Bardziej szczegółowo

Interferencja jest to zjawisko nakładania się fal prowadzące do zwiększania lub zmniejszania amplitudy fali wypadkowej. Interferencja zachodzi dla

Interferencja jest to zjawisko nakładania się fal prowadzące do zwiększania lub zmniejszania amplitudy fali wypadkowej. Interferencja zachodzi dla Interferencja jest to zjawisko nakładania się fal prowadzące do zwiększania lub zmniejszania amplitudy fali wypadkowej. Interferencja zachodzi dla wszystkich rodzajów fal, we wszystkich ośrodkach, w których

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z FIZYKI

WYMAGANIA EDUKACYJNE Z FIZYKI WYMAGANIA EDUKACYJNE Z FIZYKI KLASA III Drgania i fale mechaniczne Wymagania na stopień dopuszczający obejmują treści niezbędne dla dalszego kształcenia oraz użyteczne w pozaszkolnej działalności ucznia.

Bardziej szczegółowo

Wstęp do astrofizyki I

Wstęp do astrofizyki I Wstęp do astrofizyki I Wykład 5 Tomasz Kwiatkowski Uniwersytet im. Adama Mickiewicza w Poznaniu Wydział Fizyki Instytut Obserwatorium Astronomiczne Tomasz Kwiatkowski, shortinst Wstęp do astrofizyki I,

Bardziej szczegółowo

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 7 Temat: Pomiar kąta załamania i kąta odbicia światła. Sposoby korekcji wad wzroku. 1. Wprowadzenie Zestaw ćwiczeniowy został

Bardziej szczegółowo

E k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny

E k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny E k o n o m e r i a S r o n a Nieliniowy model ekonomeryczny Jednorównaniowy model ekonomeryczny ma posać = f( X, X,, X k, ε ) gdzie: zmienna objaśniana, X, X,, X k zmienne objaśniające, ε - składnik losowy,

Bardziej szczegółowo

Wymagania na poszczególne oceny przy realizacji programu i podręcznika Świat fizyki

Wymagania na poszczególne oceny przy realizacji programu i podręcznika Świat fizyki Wymagania na poszczególne oceny przy realizacji i podręcznika Świa fizyki 1. Wykonujemy pomiary Tema według 1.1. Wielkości fizyczne, kóre mierzysz na co dzień 1.. Pomiar warości siły ciężkości 1.3. Wyznaczanie

Bardziej szczegółowo

ĆWICZENIE NR 43 U R I (1)

ĆWICZENIE NR 43 U R I (1) ĆWCZENE N 43 POMY OPO METODĄ TECHNCZNĄ Cel ćwiczenia: wyznaczenie warości oporu oporników poprzez pomiary naężania prądu płynącego przez opornik oraz napięcia na oporniku Wsęp W celu wyznaczenia warości

Bardziej szczegółowo

w obszarze linii Podziały z różnych punktów widzenia lasery oscylatory (OPO optical parametric oscillator)

w obszarze linii Podziały z różnych punktów widzenia lasery oscylatory (OPO optical parametric oscillator) Rodzaj przestrajania Lasery przestrajalne dyskretne wybór linii widmowej wyższe harmoniczne w obszarze linii szerokie szerokie pasmo Podziały z różnych punktów widzenia lasery oscylatory (OPO optical parametric

Bardziej szczegółowo

PODSTAWY > Figury płaskie (1) KĄTY. Kąt składa się z ramion i wierzchołka. Jego wielkość jest mierzona w stopniach:

PODSTAWY > Figury płaskie (1) KĄTY. Kąt składa się z ramion i wierzchołka. Jego wielkość jest mierzona w stopniach: PODSTAWY > Figury płaskie (1) KĄTY Kąt składa się z ramion i wierzchołka. Jego wielkość jest mierzona w stopniach: Kąt możemy opisać wpisując w łuk jego miarę (gdy jest znana). Gdy nie znamy miary kąta,

Bardziej szczegółowo

BUDYNEK OŚRODKA SZKOLENIA W WARSZAWIE KW PSP w WARSZAWIE i JEDNOSTKI RATOWNICZO-GAŚNICZEJ NR 8 KM PSP w WASZAWIE ul. Majdańskia 38/40, 04-110 Warszawa

BUDYNEK OŚRODKA SZKOLENIA W WARSZAWIE KW PSP w WARSZAWIE i JEDNOSTKI RATOWNICZO-GAŚNICZEJ NR 8 KM PSP w WASZAWIE ul. Majdańskia 38/40, 04-110 Warszawa DOKUMENTACJA OKREŚLAJĄCA SCENARIUSZ ODNIESIENIA (baseline) oraz OSZACOWANIE EMISJI I REDUKCJI, OGRANICZENIA LUB UNIKNIĘCIA EMISJI BUDYNEK OŚRODKA SZKOLENIA W WARSZAWIE KW PSP w WARSZAWIE i JEDNOSTKI RATOWNICZO-GAŚNICZEJ

Bardziej szczegółowo

ZESPÓŁ SZKÓŁ PODSTAWOWO GIMNAZJALNYCH IM. JANA PAWŁA II W ŁOSOSINIE DOLNEJ. Świat fizyki. Program nauczania AUTOR: WYDAWNICTWO ZAMKOR

ZESPÓŁ SZKÓŁ PODSTAWOWO GIMNAZJALNYCH IM. JANA PAWŁA II W ŁOSOSINIE DOLNEJ. Świat fizyki. Program nauczania AUTOR: WYDAWNICTWO ZAMKOR ZESPÓŁ SZKÓŁ PODSTAWOWO GIMNAZJALNYCH IM. JANA PAWŁA II W ŁOSOSINIE DOLNEJ Świa fizyki Program nauczania AUTOR: WYDAWNICTWO ZAMKOR Z MODYFIKACJĄ MAŁGORZATY JAŚKIEWICZ Podręcznik : Świa fizyki, 11/1/2009,

Bardziej szczegółowo

interferencja, dyspersja, dyfrakcja, okna transmisyjne Interferencja

interferencja, dyspersja, dyfrakcja, okna transmisyjne Interferencja interferencja, dyspersja, dyfrakcja, okna transmisyjne PiOS Interferencja Interferencja to zjawisko nakładania się fal prowadzące do zwiększania lub zmniejszania amplitudy fali wypadkowej. Interferencja

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY 1. Wykonujemy pomiary wymienia przyrządy, za pomocą kórych mierzymy długość, emperaurę, czas, szybkość i masę podaje zakres pomiarowy przyrządu przelicza jednoski

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 3, 20.02.2012. Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 3, 20.02.2012. Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 3, 20.02.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 2 - przypomnienie

Bardziej szczegółowo

ŚWIATŁO I JEGO ROLA W PRZYRODZIE

ŚWIATŁO I JEGO ROLA W PRZYRODZIE ŚWIATŁO I JEGO ROLA W PRZYRODZIE I. Optyka geotermalna W tym rozdziale poznasz właściwości światła widzialnego, prawa rządzące jego rozchodzeniem się w przestrzeni oraz sposoby wykorzystania tych praw

Bardziej szczegółowo

Badanie zjawisk optycznych przy użyciu zestawu Laser Kit

Badanie zjawisk optycznych przy użyciu zestawu Laser Kit LABORATORIUM OPTOELEKTRONIKI Ćwiczenie 5 Badanie zjawisk optycznych przy użyciu zestawu Laser Kit Cel ćwiczenia: Zapoznanie studentów ze zjawiskami optycznymi. Badane elementy: Zestaw ćwiczeniowy Laser

Bardziej szczegółowo