3. Pokazać z definicji, że iloczyn wektorowy dwóch wektorów ma postać:

Wielkość: px
Rozpocząć pokaz od strony:

Download "3. Pokazać z definicji, że iloczyn wektorowy dwóch wektorów ma postać:"

Transkrypt

1 Wyział PPT; kierunek Inż. Biomeyczna. Lisa nr o kursu Fizyka.3A, r. ak. 04/5. Lisa po koniec zawiera zaania przeznaczone o samozielnego rozwiązania Suia. sopnia na kierunku Inżynieria Biomeyczna obywają się zgonie z Krajowymi Ramami Kwalifikacji; więcej na sronie hp:// Kara przemiou osępna po aresem hp:// zawiera m.in. wymagania wsępne w zakresie wiezy, umiejęności oraz innych kompeencji uczesników kursu, cele przemiou, przemioowe efeky kszałcenia w zakresie: wiezy, umiejęności oraz kompeencji społecznych, reści wykłaów i ćwiczeń rachunkowych, lisę sosowanych narzęzi yakycznych, spis lieraury oraz macierz powiązań przemioowych z kierunkowymi efekami kszałcenia. Zasay zaliczenia ćwiczeń rachunkowych określa szczegółowo okumen osępny po aresem hp:// Zasay zaliczenia egzaminu są opisane w okumencie hp:// Tabele wzorów maemaycznych i fizycznych są osępne na sronach hp:// i hp:// a obecna lisa zaań po aresem hp:// Kolejne lisy zaań o kursu bęą osępne na sronie wykłaowcy (np. lisa nr w pliku hp:// i) i sronach nauczycieli akaemickich prowazących ćwiczenia. Suenka/suen jes zobowiązana(y) o wyrukowania ww. abel, lis zaań i przynoszenia abel i lis na zajęcia w porfolio. Lisa nr ma za zaanie zobycie przez suenów wiezy z zakresu posaw rachunku wekorowego, różniczkowocałkowego oraz przypomnienie posawowych wielkości kinemaycznych.. Zefiniować, za pomocą rzech orogonalnych wersorów, prawo- i lewoskręny prosokąny ukła współrzęnych. Narysować na ablicy oba ukłay.. Pokazać z efinicji, że iloczyn skalarny wóch wekorów ma posać w karezjańskim ukłazie współrzęnych: 3. Pokazać z efinicji, że iloczyn wekorowy wóch wekorów ma posać: 4. Samozielnie zapoznaj się z uzasanieniami zamieszczonymi na końcu lisy, równości: a) a ( b c ) = b ( c a) = c ( a b), a b c = b c a c a b. b) Zauważ, że cykliczne przesawianie symboli wekorów znacznie pomaga i uławia zapamięywaniu powyższych wzorów.

2 5. [zaanie 38 z rozziału 3. poręcznika HRW] Dwa wekory a i b mają skłaowe (w merach): ax = 3,, a y =,6, b x = 0,5, b y = 4,5. Znajź ką mięzy kierunkami wekorów a i b. Na płaszczyźnie XY można znaleźć wa wekory, kóre są prosopałe o wekora a i mają ługość równą 5 m. Jeen z nich c ma oanią skłaową x, a rugi ma skłaową x ujemną. Wyznacz skłaowe x i y wekora c oraz skłaowe x i y wekora. 6. Poać graficzną inerpreację pochonej na wykresie funkcji f(). 7. Samozielnie korzysając z abeli wzorów maemaycznych. Wyznaczyć pochone nasępujących funkcji, gzie x 0, A, ω są sałymi: v ( x0 3 6 ) v ( A ) v ( A sin ( ω )), = +, a v( ) v A sin ω = ( ), = ( ), v = (( A sin ω ) ), = sin ( ω ), v = A cos ( ω), v ( ) A sin ( ω) f = =, sin ( ω) cos( ω), f ( ω) ( ω) = = ( sin cos ), n f ( ) ( ω ) =, gzie n jes liczbą całkowią. 8. Poać graficzną inerpreację całki oznaczonej na wykresie funkcji f(). 9. Samozielnie korzysając z abeli wzorów maemaycznych. Wyznaczyć całki nieoznaczone, gzie v 0, a, ω są sałymi, n jes liczbą całkowią ( v 0 ± a ), ( ±a), sin ( ω), różne przypaki n) (rozparzyć cos ω, ( v n 0 ± a ) 0. Samozielnie korzysając z abeli wzorów maemaycznych. Wyznaczyć całki oznaczone, gzie v 0, a, ω są sałymi, n jes liczbą całkowią ( v0 ± a ), ( ±a), sin ( ω ), n cos ω, ( v0 ± a ) n jes liczbą całkowią; rozparzyć różne warości n.. A. Oszacować: a) liczbę aomów miezi w jenym merze sześciennym ego mealu, b) liczbę aomów azou i lenu w sali, w kórej obywają się zajęcia, c) liczbę cząseczek woy, liczbę proonów i liczbę neuronów we własnym ciele, zakłaając, że ciało skłaa się w 00% z woy, ) całkowią liczbę oechów człowieka, kóry przeżył 9 la, e) całkowią liczbę skurczów serca człowieka w wieku 50 la..b. Soisz na wieży wiokowej Sky Tower. Pogoa jes iealna. Powierze jes przeźroczyse. Oszacuj jak aleko o Ciebie znajuje się winokrąg, jeśli soisz na wys. 00 m o ziemi plus Twoja wysokość oczu na parkieem plaformy wiowiskowej? Pożyeczne maeriały w Inernecie hp://pl.wikibooks.org/wiki/meoy_maemayczne_fizyki hp://pl.wikibooks.org/wiki/meoy_maemayczne_fizyki/działania_na_wekorach#iloczyn_mieszany Wrocław, paźziernika 04 Oprac. W. Saleja

3 Dowó ze srony: hp://pl.wikibooks.org/wiki/meoy_maemayczne_fizyki/działania_na_wekorach#iloczyn_mieszany Iloczyn mieszany Pierwsza równość w (.3) jes iloczynem skalarnym wekorów c i a b. Tożsamości (.4) są nasępswem właściwości wyznacznika z (.3). Przesawiając pierwszy wiersz kolejno z rugim i rzecim orzymujemy pierwszą równość (.4), j. a a a b b b x y z c c c. Poobnie przesawiając osani wiersz kolejno z rugim i pierwszym osajemy rugą równość w (.4), j. b b b c c c. x y z a a a 3

4 Zaania przeznaczone o samozielnego rozwiązania. Rowerzyści w czasie wycieczki rejesrowali swoją prękość. a) Rowerzysa A gozinę jechał z prękością v = 5 km/h poczas rugiej na skuek zmęczenia jechał z prękością v = 5 km/h. b) Rowerzysa B pierwsze 0 km jechał z prękością v = 5 km/h a kolejne 0 km z prękością v = 5 km/h. c) Rowerzysa C gozinę jechał z prękością v = 5 km/h a nasępne 0 km z prękością v = 5 km/h. Oblicz prękości śrenie rowerzysów.. Inianin Sokole oko przejechał na koniu oległość S zielącą jego wigwam o źróła woy pinej z prękością V = 0 km/h. Z jaką prękością powinien wrócić o obozu, aby jego prękość śrenia była równa: a) V/3; b) V? Uzasanij, że w przypaku b) nie isnieje skończona prękość powrou. 3. Rybak płynie łóką w górę rzeki. Przepływając po mosem gubi zapasowe wiosło, kóre wpaa o woy. Po gozinie rybak sposrzega brak wiosła. Wraca z powroem i ogania wiosło w oległości 6 km poniżej mosu. Jaka jes prękość rzeki, jeśli rybak poruszając się zarówno w górę, jak i w ół rzeki wiosłuje jenakowo? 4. Prękość łóki wzglęem woy wynosi v. Jak należy skierować łóź, aby przepłynąć rzekę w kierunku prosopałym o brzegu? Woa w rzece płynie z prękością u. 5. Krople eszczu spaają na ziemię z chmury znajującej się na wysokości 700 m. Oblicz, jaką warość prękości (w km/h ) miałyby e krople w chwili upaku na ziemię, gyby ich ruch nie był spowalniany w wyniku oporu powierza. 6. Dwóch pływaków A i B skacze jenocześnie o rzeki, w kórej woa płynie z prękością v. Prękość c (c > v) każego pływaka wzglęem woy jes aka sama. Pływak A przepływa z prąem oległość L i zawraca o punku saru. Pływak B płynie prosopale o brzegów rzeki (pomimo znoszącego go prąu) i oala się na oległość L, po czym zawraca o punku saru. Kóry z nich wróci pierwszy? 7. Cząska rozpoczyna ruch przyspieszony z zerową prękością począkową. Zależność przyspieszenia o czasu przesawia wykres. Wyznaczyć: (a) prękość cząski w chwilach = 0 s i = 0 s; (b) śrenią prękość w czasie o o ; (c) rogę przebyą przez nią po czasie. 8. Oblicz prękość uzyska ciało poruszające się rok prosoliniowo z przyspieszeniem g = 9,8m/s. 9. Kulka swobonie spaając z wysokości H pokonuje H/ w osaniej sekunzie ruchu. Oblicz H? 0. Moocyklisa rusza ze sałym przyspieszeniem a = 0.5 m/s. Po 0,6 min o chwili rozpoczęcia ruchu zarzymuje go policjan. Czy moocyklisa bęzie płacił mana z powou przekroczenia ozwolonej prękości 60 km/h?. Aby móc oerwać się o powierzchni loniska samolo musi osiągnąć prękość v = 00m s. Znaleźć czas rozbiegu i przyspieszenie samolou, jeżeli ługość rozbiegu wynosi = 600 m. Założyć, że ruch samolou jes jenosajnie zmienny.. Samochó jaący z prękością v0 = 36 km h w pewnej chwili zaczął hamować i zarzymał się po upływie = s. Zakłaając, że ruch samochou był jenosajnie zmienny, wyznacz jego przyspieszenie a oraz rogę s, jaką przebył poczas hamowania. 3. W chwili, gy zapala się zielone świało, samochó osobowy rusza z miejsca ze sałym przyspieszeniem a równym, m/s. W ej samej chwili wyprzeza go ciężarówka, jaąca ze sałą prękością 9,5 m/s. (a) 4

5 W jakiej oległości o sygnalizaora samochó osobowy ogoni ciężarówkę? (b) Ile wynosić bęzie wówczas jego prękość? 4. Wysokość szybu winy w hoelu Marquis Marrio w Nowym Jorku wynosi 90 m. Maksymalna prękość kabiny jes równa 305 m/min. Przyspieszenie winy w obu kierunkach jazy ma warość, m/s. (a) Na jakiej roze ruszający z miejsca wagonik osiąga maksymalną prękość jazy? (b) Jak ługo rwa pełny, 90-merowy przejaz wagonika bez zarzymania po roze? 5. W biegu na 00 merów Ben Johnson i Carl Lewis przecinają linię mey na osanim wyechu równocześnie w czasie 0, s (bo wiar był przeciwny). Przyspieszając jenosajnie, Ben porzebuje s, a Carl 3 s, aby osiągnąć maksymalne prękości, kóre nie zmieniają się o końca biegu. (a) Jakie są maksymalne prękości oraz przyspieszenia obu sprinerów? (b) Jaka jes ich maksymalna prękość wzglęna? (c) Kóry z nich prowazi w 6. sekunzie biegu? 6. Dane są wa wekory: a = 3î + 4ĵ 5k oraz b = -î +ĵ +6k. Wyznaczyć: a) ługość każego wekora, b) iloczyn skalarny a b, c) ką pomięzy wekorem (a b) a wekorem (a + b). 7. Wekory a i b spełniają relacje: a + b = î - ĵ +5k ; a 5b = -5î +ĵ +9k. Wyznaczyć wekory a i b. Czy wekory e są o siebie prosopałe? 8. Dany jes wekor a = 7î + ĵ. Wyznaczyć wekor jenoskowy, prosopały o ego wekora. 9. Dane są wa wekory: a = 3î + 4ĵ oraz b = 6î + 6ĵ. Rozłożyć wekor b na skłaowe: równoległą i prosopałą o wekora a. 0. W punkach o współrzęnych (,) oraz (3,7) karezjańskiego ukłau współrzęnych umieszczono po jenej cząsce. Wyznaczyć ką, jaki worzą wekory wozące ych cząsek.. Dany jes wekor A = 3î + 5ĵ. Wyznaczyć jego ługość i ką, jaki worzy z osią 0X.. Wekor siły A o ługości 5 N ziała w płaszczyźnie XY i jes nachylony po kąem 30 wzglęem osi 0X. Zapisać wekor w posaci A = A x î + A y ĵ. 3. Dane są wa wekory: A = î + 5ĵ oraz B = î - 4ĵ. Wyznaczyć: a) ługość każego z wekorów; b) ługość wekora C = A + B oraz ką jaki worzy on z wekorem A. 4. Wekory a oraz b spełniają relacje: a + b = î ĵ; a 5b = -5î + ĵ. Wyznaczyć e wekory. Czy są one o siebie prosopałe? 5. Wekory a oraz b spełniają relację: a + b = 0. Co możemy powiezieć o ych wekorach? 6. Długość wekora A wynosi 5 jenosek, a wekora B 7 jenosek. Jaka może być największa i najmniejsza ługość wekora R = A + B? 7. A i B o wielkości fizyczne mające określone wymiary. Kóre z poanych ziałań mają sens fizyczny: A- B, A+B, A/B, A B, jeśli wymiary A i B są: a) ienyczne, b) różne? 8. Położenie cząski zależy o czasu jak: x()=asin(ω). Jaki wymiar mają w ukłazie SI wielkości A i ω? 9. Przyspieszenie ośrokowe a ciała w ruchu po okręgu o promieniu R zależy o prękości ego ciała v i promienia R jak a =v α R β. Wyznaczyć, za pomocą analizy wymiarowej warości wykłaników α i β. Wskazówka: wymiar przyspieszenia: ługość/(czas), wymiar prękości: ługość/czas. 30. a)kropla oleju o masie 900 µg (mikrogramów) i o gęsości 98 kg rozpłynęła się na powierzchni woy worząc kolisą, szarą plamę o śrenicy 4 cm, uworzoną z jenej warswy (monowarswy) cząseczek oleju, Oszacować rzą wielkości śrenicy molekuły oleju. B)Ziarnko piasku o kuleczka kwarcu o śrenicy 50 µm (mikromerów) i gęsości 650 kg/m 3, a gęsość piasku wynosi 600 kg/m 3. Oszacować rzą liczby ziarenek piasku w jenym merze sześciennym. 3. Miliarer oferuje ci przekazanie miliara złoych w moneach jenozłoowych, ale po warunkiem, że przeliczysz je osobiście. Czy można przyjąć ę propozycję, jeśli przeliczenie jenej money rwa ylko sekunę? Wrocław, paźziernika 04 Oprac. W. Saleja 5

i j k Oprac. W. Salejda, L. Bujkiewicz, G.Harań, K. Kluczyk, M. Mulak, J. Szatkowski. Wrocław, 1 października 2015

i j k Oprac. W. Salejda, L. Bujkiewicz, G.Harań, K. Kluczyk, M. Mulak, J. Szatkowski. Wrocław, 1 października 2015 WM-E; kier. MBM, lisa za. nr. p. (z kary przemiou): Rozwiązywanie zaań z zakresu: ransformacji ukłaów współrzęnych, rachunku wekorowego i różniczkowo-całkowego o kursu Fizyka.6, r. ak. 05/6; po koniec

Bardziej szczegółowo

Praca domowa nr 1. Metodologia Fizyki. Grupa 1. Szacowanie wartości wielkości fizycznych Zad Stoisz na brzegu oceanu, pogoda jest idealna,

Praca domowa nr 1. Metodologia Fizyki. Grupa 1. Szacowanie wartości wielkości fizycznych Zad Stoisz na brzegu oceanu, pogoda jest idealna, Praca domowa nr. Meodologia Fizyki. Grupa. Szacowanie warości wielkości fizycznych Zad... Soisz na brzegu oceanu, pogoda jes idealna, powierze przeźroczyse; proszę oszacować jak daleko od Ciebie znajduje

Bardziej szczegółowo

Praca omowa nr. Meoologia Fizyki Grupa. Szacowanie warości wielkości fizycznych i posawy analizy wymiarowej W wielu zaganieniach ineresuje nas przybliżona warość wielkości fizycznej X. Może o być spowoowane

Bardziej szczegółowo

światła, G stała grawitacji. Proszę wyznaczyć wartości wykładników a i b korzystając z tego, że jednostki miar

światła, G stała grawitacji. Proszę wyznaczyć wartości wykładników a i b korzystając z tego, że jednostki miar Praca omowa nr. Meoologia Fizyki. Grupa. Szacowanie rzęów warości wielkości fizycznych Za... A) Jeśli jeseś suenką, proszę oszacować ile merów kwaraowych maeriału krawieckiego zosałoby zużye oakowo, gyby

Bardziej szczegółowo

Lista 1. Prędkość średnia

Lista 1. Prędkość średnia Lista 1 Prędkość średnia 22. Rowerzyści w czasie wycieczki rejestrowali swoją prędkość. a) Rowerzysta A godzinę jechał z prędkością v 1 = 25 km/h podczas drugiej na skutek zmęczenia jechał z prędkością

Bardziej szczegółowo

KO OF Szczecin:

KO OF Szczecin: XXXI OLIMPIADA FIZYCZNA (1981/198) Stopień III, zaanie teoretyczne T Źróło: Nazwa zaania: Działy: Słowa kluczowe: Komitet Główny Olimpiay Fizycznej; Anrzej Kotlicki; Anrzej Naolny: Fizyka w Szkole, nr

Bardziej szczegółowo

Wykład FIZYKA I. 2. Kinematyka punktu materialnego. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 2. Kinematyka punktu materialnego. Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I. Kinemayka punku maerialnego Kaedra Opyki i Fooniki Wydział Podsawowych Problemów Techniki Poliechnika Wrocławska hp://www.if.pwr.wroc.pl/~wozniak/fizyka1.hml Miejsce konsulacji: pokój

Bardziej szczegółowo

I. KINEMATYKA I DYNAMIKA

I. KINEMATYKA I DYNAMIKA piagoras.d.pl I. KINEMATYKA I DYNAMIKA KINEMATYKA: Położenie ciała w przesrzeni można określić jedynie względem jakiegoś innego ciała lub układu ciał zwanego układem odniesienia. Ruch i spoczynek są względne

Bardziej szczegółowo

Część I. MECHANIKA. Wykład KINEMATYKA PUNKTU MATERIALNEGO. Ruch jednowymiarowy Ruch na płaszczyźnie i w przestrzeni.

Część I. MECHANIKA. Wykład KINEMATYKA PUNKTU MATERIALNEGO. Ruch jednowymiarowy Ruch na płaszczyźnie i w przestrzeni. Część I. MECHANIKA Wykład.. KINEMATYKA PUNKTU MATERIALNEGO Ruch jednowymiarowy Ruch na płaszczyźnie i w przesrzeni 1 KINEMATYKA PUNKTU MATERIALNEGO KINEMATYKA zajmuje się opisem ruchu ciał bez rozparywania

Bardziej szczegółowo

WYKŁAD nr Ekstrema funkcji jednej zmiennej o ciągłych pochodnych. xˆ ( ) 0

WYKŁAD nr Ekstrema funkcji jednej zmiennej o ciągłych pochodnych. xˆ ( ) 0 WYKŁAD nr 4. Zaanie programowania nieliniowego ZP. Ekstrema unkcji jenej zmiennej o ciągłych pochonych Przypuśćmy ze punkt jest punktem stacjonarnym unkcji gzie punktem stacjonarnym nazywamy punkt la którego

Bardziej szczegółowo

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych.

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych. Równania różniczkowe. Lisa nr 2. Lieraura: N.M. Mawiejew, Meody całkowania równań różniczkowych zwyczajnych. W. Krysicki, L. Włodarski, Analiza Maemayczna w Zadaniach, część II 1. Znaleźć ogólną posać

Bardziej szczegółowo

Przemieszczeniem ciała nazywamy zmianę jego położenia

Przemieszczeniem ciała nazywamy zmianę jego położenia 1 Przemieszczeniem ciała nazywamy zmianę jego położenia + 0 k k 0 Przemieszczenie jes wekorem. W przypadku jednowymiarowym możliwy jes ylko jeden kierunek, a zwro określamy poprzez znak. Przyjmujemy, że

Bardziej szczegółowo

Analityczne metody kinematyki mechanizmów

Analityczne metody kinematyki mechanizmów J Buśkiewicz Analityczne Metoy Kinematyki w Teorii Mechanizmów Analityczne metoy kinematyki mechanizmów Spis treści Współrzęne opisujące położenia ogniw pary kinematycznej Mechanizm korowo-wozikowy (crank-slier

Bardziej szczegółowo

3. Prąd elektryczny. 3.1Prąd stały. 3.2Równanie ciągłości, 3.3Prawo Ohma. 3.4Prawa Kirchhoffa. 3.5Łączenie oporów

3. Prąd elektryczny. 3.1Prąd stały. 3.2Równanie ciągłości, 3.3Prawo Ohma. 3.4Prawa Kirchhoffa. 3.5Łączenie oporów 3 Prą elekryczny 3Prą sały 3ównanie ciągłości, 33Prawo Ohma 34Prawa Kirchhoffa 35Łączenie oporów 45 3Prą sały Prą elekryczny o uporząkowany ruch nośników Prą może płynąć w przewonikach, ale akże elekroliach

Bardziej szczegółowo

Pole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu)

Pole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu) PODSAWY WYMIANY CIEPŁA. Postawowe pojęcia w wymianie ciepła Sposoby transportu ciepła: przewozenie konwekcja - swobona - wymuszona promieniowanie ransport ciepła w ciałach stałych obywa się na roze przewozenia.

Bardziej szczegółowo

Ruch płaski. Bryła w ruchu płaskim. (płaszczyzna kierująca) Punkty bryły o jednakowych prędkościach i przyspieszeniach. Prof.

Ruch płaski. Bryła w ruchu płaskim. (płaszczyzna kierująca) Punkty bryły o jednakowych prędkościach i przyspieszeniach. Prof. Ruch płaski Ruchem płaskim nazywamy ruch, podczas kórego wszyskie punky ciała poruszają się w płaszczyznach równoległych do pewnej nieruchomej płaszczyzny, zwanej płaszczyzną kierującą. Punky bryły o jednakowych

Bardziej szczegółowo

Pole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu)

Pole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu) PODSAWY WYMIANY CIEPŁA. Postawowe pojęcia w wymianie ciepła Sposoby transportu ciepła: przewozenie konwekcja - swobona - wymuszona promieniowanie ransport ciepła w ciałach stałych obywa się na roze przewozenia.

Bardziej szczegółowo

Lista 2 z rozwiązaniami

Lista 2 z rozwiązaniami Lista 2 z rozwiązaniami Autor rozwiązań dr W.Białas Działania na wektorach. Elementy metodologii fizyki. 1. Dane są dwa wektory: a = 3i + 4j 5k oraz b = -i +2j +6k. Wyznaczyć: a) długość każdego wektora,

Bardziej szczegółowo

Składowe wektora y. Długość wektora y

Składowe wektora y. Długość wektora y FIZYKA I Wykła II Rachunek Pojęcia postawowe wektorowy i (I) historia b a Skłaowe wektora y n = n cos(α) y n = n sin(α) y b Ԧa = a, y a a b = b, y b b a Długość wektora y Ԧa = a + y a y b b = b + y b b

Bardziej szczegółowo

Pole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu) (1.1) (1.2a)

Pole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu) (1.1) (1.2a) PODSAWY WYMIANY CIEPŁA. Postawowe pojęcia w wymianie ciepła Sposoby transportu ciepła: przewozenie konwekcja - swobona - wymuszona promieniowanie ransport ciepła w ciałach stałych obywa się na roze przewozenia.

Bardziej szczegółowo

1. Podstawowe pojęcia w wymianie ciepła

1. Podstawowe pojęcia w wymianie ciepła PODSAWY WYMIANY CIEPŁA. Postawowe pojęcia w wymianie ciepła Sposoby transportu ciepła: przewozenie konwekcja - swobona - wymuszona promieniowanie ransport ciepła w ciałach stałych obywa się na roze przewozenia.

Bardziej szczegółowo

Lista nr Znaleźć rozwiązania ogólne następujących równań różniczkowych: a) y = y t,

Lista nr Znaleźć rozwiązania ogólne następujących równań różniczkowych: a) y = y t, RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE B Lisa nr 1 1. Napisać równanie różniczkowe, jakie spełnia napięcie u = u() na okładkach kondensaora w obwodzie zawierającym połączone szeregowo oporność R i pojemność C,

Bardziej szczegółowo

KOOF Szczecin: www.of.szc.pl

KOOF Szczecin: www.of.szc.pl LVIII OLIMPIADA FIZYCZNA (2008/2009). Stopień II, zaanie oświaczalne D. Źróło: Autor: Nazwa zaania: Działy: Słowa kluczowe: Komitet Główny Olimpiay Fizycznej. Ernest Groner Komitet Główny Olimpiay Fizycznej,

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 13

RÓWNANIA RÓŻNICZKOWE WYKŁAD 13 RÓWNANIA RÓŻNICZKOWE WYKŁAD 13 Geomeria różniczkowa Geomeria różniczkowa o dział maemayki, w kórym do badania obieków geomerycznych wykorzysuje się meody opare na rachunku różniczkowym. Obieky geomeryczne

Bardziej szczegółowo

C d u. Po podstawieniu prądu z pierwszego równania do równania drugiego i uporządkowaniu składników lewej strony uzyskuje się:

C d u. Po podstawieniu prądu z pierwszego równania do równania drugiego i uporządkowaniu składników lewej strony uzyskuje się: Zadanie. Obliczyć przebieg napięcia na pojemności C w sanie przejściowym przebiegającym przy nasępującej sekwencji działania łączników: ) łączniki Si S są oware dla < 0, ) łącznik S zamyka się w chwili

Bardziej szczegółowo

P O D S T A W Y E L E K T R O D Y N A M I K I Ć W I C Z E N I A Semestr zimowy r. ak. 2018/2019 PIERWSZE ZAJĘCIA ZADANIA

P O D S T A W Y E L E K T R O D Y N A M I K I Ć W I C Z E N I A Semestr zimowy r. ak. 2018/2019 PIERWSZE ZAJĘCIA ZADANIA P O D S T W Y E L E K T R O D Y N M I K I Ć W I C Z E N I Semestr zimowy r ak 8/9 PIERWSZE ZJĘCI Ukła kartezjański, wektory jenostkowe wersory Skalary, wektory, tensory Iloczyn skalarny, iloczyn wektorowy

Bardziej szczegółowo

LEPKOŚĆ. D średnica rury, V średnia prędkość cieczy w rurze, d gęstość cieczy, η (czyt. eta ) lepkość dynamiczna.

LEPKOŚĆ. D średnica rury, V średnia prędkość cieczy w rurze, d gęstość cieczy, η (czyt. eta ) lepkość dynamiczna. LEPKOŚĆ Opracowanie: r Urszula Lelek-Borkowska Płyn substancja ciekła, gazowa lub proszek, który ma zolność płynięcia, czyli owolnej zmiany kształtu oraz swobonego przemieszczania, np. przepompowywania.

Bardziej szczegółowo

Państwowa Wyższa Szkoła Zawodowa w Kaliszu

Państwowa Wyższa Szkoła Zawodowa w Kaliszu Pańswowa Wyższa Szkoła Zawoowa w Kaliszu Ć wiczenia laboraoryjne z fizyki Ćwiczenie Wyznaczanie współczynnika rozszerzalności objęościowej cieczy za pomocą piknomeru Kalisz, luy 25 r. Opracował: Ryszar

Bardziej szczegółowo

14P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM PODSTAWOWY (od początku do grawitacji)

14P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM PODSTAWOWY (od początku do grawitacji) Włodzimierz Wolczyński 14P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM PODSTAWOWY (od początku do grawitacji) Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią

Bardziej szczegółowo

ψ przedstawia zależność

ψ przedstawia zależność Ruch falowy 4-4 Ruch falowy Ruch falowy polega na rozchodzeniu się zaburzenia (odkszałcenia) w ośrodku sprężysym Wielkość zaburzenia jes, podobnie jak w przypadku drgań, funkcją czasu () Zaburzenie rozchodzi

Bardziej szczegółowo

Do wprowadzania symboli pochodnych można wykorzystać paletę Calculus lub skróty klawiszowe: SHIFT+? - wprowadza symbol pierwszej pochodnej.

Do wprowadzania symboli pochodnych można wykorzystać paletę Calculus lub skróty klawiszowe: SHIFT+? - wprowadza symbol pierwszej pochodnej. 1. Pochone funkcji Mathca umożliwia obliczenie pochonej funkcji w zaanym punkcie oraz wyznaczenie pochonej funkcji w sposób symboliczny. 1.1 Wyznaczanie wartości pochonej w punkcie Aby wyznaczyć pochoną

Bardziej szczegółowo

Optyka 2. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Optyka 2. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Optka Projekt współinansowan przez Unię Europejską w ramach Europejskiego Funuszu Społecznego Optka II Promień świetln paając na powierzchnię zwierciała obija się zgonie z prawem obicia omówionm w poprzeniej

Bardziej szczegółowo

ZADANIA TEORETYCZNE. E e = hc λ

ZADANIA TEORETYCZNE. E e = hc λ LV Olimpiaa Fizyczna(2005/2006) Etap I Część II(Rozwiązane) 1 ZADANIA TEORETYCZNE Zaanie 1 Jena z okłaek konensatora płaskiego jest oświetlana(poprzez mały otwór w rugiej okłace) światłem lasera o ługości

Bardziej szczegółowo

Metrologia Techniczna

Metrologia Techniczna Zakła Metrologii i Baań Jakości Wrocław, nia Rok i kierunek stuiów Grupa (zień tygonia i gozina rozpoczęcia zajęć) Metrologia Techniczna Ćwiczenie... Imię i nazwisko Imię i nazwisko Imię i nazwisko Błęy

Bardziej szczegółowo

PODSTAWY TELEDETEKCJI-ćwiczenia rachunkowe

PODSTAWY TELEDETEKCJI-ćwiczenia rachunkowe PODSTAWY TELEDETEKCJI-ćwiczenia rachunkowe Tema.eoy omiaru oległości i rękości raialnej. Zaanie. Na jakiej oległości znajuje się obiek, gy czas oóźnienia sygnałów wynosi:μs, ms, min O.50m, 50km, 9 9 0

Bardziej szczegółowo

Geometria płaska - matura Przyprostokątne trójkąta prostokątnego mają długości 3 7cm poprowadzona z wierzchołka kąta prostego ma długość: 12

Geometria płaska - matura Przyprostokątne trójkąta prostokątnego mają długości 3 7cm poprowadzona z wierzchołka kąta prostego ma długość: 12 Geometria płaska - matura 010 1. Przyprostokątne trójkąta prostokątnego mają ługości 7cm i 4 7cm. Wysokość poprowazona z wierzchołka kąta prostego ma ługość: 1 5 A. 7cm B. cm C. 8 7cm D. 7 7cm 5 7. Miara

Bardziej szczegółowo

Całka nieoznaczona Andrzej Musielak Str 1. Całka nieoznaczona

Całka nieoznaczona Andrzej Musielak Str 1. Całka nieoznaczona Całka nieoznaczona Andrzej Musielak Sr Całka nieoznaczona Całkowanie o operacja odwrona do liczenia pochodnych, zn.: f()d = F () F () = f() Z definicji oraz z abeli pochodnych funkcji elemenarnych od razu

Bardziej szczegółowo

ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1

ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1 ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1 mgr inż. Żanea Pruska Maeriał opracowany na podsawie lieraury przedmiou. Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X,

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1

PROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1 PROGNOZOWANIE I SYMULACJE mgr Żanea Pruska Ćwiczenia 2 Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X, wyrażona w ysiącach wyprodukowanych i dosarczonych szuk firmie Bea,

Bardziej szczegółowo

Wykłady z Hydrauliki- dr inż. Paweł Zawadzki, KIWIS WYKŁAD 3

Wykłady z Hydrauliki- dr inż. Paweł Zawadzki, KIWIS WYKŁAD 3 WYKŁAD 3 3.4. Postawowe prawa hyroynamiki W analizie problemów przepływów cieczy wykorzystuje się trzy postawowe prawa fizyki klasycznej: prawo zachowania masy, zachowania pęu i zachowania energii. W większości

Bardziej szczegółowo

elektryczna. Elektryczność

elektryczna. Elektryczność Pojemność elektryczna. Elektryczność ść. Wykła 4 Wrocław University of Technology 4-3- Pojemność elektryczna Okłaki konensatora są przewonikami, a więc są powierzchniami ekwipotencjalnymi: wszystkie punkty

Bardziej szczegółowo

Praca domowa nr 1. Metodologia Fizyki. Grupa 1. Szacowanie wartości wielkości fizycznych Grupa 2. Podstawy analizy wymiarowej

Praca domowa nr 1. Metodologia Fizyki. Grupa 1. Szacowanie wartości wielkości fizycznych Grupa 2. Podstawy analizy wymiarowej Praca domowa nr. Metodologia Fizyki. Grupa. Szacowanie wartości wielkości fizycznych Wprowadzenie: W wielu zagadnieniach interesuje nas przybliżona wartość wielkości fizycznej X. Może to być spowodowane

Bardziej szczegółowo

P O D S T A W Y E L E K T R O D Y N A M I K I Ć W I C Z E N I A Semestr zimowy r. ak. 2016/2017 ZADANIA

P O D S T A W Y E L E K T R O D Y N A M I K I Ć W I C Z E N I A Semestr zimowy r. ak. 2016/2017 ZADANIA Semestr zimowy r ak 6/7 ZDNI I Pokazać, że iv rot =, rot gra f =, iv (gra f gra g) =, gzie wektor i skalary f i g owolne funkcje różniczkowalne Wykazać tożsamości wektorowe (f, g wektory, B owolne funkcje

Bardziej szczegółowo

ĆWICZENIE LABORATORYJNE nr 1. Wyznaczanie współczynnika wydatku otworów z przystawkami oraz otworów zatopionych

ĆWICZENIE LABORATORYJNE nr 1. Wyznaczanie współczynnika wydatku otworów z przystawkami oraz otworów zatopionych ĆWICZENIE LABORATORYJNE nr Wyznaczanie współczynnika wyatku otworów z przystawkami oraz otworów zatopionych Kolejność czynności:. Pomierzyć wymiary geometryczne stanowiska oraz śrenice otworów w płycie

Bardziej szczegółowo

2.1 Zagadnienie Cauchy ego dla równania jednorodnego. = f(x, t) dla x R, t > 0, (2.1)

2.1 Zagadnienie Cauchy ego dla równania jednorodnego. = f(x, t) dla x R, t > 0, (2.1) Wykład 2 Sruna nieograniczona 2.1 Zagadnienie Cauchy ego dla równania jednorodnego Równanie gań sruny jednowymiarowej zapisać można w posaci 1 2 u c 2 2 u = f(x, ) dla x R, >, (2.1) 2 x2 gdzie u(x, ) oznacza

Bardziej szczegółowo

09P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM PODSTAWOWY (dynamika ruchu prostoliniowego)

09P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM PODSTAWOWY (dynamika ruchu prostoliniowego) Włodzimierz Wolczyński 09P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM PODSTAWOWY (dynamika ruchu prostoliniowego) Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią

Bardziej szczegółowo

Elektrodynamika. Część 2. Specjalne metody elektrostatyki. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM

Elektrodynamika. Część 2. Specjalne metody elektrostatyki. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM Elektroynamika Część 2 Specjalne metoy elektrostatyki Ryszar Tanaś Zakła Optyki Nieliniowej, UAM http://zon8.phys.amu.eu.pl/\~tanas Spis treści 3 Specjalne metoy elektrostatyki 3 3. Równanie Laplace a....................

Bardziej szczegółowo

( ) ( ) ( τ) ( t) = 0

( ) ( ) ( τ) ( t) = 0 Obliczanie wraŝliwości w dziedzinie czasu... 1 OBLICZANIE WRAśLIWOŚCI W DZIEDZINIE CZASU Meoda układu dołączonego do obliczenia wraŝliwości układu dynamicznego w dziedzinie czasu. Wyznaczane będą zmiany

Bardziej szczegółowo

y 1 y 2 = f 2 (t, y 1, y 2,..., y n )... y n = f n (t, y 1, y 2,..., y n ) f 1 (t, y 1, y 2,..., y n ) y = f(t, y),, f(t, y) =

y 1 y 2 = f 2 (t, y 1, y 2,..., y n )... y n = f n (t, y 1, y 2,..., y n ) f 1 (t, y 1, y 2,..., y n ) y = f(t, y),, f(t, y) = Uk lady równań różniczkowych Pojȩcia wsȩpne Uk ladem równań różniczkowych nazywamy uk lad posaci y = f (, y, y 2,, y n ) y 2 = f 2 (, y, y 2,, y n ) y n = f n (, y, y 2,, y n ) () funkcje f j, j =, 2,,

Bardziej szczegółowo

Wymagania konieczne i podstawowe Uczeń: 1. Wykonujemy pomiary

Wymagania konieczne i podstawowe Uczeń: 1. Wykonujemy pomiary ocena dopuszczająca Wymagania podsawowe ocena dosaeczna ocena dobra Wymagania dopełniające ocena bardzo dobra 1 Lekcja wsępna 1. Wykonujemy pomiary 2 3 Wielkości fizyczne, kóre mierzysz na co dzień wymienia

Bardziej szczegółowo

Wykład Pole magnetyczne, indukcja elektromagnetyczna

Wykład Pole magnetyczne, indukcja elektromagnetyczna Wykła 5 5. Pole magnetyczne, inukcja elektromagnetyczna Prawo Ampera Chcemy teraz znaleźć pole magnetyczne wytwarzane przez powszechnie występujące rozkłay prąów, takich jak przewoniki prostoliniowe, cewki

Bardziej szczegółowo

ZADANIA Z KINEMATYKI

ZADANIA Z KINEMATYKI ZADANIA Z KINEMATYKI 1. Określ na poszczególnych przykładach czy względem określonego układu odniesienia ciało jest w ruchu, czy w spoczynku: a) kubek stojący na stole względem stołu b) kubek stojący na

Bardziej szczegółowo

ZADANIA Z GEOMETRII RÓŻNICZKOWEJ NA PIERWSZE KOLOKWIUM

ZADANIA Z GEOMETRII RÓŻNICZKOWEJ NA PIERWSZE KOLOKWIUM ZADANIA Z GEOMETRII RÓŻNICZKOWEJ NA PIERWSZE KOLOKWIUM. Koło o promieniu n płszczyźnie Oxy oczy się bez poślizgu wzdłuż osi Ox. Miejsce geomeryczne opisne przez punk M leżący n obwodzie ego koł jes cykloidą.

Bardziej szczegółowo

LVII OLIMPIADA FIZYCZNA ZAWODY III STOPNIA

LVII OLIMPIADA FIZYCZNA ZAWODY III STOPNIA Zaanie 1 Na poziome płaszczyźnie znaue sie enorony, cienki, początkowo nieruchomy krążek o promieniu R i masie M. W chwili t 0 = 0 z punktu P na te płaszczyźnie, oległego o o śroka krążka S, est wystrzeliwany

Bardziej szczegółowo

KINEMATYKA PUNKTU MATERIALNEGO

KINEMATYKA PUNKTU MATERIALNEGO KINEMATYKA PUNKTU MATERIALNEGO 1 Prędkość średnia 1.1 Rowerzysta przejechał połowę drogi ze stałą prędkością v 1, a drugą połowę ze stałą prędkością v 2. Obliczyć średnią prędkość rowerzysty na całej drodze.

Bardziej szczegółowo

Modelowanie i obliczenia techniczne. Równania różniczkowe Numeryczne rozwiązywanie równań różniczkowych zwyczajnych

Modelowanie i obliczenia techniczne. Równania różniczkowe Numeryczne rozwiązywanie równań różniczkowych zwyczajnych Moelowanie i obliczenia echniczne Równania różniczowe Numeryczne rozwiązywanie równań różniczowych zwyczajnych Przyła ułau ynamicznego E Uła ynamiczny R 0 Zachozi porzeba wyznaczenia: C u C () i() ur ir

Bardziej szczegółowo

Metoda obrazów wielki skrypt przed poświąteczny, CZĘŚĆ POTRZEBNA DO OFa

Metoda obrazów wielki skrypt przed poświąteczny, CZĘŚĆ POTRZEBNA DO OFa Metoa obrazów wielki skrypt prze poświąteczny, CZĘŚĆ POTRZEBNA DO OFa 1. Równania i warunki brzegowe Dlaczego w ogóle metoa obrazów ziała? W elektrostatyce o policzenia wszystkiego wystarczą 2 rzeczy:

Bardziej szczegółowo

Kinematyka W Y K Ł A D I. Ruch jednowymiarowy. 2-1 Przemieszczenie, prędkość. x = x 2 - x x t

Kinematyka W Y K Ł A D I. Ruch jednowymiarowy. 2-1 Przemieszczenie, prędkość. x = x 2 - x x t Wykład z fizyki. Pior Posmykiewicz W Y K Ł A D I Ruch jednowymiarowy Kinemayka Zaczniemy wykład z fizyki od badania przedmioów będących w ruchu. Dział fizyki, kóry zajmuje się badaniem ruchu ciał bez wnikania

Bardziej szczegółowo

DYNAMIKA KONSTRUKCJI

DYNAMIKA KONSTRUKCJI 10. DYNAMIKA KONSTRUKCJI 1 10. 10. DYNAMIKA KONSTRUKCJI 10.1. Wprowadzenie Ogólne równanie dynamiki zapisujemy w posaci: M d C d Kd =P (10.1) Zapis powyższy oznacza, że równanie musi być spełnione w każdej

Bardziej szczegółowo

INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI ĆWICZENIE NR 5

INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI ĆWICZENIE NR 5 INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKUTYWACJI aboratorium z mechaniki płynów ĆWICZENIE NR 5 POMIAR WSPÓŁCZYNNIKA STRAT PRZEPŁYWU NA DŁUGOŚCI. ZASTOSOWANIE PRAWA HAGENA POISEU A 1. Cel

Bardziej szczegółowo

Zasada pędu i popędu, krętu i pokrętu, energii i pracy oraz d Alemberta bryły w ruchu postępowym, obrotowym i płaskim

Zasada pędu i popędu, krętu i pokrętu, energii i pracy oraz d Alemberta bryły w ruchu postępowym, obrotowym i płaskim Zasada pędu i popędu, kręu i pokręu, energii i pracy oraz d Alembera bryły w ruchu posępowym, obroowym i płaskim Ruch posępowy bryły Pęd ciała w ruchu posępowym obliczamy, jak dla punku maerialnego, skupiając

Bardziej szczegółowo

1. Podstawy rachunku wektorowego

1. Podstawy rachunku wektorowego 1 Postaw rachunku wektorowego Wektor Wektor est wielkością efiniowaną pre ługość (mouł) kierunek iałania ora wrot Dwa wektor o tm samm moule kierunku i wrocie są sobie równe Wektor presunięt równolegle

Bardziej szczegółowo

WYBRANE DZIAŁY ANALIZY MATEMATYCZNEJ. Wykład VII Przekształcenie Fouriera.

WYBRANE DZIAŁY ANALIZY MATEMATYCZNEJ. Wykład VII Przekształcenie Fouriera. 7. Całka Fouriera w posaci rzeczywisej. Wykład VII Przekszałcenie Fouriera. Doychczas rozparywaliśmy szeregi Fouriera funkcji w ograniczonym przedziale [ l, l] lub [ ] Teraz pokażemy analogicznie przedsawienie

Bardziej szczegółowo

Zad. 1 Samochód przejechał drogę s = 15 km w czasie t = 10 min ze stałą prędkością. Z jaką prędkością v jechał samochód?

Zad. 1 Samochód przejechał drogę s = 15 km w czasie t = 10 min ze stałą prędkością. Z jaką prędkością v jechał samochód? Segment A.I Kinematyka I Przygotował: dr Łukasz Pepłowski. Zad. 1 Samochód przejechał drogę s = 15 km w czasie t = 10 min ze stałą prędkością. Z jaką prędkością v jechał samochód? v = s/t, 90 km/h. Zad.

Bardziej szczegółowo

ĆWICZENIE 7 WYZNACZANIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA. Wprowadzenie

ĆWICZENIE 7 WYZNACZANIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA. Wprowadzenie ĆWICZENIE 7 WYZNACZIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA Wprowadzenie Ciało drgające w rzeczywisym ośrodku z upływem czasu zmniejsza ampliudę drgań maleje energia mechaniczna

Bardziej szczegółowo

DYFRAKCJA NA POJEDYNCZEJ I PODWÓJNEJ SZCZELINIE

DYFRAKCJA NA POJEDYNCZEJ I PODWÓJNEJ SZCZELINIE YFRAKCJA NA POJEYNCZEJ POWÓJNEJ SZCZELNE. Cel ćwiczenia: zapoznanie ze zjawiskiem yfrakcji światła na pojeynczej i powójnej szczelinie. Pomiar ługości fali światła laserowego, oległości mięzy śrokami szczelin

Bardziej szczegółowo

POMIAR WSPÓŁCZYNNIKA PRZEWODNOŚCI CIEPLNEJ ALUMINIUM

POMIAR WSPÓŁCZYNNIKA PRZEWODNOŚCI CIEPLNEJ ALUMINIUM POMIAR WSPÓŁCZYNNIKA PRZEWODNOŚCI CIEPLNEJ ALUMINIUM I. Cel ćwiczenia: pomiar współczynnika przewoności cieplnej aluminium. II. Przyrząy: III. Literatura: zestaw oświaczalny złożony z izolowanego aluminiowego

Bardziej szczegółowo

VII. ZAGADNIENIA DYNAMIKI

VII. ZAGADNIENIA DYNAMIKI Konderla P. Meoda Elemenów Skończonych, eoria i zasosowania 47 VII. ZAGADNIENIA DYNAMIKI. Równanie ruchu dla zagadnienia dynamicznego Q, (7.) gdzie M NxN macierz mas, C NxN macierz łumienia, K NxN macierz

Bardziej szczegółowo

Matematyka A, kolokwium, 15 maja 2013 rozwia. ciem rozwia

Matematyka A, kolokwium, 15 maja 2013 rozwia. ciem rozwia Maemayka A kolokwium maja rozwia zania Należy przeczyać CA LE zadanie PRZED rozpocze ciem rozwia zywania go!. Niech M. p. Dowieść że dla każdej pary liczb ca lkowiych a b isnieje aka para liczb wymiernych

Bardziej szczegółowo

Sygnały zmienne w czasie

Sygnały zmienne w czasie Sygnały zmienne w czasie a) b) c) A = A = a A = f(+) d) e) A d = A = A sinω / -A -A ys.. odzaje sygnałów: a)sały, b)zmienny, c)okresowy, d)przemienny, e)sinusoidalny Sygnały zmienne okresowe i ich charakerysyczne

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap szkolny 5 listopada 2013 Czas 90 minut

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap szkolny 5 listopada 2013 Czas 90 minut Wojewódzki Konkurs Maemayczny dla uczniów gimnazjów. Eap szkolny 5 lisopada 2013 Czas 90 minu ZADANIA ZAMKNIĘTE Zadanie 1. (1 punk) Liczby A = 0, 99, B = 0, 99 2, C = 0, 99 3, D = 0, 99, E=0, 99 1 usawiono

Bardziej szczegółowo

Blok III: Funkcje elementarne. e) y = 1 3 x. f) y = x. g) y = 2x. h) y = 3x. c) y = 3x + 2. d) y = x 3. c) y = x. d) y = x.

Blok III: Funkcje elementarne. e) y = 1 3 x. f) y = x. g) y = 2x. h) y = 3x. c) y = 3x + 2. d) y = x 3. c) y = x. d) y = x. Blok III: Funkcje elementarne III. Narysuj wykres funkcji: a) y = x y = x y = x y = x III. Narysuj wykres funkcji: a) y = x + y = 4 x III. Znajdź miejsca zerowe funkcji: a) y = 6 x y = x e) y = x f) y

Bardziej szczegółowo

Pobieranie próby. Rozkład χ 2

Pobieranie próby. Rozkład χ 2 Graficzne przedsawianie próby Hisogram Esymaory przykład Próby z rozkładów cząskowych Próby ze skończonej populacji Próby z rozkładu normalnego Rozkład χ Pobieranie próby. Rozkład χ Posać i własności Znaczenie

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z FIZYKI WYMAGANIA EDUKACYJNE DLA UCZNIÓW KLAS I

PRZEDMIOTOWY SYSTEM OCENIANIA Z FIZYKI WYMAGANIA EDUKACYJNE DLA UCZNIÓW KLAS I PRZEDMIOTOWY SYSTEM OCENIANIA Z FIZYKI WYMAGANIA EDUKACYJNE DLA UCZNIÓW KLAS I Wymagania konieczne ocena dopuszczająca wie że długość i odległość mierzymy w milimerach cenymerach merach lub kilomerach

Bardziej szczegółowo

3. Zadanie nr 21 z rozdziału 7. książki HRW

3. Zadanie nr 21 z rozdziału 7. książki HRW Lista 3. do kursu Fizyka; rok. ak. 2012/13 sem. letni W. Inż. Środ.; kierunek Inż. Środowiska Tabele wzorów matematycznych (http://www.if.pwr.wroc.pl/~wsalejda/mat-wzory.pdf) i fizycznych (http://www.if.pwr.wroc.pl/~wsalejda/wzf1.pdf;

Bardziej szczegółowo

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć

Bardziej szczegółowo

WAHADŁO FIZYCZNE ZE ZMIENNĄ OSIĄ ZAWIESZENIA

WAHADŁO FIZYCZNE ZE ZMIENNĄ OSIĄ ZAWIESZENIA WAHADŁO FIZYCZNE ZE ZMIENNĄ OSIĄ ZAWIESZENIA I. Cel ćwiczenia: zapoznanie z własnościami ruchu rająceo w oparciu o wahało fizyczne, wyznaczenie przyspieszenia ziemskieo i ramienia bezwłaności wahała. II.

Bardziej szczegółowo

Zadania z badań operacyjnych Przygotowanie do kolokwium pisemnego

Zadania z badań operacyjnych Przygotowanie do kolokwium pisemnego Zaania z baań operacyjnych Przygotowanie o kolokwium pisemnego 1..21 Zaanie 1.1. Dane jest zaanie programowania liniowego: 4x 1 + 3x 2 max 2x 1 + 2x 2 1 x 1 + 2x 2 4 4x 2 8 x 1, x 2 Sprowazić zaanie o

Bardziej szczegółowo

LOKALNA ANALIZA CZĘSTOTLIWOŚCIOWA SYGNAŁÓW. 1. Definicja 2. Okna 3. Transformacja Gabora. Spis treści

LOKALNA ANALIZA CZĘSTOTLIWOŚCIOWA SYGNAŁÓW. 1. Definicja 2. Okna 3. Transformacja Gabora. Spis treści LOKALNA ANALIZA CZĘSOLIWOŚCIOWA SYGNAŁÓW. Deinicja. Okna 3. ransormacja Gabora Spis reści Analiza czasoo-częsoliościoa sygnału moy Ampliuda.. andrzej 35_m.av -. 3 4 5 6 7 8 9 D 4. 3.5 D 3. DW D3 D4.5..5

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r. ma złożony rozkład Poissona. W tabeli poniżej podano rozkład prawdopodobieństwa ( )

Matematyka ubezpieczeń majątkowych r. ma złożony rozkład Poissona. W tabeli poniżej podano rozkład prawdopodobieństwa ( ) Zadanie. Zmienna losowa: X = Y +... + Y N ma złożony rozkład Poissona. W abeli poniżej podano rozkład prawdopodobieńswa składnika sumy Y. W ejże abeli podano akże obliczone dla k = 0... 4 prawdopodobieńswa

Bardziej szczegółowo

II.2 Położenie i prędkość cd. Wektory styczny i normalny do toru. II.3 Przyspieszenie

II.2 Położenie i prędkość cd. Wektory styczny i normalny do toru. II.3 Przyspieszenie II. Położenie i prędkość cd. Wekory syczny i normalny do oru. II.3 Przyspieszenie Wersory cylindrycznego i sferycznego układu współrzędnych krzywoliniowych Wyrażenia na prędkość w układach cylindrycznym

Bardziej szczegółowo

ZESTAW POWTÓRKOWY (1) KINEMATYKA POWTÓRKI PRZED EGZAMINEM ZADANIA WYKONUJ SAMODZIELNIE!

ZESTAW POWTÓRKOWY (1) KINEMATYKA POWTÓRKI PRZED EGZAMINEM ZADANIA WYKONUJ SAMODZIELNIE! Imię i nazwisko: Kl. Termin oddania: Liczba uzyskanych punktów: /50 Ocena: ZESTAW POWTÓRKOWY (1) KINEMATYKA POWTÓRKI PRZED EGZAMINEM ZADANIA WYKONUJ SAMODZIELNIE! 1. /(0-2) Przelicz jednostki szybkości:

Bardziej szczegółowo

Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych. i rocznych ocen klasyfikacyjnych z fizyki dla klasy 1 gimnazjum

Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych. i rocznych ocen klasyfikacyjnych z fizyki dla klasy 1 gimnazjum Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z fizyki dla klasy 1 gimnazjum Semesr I 1. Wykonujemy pomiary Tema zajęć Wielkości fizyczne, kóre

Bardziej szczegółowo

Mierzymy grubość optyczną aerozoli Krzysztof Markowicz Instytut Geofizyki, Wydział Fizyki, Uniwersytet Warszawski

Mierzymy grubość optyczną aerozoli Krzysztof Markowicz Instytut Geofizyki, Wydział Fizyki, Uniwersytet Warszawski Mierzymy grubość optyczną aerozoli Krzysztof Markowicz Instytut Geofizyki, Wyział Fizyki, Uniwersytet Warszawski Czas trwania: 0 minut Czas obserwacji: owolny w ciągu nia Wymagane warunki meteorologiczne:

Bardziej szczegółowo

Ćwiczenie: "Kinematyka"

Ćwiczenie: Kinematyka Ćwiczenie: "Kinematyka" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1. Ruch punktu

Bardziej szczegółowo

2+3*5= 2+3/5= 2+3spacja/5= <Shift+6> 3 spacja / spacja <Shift+6> 1/3 = ( ) a:10. zmienna π jest już zdefiniowana w programie

2+3*5= 2+3/5= 2+3spacja/5= <Shift+6> 3 spacja / spacja <Shift+6> 1/3 = ( ) a:10. zmienna π jest już zdefiniowana w programie Mathca - Postaw r inż. Konra Witkiewicz kwit.zut.eu.pl Proste obliczenia Włączam pasek narzęzi Math: View Toolbars Math. Klikam na pierwszą ikonę paska Math ab wświetlić pasek narzęzi Calculator: Obliczć

Bardziej szczegółowo

Podstawy elektrotechniki

Podstawy elektrotechniki Wyział Mechaniczno-Energetyczny Postawy elektrotechniki Prof. r hab. inż. Juliusz B. Gajewski, prof. zw. PWr Wybrzeże S. Wyspiańskiego 27, 50-370 Wrocław Bu. A4 Stara kotłownia, pokój 359 Tel.: 71 320

Bardziej szczegółowo

ĆWICZENIE 41 WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA ZA POMOCĄ MIKROSKOPU. Kraków, luty 2004 - kwiecień 2015

ĆWICZENIE 41 WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA ZA POMOCĄ MIKROSKOPU. Kraków, luty 2004 - kwiecień 2015 Józef Zapłotny, Maria Nowotny-Różańska Zakła Fizyki, Uniwersytet Rolniczy Do użytku wewnętrznego ĆWICZENIE 41 WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA ZA POMOCĄ MIKROSKOPU Kraków, luty 2004 - kwiecień

Bardziej szczegółowo

Zadanie 1. Rozwiązanie. opracował: Jacek Izdebski.

Zadanie 1. Rozwiązanie. opracował: Jacek Izdebski. Zaanie 1 Jaką pracę należy wykonać, aby w przetrzeń mięzy okłakami konenatora płakiego wunąć ielektryk całkowicie tę przetrzeń wypełniający, jeśli napięcie na okłakach zmienia ię w trakcie tej operacji

Bardziej szczegółowo

1 Funkcje dwóch zmiennych podstawowe pojęcia

1 Funkcje dwóch zmiennych podstawowe pojęcia 1 Funkcje dwóch zmiennych podstawowe pojęcia Definicja 1 Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach w zbiorze R nazywamy przyporządkowanie każdemu punktowi ze zbioru A dokładnie jednej

Bardziej szczegółowo

MECHANIKA PŁYNÓW LABORATORIUM

MECHANIKA PŁYNÓW LABORATORIUM MECHANIKA PŁYNÓW LABORATORIUM Ćwiczenie nr 2 Wyznaczanie współczynnika oporów liniowych i współczynnika strat miejscowych w ruchu turbulentnym. Celem ćwiczenia jest zapoznanie się z laboratoryjną metoą

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Meody Lagrange a i Hamilona w Mechanice Mariusz Przybycień Wydział Fizyki i Informayki Sosowanej Akademia Górniczo-Hunicza Wykład 7 M. Przybycień (WFiIS AGH) Meody Lagrange a i Hamilona... Wykład 7 1 /

Bardziej szczegółowo

Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Wielkości dynamiczne w ruchu postępowym. a. Masa ciała jest: - wielkością skalarną, której wielkość jest niezmienna

Bardziej szczegółowo

Projektowanie Systemów Elektromechanicznych. Wykład 3 Przekładnie

Projektowanie Systemów Elektromechanicznych. Wykład 3 Przekładnie Projektowanie Systemów Elektromechanicznych Wykła 3 Przekłanie Zębate: Proste; Złożone; Ślimakowe; Planetarne. Cięgnowe: Pasowe; Łańcuchowe; Linowe. Przekłanie Przekłanie Hyrauliczne: Hyrostatyczne; Hyrokinetyczne

Bardziej szczegółowo

Sformułowanie Schrödingera mechaniki kwantowej. Fizyka II, lato

Sformułowanie Schrödingera mechaniki kwantowej. Fizyka II, lato Sformułowanie Schrödingera mechaniki kwanowej Fizyka II, lao 018 1 Wprowadzenie Posać funkcji falowej dla fali de Broglie a, sin sin k 1 Jes o przypadek jednowymiarowy Posać a zosała określona meodą zgadywania.

Bardziej szczegółowo

Algebra liniowa. 1. Macierze.

Algebra liniowa. 1. Macierze. Algebra liniowa 1 Macierze Niech m oraz n będą liczbami naturalnymi Przestrzeń M(m n F) = F n F n będącą iloczynem kartezjańskim m egzemplarzy przestrzeni F n z naturalnie określonymi działaniami nazywamy

Bardziej szczegółowo

V OGÓLNOPOLSKI KONKURS Z FIZYKI Fizyka się liczy I Etap ZADANIA 27 lutego 2013r.

V OGÓLNOPOLSKI KONKURS Z FIZYKI Fizyka się liczy I Etap ZADANIA 27 lutego 2013r. V OGÓLNOPOLSKI KONKURS Z FIZYKI Fizka się licz I Etap ZDNI 7 lutego 3r.. Dwa pociski wstrzeloo jeocześie w tę saą stroę z wóch puktów oległch o o. Pierwsz pocisk wstrzeloo z prękością o po kąte α. Z jaką

Bardziej szczegółowo

MODEL MATEMATYCZNY RUCHU GRANUL NAWOZU PO ZEJŚCIU Z TARCZY ROZSIEWAJĄCEJ

MODEL MATEMATYCZNY RUCHU GRANUL NAWOZU PO ZEJŚCIU Z TARCZY ROZSIEWAJĄCEJ InŜynieria Rolnicza 6/006 Wojciech Przystupa Katera Zastosowań Matematyki Akaemia Rolnicza w Lublinie MODEL MATEMATYCZNY RUCHU GRANUL NAWOZU PO ZEJŚCIU Z TARCZY ROZSIEWAJĄCEJ Streszczenie W pracy zbaano

Bardziej szczegółowo

E k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny

E k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny E k o n o m e r i a S r o n a Nieliniowy model ekonomeryczny Jednorównaniowy model ekonomeryczny ma posać = f( X, X,, X k, ε ) gdzie: zmienna objaśniana, X, X,, X k zmienne objaśniające, ε - składnik losowy,

Bardziej szczegółowo

Kinetyczna teoria gazów. Zjawiska transportu : dyfuzja transport masy transport energii przewodnictwo cieplne transport pędu lepkość

Kinetyczna teoria gazów. Zjawiska transportu : dyfuzja transport masy transport energii przewodnictwo cieplne transport pędu lepkość Kieycza eoria gazów Zjawiska rasporu : dyfuzja raspor masy raspor eergii przewodicwo cieple raspor pędu lepkość Zjawiska rasporu - dyfuzja syuacja począkowa brak rówowagi proces wyrówywaia koceracji -

Bardziej szczegółowo