Metoda obrazów wielki skrypt przed poświąteczny, CZĘŚĆ POTRZEBNA DO OFa

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Metoda obrazów wielki skrypt przed poświąteczny, CZĘŚĆ POTRZEBNA DO OFa"

Transkrypt

1 Metoa obrazów wielki skrypt prze poświąteczny, CZĘŚĆ POTRZEBNA DO OFa 1. Równania i warunki brzegowe Dlaczego w ogóle metoa obrazów ziała? W elektrostatyce o policzenia wszystkiego wystarczą 2 rzeczy: 1. Znajomość równań, czyli np. prawo Coulomba (albo prawo Gaussa, z jenego można uowonić rugie), to, że siły elektrostatyczne są zachowawcze, więc praca nie zależy o rogi it. Te równania są prawziwe zawsze, o ile łaunki po ustaleniu równowagi się nie ruszają (bo to elektrostatyka). To skrypt, więc wypiszę najważniejsze równania: Prawo Coulomba: siła mięzy 2 łaunkami punktowymi q i Q oległymi o r: Prawo Gaussa: całka z pola po powierzchni zamkniętej aje łaunek w śroku: Napięcie mięzy punktami A i B, czyli różnica potencjałów: Elektrostatyczna energia potencjalna la łaunku q wynosi, czyli różnica energii potencjalnych to 2. Warunki brzegowe, czyli rozmieszczenie łaunków i wartość potencjału na brzegach obszaru. Dlaczego brzegowe? Bo jak liczę potencjał w jakimś obszarze, muszę znać potencjał na brzegach tego obszaru. Jak liczę pole wszęzie, brzeg jest w nieskończoności. Wtey warunki są zwykle proste: pole i potencjał zerują się w nieskończoności, (choć np. la nieskończonej, jenoronie nałaowanej płaszczyzny to nie ziała). Poza wartością potencjału na brzegach trzeba jeszcze znać wartości i położenia łaunków, (ale np. nie trzeba znać łaunków związanych w ielektrykach ani rozkłau łaunków wyiukowanych w przewonikach, wystarczy znać łaunki całkiem nieruchome ). Warunki brzegowe zależą o problemu, który liczymy. Np. la iealnych przewoników te warunki to stały potencjał (równy zero la uziemionych przewoników) wewnątrz i na powierzchni przewonika. Natężenie pola elektrycznego to -graient potencjału ( ), czyli jest równe zero wewnątrz przewonika. Na powierzchni przewonika tylko skłaowa styczna jest 0! Skłaowa prostopała zależy o łaunku wyiukowanego na powierzchni przewoniku (łaunek w przewoniku gromazi się tylko na powierzchni). Dygresja 1 (warto przeczytać, bo przya się później): Ile wynosi ta skłaowa prostopała? Można to policzyć z prawa Gaussa (patrz rysunek). Wybieram graniastosłup o polu postawy A i wysokości, przechozący przez powierzchnię nałaowaną z gęstością powierzchniową. Skłaową prostopałą na oznaczmy, a tę po Jeśli wysokość i pole A są zaniebywalnie małe (ale, strumień przez powierzchnię to (bo boki się nie liczą, a iloczyn raz jest oatni, a raz ujemny, bo wektor jest skierowany raz w górę, a raz w ół, a zawsze jest w tę samą stronę). A jest małe, więc łaunek wewnątrz to Postawiam o prawa Gaussa: Dzielę stronami przez A: Ten wzór jest prawziwy zawsze, nie tylko la przewoników! Dla przewoników pole w śroku jest zero, czyli Stą wynika (la przewoników). I tyle! 2. Metoa obrazów iea i przykła Jak znamy równania i warunki brzegowe, rozwiązanie jest tylko jeno! Mówi nam to twierzenie o jenoznaczności jego owó jest trochę truny, więc przyjmijmy je na wiarę. W metozie obrazów chozi o to, żeby nie liczyć pola wszęzie (uwzglęniając warunki w nieskończoności ), tylko w obszarze gzie nas to interesuje. Wtey rozkła łaunku poza tym obszarem może być całkowicie owolny, ważne żeby warunki brzegowe się zgazały. Stanarowy przykła z przewozącą płaszczyzną, na którą na wysokości jest łaunek q: interesuje nas pole koło łaunku q, czyli pole w zakreskowanym obszarze. Pole poniżej płaszczyzny nas nie interesuje. Dlatego szukam rozwiązania, które spełnia warunki brzegowe na brzegach zakreskowanego obszaru. Jenym z brzegów jest przewoząca płaszczyzna, a opowiaający jej warunek to. Pozostałe brzegi to nieskończoność, gzie normalnie Tu jest problem, bo na rogach jest skok potencjału. Dlatego jeśli w zaaniu nie ma, że płaszczyzna jest np. nałaowana albo połączona o baterii, utrzymującej stałe napięcie V mięzy płaszczyzną a nieskończonością, można bezpiecznie przyjąć, że (albo przyjąć, że w nieskończoności, co na 1 wychozi).

2 Dla prostoty przyjmijmy, że mamy warunki brzegowe na płaszczyźnie i w nieskończoności. Ostatni warunek, jaki trzeba uwzglęnić, to obecność łaunku q. Teraz rozwiązuję problem, jakie jest pole w zakreskowanym obszarze. Pole o samego łaunku q nie wystarczy, bo wtey potencjał nie zeruje się na płaszczyźnie. Teraz kluczowe: skoro liczę pole w zakreskowanym obszarze, poza nim mogę wstawiać cokolwiek! Ale warunki brzegowe muszą być spełnione: co mogę wstawić na ole, żeby potencjał na płaszczyźnie się zerował? Coś symetrycznego wzglęem tej płaszczyzny (jak wstawię niesymetrycznie, nie ma powou aby potencjał wszęzie na płaszczyźnie się zerował) najprościej wstawić lustrzany łaunek q. Teraz patrzę, czy warunki brzegowe są spełnione: niech początek ukłau współrzęnych bęzie w połowie oległości mięzy q i q, a płaszczyzna bęzie w płaszczyźnie xy. Wtey potencjał o 2 łaunków to: Na płaszczyźnie powinien się zerować: zgaza się! Po sprawzeniu warunków brzegowych wiem, że obrze policzyłem potencjał w zakreskowanym obszarze (la ). Siła ziałająca na łaunek jest taka jak o łaunku q oległego o 2. A co jest poniżej (la )? Wystarczy stwierzić, że w obszarze poniżej nie ma żanych łaunków, a na brzegach. Jenym z rozwiązań la takiego obszaru jest wszęzie. Z tw o jenoznaczności wiem, że to jeyne rozwiązanie. Czyli po płaszczyzną wszęzie (a zatem ). Ale można popatrzeć na to inaczej: przenoszę lustrzany łaunek q na górę tak, że kasuje się z łaunkiem, i wtey liczę potencjał o takiego ukłau w obszarze po płaszczyzną (też wychozi wszęzie ). Okazuje się, że często pole w tym rugim obszarze można otrzymać, przenosząc lustrzany łaunek o 1. obszaru! Dygresja 2 (związana z ygresją 1): teraz możemy zastosować w praktyce wzór. Wiemy że, czyli Policzenie gęstości powierzchniowej łaunki na płaszczyźnie jest banalnie proste, wystarczy policzyć, pamiętając że jest ono liczone tuż na płaszczyzną. Tuż na wystarczy, żeby zastosować metoę obrazów, czyli pole jest takie, jak pole o 2 łaunków i q, liczone la. Ale chozi o skłaową prostopałą o płaszczyzny (czyli w naszym ukłazie wsp. chozi o ). Ile wynosi? Policzmy je z efinicji jako graient potencjału! Nas interesuje skłaowa z-owa, czyli. Pamiętamy, że: a pochona? Teraz (nie wcześniej!) możemy postawić (bo liczę pole tuż na płaszczyzną): Po przemnożeniu stronami ostaję rozkła gęstości łaunku: Wychozi z minusem, bo łaunek inukuje na płaszczyźnie łaunek przeciwnego znaku. Nie bęę tego pokazywał, ale jak się policzy Wyjzie tyle, ile wynosił nas lustrzany łaunek! To kolejna fajna własność metoy obrazów: lustrzany łaunek zwykle równa się temu wyinukowanemu. Pozostaje jeszcze 1 problem: wyobraźmy sobie, że najpierw łaunek znajował się nieskończenie aleko. Wtey płaszczyzna z pewnością była nienałaowana. Potem przysunąłem łaunek na oległość o płaszczyzny. I co, na płaszczyźnie nagle wyinukował się łaunek q? Ską on się wziął, jak to się ma o zasay zachowania łaunku? Można argumentować, że warunek na płaszczyźnie oznacza, że płaszczyzna jest uziemiona, więc ten łaunek przypłynął z uziemienia. Ale nie trzeba się owoływać o uziemienia, żeby to wytłumaczyć. Płaszczyzna to iealny przewonik (ma zerowy opór) i jest nieskończona. W takim razie gy w pobliżu łaunku wyinukował się łaunek q, kompensujący łaunek potrzebny o tego, aby płaszczyzna była obojętna elektrycznie, mógł uciec nieskończenie aleko! Zerowy opór oznacza, że łaunki mogą się swobonie przemieszczać, więc równie obrze mogły się przemieścić nieskończenie aleko. W rzeczywistości nie ma takich problemów, bo nie ma nieskończonych płaszczyzn!

3 3. Metoa obrazów uziemiona przewoząca sfera tak oznaczamy uziemienie magiczne zganięcie Teraz trzeba skorzystać ze wzoru cosinusów, aby policzyć i chozi o to, że la potencjał zeruje się la każego kąta Poza policzeniem potencjału można policzyć także inne rzeczy, jak siłę, z jaką sfera przyciąga łaunek q: Uwaga: na następnej stronie liczę gęstość powierzchniową łaunku. Po jej scałkowaniu okazałoby się, że całkowity łaunek zgromazony na sferze wynosi. Ską on się wziął? Tym razem uziemienie jest ważne, ponieważ łaunek przypłynął o sfery z ziemi. Co gyby przewoząca sfera nie była uziemiona? Wtey jej całkowity łaunek musiałby być zero! Jak to pogozić? Znamy rozwiązanie la V=0, szukamy rozwiązania la V=(owolna stała) z oatkowym warunkiem, aby łaunek na sferze był zero. Wiać, że wystarczy skorzystać z zasay superpozycji i oać w śroku sfery rugi wymyślony łaunek, równy. Wtey potencjał na sferze wciąż bęzie stały, a sumaryczny łaunek bęzie zero. Oczywiście wszystkie wyniki takie jak siła przyciągania czy rozkła wyiukowanego łaunku się wtey zmienią.

4 Aby policzyć gęstość powierzchniową, trzeba znać skłaową prostopałą o powierzchni. Tym razem powierzchnia jest sferyczna, więc truno byłoby używać współrzęnych x,y,z. Zamiast tego można zauważyć, że za współrzęną prostopała o powierzchni (stanarowo oznaczaną jako n) można wybrać r Po policzeniu pochonej wyjzie W tym przypaku powinno być policzone 4. Inne zastosowania metoy obrazów a) To samo co wyżej, tylko w wuwymiarze, tzn przewó nałaowany z gęstością liniową na płaszczyzną: albo koło rury o promieniu R: (oczywiście siła przyciągania, rozkła + łaunku itp. się zmienią, tylko metoa pozostaje ta sama) + - b) Półpłaszczyzny po ściśle określonym kątem: Na rysunku kąt jest 90 stopni, i potrzeba aż 3 łaunków, la innych specjalnych kątów (np. 30, 45 albo 60 stopni) bęzie potrzeba ich jeszcze więcej Ciekawostka: łączny łaunek wyinukowany na rysunku po prawej to = c) Są jeszcze inne zastosowania, ale te powinny wystarczyć, żeby nabrać intuicji o co chozi 2h 2 h h 5. Metoa obrazów la ielektryków (la ambitnych, razę najpierw poczytać skrypt z ielektryków) Działa prawie tak samo jak la przewoników, tylko warunki brzegowe są inne. Potencjał wewnątrz przewonika jest stały, a natężenie pola się zeruje łaunki wyiukowane w przewoniku iealnie ekranują zewnętrzne pole. Natężenie pola w ielektryku jest słabsze niż w próżni, ale się nie zeruje łaunki związane w ielektryku tylko częściowo ekranują zewnętrzne pole! No to jakie są te warunki brzegowe? W skrypcie z ielektryków pokazałem, że Gzie to wektor jenostkowy (o ługości 1) prostopały ( normalny ) o powierzchni, na której jest zgromazony łaunek powierzchniowy (czyli to po prostu skłaowa prostopała wektora polaryzacji, mierzona tam, gzie liczymy ). Teraz trzeba skorzystać z tego, że polaryzacja jest proporcjonalna o pola:, czyli Teraz najtruniejsze: łaunek związany sam wytwarza! Trzeba pamiętać, że liczymy tam, gzie gromazi się łaunek związany, czyli tuż po powierzchnią! Dostatecznie blisko powierzchni owolna gęstość łaunku powierzchniowego wytwarza pole jak o nieskończonej płaszczyzny, tzn, My bierzemy po uwagę, bo to ono wpływa na polaryzację. Oprócz tego jest jakieś pochozące z zewnętrznych źróeł. Czyli Ale z rugiej strony Postawiam po to wyrażenie:

5 Teraz oam stronami Teraz zielę stronami przez Czyli powierzchniowy łaunek związany jest proporcjonalny o, tak samo jak la przewoników! I to jest nasz warunek brzegowy, który wykorzystamy w metozie obrazów! Dygresja: Zaraz, a co z objętościowym łaunkiem związanym? Policzmy (patrz skrypt z ielektryków): W pkt. 5 skryptu z ielektryków pokazałem, że Doaję stronami postawiam ten wzór po wzór wyżej: (1+ )= Dzielę stronami przez (1+ ) = A zatem jest proporcjonalne o, czyli opóki łaunki swobone występują poza ielektrykiem (tak jak zwykle bywa w metozie obrazów), powinno się zerować. 6. Przykła zastosowania metoy obrazów la ielektryków Jak otą mamy tylko warunek brzegowy który nie jest iealny, bo nie mówi bezpośrenio o potencjale, jak porząny warunek brzegowy powinien. Ale okaże się barzo przyatny! Rozważmy płaski ielektryk (zajmuje cały zakropkowany obszar na rysunku), na którym na wysokości znajuje się punktowy łaunek. Z jaką siłą jest przyciągany? Op. wykorzystajmy nasz warunek brzegowy! Aby znaleźć, należy policzyć na powierzchni ielektryka. pochozi tylko o łaunku punktowego, czyli (łatwo to policzyć samemu). Warunek brzegowy aje się być taki sam jak la przewozącej płaszczyzny (tam było q Powierzchniowy rozkła łaunku okazał ), tylko przemnożony przez czynnik. W związku z tym zamiast łaunku q na ole należy umieścić łaunek q=q. Wtey ostanę potencjał i pole w górnej półpłaszczyźnie. Ale nam chozi tylko o to, z jaką siłą łaunek jest przyciągany! Przyciągany jest z tą samą siłą, z jaką byłby przyciągany przez łaunek q oległy o niego o 2, czyli: że przemnożona przez Czyli siła jest taka sama jak la przewozącej płaszczyzny, tyle. Tak właśnie stosuje się metoę obrazów: zauważamy, że rozkła łaunku jest prawie taki sam jak la przewonika, i wystarczy przemnożyć łaunki lustrzane przez jakiś czynnik. Należy tylko pamiętać o paru rzeczach: Uwaga 1: tym razem zasaa zachowania łaunku jest ściśle spełniona, tak więc nie można la ielektrycznej kuli liczyć wszystkiego tak samo jak la uziemionej przewozącej sfery trzeba najpierw policzyć jak bęzie la zwykłej, nieuziemionej przewozącej sfery, której sumaryczny łaunek jest zero (wtey ), a opiero potem mnożyć przez opowieni czynnik. Uwaga 2: jeśli wewnątrz ielektryka są jakieś łaunki, trzeba uwzglęnić, jakie wywołują (jeśli to łaunki punktowe, wystarczy pozielić pole pochozące o nich przez, patrz końcówka skryptu z ielektryków). Uwaga 3: przewoniki są granicznym przypakiem ielektryków, tzn. jeśli zastąpię ielektryk przez przewonik, opowiaa to przejściu granicznemu Dygresja: la przewozącej płaszczyzny pole po płaszczyzną się zerowało. A jak bęzie la ielektryka? Trzeba przenieść łaunek zwiercialany na rugą stronę, wtey pole wewnątrz ielektryka bęzie takie jak o łaunku punktowego q =q umieszczonego w oległości na ielektrykiem. UWAGA: cały ten skrypt jest oparty na Postawach Elektroynamiki Griffithsa, sam nic nie wymyśliłem.

Elektrodynamika. Część 2. Specjalne metody elektrostatyki. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM

Elektrodynamika. Część 2. Specjalne metody elektrostatyki. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM Elektroynamika Część 2 Specjalne metoy elektrostatyki Ryszar Tanaś Zakła Optyki Nieliniowej, UAM http://zon8.phys.amu.eu.pl/\~tanas Spis treści 3 Specjalne metoy elektrostatyki 3 3. Równanie Laplace a....................

Bardziej szczegółowo

Wykład Pole magnetyczne, indukcja elektromagnetyczna

Wykład Pole magnetyczne, indukcja elektromagnetyczna Wykła 5 5. Pole magnetyczne, inukcja elektromagnetyczna Prawo Ampera Chcemy teraz znaleźć pole magnetyczne wytwarzane przez powszechnie występujące rozkłay prąów, takich jak przewoniki prostoliniowe, cewki

Bardziej szczegółowo

Potencjał pola elektrycznego

Potencjał pola elektrycznego Potencjał pola elektrycznego Pole elektryczne jest polem zachowawczym, czyli praca wykonana przy przesunięciu ładunku pomiędzy dwoma punktami nie zależy od tego po jakiej drodze przesuwamy ładunek. Spróbujemy

Bardziej szczegółowo

Ć W I C Z E N I E N R E-17

Ć W I C Z E N I E N R E-17 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA ELEKTRYCZNOŚCI I MAGNETYZMU Ć W I C Z E N I E N R E-17 WYZNACZANIE STAŁEJ DIELEKTRYCZNEJ RÓŻNYCH

Bardziej szczegółowo

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne......................

Bardziej szczegółowo

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne....................

Bardziej szczegółowo

elektryczna. Elektryczność

elektryczna. Elektryczność Pojemność elektryczna. Elektryczność ść. Wykła 4 Wrocław University of Technology 4-3- Pojemność elektryczna Okłaki konensatora są przewonikami, a więc są powierzchniami ekwipotencjalnymi: wszystkie punkty

Bardziej szczegółowo

Podstawy fizyki wykład 8

Podstawy fizyki wykład 8 Podstawy fizyki wykład 8 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Ładunek elektryczny Grecy ok. 600 r p.n.e. odkryli, że bursztyn potarty o wełnę przyciąga inne (drobne) przedmioty. słowo

Bardziej szczegółowo

Strumień Prawo Gaussa Rozkład ładunku Płaszczyzna Płaszczyzny Prawo Gaussa i jego zastosowanie

Strumień Prawo Gaussa Rozkład ładunku Płaszczyzna Płaszczyzny Prawo Gaussa i jego zastosowanie Problemy elektrodynamiki. Prawo Gaussa i jego zastosowanie przy obliczaniu pól ładunku rozłożonego w sposób ciągły. I LO im. Stefana Żeromskiego w Lęborku 19 marca 2012 Nowe spojrzenie na prawo Coulomba

Bardziej szczegółowo

3b. ELEKTROSTATYKA. r r. 4πε. 3.4 Podstawowe pojęcia. kqq0 E =

3b. ELEKTROSTATYKA. r r. 4πε. 3.4 Podstawowe pojęcia. kqq0 E = 3b. LKTROTATYKA 3.4 Postawowe pojęcia Zasaa zachowania łaunku umayczny łaunek ukłau elektycznie izolowanego jest stały. Pawo Coulomba - siła oziaływania elektostatycznego 4 1 18 F C A s ˆ gzie : k 8,85*1

Bardziej szczegółowo

Energia potencjalna pola elektrostatycznego ładunku punktowego

Energia potencjalna pola elektrostatycznego ładunku punktowego Energia potencjalna pola elektrostatycznego ładunku punktowego Wszystkie rysunki i animacje zaczerpnięto ze strony http://web.mit.edu/8.02t/www/802teal3d/visualizations/electrostatics/index.htm. Tekst

Bardziej szczegółowo

Strumień pola elektrycznego i prawo Gaussa

Strumień pola elektrycznego i prawo Gaussa Strumień pola elektrycznego i prawo Gaussa Ryszard J. Barczyński, 2010 2015 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Strumień pola

Bardziej szczegółowo

Wymiana ciepła. Ładunek jest skwantowany. q=n. e gdzie n = ±1, ±2, ±3 [1C = 6, e] e=1, C

Wymiana ciepła. Ładunek jest skwantowany. q=n. e gdzie n = ±1, ±2, ±3 [1C = 6, e] e=1, C Wymiana ciepła Ładunek jest skwantowany ładunek elementarny ładunek pojedynczego elektronu (e). Każdy ładunek q (dodatni lub ujemny) jest całkowitą wielokrotnością jego bezwzględnej wartości. q=n. e gdzie

Bardziej szczegółowo

Relacje Kramersa Kroniga

Relacje Kramersa Kroniga Relacje Kramersa Kroniga Relacje Kramersa-Kroniga wiążą ze sobą część rzeczywistą i urojoną każej funkcji, która jest analityczna w górnej półpłaszczyźnie zmiennej zespolonej. Pozwalają na otrzymanie części

Bardziej szczegółowo

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku Fizyka w poprzednim odcinku Obliczanie natężenia pola Fizyka Wyróżniamy ładunek punktowy d Wektor natężenia pola d w punkcie P pochodzący od ładunku d Suma składowych x-owych wektorów d x IĄGŁY ROZKŁAD

Bardziej szczegółowo

Geometria płaska - matura Przyprostokątne trójkąta prostokątnego mają długości 3 7cm poprowadzona z wierzchołka kąta prostego ma długość: 12

Geometria płaska - matura Przyprostokątne trójkąta prostokątnego mają długości 3 7cm poprowadzona z wierzchołka kąta prostego ma długość: 12 Geometria płaska - matura 010 1. Przyprostokątne trójkąta prostokątnego mają ługości 7cm i 4 7cm. Wysokość poprowazona z wierzchołka kąta prostego ma ługość: 1 5 A. 7cm B. cm C. 8 7cm D. 7 7cm 5 7. Miara

Bardziej szczegółowo

Pole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu) (1.1) (1.2a)

Pole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu) (1.1) (1.2a) PODSAWY WYMIANY CIEPŁA. Postawowe pojęcia w wymianie ciepła Sposoby transportu ciepła: przewozenie konwekcja - swobona - wymuszona promieniowanie ransport ciepła w ciałach stałych obywa się na roze przewozenia.

Bardziej szczegółowo

Elektrostatyka ŁADUNEK. Ładunek elektryczny. Dr PPotera wyklady fizyka dosw st podypl. n p. Cząstka α

Elektrostatyka ŁADUNEK. Ładunek elektryczny. Dr PPotera wyklady fizyka dosw st podypl. n p. Cząstka α Elektrostatyka ŁADUNEK elektron: -e = -1.610-19 C proton: e = 1.610-19 C neutron: 0 C n p p n Cząstka α Ładunek elektryczny Ładunek jest skwantowany: Jednostką ładunku elektrycznego w układzie SI jest

Bardziej szczegółowo

Zadanie 1. Rozwiązanie. opracował: Jacek Izdebski.

Zadanie 1. Rozwiązanie. opracował: Jacek Izdebski. Zaanie 1 Jaką pracę należy wykonać, aby w przetrzeń mięzy okłakami konenatora płakiego wunąć ielektryk całkowicie tę przetrzeń wypełniający, jeśli napięcie na okłakach zmienia ię w trakcie tej operacji

Bardziej szczegółowo

Ładunki elektryczne i siły ich wzajemnego oddziaływania. Pole elektryczne. Copyright by pleciuga@ o2.pl

Ładunki elektryczne i siły ich wzajemnego oddziaływania. Pole elektryczne. Copyright by pleciuga@ o2.pl Ładunki elektryczne i siły ich wzajemnego oddziaływania Pole elektryczne Copyright by pleciuga@ o2.pl Ładunek punktowy Ładunek punktowy (q) jest to wyidealizowany model, który zastępuje rzeczywiste naelektryzowane

Bardziej szczegółowo

LVII OLIMPIADA FIZYCZNA ZAWODY III STOPNIA

LVII OLIMPIADA FIZYCZNA ZAWODY III STOPNIA Zaanie 1 Na poziome płaszczyźnie znaue sie enorony, cienki, początkowo nieruchomy krążek o promieniu R i masie M. W chwili t 0 = 0 z punktu P na te płaszczyźnie, oległego o o śroka krążka S, est wystrzeliwany

Bardziej szczegółowo

Przekształcenie całkowe Fouriera

Przekształcenie całkowe Fouriera Przekształcenie całkowe Fouriera Postać zespolona szeregu Fouriera Niech ana bęzie funkcja f spełniająca w przeziale [, ] warunki Dirichleta. Wtey szereg Fouriera tej funkcji jest o niej zbieżny, tj. przy

Bardziej szczegółowo

Wyk lad 3 Grupy cykliczne

Wyk lad 3 Grupy cykliczne Wyk la 3 Grupy cykliczne Definicja 3.1. Niech a bezie elementem grupy (G,, e). Jeżeli istnieje liczba naturalna k taka, że a k = e, to najmniejsza taka liczbe naturalna k nazywamy rzeem elementu a. W przeciwnym

Bardziej szczegółowo

Podstawy elektrotechniki

Podstawy elektrotechniki Wyział Mechaniczno-Energetyczny Postawy elektrotechniki Prof. r hab. inż. Juliusz B. Gajewski, prof. zw. PWr Wybrzeże S. Wyspiańskiego 27, 50-370 Wrocław Bu. A4 Stara kotłownia, pokój 359 Tel.: 71 320

Bardziej szczegółowo

Zwój nad przewodzącą płytą METODA ROZDZIELENIA ZMIENNYCH

Zwój nad przewodzącą płytą METODA ROZDZIELENIA ZMIENNYCH METODA ROZDZIELENIA ZMIENNYCH (2) (3) (10) (11) Modelowanie i symulacje obiektów w polu elektromagnetycznym 1 Rozwiązania równań (10-11) mają ogólną postać: (12) (13) Modelowanie i symulacje obiektów w

Bardziej szczegółowo

Analityczne metody kinematyki mechanizmów

Analityczne metody kinematyki mechanizmów J Buśkiewicz Analityczne Metoy Kinematyki w Teorii Mechanizmów Analityczne metoy kinematyki mechanizmów Spis treści Współrzęne opisujące położenia ogniw pary kinematycznej Mechanizm korowo-wozikowy (crank-slier

Bardziej szczegółowo

1. A 2. A 3. B 4. B 5. C 6. B 7. B 8. D 9. A 10. D 11. C 12. D 13. B 14. D 15. C 16. C 17. C 18. B 19. D 20. C 21. C 22. D 23. D 24. A 25.

1. A 2. A 3. B 4. B 5. C 6. B 7. B 8. D 9. A 10. D 11. C 12. D 13. B 14. D 15. C 16. C 17. C 18. B 19. D 20. C 21. C 22. D 23. D 24. A 25. 1. A 2. A 3. B 4. B 5. C 6. B 7. B 8. D 9. A 10. D 11. C 12. D 13. B 14. D 15. C 16. C 17. C 18. B 19. D 20. C 21. C 22. D 23. D 24. A 25. A Najłatwiejszym sposobem jest rozpatrzenie wszystkich odpowiedzi

Bardziej szczegółowo

Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI.

Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI. Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI. 1. Ładunki q 1 =3,2 10 17 i q 2 =1,6 10 18 znajdują się w próżni

Bardziej szczegółowo

Różniczkowe prawo Gaussa i co z niego wynika...

Różniczkowe prawo Gaussa i co z niego wynika... Różniczkowe prawo Gaussa i co z niego wynika... Niech ładunek będzie rozłożony w objętości V z ciągłą gęstością ρ(x,y,z). Wytworzone przez ten ładunek pole elektryczne będzie również zmieniać się w przestrzeni

Bardziej szczegółowo

Pole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu)

Pole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu) PODSAWY WYMIANY CIEPŁA. Postawowe pojęcia w wymianie ciepła Sposoby transportu ciepła: przewozenie konwekcja - swobona - wymuszona promieniowanie ransport ciepła w ciałach stałych obywa się na roze przewozenia.

Bardziej szczegółowo

P O D S T A W Y E L E K T R O D Y N A M I K I Ć W I C Z E N I A Semestr zimowy r. ak. 2016/2017 ZADANIA

P O D S T A W Y E L E K T R O D Y N A M I K I Ć W I C Z E N I A Semestr zimowy r. ak. 2016/2017 ZADANIA Semestr zimowy r ak 6/7 ZDNI I Pokazać, że iv rot =, rot gra f =, iv (gra f gra g) =, gzie wektor i skalary f i g owolne funkcje różniczkowalne Wykazać tożsamości wektorowe (f, g wektory, B owolne funkcje

Bardziej szczegółowo

Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics)

Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics) Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics) Koniec XIX / początek XX wieku Lata 90-te XIX w.: odkrycie elektronu (J. J. Thomson, promienie katodowe), promieniowania Roentgena

Bardziej szczegółowo

Przewodniki w polu elektrycznym

Przewodniki w polu elektrycznym Przewodniki w polu elektrycznym Ryszard J. Barczyński, 2017 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Przewodniki to ciała takie, po

Bardziej szczegółowo

Pojemność elektryczna

Pojemność elektryczna Pojemność elektryczna Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Pojemność elektryczna Umieśćmy na pewnym

Bardziej szczegółowo

Wykład 17 Izolatory i przewodniki

Wykład 17 Izolatory i przewodniki Wykład 7 Izolatory i przewodniki Wszystkie ciała możemy podzielić na przewodniki i izolatory albo dielektryki. Przewodnikami są wszystkie metale, roztwory kwasów i zasad, roztopione soli, nagrzane gazy

Bardziej szczegółowo

Geometria Różniczkowa II wykład dziesiąty

Geometria Różniczkowa II wykład dziesiąty Geometria Różniczkowa II wykła ziesiąty Wykła ziesiąty rozpoczyna serię wykłaów poświęconych geometrii symplektycznej. Zajmować się bęziemy głównie zastosowaniami geometrii symplektycznej w mechanice,

Bardziej szczegółowo

Ważny przykład oscylator harmoniczny

Ważny przykład oscylator harmoniczny 6.03.00 6. Ważny przykła oscylator harmoniczny 73 Rozział 6 Ważny przykła oscylator harmoniczny 6. Wprowazenie Klasyczny, jenowymiarowy oscylator harmoniczny opowiaa potencjałowi energii potencjalnej:

Bardziej szczegółowo

Potencjalne pole elektrostatyczne. Przypomnienie

Potencjalne pole elektrostatyczne. Przypomnienie Potencjalne pole elektrostatyczne Wszystkie rysunki i animacje zaczerpnięto ze strony http://webmitedu/802t/www/802teal3d/visualizations/electrostatics/indexhtm Tekst jest wolnym tłumaczeniem pliku guide03pdf

Bardziej szczegółowo

3. Macierze i Układy Równań Liniowych

3. Macierze i Układy Równań Liniowych 3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x

Bardziej szczegółowo

kondensatory Jednostkę pojemności [Q/V] przyjęto nazywać faradem i oznaczać literą F.

kondensatory Jednostkę pojemności [Q/V] przyjęto nazywać faradem i oznaczać literą F. Pojemność elektryczna i kondensatory Umieśćmy na przewodniku ładunek. Przyjmijmy zero potencjału w nieskończoności. Potencjał przewodnika jest proporcjonalny do ładunku (dlaczego?). Współczynnik proporcjonalności

Bardziej szczegółowo

UNIWESRYTET EKONOMICZNY WE WROCŁAWIU HOSSA ProCAPITAL WYCENA OPCJI. Sebastian Gajęcki WYDZIAŁ NAUK EKONOMICZNYCH

UNIWESRYTET EKONOMICZNY WE WROCŁAWIU HOSSA ProCAPITAL WYCENA OPCJI. Sebastian Gajęcki WYDZIAŁ NAUK EKONOMICZNYCH UNIWESRYTET EKONOMICZNY WE WROCŁAWIU HOSSA ProCAPITAL WYCENA OPCJI Sebastian Gajęcki WYDZIAŁ NAUK EKONOMICZNYCH WPROWADZENIE Opcje są instrumentem pochonym, zatem takim, którego cena zależy o ceny instrumentu

Bardziej szczegółowo

Rozdział 5. Twierdzenia całkowe. 5.1 Twierdzenie o potencjale. Będziemy rozpatrywać całki krzywoliniowe liczone wzdłuż krzywej C w przestrzeni

Rozdział 5. Twierdzenia całkowe. 5.1 Twierdzenie o potencjale. Będziemy rozpatrywać całki krzywoliniowe liczone wzdłuż krzywej C w przestrzeni Rozdział 5 Twierdzenia całkowe 5.1 Twierdzenie o potencjale Będziemy rozpatrywać całki krzywoliniowe liczone wzdłuż krzywej w przestrzeni trójwymiarowej, I) = A d r, 5.1) gdzie A = A r) jest funkcją polem)

Bardziej szczegółowo

Pole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu)

Pole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu) PODSAWY WYMIANY CIEPŁA. Postawowe pojęcia w wymianie ciepła Sposoby transportu ciepła: przewozenie konwekcja - swobona - wymuszona promieniowanie ransport ciepła w ciałach stałych obywa się na roze przewozenia.

Bardziej szczegółowo

Chemia teoretyczna. Postulaty mechaniki kwantowej. Katarzyna Kowalska-Szojda

Chemia teoretyczna. Postulaty mechaniki kwantowej. Katarzyna Kowalska-Szojda Chemia teoretyczna Postulaty mechaniki kwantowej Katarzyna Kowalska-Szoja Spis treści 1 Postulaty mechaniki kwantowej 2 1.1 Postulat pierwszy.......................... 2 1.2 Postulat rugi.............................

Bardziej szczegółowo

Metoda odbić zwierciadlanych

Metoda odbić zwierciadlanych Metoa obić zwiecialanych Pzypuśćmy, że łaunek punktowy (Rys ) umieszczony jest w oległości o nieskończonej powiezchni pzewozącej, umiejscowionej na płaszczyźnie X0Y Piewsze pytanie, jakie o azu się nasuwa

Bardziej szczegółowo

Lekcja 40. Obraz graficzny pola elektrycznego.

Lekcja 40. Obraz graficzny pola elektrycznego. Lekcja 40. Obraz graficzny pola elektrycznego. Polem elektrycznym nazywamy obszar, w którym na wprowadzony doń ładunek próbny q działa siła. Pole elektryczne występuje wokół ładunków elektrycznych i ciał

Bardziej szczegółowo

Zagadnienia brzegowe dla równań eliptycznych

Zagadnienia brzegowe dla równań eliptycznych Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta

Bardziej szczegółowo

Wielomiany Hermite a i ich własności

Wielomiany Hermite a i ich własności 3.10.2004 Do. mat. B. Wielomiany Hermite a i ich własności 4 Doatek B Wielomiany Hermite a i ich własności B.1 Definicje Jako postawową efinicję wielomianów Hermite a przyjmiemy wzór Roriguesa n H n (x)

Bardziej szczegółowo

Elektrostatyka, cz. 2

Elektrostatyka, cz. 2 Podstawy elektromagnetyzmu Wykład 4 Elektrostatyka, cz. Praca, energia, pojemność i kondensatory, ekrany elektrostatyczne Energia Praca w polu elektrostatycznym dw =F dl=q E dl W = L F d L=q L E d L=q

Bardziej szczegółowo

cz.3 dr inż. Zbigniew Szklarski

cz.3 dr inż. Zbigniew Szklarski Wykład : lektrostatyka cz.3 dr inż. Zbigniew zklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ Przykłady Jaka musiałaby być powierzchnia okładki kondensatora płaskiego, aby, przy odległości

Bardziej szczegółowo

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1 PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1 Planimetria to dział geometrii, w którym przedmiotem badań są własności figur geometrycznych leżących na płaszczyźnie (patrz określenie płaszczyzny). Pojęcia

Bardziej szczegółowo

Pole elektromagnetyczne

Pole elektromagnetyczne Pole elektromagnetyczne Pole magnetyczne Strumień pola magnetycznego Jednostką strumienia magnetycznego w układzie SI jest 1 weber (1 Wb) = 1 N m A -1. Zatem, pole magnetyczne B jest czasem nazywane gęstością

Bardziej szczegółowo

Badanie rozkładu pola elektrycznego

Badanie rozkładu pola elektrycznego Ćwiczenie 8 Badanie rozkładu pola elektrycznego 8.1. Zasada ćwiczenia W wannie elektrolitycznej umieszcza się dwie metalowe elektrody, połączone ze źródłem zmiennego napięcia. Kształt przekrojów powierzchni

Bardziej szczegółowo

27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE

27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27.1. Wiadomości wstępne Równaniem różniczkowym cząstkowym nazywamy związek w którym występuje funkcja niewiadoma u dwóch lub większej liczby zmiennych niezależnych i

Bardziej szczegółowo

Elektrodynamika Część 3 Pola elektryczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 3 Pola elektryczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 3 Pola elektryczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 4 Pola elektryczne w materii 3 4.1 Polaryzacja elektryczna..................

Bardziej szczegółowo

Nieskończona jednowymiarowa studnia potencjału

Nieskończona jednowymiarowa studnia potencjału Nieskończona jednowymiarowa studnia potencjału Zagadnienie dane jest następująco: znaleźć funkcje własne i wartości własne operatora energii dla cząstki umieszczonej w nieskończonej studni potencjału,

Bardziej szczegółowo

Rozważania rozpoczniemy od fal elektromagnetycznych w próżni. Dla próżni równania Maxwella w tzw. postaci różniczkowej są następujące:

Rozważania rozpoczniemy od fal elektromagnetycznych w próżni. Dla próżni równania Maxwella w tzw. postaci różniczkowej są następujące: Rozważania rozpoczniemy od fal elektromagnetycznych w próżni Dla próżni równania Maxwella w tzw postaci różniczkowej są następujące:, gdzie E oznacza pole elektryczne, B indukcję pola magnetycznego a i

Bardziej szczegółowo

Zadania z badań operacyjnych Przygotowanie do kolokwium pisemnego

Zadania z badań operacyjnych Przygotowanie do kolokwium pisemnego Zaania z baań operacyjnych Przygotowanie o kolokwium pisemnego 1..21 Zaanie 1.1. Dane jest zaanie programowania liniowego: 4x 1 + 3x 2 max 2x 1 + 2x 2 1 x 1 + 2x 2 4 4x 2 8 x 1, x 2 Sprowazić zaanie o

Bardziej szczegółowo

Elektrodynamika. Część 5. Pola magnetyczne w materii. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.

Elektrodynamika. Część 5. Pola magnetyczne w materii. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu. Elektrodynamika Część 5 Pola magnetyczne w materii yszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 6 Pola magnetyczne w materii 3 6.1 Magnetyzacja.......................

Bardziej szczegółowo

2 K A T E D R A F I ZYKI S T O S O W AN E J

2 K A T E D R A F I ZYKI S T O S O W AN E J 2 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A P O D S T A W E L E K T R O T E C H N I K I I E L E K T R O N I K I Ćw. 2. Łączenie i pomiar pojemności i indukcyjności Wprowadzenie Pojemność

Bardziej szczegółowo

WAHADŁO FIZYCZNE ZE ZMIENNĄ OSIĄ ZAWIESZENIA

WAHADŁO FIZYCZNE ZE ZMIENNĄ OSIĄ ZAWIESZENIA WAHADŁO FIZYCZNE ZE ZMIENNĄ OSIĄ ZAWIESZENIA I. Cel ćwiczenia: zapoznanie z własnościami ruchu rająceo w oparciu o wahało fizyczne, wyznaczenie przyspieszenia ziemskieo i ramienia bezwłaności wahała. II.

Bardziej szczegółowo

optyka falowa interferencja dyfrakcja polaryzacja optyka geometryczna prawo odbicia prawo załamania

optyka falowa interferencja dyfrakcja polaryzacja optyka geometryczna prawo odbicia prawo załamania 05-0- Optyka optyka falowa interferencja yfrakcja polaryzacja optyka geometryczna prawo obicia prawo załamania Interferencja fal wysyłanych przez wa źróła punktowe Jeśli o punktu przestrzeni ochozą fale,

Bardziej szczegółowo

Pole magnetyczne magnesu w kształcie kuli

Pole magnetyczne magnesu w kształcie kuli napisał Michał Wierzbicki Pole magnetyczne magnesu w kształcie kuli Rozważmy kulę o promieniu R, wykonaną z materiału ferromagnetycznego o stałej magnetyzacji M = const, skierowanej wzdłuż osi z. Gęstość

Bardziej szczegółowo

FUNKCJA KWADRATOWA. Zad 1 Przedstaw funkcję kwadratową w postaci ogólnej. Postać ogólna funkcji kwadratowej to: y = ax + bx + c;(

FUNKCJA KWADRATOWA. Zad 1 Przedstaw funkcję kwadratową w postaci ogólnej. Postać ogólna funkcji kwadratowej to: y = ax + bx + c;( Zad Przedstaw funkcję kwadratową w postaci ogólnej Przykład y = ( x ) + 5 (postać kanoniczna) FUNKCJA KWADRATOWA Postać ogólna funkcji kwadratowej to: y = ax + bx + c;( a 0) Aby ją uzyskać pozbywamy się

Bardziej szczegółowo

RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego?

RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? RÓWNANIA MAXWELLA Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? Wykład 3 lato 2012 1 Doświadczenia Wykład 3 lato 2012 2 1

Bardziej szczegółowo

Wykład 2. POLE ELEKTROMEGNETYCZNE:

Wykład 2. POLE ELEKTROMEGNETYCZNE: Wykład 2. POLE ELEKTROMEGNETYCZNE: Ładunek elektryczny Ładunki elektryczne: -dodatnie i ujemne - skwantowane, czyli że mają pewną najmniejszą wartość, której nie można już dalej podzielić. Nie można ładunków

Bardziej szczegółowo

Elektrostatyka. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Elektrostatyka. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Elektrostatyka Projekt współfinansowany przez Unię Europejską w ramach Europejskiego unduszu Społecznego Ładunek elektryczny Materia zbudowana jest z atomów. Atom składa się z dodatnie naładowanego jądra

Bardziej szczegółowo

POLE MAGNETYCZNE. Magnetyczna siła Lorentza Prawo Ampere a

POLE MAGNETYCZNE. Magnetyczna siła Lorentza Prawo Ampere a POLE MAGNETYCZNE Magnetyczna siła Lorentza Prawo Ampere a 1 Doświadczenie Oersteda W 18 r. Hans C. Oersted odkrywa niezwykle interesujące zjawisko. Przepuszczając prąd elektryczny nad igiełką magnetyczną,

Bardziej szczegółowo

Porównanie właściwości wybranych wektorowych regulatorów prądu w stanach dynamicznych w przekształtniku AC/DC

Porównanie właściwości wybranych wektorowych regulatorów prądu w stanach dynamicznych w przekształtniku AC/DC Piotr FALKOWSKI, Marian Roch DUBOWSKI Politechnika Białostocka, Wyział Elektryczny, Katera Energoelektroniki i Napęów Elektrycznych Porównanie właściwości wybranych wektorowych regulatorów prąu w stanach

Bardziej szczegółowo

Optyka 2. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Optyka 2. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Optka Projekt współinansowan przez Unię Europejską w ramach Europejskiego Funuszu Społecznego Optka II Promień świetln paając na powierzchnię zwierciała obija się zgonie z prawem obicia omówionm w poprzeniej

Bardziej szczegółowo

Prawo Gaussa. Jeśli pole elektryczne jest prostopadłe do powierzchni A, to strumieo pola elektrycznego wynosi

Prawo Gaussa. Jeśli pole elektryczne jest prostopadłe do powierzchni A, to strumieo pola elektrycznego wynosi Prawo Gaussa Tekst jest wolnym tłumaczeniem pliku guide04.pdf kursu dostępnego na stronie http://web.mit.edu/8.02t/www/802teal3d/visualizations/coursenotes/index.htm Wszystkie rysunki i animacje zaczerpnięto

Bardziej szczegółowo

Pojemność elektryczna. Pojemność elektryczna, Kondensatory Energia elektryczna

Pojemność elektryczna. Pojemność elektryczna, Kondensatory Energia elektryczna Pojemność elektryczna Pojemność elektryczna, Kondensatory Energia elektryczna Pojemność elektryczna - kondensatory Kondensator : dwa przewodniki oddzielone izolatorem zwykle naładowane ładunkami o przeciwnych

Bardziej szczegółowo

Dielektryki. właściwości makroskopowe. Ryszard J. Barczyński, 2016 Materiały dydaktyczne do użytku wewnętrznego

Dielektryki. właściwości makroskopowe. Ryszard J. Barczyński, 2016 Materiały dydaktyczne do użytku wewnętrznego Dielektryki właściwości makroskopowe Ryszard J. Barczyński, 2016 Materiały dydaktyczne do użytku wewnętrznego Przewodniki i izolatory Przewodniki i izolatory Pojemność i kondensatory Podatność dielektryczna

Bardziej szczegółowo

POLE ELEKTRYCZNE PRAWO COULOMBA

POLE ELEKTRYCZNE PRAWO COULOMBA POLE ELEKTRYCZNE PRAWO COULOMBA gdzie: Q, q ładunki elektryczne wyrażone w kulombach [C] r - odległość między ładunkami Q i q wyrażona w [m] ε - przenikalność elektryczna bezwzględna środowiska, w jakim

Bardziej szczegółowo

Elektrostatyka, część pierwsza

Elektrostatyka, część pierwsza Elektrostatyka, część pierwsza ZADANIA DO PRZEROBIENIA NA LEKJI 1. Dwie kulki naładowano ładunkiem q 1 = 1 i q 2 = 3 i umieszczono w odległości r = 1m od siebie. Oblicz siłę ich wzajemnego oddziaływania.

Bardziej szczegółowo

POMIAR WSPÓŁCZYNNIKA PRZEWODNOŚCI CIEPLNEJ ALUMINIUM

POMIAR WSPÓŁCZYNNIKA PRZEWODNOŚCI CIEPLNEJ ALUMINIUM POMIAR WSPÓŁCZYNNIKA PRZEWODNOŚCI CIEPLNEJ ALUMINIUM I. Cel ćwiczenia: pomiar współczynnika przewoności cieplnej aluminium. II. Przyrząy: III. Literatura: zestaw oświaczalny złożony z izolowanego aluminiowego

Bardziej szczegółowo

LEPKOŚĆ. D średnica rury, V średnia prędkość cieczy w rurze, d gęstość cieczy, η (czyt. eta ) lepkość dynamiczna.

LEPKOŚĆ. D średnica rury, V średnia prędkość cieczy w rurze, d gęstość cieczy, η (czyt. eta ) lepkość dynamiczna. LEPKOŚĆ Opracowanie: r Urszula Lelek-Borkowska Płyn substancja ciekła, gazowa lub proszek, który ma zolność płynięcia, czyli owolnej zmiany kształtu oraz swobonego przemieszczania, np. przepompowywania.

Bardziej szczegółowo

Pochodne cząstkowe i ich zastosowanie. Ekstrema lokalne funkcji

Pochodne cząstkowe i ich zastosowanie. Ekstrema lokalne funkcji Pochodne cząstkowe i ich zastosowanie. Ekstrema lokalne funkcji Adam Kiersztyn Lublin 2014 Adam Kiersztyn () Pochodne cząstkowe i ich zastosowanie. Ekstrema lokalne funkcji maj 2014 1 / 24 Zanim przejdziemy

Bardziej szczegółowo

Metrologia Techniczna

Metrologia Techniczna Zakła Metrologii i Baań Jakości Wrocław, nia Rok i kierunek stuiów Grupa (zień tygonia i gozina rozpoczęcia zajęć) Metrologia Techniczna Ćwiczenie... Imię i nazwisko Imię i nazwisko Imię i nazwisko Błęy

Bardziej szczegółowo

STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH

STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI 2 proste

Bardziej szczegółowo

FALE ELEKTROMAGNETYCZNE - OPTYKA FALOWA

FALE ELEKTROMAGNETYCZNE - OPTYKA FALOWA 06-0-06 FAL LKTROMAGNTYCZN - OPTYKA FALOWA fale M równanie fali interferencja fal źróła promieniowania laser oziaływanie z materią Równania Maxwella D or B H o r Prawo Gaussa la pola elektrycznego D S

Bardziej szczegółowo

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Pochodna i różniczka unkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją

Bardziej szczegółowo

Pojemność elektryczna, Kondensatory Energia elektryczna

Pojemność elektryczna, Kondensatory Energia elektryczna Pojemność elektryczna Pojemność elektryczna, Kondensatory Energia elektryczna 1 Pojemność elektryczna - kondensatory Kondensator : dwa przewodniki oddzielone izolatorem zwykle naładowane ładunkami o przeciwnych

Bardziej szczegółowo

Równanie Schrödingera

Równanie Schrödingera 3.10.2004 4. Równanie Schröingera 52 Rozział 4 Równanie Schröingera Równanie Schröingera jest postulatem mechaniki kwantowej określającym tzw. ynamikę. Zaaje ono (przy opowienio obranym warunku początkowym)

Bardziej szczegółowo

Informatyk i matematyk: dwa spojrzenia na jedno zadanie (studium przypadku) Krzysztof Ciebiera, Krzysztof Diks, Paweł Strzelecki

Informatyk i matematyk: dwa spojrzenia na jedno zadanie (studium przypadku) Krzysztof Ciebiera, Krzysztof Diks, Paweł Strzelecki Informatyk i matematyk: dwa spojrzenia na jedno zadanie (studium przypadku) Krzysztof Ciebiera, Krzysztof Diks, Paweł Strzelecki Zadanie (matura z informatyki, 2009) Dane: dodatnia liczba całkowita R.

Bardziej szczegółowo

Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe.

Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe. Z5: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania zagadnienie brzegowe Dyskretne operatory różniczkowania Numeryczne obliczanie pochodnych oraz rozwiązywanie

Bardziej szczegółowo

Rozkład normalny, niepewność standardowa typu A

Rozkład normalny, niepewność standardowa typu A Podstawy Metrologii i Technik Eksperymentu Laboratorium Rozkład normalny, niepewność standardowa typu A Instrukcja do ćwiczenia nr 1 Zakład Miernictwa i Ochrony Atmosfery Wrocław, listopad 2010 r. Podstawy

Bardziej szczegółowo

Definicja i własności wartości bezwzględnej.

Definicja i własności wartości bezwzględnej. Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności

Bardziej szczegółowo

FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH

FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH PROPORCJONALNOŚĆ PROSTA Proporcjonalnością prostą nazywamy zależność między dwoma wielkościami zmiennymi x i y, określoną wzorem: y = a x Gdzie a jest

Bardziej szczegółowo

Linia dwuprzewodowa Obliczanie pojemności linii dwuprzewodowej

Linia dwuprzewodowa Obliczanie pojemności linii dwuprzewodowej Linia dwuprzewodowa Obliczanie pojemności linii dwuprzewodowej 1. Wstęp Pojemność kondensatora można obliczyć w prosty sposób znając wartości zgromadzonego na nim ładunku i napięcia między okładkami: Q

Bardziej szczegółowo

MODELE MATEMATYCZNE W UBEZPIECZENIACH WYKŁAD 5: RENTY ŻYCIOWE

MODELE MATEMATYCZNE W UBEZPIECZENIACH WYKŁAD 5: RENTY ŻYCIOWE MODELE MATEMATYCZNE W UBEZPIECZENIACH WYKŁAD 5: RENTY ŻYCIOWE Rentą życiową nazywamy ciąg płatności który ustaje w chwili śmierci pewnej osoby (zwykle ubezpieczonego) Mówiąc o rencie życiowej nie zaznaczamy

Bardziej szczegółowo

1. PODSTAWY TEORETYCZNE

1. PODSTAWY TEORETYCZNE 1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie W pierwszym wykładzie przypomnimy podstawowe działania na macierzach. Niektóre z nich zostały opisane bardziej szczegółowo w innych

Bardziej szczegółowo

STAN NAPRĘŻENIA. dr hab. inż. Tadeusz Chyży

STAN NAPRĘŻENIA. dr hab. inż. Tadeusz Chyży STAN NAPRĘŻENIA dr hab. inż. Tadeusz Chyży 1 SIŁY POWIERZCHNIOWE I OBJĘTOŚCIOWE Rozważmy ciało o objętości V 0 ograniczone powierzchnią S 0, poddane działaniu sił będących w równowadze. Rozróżniamy tutaj

Bardziej szczegółowo

Ładunek elektryczny. Ładunek elektryczny jedna z własności cząstek elementarnych

Ładunek elektryczny. Ładunek elektryczny jedna z własności cząstek elementarnych Ładunek elektryczny Ładunek elektryczny jedna z własności cząstek elementarnych http://pl.wikipedia.org/wiki/%c5%81a dunek_elektryczny ładunki elektryczne o takich samych znakach się odpychają a o przeciwnych

Bardziej szczegółowo

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 26 MAGNETYZM I ELEKTROMAGNETYZM. CZĘŚĆ 1

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 26 MAGNETYZM I ELEKTROMAGNETYZM. CZĘŚĆ 1 autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 26 MAGNETYZM I ELEKTROMAGNETYZM. CZĘŚĆ 1 Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania Zadanie 1 1 punkt TEST JEDNOKROTNEGO

Bardziej szczegółowo

1 Równania różniczkowe zwyczajne o rozdzielonych zmiennych

1 Równania różniczkowe zwyczajne o rozdzielonych zmiennych Równania różniczkowe zwyczajne o rozdzielonych zmiennych Definicja. Równaniem różniczkowym o rozdzielonych zmiennych nazywamy równanie postaci p(y) = q() (.) rozwiązanie równania sprowadza się do postaci

Bardziej szczegółowo

Przekształcanie wykresów.

Przekształcanie wykresów. Sławomir Jemielity Przekształcanie wykresów. Pokażemy tu, jak zmiana we wzorze funkcji wpływa na wygląd jej wykresu. A. Mamy wykres funkcji f(). Jak będzie wyglądał wykres f ( ) + a, a stała? ( ) f ( )

Bardziej szczegółowo

Y t=0. x(t)=v t. R(t) y(t)=d. Przelatujący supersamolot. R(t ) = D 2 + V 2 t 2. T = t + Δt = t + R(t) = t + D2 + V 2 t 2 T = R2 D 2 V. + R V d.

Y t=0. x(t)=v t. R(t) y(t)=d. Przelatujący supersamolot. R(t ) = D 2 + V 2 t 2. T = t + Δt = t + R(t) = t + D2 + V 2 t 2 T = R2 D 2 V. + R V d. Przelatujący supersamolot Y t= R(t) D x(t)=v t y(t)=d Superszybki samolot o prędkości V przelatuje po linii prostej przechodzącej w odległości D od obserwatora (dla ułatwienia przyjąć X=Vt). Na skutek

Bardziej szczegółowo

Odp.: F e /F g = 1 2,

Odp.: F e /F g = 1 2, Segment B.IX Pole elektrostatyczne Przygotował: mgr Adam Urbanowicz Zad. 1 W atomie wodoru odległość między elektronem i protonem wynosi około r = 5,3 10 11 m. Obliczyć siłę przyciągania elektrostatycznego

Bardziej szczegółowo

Wstęp do Informatyki zadania ze złożoności obliczeniowej z rozwiązaniami

Wstęp do Informatyki zadania ze złożoności obliczeniowej z rozwiązaniami Wstęp do Informatyki zadania ze złożoności obliczeniowej z rozwiązaniami Przykład 1. Napisz program, który dla podanej liczby n wypisze jej rozkład na czynniki pierwsze. Oblicz asymptotyczną złożoność

Bardziej szczegółowo