P O D S T A W Y E L E K T R O D Y N A M I K I Ć W I C Z E N I A Semestr zimowy r. ak. 2018/2019 PIERWSZE ZAJĘCIA ZADANIA

Wielkość: px
Rozpocząć pokaz od strony:

Download "P O D S T A W Y E L E K T R O D Y N A M I K I Ć W I C Z E N I A Semestr zimowy r. ak. 2018/2019 PIERWSZE ZAJĘCIA ZADANIA"

Transkrypt

1 P O D S T W Y E L E K T R O D Y N M I K I Ć W I C Z E N I Semestr zimowy r ak 8/9 PIERWSZE ZJĘCI Ukła kartezjański, wektory jenostkowe wersory Skalary, wektory, tensory Iloczyn skalarny, iloczyn wektorowy 4 Konwencja sumacyjna Einsteina (KSE) 5 Delta Kroneckera (DK), sumowanie z eltą Kroneckera, śla, inne przykłay 6 Tensor Leviego-Civity (TLC), relacja sumacyjna la wóch tensorów 7 Graient, ywergencja, rotacja, iloczyn skalarny, iloczyn wektorowy zapis z wykorzystaniem KSE, DK, TLC Pokazać, że: ) iv rot =, ) rot gra f =, ) iv (gra f gra g) =, ZDNI gzie wektor i skalary f i g owolne funkcje różniczkowalne Wyznaczyć wartość wyrażenia B (B), gy B = y i x j + k, oraz gy B = y i + x j + k Poać inne przykłay B, takie że B (B) Niech (r) bęzie wektorem o stałym kierunku Uowonić, że rot jest wektorem ortogonalnym o 4 Wykazać tożsamości wektorowe (f, g oraz wektory, B owolne funkcje różniczkowalne): ) gra fg = f gra g + g gra f ) iv f = f iv + gra f ) rot f = f rot + (gra f) 4) iv B = B rot rot B 5) gra B = rot B + B rot + ( ) B + (B ) 6) gra iv = rot rot + iv gra 7) rot B = iv B B iv + (B ) ( ) B I 5 Wyrazić we współrzęnych kartezjańskich, cylinrycznych (walcowych) oraz sferycznych wektor wozący r oraz jego ługość, wykorzystując wektory jenostkowe określone w tych ukłaach współrzęnych 6 Wyznaczyć współczynniki Lamego U, V, W oraz element objętości la ukłaów: kartezjańskiego, cylinrycznego (walcowego), sferycznego 7 Obliczyć wektory jenostkowe wyrażone we współrzęnych kartezjańskich la ukłau cylinrycznego (walcowego) oraz sferycznego Wykazać ortogonalność tych wektorów Określić skrętność (parzystość) ukłau

2 P O D S T W Y E L E K T R O D Y N M I K I Ć W I C Z E N I Semestr zimowy r ak 8/9 8 Obliczyć gra f(r), gzie owolna różniczkowalna funkcja f(r) zależy tylko o ługości wektora r, we współrzęnych kartezjańskich, cylinrycznych (walcowych) oraz sferycznych 9 Sprawzić następujące operacje w różnych (kartezjańskim, cylinrycznym, sferycznym) ukłaach współrzęnych: gra r n = n r n- r, n=,+,+,, iv r=, rot r=, iv w = /r, rot w =, gzie w = r/r Obliczyć gra (er), gra(er/r ), (e ) r, iv(e r), rot(e r), e -stały wektor Obliczyć gra( B), iv(f), rot(f), gy, B i f zależą tylko o ługości wektora r Obliczyć we współrzęnych cylinrycznych i sferycznych: gra f(r), f(r), iv (r), rot (r), funkcje f(r) i (r) zależą tylko o r ( r = la współrzęnych cylinrycznych) Pokazać, że r r r r r r r 4 Wykazać, że la współrzęnych walcowych [z], ln = rot k, gzie k jest wersorem osi Z 5 Wykazać, że la owolnej zamkniętej powierzchni = 6 Posługując się twierzeniem Gaussa lub jego rozszerzeniami obliczyć całki I = r (n) S, I = (r) n S, gzie - stały wektor, oraz n S = S 7 Posługując się twierzeniem Gaussa wykazać la owolnych pól wektorowych i B, który związek jest prawziwy związek: B V B S czy B V B S gzie: B B i j i x j 8 W sferycznym ukłazie współrzęnych znaleźć rozwiązanie równania Laplace'a zależne jeynie o jenej współrzęnej r 9 Dana jest funkcja skalarna f=x + y + z oraz pole wektorowe = xi + yj + zk Obliczyć: f,, (f) Obliczyć całkę krzywoliniową, r wzłuż a) okręgu o promieniu a, la = xi yj + zk, b) boków kwaratu, którego wierzchołki znajują się w punktach (,), (,), (-,), (,-), la = i sin y + j (x cos y) W obu przypakach sprawzić, że rot = Znaleźć taką funkcję U, że gra U = Sprawzić wynik za pomocą twierzenia Stokesa

3 P O D S T W Y E L E K T R O D Y N M I K I Ć W I C Z E N I Semestr zimowy r ak 8/9 Niech wektor v = [a (x x) + b (z z)] j, gzie a, b, x, z stałe Wyznaczyć rotację wektora v Znaleźć ywergencję i rotację pola wektorowego: a) = (x + y )i + (y +x)j + (z +xy)k, b) = (xi + yj)/(x +y ), c) = yz i zx j + xy k, ) = sin x cosh y i cos x sinh y j + (x+y) k, e) = sin x sinh y i cos x cosh y j + xy k, f) = (z y) i + (x y) j + (x y) k Określić jakie są to wektory: biegunowy (polarny), osiowy (aksjalny), lub inne Obliczyć następujące całki: 6 a ( x x ) ( x ), b cos x ( x ), c x ( x ), ln( x ) ( x ) 5 II Wykazać, że ( kx) ( x) oraz k ( x) Obliczyć następujące całki: a x ( x ) b ( x ) (x), c ( x x ) ( x ), 9x (x ) e (x ax b) ( x b) 4 Wykazać, że (ε > ) a e k cos kx k x 5 Obliczyć granice (ε > ), gy x = albo x, oraz całkę ( x, ) exp( x / ) la ) ( x, ), ) ( x, ), x oraz granicę n, gy x = albo x la Stirlinga n! n n e - n (n )!! ( x, n) cosh n ( n )! n x Wykorzystać wzór

4 P O D S T W Y E L E K T R O D Y N M I K I Ć W I C Z E N I Semestr zimowy r ak 8/9 6 Korzystając z efinicji transformaty Fouriera (prostej i owrotnej) pokazać, że ikx sin kx ( x) e k, oraz korzystając z tej relacji wykazać, że ( x) lim k x 7 Wykorzystując rozwiązania równania falowego lemberta wyznaczyć relatywistyczny 4-potencjał (r,t) = [ (r,t), (r,t)] (potencjał Liénara-Wiecherta) wytwarzany przez jeen łaunek punktowy e wykonujący zaany ruch, określony równaniem r = r(t ) Najpierw przyjmując, że r(t) = r, wykazać związek: ( t t) t t c r r ( t) t t c r r ( t) t III Na postawie wzorów transformacji Lorentza określających przejście czterowektora μ w czterowektor μ wyznaczyć: ) zależności la ylatacji czasu, ) zależności la skrócenia oległości, tzw skrócenia Lorentza-Fitzgerala, ) relatywistyczne prawo skłaania prękości Wykazać, że element czaso-przestrzeni Ω = ctyz jest niezmiennikiem (inwariantem) transformacji Lorentza Wykonać transformacje Lorentza la: ) czterowektora prąu, ) czterowektora falowego 4 Wykazać, że łaunek q zawarty w przestrzeni V jest niezmiennikiem transformacji Lorentza 5 Czas własny rozpau mezonów π + wynosi tw =, -8 s Jakie są czasy rozpau tr tych cząstek poruszających się z prękościami (β = v/c) β =,6;,886;,99? Jakie rogi lr przelecą te cząstki w czasie tr? Jakie byłyby rogi ln, gyby nie uwzglęniać ylatacji czasu? 6 Ziemia krąży wokół Słońca z prękością v = 4 m/s Obliczyć o ile sekun ulega skrócenia czas ziemski po okrążeniach Ziemi wokół Słońca Przyjąć c = 8 m/s 7 Uwzglęniając, że transformacja obrotu C w 4-wymiarowej przestrzeni to transformacja liniowa taka, że: C i C inwariantem la transformacji obrotu ( ortogonalności: C C, oraz że kwarat 4-wektora 8 Na postawie poprzeniego zaania wykazać, że: C i kwarat 4-wektora jest ) wykazać, że spełniona jest relacja C jest inwariantem la transformacji obrotu ( że spełniona jest ruga relacja ortogonalności: C C 9 Uwzglęniając transformacje liniowe C, oraz relacje ortogonalności: oraz x C x C C oraz, oraz z faktu, że C, C, C C pokazać, że x ) wykazać, C C x 4

5 P O D S T W Y E L E K T R O D Y N M I K I Ć W I C Z E N I Semestr zimowy r ak 8/9 Wykazać, że wyrażenia postaci: Lorentza x czasoprzestrzeni, x j, oraz równanie ciągłości x i cechowanie są niezmiennicze wzglęem transformacji grupy obrotów w j 4-wektor prąu Sprawzić niezmienniczość wzglęem transformacji grupy obrotów w czasoprzestrzeni relatywistycznego równania Newtona (la nałaowanej cząstki w polu elektromagnetycznym, p e uwzglęniając siłę Lorentza) F u s c Wykazać niezmienniczość równań Maxwella wzglęem transformacji grupy obrotów w czasoprzestrzeni (zaanie 9) wykorzystując 4-wymiarową postać równań Maxwella: F 4 e F oraz j, x x c gzie F 4-tensor pola elektromagnetycznego, j 4-wektor prąu Wykazać niezmienniczość różniczkowych równań ciągłości la gęstości energii i gęstości pęu pola elektromagnetycznego wzglęem transformacji grupy obrotów w czasoprzestrzeni wykorzystując ich 4-wymiarowe postaci: T F j, x c gzie T 4-tensor energii i pęu pola elektromagnetycznego 4 Wykazać, że wyrażenia postaci: transformacji grupy obrotów 5 Wykazać, że równanie falowe lemberta F F i F F są niezmiennikami wzglęem 4 j, gzie µ = [, ] x x c jest niezmiennicze wzglęem transformacji grupy obrotów 6 Zakłaając, że obrót zachozi tylko w płaszczyźnie x x zefiniować postać tensora transformacji obrotu C, oraz wykorzystując relacje ortogonalności C C i C C wyznaczyć jawną postać szczególnej transformacji Lorentza Przyjąć, że C oraz zasaę, że zmiana znaku elementów tensora C ponoszeniu lub opuszczaniu ineksów przestrzennych (,,) C zachozi tylko przy IV Pokazać, że gy pole H = H k to = Hx j lub = - Hy i, oraz że gy E = E i to = - Ex, gzie pola H i E są stałe i jenorone 5

6 P O D S T W Y E L E K T R O D Y N M I K I Ć W I C Z E N I Semestr zimowy r ak 8/9 Znaleźć potencjały i rozważyć ich cechowanie we współrzęnych kartezjańskich i cylinrycznych a) H = Hz, H = const b) H = bt z, b = const Wyznaczyć energię potencjalną U jenoronie nałaowanej sfery o promieniu R i całkowitym łaunku Q (U = Q /R) 4 Wykorzystując wynik za wyznaczyć energię potencjalną ukłau wóch nałaowanych cząstek kul o promieniach r i R, i łaunkach q i Q, znajujących się w oległości ρ > r + R 5 Wykazać, że w nieskończonym ośroku (nieograniczonym) o skończonej (niezerowej) konuktywności nie może istnieć trwały i stały w czasie rozkła łaunków elektrycznych (wykorzystać j = E - prawo Ohma) 6 Wykazać, że la stałego pola magnetycznego H = Hz zamkniętego w nieskończonym solenoizie o promieniu R, potencjał we współrzęnych cylinrycznych wyraża się następująco: H R = z = oraz Y( R ) Y ( R), gzie Y(x) oznacza funkcję Heavisie'a Wyznaczyć natężenie pola magnetycznego wewnątrz i na zewnątrz solenoiu 7 Pokazać, że jeżeli wielkości fizyczne są określone za pomocą funkcji zespolonych np i t e t i E ( ) E oraz H ( t) H e t, gzie E i H są stałymi zespolonymi wektorami, to śrenia po czasie z iloczynu skalarnego ich części rzeczywistych wyraża się następująco: ReE( t ) ReH( t) ReE H *, w szczególności ReE( t ) ReE( t) E 8 Pole elektryczne w betatronie wyraża się wzorem E = z kt/, k stała, t czas, współrzęna cylinryczna Obliczyć pole magnetyczne Sprawzić, że H jest bezźrółowe i wirowe (iv H=, rot H ) Znaleźć potencjały la pól E i H 9 Określić ługość fali fotonu, którego energia opowiaa relatywistycznej energii spoczynkowej masy Ziemi Wyznaczyć potencjał i natężenie w punkcie P o jenoronie nałaowanego ocinka o zaanej ługości l Fala płaska o częstości rozchozi się w próżni w kierunku n: 4 n = (i + j + k )/ Wieząc, że E jest równoległe o płaszczyzny XY znaleźć równanie opisujące wektory fali E i H oraz Wypisać potencjał zespolony W jenoronego pola elektrycznego o natężeniu E Rozpatrzyć przypaek szczególny pola elektrycznego wytwarzanego przez powierzchnię o gęstości powierzchniowej łaunku Wykorzystując wzór m = er v wyznaczyć moment magnetyczny kołowej ramki o promieniu R, w której płynie prą o natężeniu I 4 Wypisać równanie różniczkowe, które spełnia potencjał V = q exp(-r/a)/r Wielkości q i a stałe 5 Znaleźć potencjał i siłę Coulomba w n-wymiarowej przestrzeni Objętość n-wymiarowej kuli wynosi n = R n n/ /(n/)!, powierzchnia jest równa Sn = n/r Ponato (½)! = 6 Rozwiązać równanie różniczkowe opisujące precesję Larmora M e ΩM, gzie Ω H jest częstością Larmora t mc Niech Y(x) oznacza funkcję Heavisie'a Obliczyć w sensie teorii ystrybucji: V 6

7 P O D S T W Y E L E K T R O D Y N M I K I Ć W I C Z E N I Semestr zimowy r ak 8/9 a) ( k) Y(x) e kx, b) ( + q )Y(x) sin (qx)/q, c) Obliczyć w sensie teorii ystrybucji wszystkie pochone Wykazać, że ( / x + i / y)/(x + iy) = π δ(x + iy) 4 Wykazać, że la n-wymiarowej przestrzeni R n : m m k k m x Y ( x) ( m )! x funkcji x n r 5 Wyznaczyć postać wyrażenia: la r, gzie oraz x ( n ) S ( r) n n r la n =, x n r x xn gzie S / ( n ) jest powierzchnią n-wymiarowej sfery n n 6 Przykłay z poręcznika III: rozz IX,, s 6, przykłay,,, 4 oraz rozz IX, 4, s 66, przykłay,, gzie t t c r r t) 7 Szereg trygonometryczny k x sin kx k ( jest zbieżny w klasycznym sensie o funkcji okresowej o okresie, określonej la < x < Wykorzystując funkcję Heavisie a Y(x) zapisz rezultat sumowania szeregu la owolnego x, < x < Znajź pochoną ystrybucyjną tej funkcji TEMTY DO OPRCOWNI Funkcje pola I 9 rozz 68, 69, 7, 7, 7, 7, 74 s 5-4 Funkcje pola we współrzęnych krzywoliniowych I 8 rozz 66, 67 s 9-9, I - 4 rozz, 4 s 5-9 Funkcje pola we współrzęnych krzywoliniowych c I 4 rozz5, 6, 7 s Funkcje pola we współrzęnych krzywoliniowych przykłay I 4 przykła,,, 4 s Dywergencja I rozz 78, 79, 8 s -6 i Wzory Greena i niezmienniki pola I rozz 8 i 8 s 6-7 i Rotacja (tylko na płaszczyźnie) I rozz i s 5-55 i Funkcja elta Diraca 7

8 P O D S T W Y E L E K T R O D Y N M I K I Ć W I C Z E N I Semestr zimowy r ak 8/9 II rozz 5 s 65-69, 7-7, III rozz s 4-9, III - oatek 6 s Równanie Poissona i jego rozwiązanie I 4 rozz s 88-9 Prękość światła IV par 4- s 4-47, V rozz 4 s Doświaczenie Michelsona i Morleya; przestrzeń czterowymiarowa III rozz, s 7-9, Interwał czasoprzestrzenny niezmiennik transformacji I II III IV VI rozz s 4-8 V rozz 5 s 6-64 (przykła) L I T E R T U R E Karaśkiewicz zarys teorii wektorów i tensorów DJ Griffiths Postawy elektroynamiki M Suffczyński elektroynamika D Holliay, R Resnick fizyka t II V W Bolton zarys fizyki, cz VI VII Uzupełnienia: VIII LD, Lanau, EM Lifszic teoria pola fizyka teoretyczna LD Lanau, EM Lifszic krótki kurs fizyki teoretycznej, tom mechanika, elektroynamika JD Jackson elektroynamika klasyczna IX B Konorski elementy teorii wzglęności, relatywistycznej mechaniki i elektroynamiki X XI XII XIII XIV XV XVI XVII J Górski, S Brychczy, T Czarliński, B Główczyńska, D Węglowska W Woźniak wybrane ziały matematyki stosowanej LG Grieczko, WI Sugarow, OF Tomasiewicz, M Fieorcienko zaania z fizyki teoretycznej Januszajtis fizyka la politechnik, t I cząstki Januszajtis fizyka la politechnik, t II pola F Rohrilch klasyczna teoria cząstek nałaowanych L Fetter, JD Walecka kwantowa teoria ukłaów wielu cząstek IN Bronsztejn, K Siemieniajew Matematyka poranik encyklopeyczny BF Schulz Wstęp o ogólnej teorii wzglęności XVIII K Meissner Klasyczna teoria pola XIX R Sikora teoria pola elektromagnetycznego Prowazący zajęcia: Prof r hab inż Ryszar Gonczarek 8

P O D S T A W Y E L E K T R O D Y N A M I K I Ć W I C Z E N I A Semestr zimowy r. ak. 2016/2017 ZADANIA

P O D S T A W Y E L E K T R O D Y N A M I K I Ć W I C Z E N I A Semestr zimowy r. ak. 2016/2017 ZADANIA Semestr zimowy r ak 6/7 ZDNI I Pokazać, że iv rot =, rot gra f =, iv (gra f gra g) =, gzie wektor i skalary f i g owolne funkcje różniczkowalne Wykazać tożsamości wektorowe (f, g wektory, B owolne funkcje

Bardziej szczegółowo

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim: Podstawy elektrodynamiki Nazwa w języku angielskim: Introduction to Electrodynamics Kierunek studiów (jeśli

Bardziej szczegółowo

Elektrodynamika. Część 2. Specjalne metody elektrostatyki. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM

Elektrodynamika. Część 2. Specjalne metody elektrostatyki. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM Elektroynamika Część 2 Specjalne metoy elektrostatyki Ryszar Tanaś Zakła Optyki Nieliniowej, UAM http://zon8.phys.amu.eu.pl/\~tanas Spis treści 3 Specjalne metoy elektrostatyki 3 3. Równanie Laplace a....................

Bardziej szczegółowo

Podstawy elektrodynamiki / David J. Griffiths. - wyd. 2, dodr. 3. Warszawa, 2011 Spis treści. Przedmowa 11

Podstawy elektrodynamiki / David J. Griffiths. - wyd. 2, dodr. 3. Warszawa, 2011 Spis treści. Przedmowa 11 Podstawy elektrodynamiki / David J. Griffiths. - wyd. 2, dodr. 3. Warszawa, 2011 Spis treści Przedmowa 11 Wstęp: Czym jest elektrodynamika i jakie jest jej miejsce w fizyce? 13 1. Analiza wektorowa 19

Bardziej szczegółowo

i j k Oprac. W. Salejda, L. Bujkiewicz, G.Harań, K. Kluczyk, M. Mulak, J. Szatkowski. Wrocław, 1 października 2015

i j k Oprac. W. Salejda, L. Bujkiewicz, G.Harań, K. Kluczyk, M. Mulak, J. Szatkowski. Wrocław, 1 października 2015 WM-E; kier. MBM, lisa za. nr. p. (z kary przemiou): Rozwiązywanie zaań z zakresu: ransformacji ukłaów współrzęnych, rachunku wekorowego i różniczkowo-całkowego o kursu Fizyka.6, r. ak. 05/6; po koniec

Bardziej szczegółowo

Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki

Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki Spis treści Przedmowa... 11 Wstęp: Czym jest elektrodynamika i jakie jest jej miejsce w fizyce?... 13 1. Analiza wektorowa... 19 1.1. Algebra

Bardziej szczegółowo

Pole magnetyczne magnesu w kształcie kuli

Pole magnetyczne magnesu w kształcie kuli napisał Michał Wierzbicki Pole magnetyczne magnesu w kształcie kuli Rozważmy kulę o promieniu R, wykonaną z materiału ferromagnetycznego o stałej magnetyzacji M = const, skierowanej wzdłuż osi z. Gęstość

Bardziej szczegółowo

Pole elektromagnetyczne. Równania Maxwella

Pole elektromagnetyczne. Równania Maxwella Pole elektromagnetyczne (na podstawie Wikipedii) Pole elektromagnetyczne - pole fizyczne, za pośrednictwem którego następuje wzajemne oddziaływanie obiektów fizycznych o właściwościach elektrycznych i

Bardziej szczegółowo

Fale elektromagnetyczne

Fale elektromagnetyczne Fale elektromagnetyczne dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Plan wykładu Spis treści 1. Analiza pola 2 1.1. Rozkład pola...............................................

Bardziej szczegółowo

Wykład Pole magnetyczne, indukcja elektromagnetyczna

Wykład Pole magnetyczne, indukcja elektromagnetyczna Wykła 5 5. Pole magnetyczne, inukcja elektromagnetyczna Prawo Ampera Chcemy teraz znaleźć pole magnetyczne wytwarzane przez powszechnie występujące rozkłay prąów, takich jak przewoniki prostoliniowe, cewki

Bardziej szczegółowo

Równania dla potencjałów zależnych od czasu

Równania dla potencjałów zależnych od czasu Równania dla potencjałów zależnych od czasu Potencjały wektorowy A( r, t i skalarny ϕ( r, t dla zależnych od czasu pola elektrycznego E( r, t i magnetycznego B( r, t definiujemy poprzez następujące zależności

Bardziej szczegółowo

Mechanika kwantowa ćwiczenia, 2007/2008, Zestaw II

Mechanika kwantowa ćwiczenia, 2007/2008, Zestaw II 1 Dane są następujące operatory: ˆD = x, ˆQ = π 0 x, ŝin = sin( ), ĉos = cos( ), ˆπ = π, ˆ0 = 0, przy czym operatory ˆπ oraz ˆ0 są operatorami mnożenia przez opowienie liczby (a) Wyznacz kwarat oraz owrotność

Bardziej szczegółowo

Pole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu) (1.1) (1.2a)

Pole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu) (1.1) (1.2a) PODSAWY WYMIANY CIEPŁA. Postawowe pojęcia w wymianie ciepła Sposoby transportu ciepła: przewozenie konwekcja - swobona - wymuszona promieniowanie ransport ciepła w ciałach stałych obywa się na roze przewozenia.

Bardziej szczegółowo

1. Podstawowe pojęcia w wymianie ciepła

1. Podstawowe pojęcia w wymianie ciepła PODSAWY WYMIANY CIEPŁA. Postawowe pojęcia w wymianie ciepła Sposoby transportu ciepła: przewozenie konwekcja - swobona - wymuszona promieniowanie ransport ciepła w ciałach stałych obywa się na roze przewozenia.

Bardziej szczegółowo

ELEKTROTECHNIKA Semestr 2 Rok akad / ZADANIA Z MATEMATYKI Zestaw Oblicz pochodne cząstkowe rzędu drugiego funkcji:

ELEKTROTECHNIKA Semestr 2 Rok akad / ZADANIA Z MATEMATYKI Zestaw Oblicz pochodne cząstkowe rzędu drugiego funkcji: ZADANIA Z MATEMATYKI Zestaw. Oblicz pochodne cząstkowe funkcji: a) f(x, y) = x sin y x b) f(x, y) = e y +x 2 c) f(x, y, z) = z cos x+y z 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: 3. Wyznacz

Bardziej szczegółowo

RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego?

RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? RÓWNANIA MAXWELLA Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? Wykład 3 lato 2012 1 Doświadczenia Wykład 3 lato 2012 2 1

Bardziej szczegółowo

METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ

METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ Wykład 3 Elementy analizy pól skalarnych, wektorowych i tensorowych Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej 1 Analiza

Bardziej szczegółowo

18. Siły bezwładności Siła bezwładności w ruchu postępowych Siła odśrodkowa bezwładności Siła Coriolisa

18. Siły bezwładności Siła bezwładności w ruchu postępowych Siła odśrodkowa bezwładności Siła Coriolisa Kinematyka 1. Podstawowe własności wektorów 5 1.1 Dodawanie (składanie) wektorów 7 1.2 Odejmowanie wektorów 7 1.3 Mnożenie wektorów przez liczbę 7 1.4 Wersor 9 1.5 Rzut wektora 9 1.6 Iloczyn skalarny wektorów

Bardziej szczegółowo

Elektrodynamika #

Elektrodynamika # Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Nazwa przedmiotu Elektrodynamika Nazwa jednostki prowadzącej przedmiot Kod ECTS 13.2.0052 Instytut Fizyki Teoretycznej

Bardziej szczegółowo

Pole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu)

Pole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu) PODSAWY WYMIANY CIEPŁA. Postawowe pojęcia w wymianie ciepła Sposoby transportu ciepła: przewozenie konwekcja - swobona - wymuszona promieniowanie ransport ciepła w ciałach stałych obywa się na roze przewozenia.

Bardziej szczegółowo

Metoda obrazów wielki skrypt przed poświąteczny, CZĘŚĆ POTRZEBNA DO OFa

Metoda obrazów wielki skrypt przed poświąteczny, CZĘŚĆ POTRZEBNA DO OFa Metoa obrazów wielki skrypt prze poświąteczny, CZĘŚĆ POTRZEBNA DO OFa 1. Równania i warunki brzegowe Dlaczego w ogóle metoa obrazów ziała? W elektrostatyce o policzenia wszystkiego wystarczą 2 rzeczy:

Bardziej szczegółowo

cz. 2. dr inż. Zbigniew Szklarski

cz. 2. dr inż. Zbigniew Szklarski Wykład 14: Pole magnetyczne cz.. dr inż. Zbigniew zklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ Prąd elektryczny jako źródło pola magnetycznego - doświadczenie Oersteda Kiedy przez

Bardziej szczegółowo

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne......................

Bardziej szczegółowo

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne....................

Bardziej szczegółowo

Fale elektromagnetyczne. Gradient pola. Gradient pola... Gradient pola... Notatki. Notatki. Notatki. Notatki. dr inż. Ireneusz Owczarek 2013/14

Fale elektromagnetyczne. Gradient pola. Gradient pola... Gradient pola... Notatki. Notatki. Notatki. Notatki. dr inż. Ireneusz Owczarek 2013/14 dr inż. Ireneusz Owczarek CNMiF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2013/14 1 dr inż. Ireneusz Owczarek Gradient pola Gradient funkcji pola skalarnego ϕ przypisuje każdemu punktowi

Bardziej szczegółowo

Niektóre zastosowania całki krzywoliniowej niezorientowanej 1.Długość l łuku zwykłego gładkiego Γ

Niektóre zastosowania całki krzywoliniowej niezorientowanej 1.Długość l łuku zwykłego gładkiego Γ Niektóre zastosowania całki krzywoliniowej niezorientowanej 1.ługość l łuku zwykłego gładkiego l = 1dl = b a (x (t)) 2 + (y (t) 2 ) + (z (t)) 2 dt 2.Pole powierzchni walcowej = {(x, y, z) : (x, y), 0 z

Bardziej szczegółowo

Przekształcenie całkowe Fouriera

Przekształcenie całkowe Fouriera Przekształcenie całkowe Fouriera Postać zespolona szeregu Fouriera Niech ana bęzie funkcja f spełniająca w przeziale [, ] warunki Dirichleta. Wtey szereg Fouriera tej funkcji jest o niej zbieżny, tj. przy

Bardziej szczegółowo

Pole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu)

Pole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu) PODSAWY WYMIANY CIEPŁA. Postawowe pojęcia w wymianie ciepła Sposoby transportu ciepła: przewozenie konwekcja - swobona - wymuszona promieniowanie ransport ciepła w ciałach stałych obywa się na roze przewozenia.

Bardziej szczegółowo

Fizyka. dr Bohdan Bieg p. 36A. wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe

Fizyka. dr Bohdan Bieg p. 36A. wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe Fizyka dr Bohdan Bieg p. 36A wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe Literatura Raymond A. Serway, John W. Jewett, Jr. Physics for Scientists and Engineers, Cengage Learning D. Halliday, D.

Bardziej szczegółowo

Spis treści. Przedmowa PRZESTRZEŃ I CZAS W FIZYCE NEWTONOWSKIEJ ORAZ SZCZEGÓLNEJ TEORII. 1 Grawitacja 3. 2 Geometria jako fizyka 14

Spis treści. Przedmowa PRZESTRZEŃ I CZAS W FIZYCE NEWTONOWSKIEJ ORAZ SZCZEGÓLNEJ TEORII. 1 Grawitacja 3. 2 Geometria jako fizyka 14 Spis treści Przedmowa xi I PRZESTRZEŃ I CZAS W FIZYCE NEWTONOWSKIEJ ORAZ SZCZEGÓLNEJ TEORII WZGLĘDNOŚCI 1 1 Grawitacja 3 2 Geometria jako fizyka 14 2.1 Grawitacja to geometria 14 2.2 Geometria a doświadczenie

Bardziej szczegółowo

Indukcja elektromagnetyczna

Indukcja elektromagnetyczna nukcja elektromagnetyczna Prawo inukcji elektromagnetycznej Faraaya Φ B N Φ B Dla N zwojów eguła enza eguła enza Prą inukowany ma taki kierunek, że wywołane przez niego pole magnetyczne przeciwstawia się

Bardziej szczegółowo

Przedmowa do wydania drugiego Konwencje i ważniejsze oznaczenia... 13

Przedmowa do wydania drugiego Konwencje i ważniejsze oznaczenia... 13 Przedmowa do wydania drugiego... 11 Konwencje i ważniejsze oznaczenia... 13 1. Rachunek i analiza wektorowa... 17 1.1. Wielkości skalarne i wektorowe... 17 1.2. Układy współrzędnych... 20 1.2.1. Układ

Bardziej szczegółowo

ELEKTROTECHNIKA Semestr 2 Rok akad. 2015 / 2016. ZADANIA Z MATEMATYKI Zestaw 1. 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji:

ELEKTROTECHNIKA Semestr 2 Rok akad. 2015 / 2016. ZADANIA Z MATEMATYKI Zestaw 1. 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: ZADANIA Z MATEMATYKI Zestaw 1 1. Oblicz pochodne cząstkowe funkcji: a) f(x, y) = x sin y x b) f(x, y) = e y 1+x 2 c) f(x, y, z) = z cos x+y z 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: 3. Wyznacz

Bardziej szczegółowo

ELEKTROTECHNIKA Semestr 1 Rok akad / ZADANIA Z MATEMATYKI Zestaw Przedstaw w postaci algebraicznej liczby zespolone: (3 + 2j)(5 2j),

ELEKTROTECHNIKA Semestr 1 Rok akad / ZADANIA Z MATEMATYKI Zestaw Przedstaw w postaci algebraicznej liczby zespolone: (3 + 2j)(5 2j), ELEKTROTECHNIKA Semestr Rok akad. / 5 ZADANIA Z MATEMATYKI Zestaw. Przedstaw w postaci algebraicznej liczby zespolone: (3 + j)(5 j) 3 j +j (5 + j) (3 + j) 3. Narysuj zbiory punktów na płaszczyźnie: +j

Bardziej szczegółowo

Elektrostatyka, cz. 1

Elektrostatyka, cz. 1 Podstawy elektromagnetyzmu Wykład 3 Elektrostatyka, cz. 1 Prawo Coulomba F=k q 1 q 2 r 2 1 q1 q 2 Notka historyczna: 1767: John Priestley - sugestia 1771: Henry Cavendish - eksperyment 1785: Charles Augustin

Bardziej szczegółowo

Aby przygotować się do kolokwiów oraz do egzaminów należy ponownie przeanalizować zadania

Aby przygotować się do kolokwiów oraz do egzaminów należy ponownie przeanalizować zadania Chemia Budowlana - Wydział Chemiczny - 1 Aby przygotować się do kolokwiów oraz do egzaminów należy ponownie przeanalizować zadania rozwiązywane na wykładzie, rozwiązywane na ćwiczeniach, oraz samodzielnie

Bardziej szczegółowo

Elektrodynamika. Część 9. Potencjały i pola źródeł zmiennych w czasie. Ryszard Tanaś

Elektrodynamika. Część 9. Potencjały i pola źródeł zmiennych w czasie. Ryszard Tanaś Elektrodynamika Część 9 Potencjały i pola źródeł zmiennych w czasie Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 10 Potencjały i pola źródeł zmiennych w

Bardziej szczegółowo

Analiza Matematyczna Praca domowa

Analiza Matematyczna Praca domowa Analiza Matematyczna Praca domowa J. de Lucas Zadanie 1. Pokazać, że dla wszystkich n naturalnych ( n ) exp kx k dx 1 dx n = 1 n (e k 1). (0,1) n k=1 n! k=1 Zadanie. Obliczyć dla dowolnego n. (0,1) n (x

Bardziej szczegółowo

1 Postulaty mechaniki kwantowej

1 Postulaty mechaniki kwantowej 1 1.1 Postulat Pierwszy Stan ukłau kwantowomechanicznego opisuje funkcja falowa Ψ(r 1, r 2,..., r N, t) zwana także funkcją stanu taka, że kwarat jej moułu: Ψ 2 = Ψ Ψ pomnożony przez element objętości

Bardziej szczegółowo

1 Relacje i odwzorowania

1 Relacje i odwzorowania Relacje i odwzorowania Relacje Jacek Kłopotowski Zadania z analizy matematycznej I Wykazać, że jeśli relacja ρ X X jest przeciwzwrotna i przechodnia, to jest przeciwsymetryczna Zbadać czy relacja ρ X X

Bardziej szczegółowo

Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017

Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017 Optyka Wykład V Krzysztof Golec-Biernat Fale elektromagnetyczne Uniwersytet Rzeszowski, 8 listopada 2017 Wykład V Krzysztof Golec-Biernat Optyka 1 / 17 Plan Swobodne równania Maxwella Fale elektromagnetyczne

Bardziej szczegółowo

Mechanika. Wykład 2. Paweł Staszel

Mechanika. Wykład 2. Paweł Staszel Mechanika Wykład 2 Paweł Staszel 1 Przejście graniczne 0 2 Podstawowe twierdzenia o pochodnych: pochodna funkcji mnożonej przez skalar pochodna sumy funkcji pochodna funkcji złożonej pochodna iloczynu

Bardziej szczegółowo

Feynmana wykłady z fizyki. [T.] 1.1, Mechanika, szczególna teoria względności / R. P. Feynman, R. B. Leighton, M. Sands. wyd. 7.

Feynmana wykłady z fizyki. [T.] 1.1, Mechanika, szczególna teoria względności / R. P. Feynman, R. B. Leighton, M. Sands. wyd. 7. Feynmana wykłady z fizyki. [T.] 1.1, Mechanika, szczególna teoria względności / R. P. Feynman, R. B. Leighton, M. Sands. wyd. 7. Warszawa, 2014 Spis treści Spis rzeczy części 2 tomu I O Richardzie P. Feynmanie

Bardziej szczegółowo

Opis poszczególnych przedmiotów (Sylabus)

Opis poszczególnych przedmiotów (Sylabus) Opis poszczególnych przedmiotów (Sylabus) Nazwa Przedmiotu: Fizyka Kod przedmiotu: Typ przedmiotu: obowiązkowy Poziom przedmiotu: podstawowy Rok studiów, semestr: rok pierwszy, semestr VII (studia II stopnia)

Bardziej szczegółowo

Rozdział XV CAŁKI KRZYWOLINIOWE. CAŁKA STIELTJESA

Rozdział XV CAŁKI KRZYWOLINIOWE. CAŁKA STIELTJESA Księgarnia PWN: Grigorij M. Fichtenholz Rachunek różniczkowy i całkowy. T. 3 Rozdział XV CAŁKI KRZYWOLINIOWE. CAŁKA STIELTJESA 1. Całki krzywoliniowe pierwszego rodzaju 543. Definicja całki krzywoliniowej

Bardziej szczegółowo

Przykładowe zadania na egzamin z matematyki - dr Anita Tlałka - 1

Przykładowe zadania na egzamin z matematyki - dr Anita Tlałka - 1 Przykładowe zadania na egzamin z matematyki - dr Anita Tlałka - 1 Zadania rozwiązywane na wykładzie Zadania rozwiązywane na ćwiczeniach Przy rozwiązywaniu zadań najistotniejsze jest wykazanie się rozumieniem

Bardziej szczegółowo

Spis treści. Tom 1 Przedmowa do wydania polskiego 13. Przedmowa 15. Wstęp 19

Spis treści. Tom 1 Przedmowa do wydania polskiego 13. Przedmowa 15. Wstęp 19 Spis treści Tom 1 Przedmowa do wydania polskiego 13 Przedmowa 15 1 Wstęp 19 1.1. Istota fizyki.......... 1 9 1.2. Jednostki........... 2 1 1.3. Analiza wymiarowa......... 2 3 1.4. Dokładność w fizyce.........

Bardziej szczegółowo

Analiza matematyczna 2 zadania z odpowiedziami

Analiza matematyczna 2 zadania z odpowiedziami Analiza matematyczna zadania z odpowiedziami Maciej Burnecki strona główna Spis treści I Całki niewłaściwe pierwszego rodzaju II Całki niewłaściwe drugiego rodzaju 5 III Szeregi liczbowe 6 IV Szeregi potęgowe

Bardziej szczegółowo

Matematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 9

Matematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 9 Matematyka I Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 9 Przykład z fizyki Rozpatrzmy szeregowe połączenie dwu elementów elektronicznych: opornika i diody półprzewodnikowej.

Bardziej szczegółowo

Moment pędu fali elektromagnetycznej

Moment pędu fali elektromagnetycznej napisał Michał Wierzbicki Moment pędu fali elektromagnetycznej Definicja momentu pędu pola elektromagnetycznego Gęstość momentu pędu pola J w elektrodynamice definuje się za pomocą wzoru: J = r P = ɛ 0

Bardziej szczegółowo

Kinematyka, Dynamika, Elementy Szczególnej Teorii Względności

Kinematyka, Dynamika, Elementy Szczególnej Teorii Względności Kinematyka, Dynamika, Elementy Szczególnej Teorii Względności Fizyka wykład 2 dla studentów kierunku Informatyka Wydział Automatyki, Elektroniki i Informatyki Politechnika Śląska 15 października 2007r.

Bardziej szczegółowo

Rozważania rozpoczniemy od fal elektromagnetycznych w próżni. Dla próżni równania Maxwella w tzw. postaci różniczkowej są następujące:

Rozważania rozpoczniemy od fal elektromagnetycznych w próżni. Dla próżni równania Maxwella w tzw. postaci różniczkowej są następujące: Rozważania rozpoczniemy od fal elektromagnetycznych w próżni Dla próżni równania Maxwella w tzw postaci różniczkowej są następujące:, gdzie E oznacza pole elektryczne, B indukcję pola magnetycznego a i

Bardziej szczegółowo

WYKŁAD nr Ekstrema funkcji jednej zmiennej o ciągłych pochodnych. xˆ ( ) 0

WYKŁAD nr Ekstrema funkcji jednej zmiennej o ciągłych pochodnych. xˆ ( ) 0 WYKŁAD nr 4. Zaanie programowania nieliniowego ZP. Ekstrema unkcji jenej zmiennej o ciągłych pochonych Przypuśćmy ze punkt jest punktem stacjonarnym unkcji gzie punktem stacjonarnym nazywamy punkt la którego

Bardziej szczegółowo

FIZYKA-egzamin opracowanie pozostałych pytań

FIZYKA-egzamin opracowanie pozostałych pytań FIZYKA-egzamin opracowanie pozostałych pytań Andrzej Przybyszewski Michał Witczak Marcin Talarek. Definicja pracy na odcinku A-B 2. Zdefiniować różnicę energii potencjalnych gdy ciało przenosimy z do B

Bardziej szczegółowo

Teoria pola elektromagnetycznego

Teoria pola elektromagnetycznego Teoria pola elektromagnetycznego Odpowiedzialny za przedmiot (wykłady): prof. dr hab. inż. Stanisław Gratkowski Ćwiczenia i laboratoria: dr inż. Krzysztof Stawicki ks@zut.edu.pl e-mail: w temacie wiadomości

Bardziej szczegółowo

Promieniowanie dipolowe

Promieniowanie dipolowe Promieniowanie dipolowe Potencjały opóźnione φ i A dla promieniowanie punktowego dipola elektrycznego wygodnie jest wyrażać przez wektor Hertza Z φ = ϵ 0 Z, spełniający niejednorodne równanie falowe A

Bardziej szczegółowo

ANALIZA MATEMATYCZNA 2 zadania z odpowiedziami

ANALIZA MATEMATYCZNA 2 zadania z odpowiedziami ANALIZA MATEMATYCZNA zadania z odpowiedziami Maciej Burnecki strona główna Spis treści Całki niewłaściwe pierwszego rodzaju Całki niewłaściwe drugiego rodzaju Szeregi liczbowe 4 4 Szeregi potęgowe 5 5

Bardziej szczegółowo

1 Płaska fala elektromagnetyczna

1 Płaska fala elektromagnetyczna 1 Płaska fala elektromagnetyczna 1.1 Fala w wolnej przestrzeni Rozwiązanie równań Maxwella dla zespolonych amplitud pól przemiennych sinusoidalnie, reprezentujące płaską falę elektromagnetyczną w wolnej

Bardziej szczegółowo

Wyprowadzenie prawa Gaussa z prawa Coulomba

Wyprowadzenie prawa Gaussa z prawa Coulomba Wyprowadzenie prawa Gaussa z prawa Coulomba Natężenie pola elektrycznego ładunku punktowego q, umieszczonego w początku układu współrzędnych (czyli prawo Coulomba): E = Otoczmy ten ładunek dowolną powierzchnią

Bardziej szczegółowo

Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie

Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie napisał Michał Wierzbicki Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie Prędkość grupowa paczki falowej Paczka falowa jest superpozycją fal o różnej częstości biegnących wzdłuż osi z.

Bardziej szczegółowo

Równania Maxwella. Wstęp E B H J D

Równania Maxwella. Wstęp E B H J D Równania Maxwella E B t, H J D t, D, B 0 Równania materiałowe B 0 H M, D 0 E P, J E, gdzie: 0 przenikalność elektryczną próżni ( 0 8854 10 1 As/Vm), 0 przenikalność magetyczną próżni ( 0 4 10 7 Vs/Am),

Bardziej szczegółowo

Elektrodynamika Część 2 Specjalne metody elektrostatyki Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 2 Specjalne metody elektrostatyki Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 2 Specjalne metody elektrostatyki Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 3 Specjalne metody elektrostatyki 3 3.1 Równanie Laplace

Bardziej szczegółowo

Różniczkowe prawo Gaussa i co z niego wynika...

Różniczkowe prawo Gaussa i co z niego wynika... Różniczkowe prawo Gaussa i co z niego wynika... Niech ładunek będzie rozłożony w objętości V z ciągłą gęstością ρ(x,y,z). Wytworzone przez ten ładunek pole elektryczne będzie również zmieniać się w przestrzeni

Bardziej szczegółowo

PODSTAWY MECHANIKI KWANTOWEJ

PODSTAWY MECHANIKI KWANTOWEJ PODSTAWY MECHANIKI KWANTOWEJ De Broglie, na podstawie analogii optycznych, w roku 194 wysunął hipotezę, że cząstki materialne także charakteryzują się dualizmem korpuskularno-falowym. Hipoteza de Broglie

Bardziej szczegółowo

Plan Zajęć. Ćwiczenia rachunkowe

Plan Zajęć. Ćwiczenia rachunkowe Plan Zajęć 1. Termodynamika, 2. Grawitacja, Kolokwium I 3. Elektrostatyka + prąd 4. Pole Elektro-Magnetyczne Kolokwium II 5. Zjawiska falowe 6. Fizyka Jądrowa + niepewność pomiaru Kolokwium III Egzamin

Bardziej szczegółowo

Elementy fizyki relatywistycznej

Elementy fizyki relatywistycznej Elementy fizyki relatywistycznej Transformacje Galileusza i ich konsekwencje Transformacje Lorentz'a skracanie przedmiotów w kierunku ruchu dylatacja czasu nowe składanie prędkości Szczególna teoria względności

Bardziej szczegółowo

Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji

Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji Fotonika Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji Plan: pojęcie sygnału w optyce układy liniowe filtry liniowe, transformata Fouriera,

Bardziej szczegółowo

Strumień Prawo Gaussa Rozkład ładunku Płaszczyzna Płaszczyzny Prawo Gaussa i jego zastosowanie

Strumień Prawo Gaussa Rozkład ładunku Płaszczyzna Płaszczyzny Prawo Gaussa i jego zastosowanie Problemy elektrodynamiki. Prawo Gaussa i jego zastosowanie przy obliczaniu pól ładunku rozłożonego w sposób ciągły. I LO im. Stefana Żeromskiego w Lęborku 19 marca 2012 Nowe spojrzenie na prawo Coulomba

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 2, 17.02.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Równania Maxwella r-nie falowe

Bardziej szczegółowo

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 6 2016/2017, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment

Bardziej szczegółowo

Zagadnienia na egzamin ustny:

Zagadnienia na egzamin ustny: Zagadnienia na egzamin ustny: Wstęp 1. Wielkości fizyczne, ich pomiar i podział. 2. Układ SI i jednostki podstawowe. 3. Oddziaływania fundamentalne. 4. Cząstki elementarne, antycząstki, cząstki trwałe.

Bardziej szczegółowo

ver teoria względności

ver teoria względności ver-7.11.11 teoria względności interferometr Michelsona eter? Albert Michelson 1852 Strzelno, Kujawy 1931 Pasadena, Kalifornia Nobel - 1907 http://galileoandeinstein.physics.virginia.edu/more_stuff/flashlets/mmexpt6.htm

Bardziej szczegółowo

Wykłady z Hydrauliki- dr inż. Paweł Zawadzki, KIWIS WYKŁAD 3

Wykłady z Hydrauliki- dr inż. Paweł Zawadzki, KIWIS WYKŁAD 3 WYKŁAD 3 3.4. Postawowe prawa hyroynamiki W analizie problemów przepływów cieczy wykorzystuje się trzy postawowe prawa fizyki klasycznej: prawo zachowania masy, zachowania pęu i zachowania energii. W większości

Bardziej szczegółowo

Analiza wektorowa. Teoria pola.

Analiza wektorowa. Teoria pola. Analiza wektorowa. Teoria pola. Pole skalarne Pole wektorowe ϕ = ϕ(x, y, z) A = A x (x, y, z) i x + A y (x, y, z) i y + A z (x, y, z) i z Gradient grad ϕ = ϕ x i x + ϕ y i y + ϕ z i z Jeśli przemieścimy

Bardziej szczegółowo

Składowe wektora y. Długość wektora y

Składowe wektora y. Długość wektora y FIZYKA I Wykła II Rachunek Pojęcia postawowe wektorowy i (I) historia b a Skłaowe wektora y n = n cos(α) y n = n sin(α) y b Ԧa = a, y a a b = b, y b b a Długość wektora y Ԧa = a + y a y b b = b + y b b

Bardziej szczegółowo

Geometria płaska - matura Przyprostokątne trójkąta prostokątnego mają długości 3 7cm poprowadzona z wierzchołka kąta prostego ma długość: 12

Geometria płaska - matura Przyprostokątne trójkąta prostokątnego mają długości 3 7cm poprowadzona z wierzchołka kąta prostego ma długość: 12 Geometria płaska - matura 010 1. Przyprostokątne trójkąta prostokątnego mają ługości 7cm i 4 7cm. Wysokość poprowazona z wierzchołka kąta prostego ma ługość: 1 5 A. 7cm B. cm C. 8 7cm D. 7 7cm 5 7. Miara

Bardziej szczegółowo

Całki krzywoliniowe. SNM - Elementy analizy wektorowej - 1

Całki krzywoliniowe. SNM - Elementy analizy wektorowej - 1 SNM - Elementy analizy wektorowej - 1 Całki krzywoliniowe Definicja (funkcja wektorowa jednej zmiennej) Funkcją wektorową jednej zmiennej nazywamy odwzorowanie r : I R 3, gdzie I oznacza przedział na prostej,

Bardziej szczegółowo

Jan Awrejcewicz- Mechanika Techniczna i Teoretyczna. Statyka. Kinematyka

Jan Awrejcewicz- Mechanika Techniczna i Teoretyczna. Statyka. Kinematyka Jan Awrejcewicz- Mechanika Techniczna i Teoretyczna. Statyka. Kinematyka SPIS TREŚCI Przedmowa... 7 1. PODSTAWY MECHANIKI... 11 1.1. Pojęcia podstawowe... 11 1.2. Zasada d Alemberta... 18 1.3. Zasada prac

Bardziej szczegółowo

REZONANSY : IDENTYFIKACJA WŁAŚCIWOŚCI PRZEZ ANALIZĘ FAL PARCJALNYCH, WYKRESY ARGANDA

REZONANSY : IDENTYFIKACJA WŁAŚCIWOŚCI PRZEZ ANALIZĘ FAL PARCJALNYCH, WYKRESY ARGANDA REZONANSY : IDENTYFIKACJA WŁAŚCIWOŚCI PRZEZ ANALIZĘ FAL PARCJALNYCH, WYKRESY ARGANDA Opis układu cząsteczek w mechanice kwantowej: 1. Funkcja falowa, 2. Wektora stanu ψ. TRANSFORMACJE UKŁADU CZĄSTEK: 1.

Bardziej szczegółowo

Zagadnienia brzegowe dla równań eliptycznych

Zagadnienia brzegowe dla równań eliptycznych Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta

Bardziej szczegółowo

Wykład 14: Indukcja cz.2.

Wykład 14: Indukcja cz.2. Wykład 14: Indukcja cz.. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. -1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 10.05.017 Wydział Informatyki, Elektroniki i 1 Przykład

Bardziej szczegółowo

Michał Praszałowicz, pok. 438. michal@if.uj.edu.pl strona www: th-www.if.uj.edu.pl/~michal wykład 3 godz. za wyjątkiem listopada Egzamin: esej max.

Michał Praszałowicz, pok. 438. michal@if.uj.edu.pl strona www: th-www.if.uj.edu.pl/~michal wykład 3 godz. za wyjątkiem listopada Egzamin: esej max. Michał Praszałowicz, pok. 438. michal@if.uj.edu.pl strona www: th-www.if.uj.edu.pl/~michal wykład 3 godz. za wyjątkiem listopada Egzamin: esej max. 10 stron na jeden z listy tematów + rozmowa USOS! 1 Model

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych Funkcje wielu zmiennych Wykresy i warstwice funkcji wielu zmiennych. Granice i ciagłość funkcji wielu zmiennych. Pochodne czastkowe funkcji wielu zmiennych. Gradient. Pochodna kierunkowa. Różniczka zupełna.

Bardziej szczegółowo

Chemia teoretyczna. Postulaty mechaniki kwantowej. Katarzyna Kowalska-Szojda

Chemia teoretyczna. Postulaty mechaniki kwantowej. Katarzyna Kowalska-Szojda Chemia teoretyczna Postulaty mechaniki kwantowej Katarzyna Kowalska-Szoja Spis treści 1 Postulaty mechaniki kwantowej 2 1.1 Postulat pierwszy.......................... 2 1.2 Postulat rugi.............................

Bardziej szczegółowo

Elementy elektrodynamiki klasycznej S XX

Elementy elektrodynamiki klasycznej S XX kierunek studiów: FIZYKA specjalność: FIZYKA s I WYDZIAŁ FIZYKI UwB KOD USOS: 0900 FS1 Karta przedmiotu Przedmiot grupa ECTS Elementy elektrodynamiki klasycznej S XX Formy zajęć wykład konwersatorium seminarium

Bardziej szczegółowo

Kinematyka płynów - zadania

Kinematyka płynów - zadania Zadanie 1 Zadane jest prawo ruchu w zmiennych Lagrange a x = Xe y = Ye t 0 gdzie, X, Y oznaczają współrzędne materialne dla t = 0. Wyznaczyć opis ruchu w zmiennych Eulera. Znaleźć linię prądu. Pokazać,

Bardziej szczegółowo

ANALIZA MATEMATYCZNA 2.2B (2017/18)

ANALIZA MATEMATYCZNA 2.2B (2017/18) ANALIZA MATEMATYCZNA.B (7/8) ANALIZA MATEMATYCZNA.A,.A LISTA. (na ćwiczenia) Całki niewłaściwe Część A. Zadania do samodzielnego rozwiązania, czyli to, co należy umieć z poprzedniego semestru... Podać

Bardziej szczegółowo

Podstawy Fizyki Współczesnej I. Blok I

Podstawy Fizyki Współczesnej I. Blok I Podstawy Fizyki Współczesnej I Podsumowanie wykładu (17.06.2008) Uwaga: zagadnienia oznaczone gwiazdką są nieco bardziej złożone i na ocenę dostateczną jest wymagana jedynie ich pobieżna znajomość. Zadania

Bardziej szczegółowo

1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2

1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2 Temat 1 Pojęcia podstawowe 1.1 Przegląd wybranych równań i modeli fizycznych Równaniem różniczkowym cząstkowym rzędu drugiego o n zmiennych niezależnych nazywamy równanie postaci gdzie u = u (x 1, x,...,

Bardziej szczegółowo

Mechanika Kwantowa. Maciej J. Mrowiński. 24 grudnia Funkcja falowa opisująca stan pewnej cząstki ma następującą postać: 2 x 2 )

Mechanika Kwantowa. Maciej J. Mrowiński. 24 grudnia Funkcja falowa opisująca stan pewnej cząstki ma następującą postać: 2 x 2 ) Mechanika Kwantowa Maciej J. Mrowiński 4 grudnia 11 Zadanie MK1 Funkcja falowa opisująca stan pewnej cząstki w chwili t = ma następującą postać: A(a Ψ(x,) = x ) gdy x [ a,a] gdy x / [ a,a] gdzie a +. Wyznacz

Bardziej szczegółowo

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 7 2012/2013, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment

Bardziej szczegółowo

IX. MECHANIKA (FIZYKA) KWANTOWA

IX. MECHANIKA (FIZYKA) KWANTOWA IX. MECHANIKA (FIZYKA) KWANTOWA IX.1. OPERACJE OBSERWACJI. a) klasycznie nie ważna kolejność, w jakiej wykonujemy pomiary. AB = BA A pomiar wielkości A B pomiar wielkości B b) kwantowo wartość obserwacji

Bardziej szczegółowo

Fotonika. Plan: Wykład 3: Polaryzacja światła

Fotonika. Plan: Wykład 3: Polaryzacja światła Fotonika Wykład 3: Polaryzacja światła Plan: Równania Maxwella w ośrodku optycznie liniowym Równania Maxwella dla fal monochromatycznych Polaryzacja światła Fala płaska spolaryzowana Polaryzacje liniowe,

Bardziej szczegółowo

PDE. czyli równania różniczkowe cząstkowe [Partial Differential Equation(s)] wstęp do wstępu. Zbigniew Koza. Wydział Fizyki i Astronomii Wrocław, 2016

PDE. czyli równania różniczkowe cząstkowe [Partial Differential Equation(s)] wstęp do wstępu. Zbigniew Koza. Wydział Fizyki i Astronomii Wrocław, 2016 PDE czyli równania różniczkowe cząstkowe [Partial Differential Equation(s)] wstęp do wstępu Zbigniew Koza Wydział Fizyki i Astronomii Wrocław, 2016 WSTĘP Motywacja Dotychczas zajmowaliśmy się równaniami

Bardziej szczegółowo

Liczby zespolone i ich zastosowanie do wyprowadzania tożsamości trygonometrycznych.

Liczby zespolone i ich zastosowanie do wyprowadzania tożsamości trygonometrycznych. Jarosław Wróblewski Analiza Matematyczna, lato 016/17 Kolokwium nr 10: wtorek 6.06.017, godz. 1:15-1:45, materiał zad. 1 40. Liczby zespolone i ich zastosowanie do wyprowadzania tożsamości trygonometrycznych.

Bardziej szczegółowo

LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych

LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych LABORATORIUM ELEKTROAKUSTYKI ĆWICZENIE NR Drgania układów mechanicznych Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z właściwościami układów drgających oraz metodami pomiaru i analizy drgań. W ramach

Bardziej szczegółowo

Ważny przykład oscylator harmoniczny

Ważny przykład oscylator harmoniczny 6.03.00 6. Ważny przykła oscylator harmoniczny 73 Rozział 6 Ważny przykła oscylator harmoniczny 6. Wprowazenie Klasyczny, jenowymiarowy oscylator harmoniczny opowiaa potencjałowi energii potencjalnej:

Bardziej szczegółowo

Wykład 9: Fale cz. 1. dr inż. Zbigniew Szklarski

Wykład 9: Fale cz. 1. dr inż. Zbigniew Szklarski Wykład 9: Fale cz. 1 dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Klasyfikacja fal fale mechaniczne zaburzenie przemieszczające się w ośrodku sprężystym, fale elektromagnetyczne

Bardziej szczegółowo

KO OF Szczecin:

KO OF Szczecin: XXXI OLIMPIADA FIZYCZNA (1981/198) Stopień III, zaanie teoretyczne T Źróło: Nazwa zaania: Działy: Słowa kluczowe: Komitet Główny Olimpiay Fizycznej; Anrzej Kotlicki; Anrzej Naolny: Fizyka w Szkole, nr

Bardziej szczegółowo