Elektrodynamika. Część 2. Specjalne metody elektrostatyki. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Elektrodynamika. Część 2. Specjalne metody elektrostatyki. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM"

Transkrypt

1 Elektroynamika Część 2 Specjalne metoy elektrostatyki Ryszar Tanaś Zakła Optyki Nieliniowej, UAM Spis treści 3 Specjalne metoy elektrostatyki 3 3. Równanie Laplace a Metoa obrazów Metoa separacji zmiennych Rozwinięcie multipolowe

2 3 Specjalne metoy elektrostatyki 3. Równanie Laplace a 3.. Wprowazenie Er) = ˆR R 2ρr ) τ, zρwyznaczamy E, zwykle trune V r) = R ρr ) τ, zρwyznaczamyv, trochę łatwiej V = ǫ 0 ρ równanie Poissona V = 0 równanie Laplace a, tam gzie ρ = Warunki brzegowe i twierzenie o jenoznaczności Rozwiązanie równania Laplace a w pewnym obszarze V jest określone jenoznacznie, jeśli poana jest wartość rozwiązania V na powierzchni S bęącej brzegiem obszaru V. funkcja V zaana na powierzchni S szukamy funkcji V wewnątrz obszaru V

3 3..3 Przewoniki i rugie twierzenie o jenoznaczności W obszarze V otoczonym przez przewoniki i zawierającym łaunki objętościowe o gęstości ρ pole elektryczne jest określone jenoznacznie, jeśli zaany jest całkowity łaunek na każym z przewoników. powierzchnie całkowania zaane ρ Q 3 Q 2 V Q 4 S Q zewnętrzna powierzchnia graniczna, może być w nieskończoności 3.2 Metoa obrazów 3.2. Klasyczny przykła Łaunek q w oległości o nieskończonej, uziemionej, przewozącej płaszczyzny. Jaki jest potencjał w obszarze na płaszczyzną? z q x V = 0 y Chcemy znaleźć rozwiązanie równania Poissona la z > 0 przy warunkach brzegowych:.v= 0 laz= 0

4 2.V 0 lax 2 +y 2 +z 2 2 Rozważmy zupełnie inny ukła z +q x q y V x,y,z) = [.V= 0 laz= 0 q x2 +y 2 + z ) 2 2.V 0 lax 2 +y 2 +z 2 2 ] q x2 +y 2 + z +) 2 Jeynym łaunkiem laz> 0 jest łaunek +q umieszczony w 0, 0,). To są warunki wyjściowego zaania! Z twierzenia o jenoznaczności rozwiązań wynika, że, la z 0, potencjał łaunku znajującego się na uziemioną płaszczyzną przewozącą jest taki sam jak o ukłau wóch łaunków +q i q rozmieszczonych symetrycznie wzglęem płaszczyzny xy.

5 Łaunekq jest zwiercialanym obrazem łaunkuq. Stą nazwa metoa obrazów Inukowane łaunki powierzchniowe V σ = ǫ 0 n V σ = ǫ 0 z V z = z=0 σx,y) = 2π qz ) x2 ) 3 + +y 2 + z ) 2 qz +) x2 +y 2 + z +) 2 ) 3 q x 2 +y ) 3 gęstość powierzchniowa łaunku

6 Q = σ a łaunek całkowity Obliczmy tę całkę, wprowazając współrzęne biegunowe r, φ) r 2 =x 2 +y 2, a =r r φ σr) = Q = 2π 0 q 2πr ) 3/2 0 q q 2πr ) 3/2r r φ = r = q Siła i energia F = q 2 2) 2ẑ W = q 2 2 W = q 2 4 Dlaczego połowa? tak jak la wóch łaunków wa łaunki bez płaszczyzny przewozącej łaunek i płaszczyzna przewoząca W = ǫ 0 2 E 2 τ Dlaz< 0,E= 0 la łaunku i powierzchni przewozącej

7 Możemy to obliczyć W = F l = q 2 4z 2 z = q2 4z ) = q Inne zaania związane z metoą obrazów Przykła: Łaunek punktowy q znajuje się w oległości a o śroka uziemionej przewozącej kuli o promieniu R. Znaleźć potencjał na zewnątrz kuli. R a q V = 0

8 Rozważmy zupełnie inny ukła r θ. }{{} b R q. }{{} a R q Dwa łaunki punktoweq iq q = R q, b =R2 a a V r) = q R +q R wybieramy takieq ib ) ten potencjał znika na powierzchni kuli r =R) We współrzęnych sferycznych [ V r,θ) = q r2 +a 2 2ar cosθ ] q R2 + ra/r) 2 2ra cosθ V R, θ) = 0, potencjał zeruje się na powierzchni kuli Z jenoznaczności rozwiązań wynika, że ten potencjał jest potencjałem na zewnątrz kuli. F = qq a b) 2 = σ = ǫ 0 V n q 2 Ra a 2 R 2 ) 2 siła przyciągania gęstość powierzchniowa łaunku

9 V n = V r σθ) = ǫ lar=r { 2 q2r 2a cosθ) r 2 +a 2 2ar cosθ) 3/2 } q[a/r) 2 2r 2a cosθ] R 2 + ra/r) 2 2ar cosθ) 3/2 r=r = q a 2 R 2 4πR a 2 +R 2 2aR cosθ) 3/2 3.3 Metoa separacji zmiennych 3.3. Współrzęne kartezjańskie Przeczytać w poręczniku Współrzęne kuliste Równanie Laplace a r 2 r 2 V ) + r r r 2 sinθ V ) 2 V + sinθ θ θ r 2 sin 2 θ 2 φ 2 = 0 r 2 r 2 V ) + r r r 2 sinθ V ) = 0 symetria osiowa sinθ θ θ V r, θ) = Rr)Θθ) separacja zmiennych

10 R R r 2 R ) + r r Θ sinθ r 2 R ) =ll + ), r r θ sinθ Θ θ Θ sinθ ) = 0 separacja sinθ Θ ) = ll + ) θ Równanie różniczkowe cząstkowe zostało sprowazone o ukłau θ wóch równań różniczkowych zwyczajnych. r r 2 R ) = ll + )R równanie pierwsze r Rr) =Ar l + B r l+ rozwiązanie θ sinθ Θ ) = ll + ) sinθθ θ równanie rugie Θθ) =P l cosθ) rozwiązanie wielomiany Legenre a) P l x) = ) l 2 l x 2 ) l wzór Roriguesa l! x P 0 x) = P x) =x P 2 x) = 3x 2 )/2 P 3 x) = 5x 3 3x)/2 wielomiany Legenre a P 4 x) = 35x 4 30x 2 + 3)/8 P 5 x) = 63x 5 70x 3 + 5x)/8

11 V r,θ) = A l r l + B ) l r l+ P l cosθ) rozwiązanie ogólne la symetrii osiowej Przykła: Na powierzchni powłoki kulistej o promieniu R utrzymywany jest potencjałv 0 θ). Znaleźć potencjał wewnątrz powłoki V r,θ) = A l r l P l cosθ), B l = 0 V R,θ) = A l R l P l cosθ) =V 0 θ) π 0 lal l P l x)p l x) x = P l cosθ)p l cosθ) sinθθ = 2 2l+ lal =l 0 A l R 2 π l 2l + = A l = 2l + 2R l Jeśli π 0 0 V 0 θ)p l cosθ) sinθ θ V 0 θ)p l cosθ) sinθ θ V 0 θ) =k sin 2 θ/2) = k 2 cosθ) =k 2 to V r,θ) = k 2 [ ] r 0 P 0 cosθ) r R P cosθ) [ P0 cosθ) P cosθ) ] = k 2 rr cosθ )

12 Przykła: Na powierzchni kuli o promieniurzaany jest potencjałv 0 θ). Znaleźć potencjał na zewnątrz kuli, zakłaając, że nie ma tam łaunków. B l V r,θ) = r l+p lcosθ), teraza l = 0 B l V R,θ) = R l+p lcosθ) =V 0 θ) B l R l + 2 2l + = B l = 2l + R l+ 2 π 0 π 0 V 0 θ)p l cosθ) sinθθ V 0 θ)p l cosθ) sinθθ Przykła: Nienałaowaną metalową kulę o promieniu R umieszczono w jenoronym zewnętrznym polu elektrycznym o natężeniu E =E 0 ẑ. Znaleźć potencjał i pole na zewnątrz kuli. z R y

13 W kuli potencjał jest stały, możemy przyjąćv = 0. W użej oległości o kuli pole ma postaće 0 ẑ, czyliv E 0 z V = 0 lar=r V E 0 r cosθ lar R B l warunki brzegowe A l R l + R l+ = 0 B l = A l R 2l+ z pierwszego warunku ) V r,θ) = A l r l R2l+ r l+ P l cosθ) A l r l P l cosθ) = E 0 r cosθ z rugiego warunku lar R A = E 0, pozostałea l = 0 ) V r,θ) = E 0 r R3 r 2 cosθ V E = V = r ˆr + V r θ ˆθ + ) V r sinθ φ ˆφ ) ) =E R3 r 3 cosθ ˆr R3 r 3 sinθ ˆθ ) V σθ) = ǫ 0 r =ǫ 0 E R3 r=r r 3 cosθ = 3ǫ 0 E 0 cosθ r=r σθ)>0 la 0<θ<π/2 σθ)<0 laπ/2<θ<π

14 Przykła: Na powierzchni kulistej powłoki o promieniu R umieszczono łaunek powierzchniowy o gęstościσ 0 θ). Znaleźć potencjał wewnątrz i na zewnątrz powłoki. V r,θ) = A l r l P l cosθ), wewnątrz r R) B l V r,θ) = r l+p lcosθ), na zewnątrz r R) A l R l B l P l cosθ) = R l+p lcosθ), potencjał jest ciągły B l =A l R 2l+ Vzew r V wew r l + ) B l R l+2p lcosθ) ) = skłaowa normalna σ 0 θ), ǫ 0 pola jest nieciągła r=r la l R l P l cosθ) = σ 0 θ) ǫ 0 2l + )A l R l P l cosθ) = σ 0 θ) ǫ 0 A l = 2ǫ 0 R l π 0 σ 0 θ)p l cosθ) sinθθ

15 R + r Dla A = k 2ǫ 0 π 0 σ 0 θ) =k cosθ =kp cosθ) [P cosθ)] 2 sinθ θ, pozostałea l = 0 V r,θ) = k 3ǫ 0 r cosθ, wewnątrz r R) V r,θ) = k R 3 cosθ, na zewnątrz r R) 3ǫ 0 r2 3.4 Rozwinięcie multipolowe 3.4. Przybliżona postać potencjału na użych oległościach Przykła: Fizyczny ipol elektryczny skłaa się z wóch łaunków o równej wartości i przeciwnym znaku ±q), znajujących się w oległości. Znaleźć przybliżoną postać potencjału w użej oległości o tego ukłau. +q θ R q

16 V r) = q q ) R + R potencjał o obu łaunków ) R 2 ± =r r cosθ =r2 2 ze wzoru cosθ + 4 r 4r 2 cosinusów ) /2 R ± r r cosθ ± 2r ) r cosθ lar R + R r 2 cosθ V r) q cosθ r 2 Momenty multipolowe ÑÓÒÓÔÓÐ V /rµ + ÔÓÐ V /r 2 µ + Û ÖÙÔÓÐ V /r 3 µ + + Ó ØÙÔÓÐ V /r 4 µ

17 Przypaek ogólny τ R P r θ r V r) = R ρr ) τ ) r R 2 =r 2 + r ) 2 2rr cosθ =r [ 2 2 ) ] r + 2 cosθ r r R =r ) ) r r +ǫ, ǫ = r r 2 cosθ, ǫ lar /r R = r +ǫ) /2 = r 2 ǫ ǫ2 5 ) 6 ǫ3 + [ R = ) ) r r r 2 r r 2 cosθ + 3 ) r 2 r 8 r r 2 cosθ 5 ) r 3 ) r 3 + ] 6 r r 2 cosθ [ = ) ) r r + cosθ 2 ) + 3 cos 2 θ r r r 2 ) ] r cos 3 θ 3 cosθ ) + r 2 ) 2 R = r ) r n P n cosθ ) wzór ogólny n=0 r

18 V r) = V r) = [ r + r 3 n=0 r n+ ρr ) τ + r 2 r ) cos2 θ 2 r ) n P n cosθ )ρr ) τ r cosθ ρr ) τ ) ] ρr ) τ + rozwinięcie multipolowe Człony monopolowy i ipolowy V mon = Q r, Q = V ip r) = r 2 r cosθ = ˆr r V ip r) = r 2 ˆr p = ρ τ człon monopolowy r cosθ ρr ) τ człon ipolowy r ρr )τ r ρr ) τ moment ipolowy V ip r) = p ˆr r 2 potencjał o ipola

19 p = n q i r i moment ipolowy ukłau łaunków punktowych i= z +q r + q r y x p =qr + qr =qr + r ) =q la ipola fizycznego Problem początku ukłau współrzęnych w rozwinięciu multipolowym x x z x O z r z a r R q y y τ p = r = ȳ ten łaunek ma moment ipolowy p =q ŷ; potencjałv = q R rozwinięty wzglęem /r ma wszystkie potęgi; zmiana początku ukłau współrzęnych zmienia postać rozwinięcia multipolowego; moment monopolowy nie zmienia się r ρr ) τ = r a)ρr ) τ r ρr ) τ a ρr ) τ = p Qa

20 3.4.4 Natężenie pola elektrycznego ipola z P θ r x p φ y V ip r,θ) = ˆr p r 2 = E = V = r ˆr + r E r = V r = 2p cosθ r 3 E θ = r E φ = r sinθ V θ = p sinθ r 3 V φ = 0 p cosθ r 2 θ ˆθ + r sinθ E ip r,θ) = p r 3 2 cosθ ˆr + sinθ ˆθ ) φ ˆφ V ) w wybranym ukłazie współrzęnych

21 z z + y y pole iealnego ipola pole ipola fizycznego E ip r) = r 3 [ 3p ˆr) ˆr p ] pole ipola w owolnym ukłazie współrzęnych

22

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne......................

Bardziej szczegółowo

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne....................

Bardziej szczegółowo

Metoda obrazów wielki skrypt przed poświąteczny, CZĘŚĆ POTRZEBNA DO OFa

Metoda obrazów wielki skrypt przed poświąteczny, CZĘŚĆ POTRZEBNA DO OFa Metoa obrazów wielki skrypt prze poświąteczny, CZĘŚĆ POTRZEBNA DO OFa 1. Równania i warunki brzegowe Dlaczego w ogóle metoa obrazów ziała? W elektrostatyce o policzenia wszystkiego wystarczą 2 rzeczy:

Bardziej szczegółowo

Elektrodynamika Część 4 Magnetostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 4 Magnetostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 4 Magnetostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 5 Magnetostatyka 3 5.1 Siła Lorentza........................ 3 5.2 Prawo

Bardziej szczegółowo

Elektrodynamika Część 3 Pola elektryczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 3 Pola elektryczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 3 Pola elektryczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 4 Pola elektryczne w materii 3 4.1 Polaryzacja elektryczna..................

Bardziej szczegółowo

Pole magnetyczne magnesu w kształcie kuli

Pole magnetyczne magnesu w kształcie kuli napisał Michał Wierzbicki Pole magnetyczne magnesu w kształcie kuli Rozważmy kulę o promieniu R, wykonaną z materiału ferromagnetycznego o stałej magnetyzacji M = const, skierowanej wzdłuż osi z. Gęstość

Bardziej szczegółowo

Elektrodynamika. Część 9. Potencjały i pola źródeł zmiennych w czasie. Ryszard Tanaś

Elektrodynamika. Część 9. Potencjały i pola źródeł zmiennych w czasie. Ryszard Tanaś Elektrodynamika Część 9 Potencjały i pola źródeł zmiennych w czasie Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 10 Potencjały i pola źródeł zmiennych w

Bardziej szczegółowo

Strumień Prawo Gaussa Rozkład ładunku Płaszczyzna Płaszczyzny Prawo Gaussa i jego zastosowanie

Strumień Prawo Gaussa Rozkład ładunku Płaszczyzna Płaszczyzny Prawo Gaussa i jego zastosowanie Problemy elektrodynamiki. Prawo Gaussa i jego zastosowanie przy obliczaniu pól ładunku rozłożonego w sposób ciągły. I LO im. Stefana Żeromskiego w Lęborku 19 marca 2012 Nowe spojrzenie na prawo Coulomba

Bardziej szczegółowo

Wykład Pole magnetyczne, indukcja elektromagnetyczna

Wykład Pole magnetyczne, indukcja elektromagnetyczna Wykła 5 5. Pole magnetyczne, inukcja elektromagnetyczna Prawo Ampera Chcemy teraz znaleźć pole magnetyczne wytwarzane przez powszechnie występujące rozkłay prąów, takich jak przewoniki prostoliniowe, cewki

Bardziej szczegółowo

Zagadnienia brzegowe dla równań eliptycznych

Zagadnienia brzegowe dla równań eliptycznych Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta

Bardziej szczegółowo

Pole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu)

Pole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu) PODSAWY WYMIANY CIEPŁA. Postawowe pojęcia w wymianie ciepła Sposoby transportu ciepła: przewozenie konwekcja - swobona - wymuszona promieniowanie ransport ciepła w ciałach stałych obywa się na roze przewozenia.

Bardziej szczegółowo

Podstawy elektrotechniki

Podstawy elektrotechniki Wyział Mechaniczno-Energetyczny Postawy elektrotechniki Prof. r hab. inż. Juliusz B. Gajewski, prof. zw. PWr Wybrzeże S. Wyspiańskiego 27, 50-370 Wrocław Bu. A4 Stara kotłownia, pokój 359 Tel.: 71 320

Bardziej szczegółowo

Pole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu) (1.1) (1.2a)

Pole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu) (1.1) (1.2a) PODSAWY WYMIANY CIEPŁA. Postawowe pojęcia w wymianie ciepła Sposoby transportu ciepła: przewozenie konwekcja - swobona - wymuszona promieniowanie ransport ciepła w ciałach stałych obywa się na roze przewozenia.

Bardziej szczegółowo

Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki

Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki Spis treści Przedmowa... 11 Wstęp: Czym jest elektrodynamika i jakie jest jej miejsce w fizyce?... 13 1. Analiza wektorowa... 19 1.1. Algebra

Bardziej szczegółowo

Pole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu)

Pole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu) PODSAWY WYMIANY CIEPŁA. Postawowe pojęcia w wymianie ciepła Sposoby transportu ciepła: przewozenie konwekcja - swobona - wymuszona promieniowanie ransport ciepła w ciałach stałych obywa się na roze przewozenia.

Bardziej szczegółowo

Elektrodynamika. Część 6. Elektrodynamika. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM

Elektrodynamika. Część 6. Elektrodynamika. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 6 Elektrodynamika Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 7 Elektrodynamika 3 7.1 Siła elektromotoryczna.................. 3

Bardziej szczegółowo

Analityczne metody kinematyki mechanizmów

Analityczne metody kinematyki mechanizmów J Buśkiewicz Analityczne Metoy Kinematyki w Teorii Mechanizmów Analityczne metoy kinematyki mechanizmów Spis treści Współrzęne opisujące położenia ogniw pary kinematycznej Mechanizm korowo-wozikowy (crank-slier

Bardziej szczegółowo

Elektrodynamika Część 6 Elektrodynamika Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 6 Elektrodynamika Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 6 Elektrodynamika Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 7 Elektrodynamika 3 7.1 Siła elektromotoryczna................ 3 7.2

Bardziej szczegółowo

Wielomiany Hermite a i ich własności

Wielomiany Hermite a i ich własności 3.10.2004 Do. mat. B. Wielomiany Hermite a i ich własności 4 Doatek B Wielomiany Hermite a i ich własności B.1 Definicje Jako postawową efinicję wielomianów Hermite a przyjmiemy wzór Roriguesa n H n (x)

Bardziej szczegółowo

10 Udowodnić, że rozwiązanie równania Laplace a nie może posiadać lokalnych ekstremów we wnętrzu obszaru na którym może być określone.

10 Udowodnić, że rozwiązanie równania Laplace a nie może posiadać lokalnych ekstremów we wnętrzu obszaru na którym może być określone. 1 Elektrostatyka 1 Z prawa Coulomba obliczyć pole elektryczne od jednorodnie naładowanego odcinka. Wykonać przejście graniczne l 0 (przy ustalonym ładunku odcinka) oraz l (przy ustalonej gęstości liniowej

Bardziej szczegółowo

Siły centralne, grawitacja (I)

Siły centralne, grawitacja (I) Pojęcia Gawitacja postawowe (I) i histoia Siły centalne, gawitacja (I) Enegia potencjalna E p B A E p ( ) E p A W ( ) F W ( A B) B A F Pawo gawitacji (siła gawitacji) - Newton 665 M N k F G G 6.6700 F,

Bardziej szczegółowo

Efekt naskórkowy (skin effect)

Efekt naskórkowy (skin effect) Efekt naskórkowy (skin effect) Rozważmy cylindryczny przewód o promieniu a i o nieskończonej długości. Przez przewód płynie prąd I = I 0 cos ωt. Dla niezbyt dużych częstości ω możemy zaniedbać prąd przesunięcia,

Bardziej szczegółowo

Elektrodynamika. Część 5. Pola magnetyczne w materii. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.

Elektrodynamika. Część 5. Pola magnetyczne w materii. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu. Elektrodynamika Część 5 Pola magnetyczne w materii yszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 6 Pola magnetyczne w materii 3 6.1 Magnetyzacja.......................

Bardziej szczegółowo

P O D S T A W Y E L E K T R O D Y N A M I K I Ć W I C Z E N I A Semestr zimowy r. ak. 2016/2017 ZADANIA

P O D S T A W Y E L E K T R O D Y N A M I K I Ć W I C Z E N I A Semestr zimowy r. ak. 2016/2017 ZADANIA Semestr zimowy r ak 6/7 ZDNI I Pokazać, że iv rot =, rot gra f =, iv (gra f gra g) =, gzie wektor i skalary f i g owolne funkcje różniczkowalne Wykazać tożsamości wektorowe (f, g wektory, B owolne funkcje

Bardziej szczegółowo

15 Potencjały sferycznie symetryczne

15 Potencjały sferycznie symetryczne z ϕ θ r y x Rysunek : Definicje zmiennych we współrzędnych sferycznych r, θ, ϕ) 5 Potencjały sferycznie symetryczne 5. Separacja zmiennych Do tej pory omawialiśmy problemy jednowymiarowe, które służyły

Bardziej szczegółowo

Geometria płaska - matura Przyprostokątne trójkąta prostokątnego mają długości 3 7cm poprowadzona z wierzchołka kąta prostego ma długość: 12

Geometria płaska - matura Przyprostokątne trójkąta prostokątnego mają długości 3 7cm poprowadzona z wierzchołka kąta prostego ma długość: 12 Geometria płaska - matura 010 1. Przyprostokątne trójkąta prostokątnego mają ługości 7cm i 4 7cm. Wysokość poprowazona z wierzchołka kąta prostego ma ługość: 1 5 A. 7cm B. cm C. 8 7cm D. 7 7cm 5 7. Miara

Bardziej szczegółowo

Wykład 17 Izolatory i przewodniki

Wykład 17 Izolatory i przewodniki Wykład 7 Izolatory i przewodniki Wszystkie ciała możemy podzielić na przewodniki i izolatory albo dielektryki. Przewodnikami są wszystkie metale, roztwory kwasów i zasad, roztopione soli, nagrzane gazy

Bardziej szczegółowo

Potencjał pola elektrycznego

Potencjał pola elektrycznego Potencjał pola elektrycznego Pole elektryczne jest polem zachowawczym, czyli praca wykonana przy przesunięciu ładunku pomiędzy dwoma punktami nie zależy od tego po jakiej drodze przesuwamy ładunek. Spróbujemy

Bardziej szczegółowo

R R. dt w 1 (t) w 2 (t), forma b Q przybiera postać. 175 f 3 f

R R. dt w 1 (t) w 2 (t), forma b Q przybiera postać. 175 f 3 f WIELOMIANY LEGENDRE A DO UŻYTKU WEWNȨTRZNEGO, I DO SPRAWDZENIA) R R Rozważmy przestrzeń wektorowa V := R [ ] [,] na ciałem R wielomiany owolnego stopnia na ocinku omkniȩtym [, ]), wyposażona w formȩ kwaratowa

Bardziej szczegółowo

Podstawy elektrodynamiki / David J. Griffiths. - wyd. 2, dodr. 3. Warszawa, 2011 Spis treści. Przedmowa 11

Podstawy elektrodynamiki / David J. Griffiths. - wyd. 2, dodr. 3. Warszawa, 2011 Spis treści. Przedmowa 11 Podstawy elektrodynamiki / David J. Griffiths. - wyd. 2, dodr. 3. Warszawa, 2011 Spis treści Przedmowa 11 Wstęp: Czym jest elektrodynamika i jakie jest jej miejsce w fizyce? 13 1. Analiza wektorowa 19

Bardziej szczegółowo

Obliczanie indukcyjności cewek

Obliczanie indukcyjności cewek napisał Michał Wierzbicki Obliczanie indukcyjności cewek Indukcyjność dla cewek z prądem powierzchniowym Energia zgromadzona w polu magnetycznym dwóch cewek, przez uzwojenia których płyną prądy I 1 i I

Bardziej szczegółowo

Rozdział 5. Twierdzenia całkowe. 5.1 Twierdzenie o potencjale. Będziemy rozpatrywać całki krzywoliniowe liczone wzdłuż krzywej C w przestrzeni

Rozdział 5. Twierdzenia całkowe. 5.1 Twierdzenie o potencjale. Będziemy rozpatrywać całki krzywoliniowe liczone wzdłuż krzywej C w przestrzeni Rozdział 5 Twierdzenia całkowe 5.1 Twierdzenie o potencjale Będziemy rozpatrywać całki krzywoliniowe liczone wzdłuż krzywej w przestrzeni trójwymiarowej, I) = A d r, 5.1) gdzie A = A r) jest funkcją polem)

Bardziej szczegółowo

RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego?

RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? RÓWNANIA MAXWELLA Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? Wykład 3 lato 2012 1 Doświadczenia Wykład 3 lato 2012 2 1

Bardziej szczegółowo

kondensatory Jednostkę pojemności [Q/V] przyjęto nazywać faradem i oznaczać literą F.

kondensatory Jednostkę pojemności [Q/V] przyjęto nazywać faradem i oznaczać literą F. Pojemność elektryczna i kondensatory Umieśćmy na przewodniku ładunek. Przyjmijmy zero potencjału w nieskończoności. Potencjał przewodnika jest proporcjonalny do ładunku (dlaczego?). Współczynnik proporcjonalności

Bardziej szczegółowo

Przekształcenie całkowe Fouriera

Przekształcenie całkowe Fouriera Przekształcenie całkowe Fouriera Postać zespolona szeregu Fouriera Niech ana bęzie funkcja f spełniająca w przeziale [, ] warunki Dirichleta. Wtey szereg Fouriera tej funkcji jest o niej zbieżny, tj. przy

Bardziej szczegółowo

Podstawy fizyki wykład 8

Podstawy fizyki wykład 8 Podstawy fizyki wykład 8 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Ładunek elektryczny Grecy ok. 600 r p.n.e. odkryli, że bursztyn potarty o wełnę przyciąga inne (drobne) przedmioty. słowo

Bardziej szczegółowo

Analiza matematyczna 2 zadania z odpowiedziami

Analiza matematyczna 2 zadania z odpowiedziami Analiza matematyczna zadania z odpowiedziami Maciej Burnecki strona główna Spis treści I Całki niewłaściwe pierwszego rodzaju II Całki niewłaściwe drugiego rodzaju 5 III Szeregi liczbowe 6 IV Szeregi potęgowe

Bardziej szczegółowo

Obliczanie sił wewnętrznych w powłokach zbiorników osiowo symetrycznych

Obliczanie sił wewnętrznych w powłokach zbiorników osiowo symetrycznych Zakład Mechaniki Budowli Prowadzący: dr hab. inż. Przemysław Litewka Ćwiczenie projektowe 3 Obliczanie sił wewnętrznych w powłokach zbiorników osiowo symetrycznych Daniel Sworek gr. KB2 Rok akademicki

Bardziej szczegółowo

Ruch pod wpływem sił zachowawczych

Ruch pod wpływem sił zachowawczych Ruch pod wpływem sił zachowawczych Fizyka I (B+C) Wykład XV: Energia potencjalna Siły centralne Ruch w polu grawitacyjnym Pole odpychajace Energia potencjalna Równania ruchu Znajomość energii potencjalnej

Bardziej szczegółowo

ANALIZA MATEMATYCZNA 2 zadania z odpowiedziami

ANALIZA MATEMATYCZNA 2 zadania z odpowiedziami ANALIZA MATEMATYCZNA zadania z odpowiedziami Maciej Burnecki strona główna Spis treści Całki niewłaściwe pierwszego rodzaju Całki niewłaściwe drugiego rodzaju Szeregi liczbowe 4 4 Szeregi potęgowe 5 5

Bardziej szczegółowo

Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI.

Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI. Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI. 1. Ładunki q 1 =3,2 10 17 i q 2 =1,6 10 18 znajdują się w próżni

Bardziej szczegółowo

ELEKTROTECHNIKA Semestr 2 Rok akad / ZADANIA Z MATEMATYKI Zestaw Oblicz pochodne cząstkowe rzędu drugiego funkcji:

ELEKTROTECHNIKA Semestr 2 Rok akad / ZADANIA Z MATEMATYKI Zestaw Oblicz pochodne cząstkowe rzędu drugiego funkcji: ZADANIA Z MATEMATYKI Zestaw. Oblicz pochodne cząstkowe funkcji: a) f(x, y) = x sin y x b) f(x, y) = e y +x 2 c) f(x, y, z) = z cos x+y z 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: 3. Wyznacz

Bardziej szczegółowo

Chemia teoretyczna. Postulaty mechaniki kwantowej. Katarzyna Kowalska-Szojda

Chemia teoretyczna. Postulaty mechaniki kwantowej. Katarzyna Kowalska-Szojda Chemia teoretyczna Postulaty mechaniki kwantowej Katarzyna Kowalska-Szoja Spis treści 1 Postulaty mechaniki kwantowej 2 1.1 Postulat pierwszy.......................... 2 1.2 Postulat rugi.............................

Bardziej szczegółowo

Geometria Różniczkowa II wykład dziesiąty

Geometria Różniczkowa II wykład dziesiąty Geometria Różniczkowa II wykła ziesiąty Wykła ziesiąty rozpoczyna serię wykłaów poświęconych geometrii symplektycznej. Zajmować się bęziemy głównie zastosowaniami geometrii symplektycznej w mechanice,

Bardziej szczegółowo

elektryczna. Elektryczność

elektryczna. Elektryczność Pojemność elektryczna. Elektryczność ść. Wykła 4 Wrocław University of Technology 4-3- Pojemność elektryczna Okłaki konensatora są przewonikami, a więc są powierzchniami ekwipotencjalnymi: wszystkie punkty

Bardziej szczegółowo

Przekształcenia całkowe. Wykład 1

Przekształcenia całkowe. Wykład 1 Przekształcenia całkowe Wykład 1 Przekształcenia całkowe Tematyka wykładów: 1. Liczby zespolone -wprowadzenie, - funkcja zespolona zmiennej rzeczywistej, - funkcja zespolona zmiennej zespolonej. 2. Przekształcenie

Bardziej szczegółowo

Wybrane zagadnienia z elektryczności

Wybrane zagadnienia z elektryczności Wybane zaganienia z elektyczności Pomia łaunku elektycznego oświaczenie Millikana atomize płaszczyzna (+) bateia kople oleju mikoskop F el F g płaszczyzna (-) F g F el mg mg e.6 0 9 C Łaunek elektyczny

Bardziej szczegółowo

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych,

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych, IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. Definicja 1.1. Niech D będzie podzbiorem przestrzeni R n, n 2. Odwzorowanie f : D R nazywamy

Bardziej szczegółowo

Relacje Kramersa Kroniga

Relacje Kramersa Kroniga Relacje Kramersa Kroniga Relacje Kramersa-Kroniga wiążą ze sobą część rzeczywistą i urojoną każej funkcji, która jest analityczna w górnej półpłaszczyźnie zmiennej zespolonej. Pozwalają na otrzymanie części

Bardziej szczegółowo

Równanie przewodnictwa cieplnego (II)

Równanie przewodnictwa cieplnego (II) Wykład 5 Równanie przewodnictwa cieplnego (II) 5.1 Metoda Fouriera dla pręta ograniczonego 5.1.1 Pierwsze zagadnienie brzegowe dla pręta ograniczonego Poszukujemy rozwiązania równania przewodnictwa spełniającego

Bardziej szczegółowo

Elektrostatyka ŁADUNEK. Ładunek elektryczny. Dr PPotera wyklady fizyka dosw st podypl. n p. Cząstka α

Elektrostatyka ŁADUNEK. Ładunek elektryczny. Dr PPotera wyklady fizyka dosw st podypl. n p. Cząstka α Elektrostatyka ŁADUNEK elektron: -e = -1.610-19 C proton: e = 1.610-19 C neutron: 0 C n p p n Cząstka α Ładunek elektryczny Ładunek jest skwantowany: Jednostką ładunku elektrycznego w układzie SI jest

Bardziej szczegółowo

Równania różniczkowe liniowe rzędu pierwszego

Równania różniczkowe liniowe rzędu pierwszego Katedra Matematyki i Ekonomii Matematycznej SGH 21 kwietnia 2016 Wstęp Definicja Równanie różniczkowe + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to

Bardziej szczegółowo

Modelowanie układów dynamicznych

Modelowanie układów dynamicznych Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 11 Równania Eulera-Lagrange a Rozważmy układ p punktów materialnych o współrzędnych uogólnionych q i i zdefiniujmy lagranżian

Bardziej szczegółowo

Promieniowanie dipolowe

Promieniowanie dipolowe Promieniowanie dipolowe Potencjały opóźnione φ i A dla promieniowanie punktowego dipola elektrycznego wygodnie jest wyrażać przez wektor Hertza Z φ = ϵ 0 Z, spełniający niejednorodne równanie falowe A

Bardziej szczegółowo

J. Szantyr - Wykład 3 Równowaga płynu

J. Szantyr - Wykład 3 Równowaga płynu J. Szantyr - Wykład 3 Równowaga płynu Siły wewnętrzne wzajemne oddziaływania elementów mas wydzielonego obszaru płynu, siły o charakterze powierzchniowym, znoszące się parami. Siły zewnętrzne wynik oddziaływania

Bardziej szczegółowo

Elementy równań różniczkowych cząstkowych

Elementy równań różniczkowych cząstkowych Elementy równań różniczkowych cząstkowych Magdalena Jakubek kwiecień 2016 1 Równania różniczkowe cząstkowe Problem brzegowy i problem początkowy Klasyfikacja równań Rodzaje warunków brzegowych Najważniejsze

Bardziej szczegółowo

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku Fizyka w poprzednim odcinku Obliczanie natężenia pola Fizyka Wyróżniamy ładunek punktowy d Wektor natężenia pola d w punkcie P pochodzący od ładunku d Suma składowych x-owych wektorów d x IĄGŁY ROZKŁAD

Bardziej szczegółowo

Wyznaczanie parametrów linii długiej za pomocą metody elementów skończonych

Wyznaczanie parametrów linii długiej za pomocą metody elementów skończonych napisał Michał Wierzbicki Wyznaczanie parametrów linii długiej za pomocą metody elementów skończonych Rozważmy tak zwaną linię Lechera, czyli układ dwóch równoległych, nieskończonych przewodników, o przekroju

Bardziej szczegółowo

Wykład 14: Indukcja cz.2.

Wykład 14: Indukcja cz.2. Wykład 14: Indukcja cz.. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. -1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 10.05.017 Wydział Informatyki, Elektroniki i 1 Przykład

Bardziej szczegółowo

Prawo powszechnego ciążenia, siła grawitacyjna, pole grawitacyjna

Prawo powszechnego ciążenia, siła grawitacyjna, pole grawitacyjna Prawo powszechnego ciążenia, siła grawitacyjna, pole grawitacyjna G m m r F = r r F = F Schemat oddziaływania: m pole sił m Prawo powszechnego ciążenia, siła grawitacyjna, pole grawitacyjna Masa M jest

Bardziej szczegółowo

ANALIZA MATEMATYCZNA 2

ANALIZA MATEMATYCZNA 2 ANALIZA MATEMATYCZNA Lista zadań 3/4 Opracowanie: dr Marian Gewert, dr Zbigniew Skoczylas Lista pierwsza Zadanie. Korzystając z definicji zbadać zbieżność podanych całek niewłaściwych pierwszego rodzaju:

Bardziej szczegółowo

Strumień pola elektrycznego i prawo Gaussa

Strumień pola elektrycznego i prawo Gaussa Strumień pola elektrycznego i prawo Gaussa Ryszard J. Barczyński, 2010 2015 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Strumień pola

Bardziej szczegółowo

Optyka 2. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Optyka 2. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Optka Projekt współinansowan przez Unię Europejską w ramach Europejskiego Funuszu Społecznego Optka II Promień świetln paając na powierzchnię zwierciała obija się zgonie z prawem obicia omówionm w poprzeniej

Bardziej szczegółowo

Mechanika kwantowa. Erwin Schrödinger ( ) Werner Heisenberg

Mechanika kwantowa. Erwin Schrödinger ( ) Werner Heisenberg Mechanika kwantowa Erwin Schrödinger (1887-1961) Werner Heisenberg 1901-1976 Falowe równanie ruchu (uproszczenie: przypadek jednowymiarowy) Dla fotonów Dla cząstek Równanie Schrödingera y x = 1 c y t y(

Bardziej szczegółowo

Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS

Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS przykładowe zadania na. kolokwium czerwca 6r. Poniżej podany jest przykładowy zestaw zadań. Podczas kolokwium na ich rozwiązanie przeznaczone będzie ok. 85

Bardziej szczegółowo

Tydzień nr 9-10 (16 maja - 29 maja), Równania różniczkowe, wartości własne, funkcja wykładnicza od operatora - Matematyka II 2010/2011L

Tydzień nr 9-10 (16 maja - 29 maja), Równania różniczkowe, wartości własne, funkcja wykładnicza od operatora - Matematyka II 2010/2011L Tydzień nr 9-10 (16 maja - 29 maja) Równania różniczkowe wartości własne funkcja wykładnicza od operatora - Matematyka II 2010/2011L Wszelkie pytania oraz uwagi o błędach proszę kierować na przemek.majewski@gmail.com

Bardziej szczegółowo

Ć W I C Z E N I E N R E-17

Ć W I C Z E N I E N R E-17 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA ELEKTRYCZNOŚCI I MAGNETYZMU Ć W I C Z E N I E N R E-17 WYZNACZANIE STAŁEJ DIELEKTRYCZNEJ RÓŻNYCH

Bardziej szczegółowo

Teoria pola elektromagnetycznego

Teoria pola elektromagnetycznego Teoria pola elektromagnetycznego Odpowiedzialny za przedmiot (wykłady): prof. dr hab. inż. Stanisław Gratkowski Ćwiczenia i laboratoria: dr inż. Krzysztof Stawicki ks@zut.edu.pl e-mail: w temacie wiadomości

Bardziej szczegółowo

ELEKTROSTATYKA. Zakład Elektrotechniki Teoretycznej Politechniki Wrocławskiej, I-7, W-5

ELEKTROSTATYKA. Zakład Elektrotechniki Teoretycznej Politechniki Wrocławskiej, I-7, W-5 ELEKTROSTATYKA 2.1 Obliczyć siłę, z jaką działają na siebie dwa ładunki punktowe Q 1 = Q 2 = 1C umieszczone w odległości l km od siebie, a z jaką siłą - w tej samej odległości - dwie jednogramowe kulki

Bardziej szczegółowo

VI.5 Zderzenia i rozpraszanie. Przekrój czynny. Wzór Rutherforda i odkrycie jądra atomowego

VI.5 Zderzenia i rozpraszanie. Przekrój czynny. Wzór Rutherforda i odkrycie jądra atomowego VI.5 Zderzenia i rozpraszanie. Przekrój czynny. Wzór Rutherforda i odkrycie jądra atomowego Jan Królikowski Fizyka IBC 1 Przekrój czynny Jan Królikowski Fizyka IBC Zderzenia Oddziaływania dwóch (lub więcej)

Bardziej szczegółowo

Rachunek całkowy funkcji wielu zmiennych

Rachunek całkowy funkcji wielu zmiennych Rachunek całkowy funkcji wielu zmiennych Całki potrójne wykład z MATEMATYKI Budownictwo studia niestacjonarne sem. II, rok ak. 2008/2009 Katedra Matematyki Wydział Informatyki olitechnika Białostocka 1

Bardziej szczegółowo

Krystalizacja. Zarodkowanie

Krystalizacja. Zarodkowanie Krystalizacja Ciecz ciało stałe Para ciecz ciało stałe Para ciało stałe Przechłodzenie T = T L - T c Przesycenie p = p g - p z > 0 Krystalizacja Zarodkowanie Rozrost zarodków Homogeniczne Heterogeniczne

Bardziej szczegółowo

Całki krzywoliniowe. SNM - Elementy analizy wektorowej - 1

Całki krzywoliniowe. SNM - Elementy analizy wektorowej - 1 SNM - Elementy analizy wektorowej - 1 Całki krzywoliniowe Definicja (funkcja wektorowa jednej zmiennej) Funkcją wektorową jednej zmiennej nazywamy odwzorowanie r : I R 3, gdzie I oznacza przedział na prostej,

Bardziej szczegółowo

LVII OLIMPIADA FIZYCZNA ZAWODY III STOPNIA

LVII OLIMPIADA FIZYCZNA ZAWODY III STOPNIA Zaanie 1 Na poziome płaszczyźnie znaue sie enorony, cienki, początkowo nieruchomy krążek o promieniu R i masie M. W chwili t 0 = 0 z punktu P na te płaszczyźnie, oległego o o śroka krążka S, est wystrzeliwany

Bardziej szczegółowo

Wymiana ciepła. Ładunek jest skwantowany. q=n. e gdzie n = ±1, ±2, ±3 [1C = 6, e] e=1, C

Wymiana ciepła. Ładunek jest skwantowany. q=n. e gdzie n = ±1, ±2, ±3 [1C = 6, e] e=1, C Wymiana ciepła Ładunek jest skwantowany ładunek elementarny ładunek pojedynczego elektronu (e). Każdy ładunek q (dodatni lub ujemny) jest całkowitą wielokrotnością jego bezwzględnej wartości. q=n. e gdzie

Bardziej szczegółowo

mechanika analityczna 1 nierelatywistyczna L.D.Landau, E.M.Lifszyc Krótki kurs fizyki teoretycznej

mechanika analityczna 1 nierelatywistyczna L.D.Landau, E.M.Lifszyc Krótki kurs fizyki teoretycznej mechanika analityczna 1 nierelatywistyczna L.D.Landau, E.M.Lifszyc Krótki kurs fizyki teoretycznej ver-28.06.07 współrzędne uogólnione punkt materialny... wektor wodzący: prędkość: przyspieszenie: liczba

Bardziej szczegółowo

Elektrodynamika. Część 8. Fale elektromagnetyczne. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM

Elektrodynamika. Część 8. Fale elektromagnetyczne. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 9 Fale elektromagnetyczne 3 9.1 Fale w jednym wymiarze.................

Bardziej szczegółowo

Pojemność elektryczna

Pojemność elektryczna Pojemność elektryczna Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Pojemność elektryczna Umieśćmy na pewnym

Bardziej szczegółowo

Zastosowanie metod matematycznych w fizyce i technice - zagadnienia

Zastosowanie metod matematycznych w fizyce i technice - zagadnienia Zastosowanie metod matematycznych w fizyce i technice - zagadnienia 1 Metoda ι Grama Schmidta zortogonalizować uk lad funkcji {x n } n= a) na odcinku 1; 1 z waga ι ρx) = 1, b) na prostej ; ) z waga ι ρx)

Bardziej szczegółowo

Metoda odbić zwierciadlanych

Metoda odbić zwierciadlanych Metoa obić zwiecialanych Pzypuśćmy, że łaunek punktowy (Rys ) umieszczony jest w oległości o nieskończonej powiezchni pzewozącej, umiejscowionej na płaszczyźnie X0Y Piewsze pytanie, jakie o azu się nasuwa

Bardziej szczegółowo

Równania różniczkowe cząstkowe drugiego rzędu

Równania różniczkowe cząstkowe drugiego rzędu Równania różniczkowe cząstkowe drugiego rzędu Marcin Orchel Spis treści 1 Wstęp 1 1.1 Metoda faktoryzacji (rozdzielania zmiennych)................ 5 1.2 Metoda funkcji Greena.............................

Bardziej szczegółowo

Linia dwuprzewodowa Obliczanie pojemności linii dwuprzewodowej

Linia dwuprzewodowa Obliczanie pojemności linii dwuprzewodowej Linia dwuprzewodowa Obliczanie pojemności linii dwuprzewodowej 1. Wstęp Pojemność kondensatora można obliczyć w prosty sposób znając wartości zgromadzonego na nim ładunku i napięcia między okładkami: Q

Bardziej szczegółowo

Geometria Struny Kosmicznej

Geometria Struny Kosmicznej Spis treści 1 Wstęp 2 Struny kosmiczne geneza 3 Czasoprzestrzeń struny kosmicznej 4 Metryka czasoprzestrzeni struny kosmicznej 5 Wyznaczanie geodezyjnych 6 Wykresy geodezyjnych 7 Wnioski 8 Pytania Wstęp

Bardziej szczegółowo

Atom wodoropodobny. Biegunowy układ współrzędnych. współrzędne w układzie. kartezjańskim. współrzędne w układzie. (x,y,z) biegunowym.

Atom wodoropodobny. Biegunowy układ współrzędnych. współrzędne w układzie. kartezjańskim. współrzędne w układzie. (x,y,z) biegunowym. Atom wodoropodobny z współrzędne w układzie kartezjańskim r sinθ cosφ x r cosθ φ θ r r sinθ (x,y,z) r sinθ sinφ Biegunowy układ współrzędnych y funkcja faowa współrzędne w układzie biegunowym ( ) r,θ,φ

Bardziej szczegółowo

Krzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych

Krzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych Krzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych Wydział Matematyki Politechniki Wrocławskiej Okrąg Okrąg jest szczególną krzywą stożkową. Wyznacza nam koło, które jest podstawą

Bardziej szczegółowo

MODEL MATEMATYCZNY RUCHU GRANUL NAWOZU PO ZEJŚCIU Z TARCZY ROZSIEWAJĄCEJ

MODEL MATEMATYCZNY RUCHU GRANUL NAWOZU PO ZEJŚCIU Z TARCZY ROZSIEWAJĄCEJ InŜynieria Rolnicza 6/006 Wojciech Przystupa Katera Zastosowań Matematyki Akaemia Rolnicza w Lublinie MODEL MATEMATYCZNY RUCHU GRANUL NAWOZU PO ZEJŚCIU Z TARCZY ROZSIEWAJĄCEJ Streszczenie W pracy zbaano

Bardziej szczegółowo

Zwój nad przewodzącą płytą METODA ROZDZIELENIA ZMIENNYCH

Zwój nad przewodzącą płytą METODA ROZDZIELENIA ZMIENNYCH METODA ROZDZIELENIA ZMIENNYCH (2) (3) (10) (11) Modelowanie i symulacje obiektów w polu elektromagnetycznym 1 Rozwiązania równań (10-11) mają ogólną postać: (12) (13) Modelowanie i symulacje obiektów w

Bardziej szczegółowo

W przypadku przepływu potencjalnego y u z. nieściśliwego równanie zachowania masy przekształca się w równanie Laplace a: = + + t

W przypadku przepływu potencjalnego y u z. nieściśliwego równanie zachowania masy przekształca się w równanie Laplace a: = + + t J. Szantr Wkład nr 3 Przepłw potencjalne 1 Jeżeli przepłw płn jest bezwirow, czli wszędzie lb prawie wszędzie w pol przepłw jest rot 0 to oznacza, że istnieje fnkcja skalarna ϕ,, z, t), taka że gradϕ.

Bardziej szczegółowo

1 Relacje i odwzorowania

1 Relacje i odwzorowania Relacje i odwzorowania Relacje Jacek Kłopotowski Zadania z analizy matematycznej I Wykazać, że jeśli relacja ρ X X jest przeciwzwrotna i przechodnia, to jest przeciwsymetryczna Zbadać czy relacja ρ X X

Bardziej szczegółowo

Geodezja fizyczna i geodynamika

Geodezja fizyczna i geodynamika Geodezja fizyczna i geodynamika Podstawowe równanie geodezji fizycznej, całka Stokesa, kogeoida Dr inż. Liliana Bujkiewicz 4 maja 2017 Dr inż. Liliana Bujkiewicz Geodezja fizyczna i geodynamika 4 maja

Bardziej szczegółowo

Matematyka rozszerzona matura 2017

Matematyka rozszerzona matura 2017 Matematyka rozszerzona matura 017 Zadanie 1 Liczba ( 3 + 3) jest równa A. B. 4 C. 3 D. 3 ( 3 + 3) = 3 ( 3)( + 3) + + 3 = A. 3 4 3 + + 3 = 4 1 = 4 = Zadanie. Nieskończony ciąg liczbowy jest określony wzorem

Bardziej szczegółowo

ELEKTROTECHNIKA Semestr 2 Rok akad. 2015 / 2016. ZADANIA Z MATEMATYKI Zestaw 1. 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji:

ELEKTROTECHNIKA Semestr 2 Rok akad. 2015 / 2016. ZADANIA Z MATEMATYKI Zestaw 1. 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: ZADANIA Z MATEMATYKI Zestaw 1 1. Oblicz pochodne cząstkowe funkcji: a) f(x, y) = x sin y x b) f(x, y) = e y 1+x 2 c) f(x, y, z) = z cos x+y z 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: 3. Wyznacz

Bardziej szczegółowo

Dyskretyzacja równań różniczkowych Matlab

Dyskretyzacja równań różniczkowych Matlab Akaemia Morska w Gyni Katera Automatyki Okrętowej Teoria sterowania Mirosław Tomera Można zaprojektować ukła sterowania ciągłego i zaimplementować go w ukłaach sterowania cyfrowego stosując metoy aproksymacji

Bardziej szczegółowo

D l. D p. Rodzaje baz jezdnych robotów mobilnych

D l. D p. Rodzaje baz jezdnych robotów mobilnych ERO Elementy robotyki 1 Rodzaje baz jezdnych robotów mobilnych Napęd różnicowy dwa niezależnie napędzane koła jednej osi, dla zachowania równowagi dodane jest trzecie koło bierne (lub dwa bierne koła)

Bardziej szczegółowo

Repetytorium z analizy i rachunku całkowego funkcji wielu zmiennych. Wiadomości wstępne.

Repetytorium z analizy i rachunku całkowego funkcji wielu zmiennych. Wiadomości wstępne. SPIS TREŚCI 1 Repetytorium z analizy i rachunku całkowego funkcji wielu zmiennych. Wiadomości wstępne. Spis treści 1 Repetytorium 2 2 Wiadomości wstępne 5 1 Repetytorium 2 1 Repetytorium 1. Rozwia zać

Bardziej szczegółowo

Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 9 Fale elektromagnetyczne 3 9.1 Fale w jednym wymiarze.................

Bardziej szczegółowo

opracował Maciej Grzesiak Całki krzywoliniowe

opracował Maciej Grzesiak Całki krzywoliniowe opracował Maciej Grzesiak Całki krzywoliniowe 1. Definicja całki krzywoliniowej nieskierowanej Rozważmy następujący problem. Dany jest przewód elektryczny na którym rozmieszczone są ładunki. Przypuśćmy,

Bardziej szczegółowo

Pojemność elektryczna, Kondensatory Energia elektryczna

Pojemność elektryczna, Kondensatory Energia elektryczna Pojemność elektryczna Pojemność elektryczna, Kondensatory Energia elektryczna 1 Pojemność elektryczna - kondensatory Kondensator : dwa przewodniki oddzielone izolatorem zwykle naładowane ładunkami o przeciwnych

Bardziej szczegółowo

Geodezja fizyczna i geodynamika

Geodezja fizyczna i geodynamika Geodezja fizyczna i geodynamika Potencjał normalny. Potencjał zakłócajacy. Podstawowe równanie geodezji fizycznej. Dr inż. Liliana Bujkiewicz 4 czerwca 2017 Dr inż. Liliana Bujkiewicz Geodezja fizyczna

Bardziej szczegółowo

KOOF Szczecin: www.of.szc.pl

KOOF Szczecin: www.of.szc.pl LVIII OLIMPIADA FIZYCZNA (2008/2009). Stopień II, zaanie oświaczalne D. Źróło: Autor: Nazwa zaania: Działy: Słowa kluczowe: Komitet Główny Olimpiay Fizycznej. Ernest Groner Komitet Główny Olimpiay Fizycznej,

Bardziej szczegółowo