BADANIA OPERACYJNE. dr Adam Sojda Pokój A405

Wielkość: px
Rozpocząć pokaz od strony:

Download "BADANIA OPERACYJNE. dr Adam Sojda Pokój A405"

Transkrypt

1 BADANIA OPERACYJNE dr Adam Sojda Pokój A405

2 Przedsięwzięcie - zorganizowanie działanie ludzkie zmierzające do osiągnięcia określonego celu, zawarte w skończonym przedziale czasowym z wyróżnionym początkiem i końcem. Realizowane przez skończoną liczbę osób, środków technicznych, energii,materiałów, środków finansowych i informacji. Zdarzenie oznacza osiągniecie stanu zaawansowania prac przy realizacji przedsięwzięcia, jest to moment rozpoczęcia bądź zakończenia jednej czynności lub większej liczby czynności. Zdarzenie przedstawiamy graficznie za pomocą kółek. Każdemu zdarzeniu przyporządkowany jest numer 1,2,3,,m Czynność jest dowolnie wyodrębniona częścią przedsięwzięcia charakteryzującą się czasem trwania i zużyciem środków. Obraz graficzny strzałka. Czynność jest charakteryzowana przez parę wskaźników i k (i<k), gdzie i numer zdarzenia, w którym dana czynność się zaczyna, k numer zdarzenia, w którym dana czynność się kończy. Czynność pozorna - szczególny typ czynności, dla których charakterystyczne jest to, że nie zużywają czasu (czas jej trwania jest równy zero) ani środków, a służą jedynie do przedstawienia zależności pomiędzy czynnościami. Graficzny obraz czynności pozornej przerywana strzałka. dr Adam SOJDA 2

3 Sieć czynności jest graficznym obrazem struktury przedsięwzięcia. Przedstawia ona tworzące to przedsięwzięcie czynności oraz powiązania pomiędzy nimi. Sieć składa się z dwóch rodzajów elementów: n n łuków oznaczających czynności węzłów zwanych zdarzeniami i oznaczającymi początek lub zakończenie jednej lub kilku czynności. Budowa sieci wymaga znajomości dla poszczególnych czynności: n n czasów ich trwania zbiorów czynności bezpośrednio je poprzedzających Prawidłowo skonstruowana sieć czynności: n łączy wszystkie węzły i łuki ( spójna ) n łuki nie tworzą obwodu zamkniętego ( acykliczna ) n n zawiera dokładnie jedno zdarzenie, w którym nie kończy się żadna czynność ( początek przedsięwzięcia ) oraz jedno zdarzenie, w którym nie rozpoczyna się żadna czynność (koniec przedsięwzięcia) dwa różne łuki nie mają tych samych zdarzeń początkowych i końcowych, w przeciwnym razie wprowadza się czynności pozorne. dr Adam SOJDA 3

4 Najkrótszy możliwy czas realizacji przedsięwzięcia, T* jest to najkrótszy czas, w którym możliwe jest ukończenie wszystkich czynności składających się na przedsięwzięcie. Najwcześniejszy możliwy moment zajścia zdarzenia. Dla danego zdarzenia k, najwcześniejszy moment jego zajścia ( t k ) jest to moment, w którym najwcześniej zostaną ukończone wchodzące do niego czynności. k i ( t t ) t = max + t 1 = 0 i ik Najpóźniejszy dopuszczalny moment zajścia zdarzenia. Dla danego zdarzenia i, najpóźniejszy dopuszczalny moment jego zajścia ( T i ) jest to moment, w którym najpóźniej mogą być rozpoczęte wszystkie wychodzące z niego czynności, by nie opóźnił się moment realizacji całego przedsięwzięcia (w stosunku do najkrótszego możliwego czasu). T i k ( T t ) = min = T k ik T m t m = T * T 1 = 0 dr Adam SOJDA 4

5 Zapas czasu dla zdarzenia, to L i = T i t i Luz czasowy czynności Dla każdej czynności możemy wyznaczyć rezerwy czasu wykonywania zwane zapasami czasu. Zapas całkowity, to rezerwa czasu, która może być wykorzystana dodatkowo na wykonanie danej czynności Z c = T k t i t ik ANALIZA SIECIOWA Charakterystyki: CPM ścieżki krytycznej ( Critical Path Method ) t najwcześniejszy moment zaistnienia zdarzenia T najpóźniejszy dopuszczalny termin zaistnienia zdarzenia L zapas czasu dla zdarzenia. i numer zdarzenia t i i T i L i dr Adam SOJDA 5

6 Pewne przedsięwzięcie można opisać za pomocą następujących czynności (tabela). Wyznaczyć najkrótszy możliwy czas realizacji całego przedsięwzięcia, wyznaczyć czynności, które determinują czas realizacji całego przedsięwzięcia budowy domu i przeprowadzki do niego. czynność Opis czynności Czynności poprzedzające A kupno działki 20 B ogrodzenie działki wstępne A 15 C wybór projektu 10 D wybór dewelopera C 15 E sadzenie drzew i krzewów B, D 30 F budowa docelowego ogrodzenia i alejek E 40 G wybór elementów wykończenia domu C 60 H budowa do stanu surowego B, D 120 I wykończenie domu G, H 90 J przeprowadzka F, I 14 Czas trwania [dni] dr Adam SOJDA 6

7 Przedstawienie przedsięwzięcia jako sieci czynności: C A D B G E H F I J 1 A C 2 3 D B 4 G E H 5 6 I F J 7 8 dr Adam SOJDA 7

8 Wyznaczenie ścieżki krytycznej: dr Adam SOJDA 8

9 Analiza zapasów czasu dla poszczególnych czynności czynność i - k t ik T k t i Zc zapas czasu dla czynności A B C D E F G H I J Czynności, dla których zapas czasu jest równy zero nazywamy czynnościami krytycznymi. Tworzą on ścieżkę krytyczną i stanowi podstawę metody CPM dr Adam SOJDA 9

10 Metoda PERT Zakładamy, że każda z czynności może być opisana trzema czasami: a najbardziej optymistycznym m modalnym najczęściej pojawiającym się przy powtarzaniu tej czynności b najbardziej pesymistycznym Pomiędzy czasami zachodzi zależność: a m b Dla każdej czynności wyznaczane są dwie wartości: oczekiwany czas realizacji czynności t e oraz wariancja czas σ 2. Zgodnie ze wzorami: a + 4m + b t e = 6 2 σ i j = b a 6 2 Czas oczekiwany jest wykorzystywany do wyznaczenia ścieżki krytycznej (CPM) oraz oczekiwanego czasu wykonania T e dr Adam SOJDA 10

11 Jeśli pojawiające się ścieżki charakteryzują się tym, iż empiryczne czasy realizacji przedsięwzięcia nie zachodzą na siebie, wówczas można wyznaczyć za pomocą dystrybuanty rozkładu normalnego prawdopodobieństwo zakończenia przedsięwzięcia przed upływem założonego czasu dyrektywnego. Niech X będzie zmienną losową o rozkładzie normalnym oznaczającą czas ukończenia całego przedsięwzięcia. Φ(u) dystrybuanta rozkładu N(0,1) T e wartość oczekiwaną czasu realizacji całego przedsięwzięcia wyznaczoną na podstawie ścieżkikrytycznej, σ - odchylenie standardowe dla czasu realizacji całego przedsięwzięcia, wyznaczone jako pierwiastek z sumy wariancji czasów realizacji wszystkich czynności tworzących ścieżkę krytyczną. t d czas dyrektywny realizacji całego przedsięwzięcia. P d e d e ( X < t ) = P U < = Φ d t T σ Otrzymane wartości prawdopodobieństwa powinny znajdować się w przedziale od 0.25 do Dla wartości poniżej 0.25 termin realizacji w czasie dyrektywnym jest małoprawdopodobny, dla wartości powyżej 0.60 istnieją niewykorzystane moce produkcyjne. t T σ dr Adam SOJDA 11

12 Dla analizowanego już zagadnienia: czynność i - k a m b t e σ 2 A B C D E F G H I J dr Adam SOJDA 12

13 Dla analizowanego już zagadnienia: czynność i - k a m b t e σ 2 A B C D E F G H I J Oczekiwany czas realizacji całego przedsięwzięcia: T e = 259 Wariancja czasu realizacji: = 162 odchylenie standardowe σ = 12,73 dr Adam SOJDA 13

14 Wyznaczyć prawdopodobieństwo ukończenia przedsięwzięcia w czasie 240 dni. Dane: t d = 240 T e = 259 σ = 12,73 P ( X < t ) = Φ d = P U < t d T σ e t = Φ T σ ( 1,49) = 1 Φ( 1,49) = = d e = Φ 12,73 = Wyznaczyć czas dyrektywny, w którym prawdopodobieństwo ukończenia jest równe 0.95 Dane: T e = 259 σ = 12,73 Φ(u)=0.95 zatem u=1.65 td Te 0.95 = Φ( 1.65) = Φ σ td = td = td 259 = Φ 12,73 dr Adam SOJDA 14

15 Analiza kosztowo czasowa czynność i - k Czas normalny Czas przyspieszony Koszt normalny Koszt przyspieszony A B C D E F G H I J Gradient kosztów dr Adam SOJDA 15

16 Analiza kosztowo czasowa czynność i - k Czas normalny Czas przyspieszony Koszt normalny Koszt przyspieszony Gradient kosztów A B C D E F ,5 G H I J dr Adam SOJDA 16

17 Program liniowy minimalizacji kosztu przy zadanym czasie dyrektywnym Oznaczenia: x i najwcześniejszy moment zaistnienia zdarzenia y A, y B,, y J - czas przyspieszenia realizacji czynności A,B,, J FUNKCJA CELU: F(y A,, y J ) = 10y A +1y B +2y C +3y D +5y E +2.5y F +6y G +10y H +6y I +2y J à min Ograniczenia: Muszą być spełnione następujące warunki: i. moment zaistnienia zdarzenia i (x i ) musi być większy bądź równy od czasu wykonania czynności, których czas zakończenia określa to zdarzenie ii. czas rozpoczęcia dowolnej czynności jest równy momentowi zaistnienia zdarzenia, określającego rozpoczęcie tej czynności iii. czas realizacji jest równy czasowi normalnemu pomniejszonemu o czas przyspieszenia iv. czasy przyspieszenia są ograniczone dr Adam SOJDA 17

18 Spełnione muszą być warunki dla zdarzeń Moment zaistnienia zdarzenia Czas normalny realizacji czynności - Przyspieszenie czynności + Moment rozpoczęcia czynności Zdarzenie 1. x 1 = 0 Zdarzenie 2. X 2 20 y A +x 1 Zdarzenie 3. X 3 10 y C +x 1 Zdarzenie 4. X 4 15 y B +x 2 X 4 15 y D +x 3 Zdarzenie 5. X 5 30 y E +x 4 Zdarzenie 6. X 6 60 y G +x 3 X y H +x 4 Zdarzenie 7. X 7 40 y F +x 5 x i 0 dla i =1,2,,8 X 7 90 y I +x 6 y j 0 dla j = A, B,, J Zdarzenie 8. X 8 14 y J +x 7 Czas zakończenia nie może być dłuższy niż 250 zadany czas dyrektywny x Możliwości przyspieszenia są ograniczone: 0 y A 5 0 y B 5 0 y C 1 0 y D 3 0 y E 2 0 y F 2 0 y G 5 0 y H 10 0 y I 5 0 y J 2 Wszystkie zmienne są nieujemne dr Adam SOJDA 18

19 Przy minimalizacji czasu realizacji przedsięwzięcia przy zadanym koszcie zamiast funkcji celu z poprzedniego problemu: F(y A,, y J ) = 10y A +1y B +2y C +3y D +5y E +2.5y F +6y G +10y H +6y I +2y J à min Otrzymujemy ograniczenie dla zadanego kosztu np y A +1y B +2y C +3y D +5y E +2.5y F +6y G +10y H +6y I +2y J 300 Z ograniczenia czasu realizacji przedsięwzięcia x Otrzymujemy funkcję celu x 8 à min dr Adam SOJDA 19

Zarządzanie projektami

Zarządzanie projektami Dr Adam Kucharski Spis treści Podstawowe pojęcia Metoda CPM 3 3 Przykład analizy metodą CPM 5 Podstawowe pojęcia Przedsięwzięcia złożone z wielu czynności spotykane są na każdym kroku. Jako przykład może

Bardziej szczegółowo

Statystyka z elementami badań operacyjnych BADANIA OPERACYJNE - programowanie liniowe -programowanie sieciowe. dr Adam Sojda

Statystyka z elementami badań operacyjnych BADANIA OPERACYJNE - programowanie liniowe -programowanie sieciowe. dr Adam Sojda Statystyka z elementami badań operacyjnych BADANIA OPERACYJNE - programowanie liniowe -programowanie sieciowe dr Adam Sojda Literatura o Kukuła K. (red.): Badania operacyjne w przykładach i zadaniach.

Bardziej szczegółowo

t i L i T i

t i L i T i Planowanie oparte na budowaniu modelu struktury przedsięwzięcia za pomocą grafu nazywa sie planowaniem sieciowym. Stosuje się do planowania i kontroli realizacji założonych przedsięwzięć gospodarczych,

Bardziej szczegółowo

Przykład: budowa placu zabaw (metoda ścieżki krytycznej)

Przykład: budowa placu zabaw (metoda ścieżki krytycznej) Przykład: budowa placu zabaw (metoda ścieżki krytycznej) Firma budowlana Z&Z podjęła się zadania wystawienia placu zabaw dla dzieci w terminie nie przekraczającym 20 dni. Listę czynności do wykonania zawiera

Bardziej szczegółowo

Planowanie przedsięwzięć

Planowanie przedsięwzięć K.Pieńkosz Badania Operacyjne Planowanie przedsięwzięć 1 Planowanie przedsięwzięć Model przedsięwzięcia lista operacji relacje poprzedzania operacji modele operacji funkcja celu planowania K.Pieńkosz Badania

Bardziej szczegółowo

BADANIA OPERACYJNE Programowanie liniowe i jego zastosowanie w innych zagadnieniach

BADANIA OPERACYJNE Programowanie liniowe i jego zastosowanie w innych zagadnieniach BADANIA OPERACYJNE Programowanie liniowe i jego zastosowanie w innych zagadnieniach dr Adam Sojda adam.sojda@polsl.pl http://dydaktyka.polsl.pl/roz6/asojda/default.asp Pokój A405 Literatura okukuła K.

Bardziej szczegółowo

Zarządzanie projektami. Tadeusz Trzaskalik

Zarządzanie projektami. Tadeusz Trzaskalik Zarządzanie projektami Tadeusz Trzaskalik 7.1. Wprowadzenie Słowa kluczowe Projekt Sieć czynności zynność bezpośrednio poprzedzająca Zdarzenie, zdarzenie początkowe, zdarzenie końcowe Właściwa numeracja

Bardziej szczegółowo

Rozdział 7 ZARZĄDZANIE PROJEKTAMI

Rozdział 7 ZARZĄDZANIE PROJEKTAMI Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 7 ZARZĄDZANIE PROJEKTAMI 7.2. Ćwiczenia komputerowe Ćwiczenie 7.1 Wykorzystując

Bardziej szczegółowo

ANALIZA SIECIOWA PROJEKTÓW REALIZACJI

ANALIZA SIECIOWA PROJEKTÓW REALIZACJI WYKŁAD 5 ANALIZA SIECIOWA PROJEKTÓW REALIZACJI Podstawowe problemy rozwiązywane z wykorzystaniem programowania sieciowego: zagadnienia transportowe (rozdział zadań przewozowych, komiwojażer najkrótsza

Bardziej szczegółowo

Analiza sieciowa projektów- metody: CPM, PERT. A. Kasperski, M. Kulej 1

Analiza sieciowa projektów- metody: CPM, PERT. A. Kasperski, M. Kulej 1 Analiza sieciowa projektów- metody: CPM, PERT. A. Kasperski, M. Kulej 1 Określenie projektu Przez projekt rozumie się jednostkowy(najczęściej jednorazowy) proces złożony ze zbioru wzajemnie powiązanych

Bardziej szczegółowo

ZARZĄDZANIE PROJEKTAMI METODA ŚCIEŻKI KRYTYCZNEJ HARMONOGRAM PROJEKTU

ZARZĄDZANIE PROJEKTAMI METODA ŚCIEŻKI KRYTYCZNEJ HARMONOGRAM PROJEKTU 1 ZARZĄDZANIE PROJEKTAMI METODA ŚCIEŻKI KRYTYCZNEJ HARMONOGRAM PROJEKTU AUTOR: AGENDA LEKCJI 2 CPM wprowadzenie teoretyczne Przykład rozwiązania Zadanie do samodzielnego rozwiązania 3 Critical Path Method

Bardziej szczegółowo

Zarządzanie projektami. mgr inż. Michał Adamczak

Zarządzanie projektami. mgr inż. Michał Adamczak Zarządzanie projektami mgr inż. Michał Adamczak Ćwiczenie 2 mgr inż. Michał Adamczak Agenda spotkania: 1. CPM wprowadzenie 2. Tabela czynności 3. Podstawowe elementy budowy diagramu sieciowego 4. Zasady

Bardziej szczegółowo

Analiza czasowo-kosztowa

Analiza czasowo-kosztowa Analiza czasowo-kosztowa Aspekt ekonomiczny: należy rozpatrzyć techniczne możliwości skrócenia terminu wykonania całego przedsięwzięcia, w taki sposób aby koszty związane z jego realizacją były jak najniższe.

Bardziej szczegółowo

Metoda CPM/PERT. dr inż. Mariusz Makuchowski

Metoda CPM/PERT. dr inż. Mariusz Makuchowski PM - wstęp PM nazwa metody pochodzi od angielskiego ritical Path Method, jest techniką bazującą na grafowej reprezentacji projektu, używana jest dla deterministycznych danych. PM - modele grafowe projektu

Bardziej szczegółowo

Zarządzanie czasem projektu

Zarządzanie czasem projektu Zarządzanie czasem projektu Narzędzia i techniki szacowania czasu zadań Opinia ekspertów Szacowanie przez analogię (top-down estimating) stopień wiarygodności = f(podobieństwo zadań), = f(dostęp do wszystkich

Bardziej szczegółowo

Ćwiczenia laboratoryjne - 4. Projektowanie i harmonogramowanie produkcji metoda CPM-COST. Logistyka w Hutnictwie Ćw. L. 4

Ćwiczenia laboratoryjne - 4. Projektowanie i harmonogramowanie produkcji metoda CPM-COST. Logistyka w Hutnictwie Ćw. L. 4 Ćwiczenia laboratoryjne - 4 Projektowanie i harmonogramowanie produkcji metoda CPM-COST Ćw. L. 4 Metody analizy sieciowej 1) Deterministyczne czasy trwania czynności są określane jednoznacznie (jedna liczba)

Bardziej szczegółowo

ORGANIZACJA I ZARZĄDZANIE

ORGANIZACJA I ZARZĄDZANIE P O L I T E C H N I K A W A R S Z A W S K A WYDZIAŁ BUDOWNICTWA, MECHANIKI I PETROCHEMII INSTYTUT INŻYNIERII MECHANICZNEJ ORGANIZACJA I ZARZĄDZANIE Planowanie przedsięwzięcia metodą CPM Instrukcja do ćwiczeń

Bardziej szczegółowo

Zasady sporządzania modelu sieciowego (Wykład 1)

Zasady sporządzania modelu sieciowego (Wykład 1) Zasady sporządzania modelu sieciowego (Wykład 1) Metody planowania sieciowego są stosowane w budownictwie do planowania i kontroli dużych przedsięwzięć, w których z powodu wielu zależności istnieje konieczność

Bardziej szczegółowo

Zapasy czasowe czynności

Zapasy czasowe czynności Zapasy czasowe czynności Na podstawie wyliczonych najwcześniejszych możliwych oraz najpóźniejszych dopuszczalnych momentów zajścia zdarzeń, można wyznaczyć zapasy czasu dla poszczególnych czynności przedsięwzięcia.

Bardziej szczegółowo

Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III.

Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III. Literatura Krysicki W., Bartos J., Dyczka W., Królikowska K, Wasilewski M., Rachunek Prawdopodobieństwa i Statystyka Matematyczna w Zadaniach, cz. I. Leitner R., Zacharski J., Zarys matematyki wyŝszej

Bardziej szczegółowo

ANALIZA CZASOWO-KOSZTOWA SIECI CPM-COST

ANALIZA CZASOWO-KOSZTOWA SIECI CPM-COST ANALIZA CZASOWO-KOSZTOWA SIECI CPM-COST Maciej Patan Uniwersytet Zielonogórski WPROWADZENIE W metodach CPM i PERT zwraca się uwagę jedynie na analizę ilościowa Równie ważne zagadnienie aspekt ekonomiczny

Bardziej szczegółowo

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna. Wykład 4 Rozkłady i ich dystrybuanty Dwa typy zmiennych losowych Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Bardziej szczegółowo

EKONOMIKA I ORGANIZACJA BUDOWY

EKONOMIKA I ORGANIZACJA BUDOWY EKONOMIKA I ORGANIZACJA BUDOWY EMA: PROJEK ORGANIZACJI WYKONANIA PRZEDSIĘWZIĘCIA INWESYCYJNEGO (p) ćwiczenia projektowe, pracownia specjalistyczna studia niestacjonarne I stopnia, sem. VI, budownictwo

Bardziej szczegółowo

LOGISTYKA DYSTRYBUCJI ćwiczenia 11 i 12 WYKORZYSTANIE METOD SIECIOWYCH W PROJEKTACH LOGISTYKI DYSTRYBUCJI. AUTOR: dr inż.

LOGISTYKA DYSTRYBUCJI ćwiczenia 11 i 12 WYKORZYSTANIE METOD SIECIOWYCH W PROJEKTACH LOGISTYKI DYSTRYBUCJI. AUTOR: dr inż. LOGISTYKA DYSTRYBUCJI ćwiczenia i WYKORZYSTANIE METOD SIECIOWYCH W PROJEKTACH LOGISTYKI DYSTRYBUCJI AUTOR: dr inż. ROMAN DOMAŃSKI Literatura Piotr Cyplik, Danuta Głowacka-Fertsch, Marek Fertsch Logistyka

Bardziej szczegółowo

Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych

Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Niech Ω będzie przestrzenią zdarzeń elementarnych. Definicja 1 Rodzinę S zdarzeń losowych (zbiór S podzbiorów zbioru

Bardziej szczegółowo

Zadanie 1. są niezależne i mają rozkład z atomami: ( ),

Zadanie 1. są niezależne i mają rozkład z atomami: ( ), Zadanie. Zmienne losowe są niezależne i mają rozkład z atomami: ( ) ( ) i gęstością: ( ) na przedziale ( ). Wobec tego ( ) wynosi: (A) 0.2295 (B) 0.2403 (C) 0.2457 (D) 0.25 (E) 0.269 Zadanie 2. Niech:

Bardziej szczegółowo

Zmienne losowe ciągłe i ich rozkłady

Zmienne losowe ciągłe i ich rozkłady Statystyka i opracowanie danych W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Rozkład Poissona. Zmienna losowa ciągła Dystrybuanta i funkcja gęstości

Bardziej szczegółowo

Najkrótsza droga Maksymalny przepływ Najtańszy przepływ Analiza czynności (zdarzeń)

Najkrótsza droga Maksymalny przepływ Najtańszy przepływ Analiza czynności (zdarzeń) Carl Adam Petri (1926-2010) Najkrótsza droga Maksymalny przepływ Najtańszy przepływ Analiza czynności (zdarzeń) Problemy statyczne Kommunikation mit Automaten praca doktorska (1962) opis procesów współbieżnych

Bardziej szczegółowo

Instrukcja. Laboratorium Metod i Systemów Sterowania Produkcją.

Instrukcja. Laboratorium Metod i Systemów Sterowania Produkcją. Instrukcja do Laboratorium Metod i Systemów Sterowania Produkcją. 2010 1 Cel laboratorium Celem laboratorium jest poznanie metod umożliwiających rozdział zadań na linii produkcyjnej oraz sposobu balansowania

Bardziej szczegółowo

Zmienne losowe ciągłe i ich rozkłady

Zmienne losowe ciągłe i ich rozkłady Rachunek Prawdopodobieństwa i Statystyka - W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Zmienna losowa ciągła Dystrybuanta i unkcja gęstości rozkładu

Bardziej szczegółowo

W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych:

W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych: W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych: Zmienne losowe skokowe (dyskretne) przyjmujące co najwyżej przeliczalnie wiele wartości Zmienne losowe ciągłe

Bardziej szczegółowo

MONITOROWANIE, KONTROLA I ZAMKNIĘCIA PROJEKTU. Dr Jerzy Choroszczak

MONITOROWANIE, KONTROLA I ZAMKNIĘCIA PROJEKTU. Dr Jerzy Choroszczak MONITOROWANIE, KONTROLA I ZAMKNIĘCIA PROJEKTU Dr Jerzy Choroszczak Kontrola w zarządzaniu projektami Kontrola terminów przygotowania i wykonawstwa projektu Kontrola zużycia zasobów Kontrola kosztów przygotowania

Bardziej szczegółowo

PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA. Piotr Wiącek

PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA. Piotr Wiącek PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA Piotr Wiącek ROZKŁAD PRAWDOPODOBIEŃSTWA Jest to miara probabilistyczna określona na σ-ciele podzbiorów borelowskich pewnej przestrzeni metrycznej. σ-ciało podzbiorów

Bardziej szczegółowo

Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe

Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe Statystyka i opracowanie danych W4 Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Rozkład normalny wykres funkcji gęstości

Bardziej szczegółowo

Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki

Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Przetwarzanie Sygnałów Studia Podyplomowe, Automatyka i Robotyka. Wstęp teoretyczny Zmienne losowe Zmienne losowe

Bardziej szczegółowo

Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014

Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014 Estymacja przedziałowa - przedziały ufności dla średnich Wrocław, 5 grudnia 2014 Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja Przedziałem ufności dla paramertu

Bardziej szczegółowo

1 Obliczanie modeli sieciowych w funkcji środków

1 Obliczanie modeli sieciowych w funkcji środków 1 Obliczanie modeli sieciowych w funkcji środków Przykład zaczerpnięty z mojego podręcznika Harmonogramy sieciowe w robotach inżynierskich. Wydawnictwo SGGW 001 str. 77. 1.1 Założenia analizy środków oraz

Bardziej szczegółowo

Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn

Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn Wykład 10 Estymacja przedziałowa - przedziały ufności dla średniej Wrocław, 21 grudnia 2016r Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja 10.1 Przedziałem

Bardziej szczegółowo

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa Weryfikacja hipotez statystycznych Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o prawdziwości lub fałszywości którego wnioskuje się na podstawie

Bardziej szczegółowo

Wykład Zarządzanie projektami Zajęcia 3 Zarządzanie czasem w projekcie Zarządzanie kosztami projektu

Wykład Zarządzanie projektami Zajęcia 3 Zarządzanie czasem w projekcie Zarządzanie kosztami projektu Wykład Zarządzanie projektami Zajęcia Zarządzanie czasem w projekcie Zarządzanie kosztami projektu dr Stanisław Gasik s.gasik@vistula.edu.pl www.sybena.pl/uv/014-wyklad-eko-zp-9-pl/wyklad.pdf Zarządzanie

Bardziej szczegółowo

Rachunek Prawdopodobieństwa i Statystyka

Rachunek Prawdopodobieństwa i Statystyka Rachunek Prawdopodobieństwa i Statystyka W 2. Probabilistyczne modele danych Zmienne losowe. Rozkład prawdopodobieństwa i dystrybuanta. Wartość oczekiwana i wariancja zmiennej losowej Dr Anna ADRIAN Zmienne

Bardziej szczegółowo

MATEMATYKA 3 dla ZE III dr inż Krzysztof Bryś wyk lad 3 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA

MATEMATYKA 3 dla ZE III dr inż Krzysztof Bryś wyk lad 3 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA 1 MATEMATYKA 3 dla ZE III dr inż Krzysztof Bryś wyk lad 3 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA 1. Pojȩcia wstȩpne. Doświadczeniem losowym nazywamy doświadczenie, którego wynik nie jest znany. Posiadamy

Bardziej szczegółowo

Elementy Rachunek prawdopodobieństwa

Elementy Rachunek prawdopodobieństwa Elementy rachunku prawdopodobieństwa Rachunek prawdopodobieństwa zajmuje się analizą praw rządzących zdarzeniami losowymi Pojęciami pierwotnymi są: zdarzenie elementarne ω oraz zbiór zdarzeń elementarnych

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA dla ZPM I dr inż Krzysztof Bryś wyk lad 1,2 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA

STATYSTYKA MATEMATYCZNA dla ZPM I dr inż Krzysztof Bryś wyk lad 1,2 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA 1 STATYSTYKA MATEMATYCZNA dla ZPM I dr inż Krzysztof Bryś wyk lad 1,2 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA 1. Pojȩcia wstȩpne. Doświadczeniem losowym nazywamy doświadczenie, którego wynik nie jest znany.

Bardziej szczegółowo

Rozdział 1. Zmienne losowe, ich rozkłady i charakterystyki. 1.1 Definicja zmiennej losowej

Rozdział 1. Zmienne losowe, ich rozkłady i charakterystyki. 1.1 Definicja zmiennej losowej Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Zbiór możliwych wyników eksperymentu będziemy nazywać przestrzenią zdarzeń elementarnych i oznaczać Ω, natomiast

Bardziej szczegółowo

Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT. Anna Rajfura 1

Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT. Anna Rajfura 1 Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT Anna Rajfura 1 Przykład wprowadzający Wiadomo, Ŝe 40% owoców ulega uszkodzeniu podczas pakowania automatycznego.

Bardziej szczegółowo

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl

Bardziej szczegółowo

Zarządzanie projektami Ćwiczenia 1. Jakub Światłowski

Zarządzanie projektami Ćwiczenia 1. Jakub Światłowski Zarządzanie projektami Ćwiczenia 1 Jakub Światłowski jakub.swiatlowski@wsl.com.pl Tematyka zajęć 1. Metoda ścieŝki krytycznej 2. Krzywa S i jej interpretacja 3. Pięć faz zarządzania projektem 4. Planowanie

Bardziej szczegółowo

LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI

LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI WERYFIKACJA HIPOTEZ Hipoteza statystyczna jakiekolwiek przypuszczenie dotyczące populacji generalnej- jej poszczególnych

Bardziej szczegółowo

PROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω)

PROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω) PROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω) określonych na tej samej przestrzeni probabilistycznej

Bardziej szczegółowo

Sieć (graf skierowany)

Sieć (graf skierowany) Sieć (graf skierowany) Siecia (grafem skierowanym) G = (V, A) nazywamy zbiór wierzchołków V oraz zbiór łuków A V V. V = {A, B, C, D, E, F}, A = {(A, B),(A, D),(A, C),(B, C),...,} Ścieżki i cykle Ciag wierzchołków

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 6: Twierdzenia graniczne.

Rachunek prawdopodobieństwa Rozdział 6: Twierdzenia graniczne. Rachunek prawdopodobieństwa Rozdział 6: Twierdzenia graniczne. 6.2. Centralne Twierdzenie Graniczne Katarzyna Rybarczyk-Krzywdzińska semestr zimowy 2015/2016 Słabe prawo wielkich liczb przypomnienie Słabe

Bardziej szczegółowo

Każde zadanie (ang. task) ma wyróżnione dwa stany:

Każde zadanie (ang. task) ma wyróżnione dwa stany: fie skierowanym (rys 1). Pomiędzy zadaniami rzeczywistymi modelującymi określone działania i stany w realizacji przedsięwzięcia definiuje się zależności, wprowadzając do modelu zadania pozorne. Zadania

Bardziej szczegółowo

Rys Wykres kosztów skrócenia pojedynczej czynności. k 2. Δk 2. k 1 pp. Δk 1 T M T B T A

Rys Wykres kosztów skrócenia pojedynczej czynności. k 2. Δk 2. k 1 pp. Δk 1 T M T B T A Ostatnim elementem przykładu jest określenie związku pomiędzy czasem trwania robót na planowanym obiekcie a kosztem jego wykonania. Związek ten określa wzrost kosztów wykonania realizacji całego przedsięwzięcia

Bardziej szczegółowo

Rozkłady dwóch zmiennych losowych

Rozkłady dwóch zmiennych losowych Rozkłady dwóch zmiennych losowych Uogólnienie pojęć na rozkład dwóch zmiennych Dystrybuanta i gęstość prawdopodobieństwa Rozkład brzegowy Prawdopodobieństwo warunkowe Wartości średnie i odchylenia standardowe

Bardziej szczegółowo

x x 0.5. x Przykłady do zadania 4.1 :

x x 0.5. x Przykłady do zadania 4.1 : Rachunek prawdopodobieństwa MAP5 Wydział Elektroniki, rok akad. /, sem. letni Wykładowca: dr hab. A. Jurlewicz Przykłady do listy 4: Wartość oczekiwana, wariancja, mediana, kwartyle rozkładu prawdopodobieństwa.

Bardziej szczegółowo

4,5. Dyskretne zmienne losowe (17.03; 31.03)

4,5. Dyskretne zmienne losowe (17.03; 31.03) 4,5. Dyskretne zmienne losowe (17.03; 31.03) Definicja 1 Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór jej wartości x 1, x 2,..., można ustawić w ciag. Zmienna losowa X, która przyjmuje wszystkie

Bardziej szczegółowo

METODY BADAŃ NA ZWIERZĘTACH ze STATYSTYKĄ wykład 3-4. Parametry i wybrane rozkłady zmiennych losowych

METODY BADAŃ NA ZWIERZĘTACH ze STATYSTYKĄ wykład 3-4. Parametry i wybrane rozkłady zmiennych losowych METODY BADAŃ NA ZWIERZĘTACH ze STATYSTYKĄ wykład - Parametry i wybrane rozkłady zmiennych losowych Parametry zmiennej losowej EX wartość oczekiwana D X wariancja DX odchylenie standardowe inne, np. kwantyle,

Bardziej szczegółowo

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA?

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA? /9/ Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład --9 Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów

Bardziej szczegółowo

b) Niech: - wśród trzech wylosowanych opakowań jest co najwyżej jedno o dawce 15 mg. Wówczas:

b) Niech: - wśród trzech wylosowanych opakowań jest co najwyżej jedno o dawce 15 mg. Wówczas: ROZWIĄZANIA I ODPOWIEDZI Zadanie A1. Można założyć, że przy losowaniu trzech kul jednocześnie kolejność ich wylosowania nie jest istotna. A więc: Ω = 20 3. a) Niech: - wśród trzech wylosowanych opakowań

Bardziej szczegółowo

doc. dr Beata Pułska-Turyna Zarządzanie B506 mail: mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505.

doc. dr Beata Pułska-Turyna Zarządzanie B506 mail: mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505. doc. dr Beata Pułska-Turyna Zakład Badań Operacyjnych Zarządzanie B506 mail: turynab@wz.uw.edu.pl mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505. Tel.: (22)55 34 144 Mail: student@pgadecki.pl

Bardziej szczegółowo

Analiza współzależności zjawisk

Analiza współzależności zjawisk Analiza współzależności zjawisk Informacje ogólne Jednostki tworzące zbiorowość statystyczną charakteryzowane są zazwyczaj za pomocą wielu cech zmiennych, które nierzadko pozostają ze sobą w pewnym związku.

Bardziej szczegółowo

Statystyka w przykładach

Statystyka w przykładach w przykładach Tomasz Mostowski Zajęcia 10.04.2008 Plan Estymatory 1 Estymatory 2 Plan Estymatory 1 Estymatory 2 Własności estymatorów Zazwyczaj w badaniach potrzebujemy oszacować pewne parametry na podstawie

Bardziej szczegółowo

Statystyka matematyczna dla leśników

Statystyka matematyczna dla leśników Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 2013/2014 Wykład 3 Zmienna losowa i jej rozkłady Zdarzenia losowe Pojęcie prawdopodobieństwa

Bardziej szczegółowo

SYSTEMY WSPOMAGANIA DECYZJI

SYSTEMY WSPOMAGANIA DECYZJI POLITECHNIKA RZESZOWSKA IM. IGNACEGO ŁUKASIEWICZA WYDZIAŁ BUDOWY MASZYN I LOTNICTWA ZAKŁAD INFORMATYKI SYSTEMY WSPOMAGANIA DECYZJI MATERIAŁY DYDAKTYCZNE DO LABORATORIUM LABORATORIUM VII Metoda ścieżki

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA. rachunek prawdopodobieństwa

STATYSTYKA MATEMATYCZNA. rachunek prawdopodobieństwa STATYSTYKA MATEMATYCZNA rachunek prawdopodobieństwa treść Zdarzenia losowe pojęcie prawdopodobieństwa prawo wielkich liczb zmienne losowe rozkłady teoretyczne zmiennych losowych Zanim zajmiemy się wnioskowaniem

Bardziej szczegółowo

Analiza niepewności pomiarów

Analiza niepewności pomiarów Teoria pomiarów Analiza niepewności pomiarów Zagadnienia statystyki matematycznej Dr hab. inż. Paweł Majda www.pmajda.zut.edu.pl Podstawy statystyki matematycznej Histogram oraz wielobok liczebności zmiennej

Bardziej szczegółowo

Dokładne i graniczne rozkłady statystyk z próby

Dokładne i graniczne rozkłady statystyk z próby Dokładne i graniczne rozkłady statystyk z próby Przypomnijmy Populacja Próba Wielkość N n Średnia Wariancja Odchylenie standardowe 4.2 Rozkład statystyki Mówimy, że rozkład statystyki (1) jest dokładny,

Bardziej szczegółowo

ZMIENNE LOSOWE. Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R 1 tzn. X: R 1.

ZMIENNE LOSOWE. Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R 1 tzn. X: R 1. Opracowała: Joanna Kisielińska ZMIENNE LOSOWE Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R tzn. X: R. Realizacją zmiennej losowej

Bardziej szczegółowo

Zmienne losowe skokowe

Zmienne losowe skokowe Zmienne losowe skokowe 1.1 Rozkład prawdopodobieństwa i dystrybuanta Zad.1 Niech zmienna losowa X przyjmuje wartości równe liczbie wyrzuconych oczek przy pojedynczym rzucie kostką do gry, czyli =1,2,3,,6.

Bardziej szczegółowo

Prawa wielkich liczb, centralne twierdzenia graniczne

Prawa wielkich liczb, centralne twierdzenia graniczne , centralne twierdzenia graniczne Katedra matematyki i ekonomii matematycznej 17 maja 2012, centralne twierdzenia graniczne Rodzaje zbieżności ciągów zmiennych losowych, centralne twierdzenia graniczne

Bardziej szczegółowo

Testowanie hipotez statystycznych. Wnioskowanie statystyczne

Testowanie hipotez statystycznych. Wnioskowanie statystyczne Testowanie hipotez statystycznych Wnioskowanie statystyczne Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Hipotezy

Bardziej szczegółowo

MODELOWANIE MATEMATYCZNE SIECI DOSTAW

MODELOWANIE MATEMATYCZNE SIECI DOSTAW Piotr KISIELEWSKI, Kamil WIJAS MODELOWANIE MATEMATYCZNE SIECI DOSTAW W artykule przedstawiono na wybranych przykładach zagadnienie matematycznego modelowania sieci dostaw. WSTĘP Celem artykułu jest przedstawienie

Bardziej szczegółowo

Państwowa Wyższa Szkoła Zawodowa w Nowym Sączu Badania operacyjne w logistyce i zarządzaniu produkcją cz. II

Państwowa Wyższa Szkoła Zawodowa w Nowym Sączu Badania operacyjne w logistyce i zarządzaniu produkcją cz. II Państwowa Wyższa Szkoła Zawodowa w Nowym Sączu Badania operacyjne w logistyce i zarządzaniu produkcją cz. II Andrzej Woźniak Nowy Sącz 2012 Komitet Redakcyjny doc. dr Marek Reichel przewodniczący; prof.

Bardziej szczegółowo

Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe

Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Nierówność Czebyszewa Niech X będzie zmienną losową o skończonej wariancji V ar(x). Wtedy wartość oczekiwana E(X) też jest skończona i

Bardziej szczegółowo

Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe

Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe Rachunek Prawdopodobieństwa istatystyka W4 Rozkład normalny Parametry rozkładu zmienne losowe Zmienne losowe wielowymiarowe Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Rozkład normalny - standaryzaca

Bardziej szczegółowo

HISTOGRAM. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH Liczba pomiarów - n. Liczba pomiarów - n k 0.5 N = N =

HISTOGRAM. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH Liczba pomiarów - n. Liczba pomiarów - n k 0.5 N = N = HISTOGRAM W pewnych przypadkach interesuje nas nie tylko określenie prawdziwej wartości mierzonej wielkości, ale także zbadanie całego rozkład prawdopodobieństwa wyników pomiarów. W takim przypadku wyniki

Bardziej szczegółowo

Na A (n) rozważamy rozkład P (n) , który na zbiorach postaci A 1... A n określa się jako P (n) (X n, A (n), P (n)

Na A (n) rozważamy rozkład P (n) , który na zbiorach postaci A 1... A n określa się jako P (n) (X n, A (n), P (n) MODELE STATYSTYCZNE Punktem wyjścia w rozumowaniu statystycznym jest zmienna losowa (cecha) X i jej obserwacje opisujące wyniki doświadczeń bądź pomiarów. Zbiór wartości zmiennej losowej X (zbiór wartości

Bardziej szczegółowo

VI WYKŁAD STATYSTYKA. 9/04/2014 B8 sala 0.10B Godz. 15:15

VI WYKŁAD STATYSTYKA. 9/04/2014 B8 sala 0.10B Godz. 15:15 VI WYKŁAD STATYSTYKA 9/04/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 6 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI Weryfikacja hipotez ( błędy I i II rodzaju, poziom istotności, zasady

Bardziej szczegółowo

WYKŁAD 2. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady

WYKŁAD 2. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady WYKŁAD 2 Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady Metody statystyczne metody opisu metody wnioskowania statystycznego syntetyczny liczbowy opis właściwości zbioru danych ocena

Bardziej szczegółowo

Ważne rozkłady i twierdzenia c.d.

Ważne rozkłady i twierdzenia c.d. Ważne rozkłady i twierdzenia c.d. Funkcja charakterystyczna rozkładu Wielowymiarowy rozkład normalny Elipsa kowariacji Sploty rozkładów Rozkłady jednostajne Sploty z rozkładem normalnym Pobieranie próby

Bardziej szczegółowo

Sieć (graf skierowany)

Sieć (graf skierowany) Sieci Sieć (graf skierowany) Siecia (grafem skierowanym) G = (V, A) nazywamy zbiór wierzchołków V oraz zbiór łuków A V V. V = {A, B, C, D, E, F}, A = {(A, B), (A, D), (A, C), (B, C),..., } Ścieżki i cykle

Bardziej szczegółowo

Przestrzeń probabilistyczna

Przestrzeń probabilistyczna Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty zbiór Σ rodzina podzbiorów tego zbioru P funkcja określona na Σ, zwana prawdopodobieństwem. Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty

Bardziej szczegółowo

AKADEMIA GÓRNICZO-HUTNICZA Wydział Matematyki Stosowanej ROZKŁAD NORMALNY ROZKŁAD GAUSSA

AKADEMIA GÓRNICZO-HUTNICZA Wydział Matematyki Stosowanej ROZKŁAD NORMALNY ROZKŁAD GAUSSA AKADEMIA GÓRNICZO-HUTNICZA Wydział Matematyki Stosowanej KATEDRA MATEMATYKI TEMAT PRACY: ROZKŁAD NORMALNY ROZKŁAD GAUSSA AUTOR: BARBARA MARDOSZ Kraków, styczeń 2008 Spis treści 1 Wprowadzenie 2 2 Definicja

Bardziej szczegółowo

ESTYMACJA PRZEDZIAŁOWA WYBRANYCH PARAMETRÓW

ESTYMACJA PRZEDZIAŁOWA WYBRANYCH PARAMETRÓW ESTYMACJA PRZEDZIAŁOWA WYBRANYCH PARAMETRÓW POPULACJI Szkic wykładu Wprowadzenie 1 Wprowadzenie 2 3 4 Przypomnienie dotychczasowych rozważań Przedziałem ufności nazywamy przedział losowy, o którym przypuszczamy

Bardziej szczegółowo

Metody probabilistyczne opracowane notatki 1. Zdefiniuj zmienną losową, rozkład prawdopodobieństwa. Przy jakich założeniach funkcje: F(x) = sin(x),

Metody probabilistyczne opracowane notatki 1. Zdefiniuj zmienną losową, rozkład prawdopodobieństwa. Przy jakich założeniach funkcje: F(x) = sin(x), Metody probabilistyczne opracowane notatki 1. Zdefiniuj zmienną losową, rozkład prawdopodobieństwa. Przy jakich założeniach funkcje: Fx sinx, Fx a e x mogą być dystrybuantami?. Podaj twierdzenie Lindeberga

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych 6.04.2009 r.

Matematyka ubezpieczeń majątkowych 6.04.2009 r. Matematyka ubezpieczeń majątkowych 6.04.009 r. Zadanie. Niech N oznacza liczbę szkód zaszłych w ciągu roku z pewnego ubezpieczenia z czego: M to liczba szkód zgłoszonych przed końcem tego roku K to liczba

Bardziej szczegółowo

Zadania o numerze 4 z zestawów licencjat 2014.

Zadania o numerze 4 z zestawów licencjat 2014. Zadania o numerze 4 z zestawów licencjat 2014. W nawiasie przy zadaniu jego występowanie w numerze zestawu Spis treści (Z1, Z22, Z43) Definicja granicy ciągu. Obliczyć granicę:... 3 Definicja granicy ciągu...

Bardziej szczegółowo

Zarządzanie projektami. mgr inż. Michał Adamczak

Zarządzanie projektami. mgr inż. Michał Adamczak Zarządzanie projektami mgr inż. Michał Adamczak mgr inż. Michał Adamczak Wyższa Szkoła Logistyki Katedra Systemów Logistycznych ul. Szyperska 3/5 michal.adamczak@wsl.com.pl 2010-10-05 2 mgr inż. Michał

Bardziej szczegółowo

Korzystanie z podstawowych rozkładów prawdopodobieństwa (tablice i arkusze kalkulacyjne)

Korzystanie z podstawowych rozkładów prawdopodobieństwa (tablice i arkusze kalkulacyjne) Korzystanie z podstawowych rozkładów prawdopodobieństwa (tablice i arkusze kalkulacyjne) Przygotował: Dr inż. Wojciech Artichowicz Katedra Hydrotechniki PG Zima 2014/15 1 TABLICE ROZKŁADÓW... 3 ROZKŁAD

Bardziej szczegółowo

zdarzenie losowe - zdarzenie którego przebiegu czy wyniku nie da się przewidzieć na pewno.

zdarzenie losowe - zdarzenie którego przebiegu czy wyniku nie da się przewidzieć na pewno. Rachunek prawdopodobieństwa Podstawowym celem rachunku prawdopodobieństwa jest określanie szans zajścia pewnych zdarzeń. Pojęcie podstawowe rachunku prawdopodobieństwa to: zdarzenie losowe - zdarzenie

Bardziej szczegółowo

Rozkłady statystyk z próby

Rozkłady statystyk z próby Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny

Bardziej szczegółowo

... prognozowanie nie jest celem samym w sobie a jedynie narzędziem do celu...

... prognozowanie nie jest celem samym w sobie a jedynie narzędziem do celu... 4 Prognozowanie historyczne Prognozowanie - przewidywanie przyszłych zdarzeń w oparciu dane - podstawowy element w podejmowaniu decyzji... prognozowanie nie jest celem samym w sobie a jedynie narzędziem

Bardziej szczegółowo

Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej

Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej c Copyright by Ireneusz Krech ikrech@ap.krakow.pl Instytut Matematyki Uniwersytet Pedagogiczny im. KEN w Krakowie

Bardziej szczegółowo

), którą będziemy uważać za prawdziwą jeżeli okaże się, że hipoteza H 0

), którą będziemy uważać za prawdziwą jeżeli okaże się, że hipoteza H 0 Testowanie hipotez Każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy nazywamy hipotezą statystyczną. Hipoteza określająca jedynie wartości nieznanych parametrów liczbowych badanej cechy

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych 1.10.2012 r.

Matematyka ubezpieczeń majątkowych 1.10.2012 r. Zadanie. W pewnej populacji każde ryzyko charakteryzuje się trzema parametrami q, b oraz v, o następującym znaczeniu: parametr q to prawdopodobieństwo, że do szkody dojdzie (może zajść co najwyżej jedna

Bardziej szczegółowo

Pierścień wielomianów jednej zmiennej

Pierścień wielomianów jednej zmiennej Rozdział 1 Pierścień wielomianów jednej zmiennej 1.1 Definicja pierścienia wielomianów jednej zmiennej Definicja 1.1 Niech P będzie dowolnym pierścieniem. Ciąg nieskończony (a 0, a 1,..., a n,...) elementów

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład VII: Rozkład i jego charakterystyki 22 listopada 2016 Uprzednio wprowadzone pojęcia i ich własności Definicja zmiennej losowej Zmienna losowa na przestrzeni probabilistycznej (Ω, F, P) to funkcja

Bardziej szczegółowo

Estymacja przedziałowa. Przedział ufności

Estymacja przedziałowa. Przedział ufności Estymacja przedziałowa Przedział ufności Estymacja przedziałowa jest to szacowanie wartości danego parametru populacji, ρ za pomocą tak zwanego przedziału ufności. Przedziałem ufności nazywamy taki przedział

Bardziej szczegółowo

Zestaw 2: Zmienne losowe. 0, x < 1, 2, 2 x, 1 1 x, 1 x, F 9 (x) =

Zestaw 2: Zmienne losowe. 0, x < 1, 2, 2 x, 1 1 x, 1 x, F 9 (x) = Zestaw : Zmienne losowe. Które z poniższych funkcji są dystrybuantami? Odpowiedź uzasadnij. Wskazówka: naszkicuj wykres. 0, x 0,, x 0, F (x) = x, F (x) = x, 0 x

Bardziej szczegółowo