ANALIZA SIECIOWA PROJEKTÓW REALIZACJI

Wielkość: px
Rozpocząć pokaz od strony:

Download "ANALIZA SIECIOWA PROJEKTÓW REALIZACJI"

Transkrypt

1 WYKŁAD 5 ANALIZA SIECIOWA PROJEKTÓW REALIZACJI Podstawowe problemy rozwiązywane z wykorzystaniem programowania sieciowego: zagadnienia transportowe (rozdział zadań przewozowych, komiwojażer najkrótsza droga), przepływy w sieciach (maksimum przepływu, najkrótsza droga, minimalny koszt przepływu), analiza sieciowa (ścieżka krytyczna, czas realizacji projektu, analiza czasowo kosztowa), drzewa decyzyjne (maksymalizacja oczekiwanej korzyści, minimalizacja oczekiwanego kosztu). Przykładowy typy zadań do realizacji (projekty): P zadanie transportowe Firma produkcyjna posiada 3 magazyny wyrobów gotowych. Wyroby dostarczana są do sieci 5 sklepów. Zasoby magazynów i zamówienia klientów są zadane. Wyznacz taki plan przewozów, aby koszt transportu był minimalny. P2 problem komiwojażera Samochód pocztowy ma rozwieźć przesyłki do urzędów pocztowych w kilkunastu miejscowościach. Odległości pomiędzy miejscowościami są znane. Zaplanuj trasę przejazdu tak, aby operator objechał wszystkie miejscowości najkrótszą (najtańszą) trasą i wrócił do punktu wyjazdu. P3 przepływ w sieci Natężenie pojazdów na pewnym odcinku autostrady wynosi 2000 pojazdów/godz. Ze względu na remont odcinek ten zostanie czasowo wyłączony z ruchu. Istnieje kilka możliwości dróg alternatywnych (różne ograniczenia prędkości, różne standardy nawierzchni). Przepustowości tych dróg są zadane. Wyznacz maksymalny przepływ w rozpatrywanej sieci i ustal, czy jest on wystarczający dla spodziewanego natężenia ruchu. P4 analiza sieciowa Należy opracować plan zamontowania silnika do samochodu. Czynności składające się na to przedsięwzięcie, kolejność ich wykonywania oraz czasy trwania (w minutach) ustalone przed konstrukcją projektu są

2 podane w tabeli. Przeprowadź analizę sieciową projektu, przyjmując jako kryterium optymalności minimalizację czasu realizacji projektu. Podstawowe pojęcia i oznaczenia: Łuki, krawędzie sieci najkrótsze, niepodzielne ścieżki. Węzły, wierzchołki punkty, w których łączą się łuki. Łuki są zorientowane, tzn. dla każdego z nich można wyznaczyć węzeł początkowy i węzeł końcowy. Źródło - węzeł, który nie jest końcem żadnego łuku. Ujście węzeł, który nie jest początkiem żadnego łuku. Łukom i węzłom można przypisać etykiety; bardzo często etykiety sa liczbami, nazywane są wówczas wagami. Zdarzenie (wydarzenie) pewne punkty realizowanego projektu (zadania, przedsięwzięcia), którym przyporządkowuje się określone momenty czasu; np. zatwierdzenie projektu, rozpoczęcie budowy. Czynność (działanie) wykonanie pewnego zadania, na które potrzebny jest pewien okres czasu, ale także określone środki materialne; np. opracowanie projektu, wykonanie wykopu fundamentu. Każda czynność rozpoczyna się pewnym zdarzeniem (zdarzenie początkowe), a kończy innym zdarzeniem (zdarzenie końcowe). stąd: sieć zdarzeń i czynności lub sieć wydarzeń i działań. Siecią nazywamy graficzne przedstawienie planu realizacji projektu (przedsięwzięcia), uwzględniające wzajemne logiczne zależności między czynnościami. Używane oznaczenia: i numer zdarzenia rozpoczynającego czynność, j numer zdarzenia kończącego czynność, A, a ij, <i, j> - symbol czynności rozpoczynającej się zdarzeniem i, a kończącej się zdarzeniem j, t ij (NT) - czas trwania czynności <i, j>, ES - Earliest Start najwcześniejszy moment rozpoczęcia czynności, LS - Latest Start najpóźniejszy moment rozpoczęcia czynności, EF - Earliest Finish najwcześniejszy moment zakończenia czynności, LF - Latest Finish - najpóźniejszy moment zakończenia czynności. 2

3 Najczęściej stosowane opisy przedstawiono na rysunkach i 2. wierzchołek grafu zdarzenie nr zdarzenia A 6 czynność A łuk grafu czas trwania czynności (6) Rys.. Graf zdarzenia i czynności nr zdarzenia () najwcześniejszy możliwy moment rozpoczęcia zdarzenia 5 8 najwcześniejszy możliwy moment zakończenia zdarzenia Rys. 2. Oznaczenie zdarzeń 3

4 ANALIZA SIECIOWA Sieć jest utworzona przez uporządkowany zbiór węzłów (wierzchołków) i łuków. Najczęściej spotykanymi technikami sieciowymi są: AOA activities-on-arcs gdy czynności reprezentowane są za pomocą łuków, a zdarzenia za pomocą węzłów (wierzchołków); jest to sieć czynności (graf czynności). AON activities-on-nodes gdy węzły (wierzchołki) reprezentują czynności, a łuki przedstawiają relacje poprzedzenia; jest to sieć zdarzeń (stanów) lub graf zdarzeń. Graf jest siecią czynności (AOA), jeżeli jest to graf: skierowany - o określonej orientacji połączeń, antysymetryczny złożony z dróg umożliwiających przejście tylko w jednym kierunku: od węzła początkowego do końcowego, spójnym łączącym wszystkie węzły i łuki, acyklicznym pozbawionym obwodu zamkniętego wewnątrz sieci. Budowa sieci AOA:. Kolejne zdarzenia można oznaczać liczbami, 2, i, j n. 2. Pełne nazwy czynności można zastąpić kolejnymi literami alfabetu (np. dużymi A, B, C ) lub symbolem <i, j>, gdzie i jest numerem rozpoczynającym dana czynność, a j numerem zdarzenia kończącego czynność. 3. Sieć zawiera dokładnie jedno zdarzenie początkowe i jedno zdarzenie końcowe. Zdarzenie początkowe nie jest poprzedzone żadna czynnością, a w zdarzeniu końcowym nie rozpoczyna się żadna czynność. Oznacza to, że wszystkie zdarzenia w sieci powinny być początkiem lub końcem co najmniej jednej czynności (z wyjątkiem zdarzenia początkowego i końcowego). 4. Do zdarzenia rozpoczynającego daną czynność powinny dochodzić jedynie te czynności, które bezpośrednio ją poprzedzają. 5. Dwie lub więcej czynności mogą rozpocząć się od tego samego zdarzenia tylko wówczas, gdy maja ten sam zbiór czynności poprzedzających. 6. Dwa dowolnie wybrane węzły może łączyć bezpośrednio co najwyżej jeden łuk. 4

5 7. Każdy wierzchołek otrzymuje odrębny numer, będący liczbą całkowitą (,2, n) taką, że zdarzenie początkowe przyjmuje numer, końcowe numer n oraz jeśli <i, j> oznacza czynność, to i < j, czyli zdarzenie i będące początkiem czynności, powinno mieć numer mniejszy niż zdarzenie j, które kończy te czynność. 8. Należy unikać sytuacji, w której łuki przecinają się ze sobą. A 2 D C 4 B 3 E Rys.. Poprawny wykres sieciowy AOA A C 2 3 B D 4 Rys. 2. Błędny wykres sieciowy AOA Błędy: - sieć zawiera dwa zdarzenia końcowe (2 i 4), - istnieją dwie czynności <A, B>, które maja wspólny początek i koniec, - czynność C nie spełnia warunku i<j (3<2). 5

6 Aby usunąć błędy należy wprowadzić w sieci czynności pozorne fikcyjne (przerywane strzałki - łuki). Czynność fikcyjna nie realizuje jakiegoś konkretnego działania, ale umożliwia uwzględnianie w grafie wymaganych relacji poprzedzania oraz przestrzeganie pozostałych zasad. Na rysunku 3 przedstawiono poprawioną wersję grafu z rysunku 2. Wprowadzono dodatkowe zdarzenie (2) będące końcem czynności A. Zakończenie czynności B występuje w zdarzeniu 3, zlikwidowano zatem bezpośrednie połączenia dwóch czynności A i B. Czynności C i D występują dopiero po zakończeniu czynności A i B. Taką relację następstwa może zagwarantować wprowadzona czynność pozorna p. Wprowadzenie drugiej czynności pozornej p 2 umożliwiło zachowanie w sieci tylko jednego zdarzenia końcowego (czyli takiego, do którego strzałki łuki jedynie dochodzą). A 2 P C 4 P B D Rys. 3. Poprawiony wykres sieciowy AOA (z rys. 2) Algorytm generowania sieci typu AOA: Krok. Ustalić zbiory czynności poprzedzających, ich niepuste części wspólne oraz zbiór tych czynności, które nie wystąpiły w żadnym zbiorze, a następnie przypisać każdemu zbiorowi wierzchołek sieci. Krok 2. Narysować łuki odpowiadające czynnościom tak, aby rozpoczynały się od zbioru poprzedników, a kończyły w najmniejszym zbiorze zawierającym nazwę danej czynności. Czynności bez poprzedników zaczynają się od zbioru pustego. Krok 3. Jeżeli dany niepusty zbiór zawiera się w innym zbiorze, należy wprowadzić czynność pozorną zwróconą w kierunku bardziej licznego zbioru. Krok 4. Jeżeli dwa zbiory połączone są więcej niż jednym łukiem, należy dołączyć czynność fikcyjną. Węzły (wierzchołki) należy ponumerować tak, aby dla każdej czynności zdarzenie 6

7 rozpoczynające miało numer niższy niż zdarzenie kończące. Liczba wszystkich zbiorów wyznacza liczbę zdarzeń. Przykład działania algorytmu: Analiza czasowa umożliwia ustalenie: najwcześniejszego momentu zakończenia realizacji projektu, czynności, których opóźnienie wykonania przesunie moment zakończenia realizacji zadania, czynności, które można rozpocząć później nie opóźniając realizacji projektu, czynności, które można wykonać wolniej, niż planowano, bez opóźnienia momentu realizacji całego projektu. METODY ANALIZY SIECIOWEJ CPM - Critical Path Method - Metoda ścieżki krytycznej Tworzona została w latach w USA w koncernie chemicznym DuPont de Nemours (M.J. Walker) do planowania konserwacji maszyn pracujących w procesach ciągłych. Firma du Pont współpracowała z koncernem elektronicznych maszyn matematycznych Remington Rand Univac (j.e. Kelly). Metoda umożliwia graficzną prezentację kolejnych czynności wykonywanych w ramach projektu z zaznaczeniem szacowanego czasu trwania tych czynności oraz z zachowaniem ich sekwencji. Metodę stosujemy wtedy, gdy wszystkie czynności planowanego projektu są rzeczywiście realizowane, a czasy trwania poszczególnych czynności maja charakter deterministyczny. Ponadto CPM umożliwia odpowiednio wczesne rozpoznanie tzw. wąskich gardeł w procesach realizacji projektu. Ścieżka krytyczna będąca najdłuższą sekwencją czynności niezbędnych do wykonania projektu, wyznacza jednocześnie najkrótszy czas realizacji projektu. Składa się z czynności krytycznych, w przypadku realizacji których nie występuje żaden zapasu czasu. PERT - Program Evaluation and Review Technique Technika oceny i kontroli programu; Stochastyczna metoda planowania i kontroli projektu Metoda opracowana przez Departament Obrony Stanów Zjednoczonych w roku 958 na potrzeby marynarki wojennej USA podczas realizacji projektu budowy rakiet balistycznych Polaris. Projekt dotyczył prac 7

8 badawczych, konstrukcyjnych i produkcyjnych na okres 5 lat i angażował 3000dostawców. W metodzie PERT projekt jest przedstawiany w postaci grafu skierowanego. Podobnie jak w przypadku metody CPM istotą metody PERT jest analiza ścieżki krytycznej. Jednak czasy trwania czynności i momenty zajścia zdarzeń mają charakter zmiennych losowych o określonej funkcji gęstości prawdopodobieństwa. Takie ujęcie czasu trwania zadań składających się na projekt pozwala zastosować metody statystyczne do oceny czasowego ryzyka ukończenia zadań i całości projektu oraz określania prawdopodobieństwa ich ukończenia w z góry zadanym terminie. Parametry rozkładu prawdopodobieństwa czasu zakończenia zadania szacuje się na podstawie trzech zmiennych: optymistycznego czasu zakończenia zadania, najbardziej prawdopodobnego czasu zakończenia zadania, pesymistycznego czasu zakończenia zadania. Na podstawie tych zmiennych wyznacza się czas oczekiwany zakończenia zadania, który jest podstawą analizy ścieżki krytycznej oraz wariancję czasu oczekiwanego, która określa spodziewaną różnicę szacowanego czasu oczekiwanego zakończenia zadania od rzeczywistego czasu trwania czynności. Metoda CPM choć opracowana niezależnie, jest szczególnym przypadkiem metody PERT takim, w którym wszystkie trzy zmienne czasowe poszczególnych zadań są równe. Analiza ścieżki krytycznej - momenty najwcześniejsze, - momenty najpóźniejsze, - czynności krytyczne, - zapasy czasu, - wyznaczenie ścieżki krytycznej, - wyznaczenie czasu realizacji zadania. Analiza czasowo kosztowa - normalny czas trwania czynności, - koszt normalny, - graniczny czas trwania czynności, - koszt graniczny, - wyznaczenie takiego terminu zakończenia projektu, by koszt jego realizacji był minimalny. 8

Zarządzanie czasem projektu

Zarządzanie czasem projektu Zarządzanie czasem projektu Narzędzia i techniki szacowania czasu zadań Opinia ekspertów Szacowanie przez analogię (top-down estimating) stopień wiarygodności = f(podobieństwo zadań), = f(dostęp do wszystkich

Bardziej szczegółowo

Przykład: budowa placu zabaw (metoda ścieżki krytycznej)

Przykład: budowa placu zabaw (metoda ścieżki krytycznej) Przykład: budowa placu zabaw (metoda ścieżki krytycznej) Firma budowlana Z&Z podjęła się zadania wystawienia placu zabaw dla dzieci w terminie nie przekraczającym 20 dni. Listę czynności do wykonania zawiera

Bardziej szczegółowo

Statystyka z elementami badań operacyjnych BADANIA OPERACYJNE - programowanie liniowe -programowanie sieciowe. dr Adam Sojda

Statystyka z elementami badań operacyjnych BADANIA OPERACYJNE - programowanie liniowe -programowanie sieciowe. dr Adam Sojda Statystyka z elementami badań operacyjnych BADANIA OPERACYJNE - programowanie liniowe -programowanie sieciowe dr Adam Sojda Literatura o Kukuła K. (red.): Badania operacyjne w przykładach i zadaniach.

Bardziej szczegółowo

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Politechnika Poznańska Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Joanna Józefowska POZNAŃ 2010/11 Spis treści Rozdział 1. Metoda programowania dynamicznego........... 5

Bardziej szczegółowo

Instytut Konstrukcji i Eksploatacji Maszyn Katedra Logistyki i Systemów Transportowych. Badania operacyjne. Dr inż.

Instytut Konstrukcji i Eksploatacji Maszyn Katedra Logistyki i Systemów Transportowych. Badania operacyjne. Dr inż. Instytut Konstrukcji i Eksploatacji Maszyn Katedra Logistyki i Systemów Transportowych Badania operacyjne Dr inż. Artur KIERZKOWSKI Wprowadzenie Badania operacyjne związana jest ściśle z teorią podejmowania

Bardziej szczegółowo

POLITECHNIKA OPOLSKA

POLITECHNIKA OPOLSKA POLITECHNIKA OPOLSKA WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji Laboratorium Podstaw Inżynierii Jakości Ćwiczenie nr 2 Temat: Schemat blokowy (algorytm) procesu selekcji wymiarowej

Bardziej szczegółowo

Wykład Zarządzanie projektami Zajęcia 3 Zarządzanie czasem w projekcie Zarządzanie kosztami projektu

Wykład Zarządzanie projektami Zajęcia 3 Zarządzanie czasem w projekcie Zarządzanie kosztami projektu Wykład Zarządzanie projektami Zajęcia Zarządzanie czasem w projekcie Zarządzanie kosztami projektu dr Stanisław Gasik s.gasik@vistula.edu.pl www.sybena.pl/uv/014-wyklad-eko-zp-9-pl/wyklad.pdf Zarządzanie

Bardziej szczegółowo

Państwowa Wyższa Szkoła Zawodowa w Nowym Sączu Badania operacyjne w logistyce i zarządzaniu produkcją cz. II

Państwowa Wyższa Szkoła Zawodowa w Nowym Sączu Badania operacyjne w logistyce i zarządzaniu produkcją cz. II Państwowa Wyższa Szkoła Zawodowa w Nowym Sączu Badania operacyjne w logistyce i zarządzaniu produkcją cz. II Andrzej Woźniak Nowy Sącz 2012 Komitet Redakcyjny doc. dr Marek Reichel przewodniczący; prof.

Bardziej szczegółowo

Innowacyjne rozwiązania dla sołectw

Innowacyjne rozwiązania dla sołectw Szkolenie Innowacyjne rozwiązania dla sołectw działanie realizowane w ramach projektu konkursowego WIEŚ NASZĄ SZANSĄ Działanie 7.3 Inicjatywy lokalne na rzecz aktywnej integracji Program Operacyjny Kapitał

Bardziej szczegółowo

Zbudować model matematyczny do poniższych zagadnień (ułożyć program matematyczny ).

Zbudować model matematyczny do poniższych zagadnień (ułożyć program matematyczny ). PROGRAMOWANIE LINIOWE Zbudować model matematyczny do poniższych zagadnień (ułożyć program matematyczny ). Problem. Przedsiębiorstwo przewozowe STAR zajmuje się dostarczaniem lodów do sklepów. Dane dotyczące

Bardziej szczegółowo

Zarządzanie projektów

Zarządzanie projektów Zarządzanie projektów Zarządzanie projektów Część 1 Organizacja Kursu Wykład - interaktywna prezentacja (ok. 95% czasu) Test (ok.. 5% czasu) Opracowanie indywidualne lub grupowe związane z zaliczeniem

Bardziej szczegółowo

WYKORZYSTANIE NARZĘDZIA Solver DO ROZWIĄZYWANIA ZAGADNIEŃ TRANSPORTOWYCH Z KRYTERIUM KOSZTÓW

WYKORZYSTANIE NARZĘDZIA Solver DO ROZWIĄZYWANIA ZAGADNIEŃ TRANSPORTOWYCH Z KRYTERIUM KOSZTÓW WYKORZYSTANIE NARZĘDZIA Solver DO ROZWIĄZYWANIA ZAGADNIEŃ TRANSPORTOWYCH Z KRYTERIUM KOSZTÓW Zadania transportowe Zadania transportowe są najczęściej rozwiązywanymi problemami w praktyce z zakresu optymalizacji

Bardziej szczegółowo

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Przedmiot: Nr ćwiczenia: 3 Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Temat: Programowanie dynamiczne Cel ćwiczenia: Formułowanie i rozwiązywanie problemów optymalizacyjnych

Bardziej szczegółowo

W. Stachowski Zarządzanie projektami 1

W. Stachowski Zarządzanie projektami 1 W. Stachowski Zarządzanie projektami 1 Wstęp Dawno temu ludzie żyli w "beztrosce" wypełniając swój czas prostymi pracami typu polowanie czy uprawa ziemi. W związku z małym stopniem złożoności tych zajęć

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

PODSTAWY LOGISTYKI Literatura

PODSTAWY LOGISTYKI Literatura PODSTAWY LOGISTYKI dr inż. Paweł Gomoliński p. 3.15 A Literatura 1. M. Siudak, Badania operacyjne, OWPW, 1997 2. H. Wagner, Badania operacyjne, PWE, 1980 3. F. Hillier, G. Lieberman, Introduction to Operations

Bardziej szczegółowo

Pyt.1. Podać warunki jakie musi spełniać model matematyczny dla możliwości rozwiązywania metodami programowania liniowego.

Pyt.1. Podać warunki jakie musi spełniać model matematyczny dla możliwości rozwiązywania metodami programowania liniowego. Firma produkująca płatki śniadaniowe rozważa wypuszczenie na rynek nowego produktu. Ma to być mieszanka pszenicy, ryżu i kukurydzy. Normy zawartości przedstawia tabela: Dane Pszenica Ryż Kukurydza Zawartość

Bardziej szczegółowo

Wyższa Szkoła Marketingu i Zarządzania w Lesznie Biznes Plan

Wyższa Szkoła Marketingu i Zarządzania w Lesznie Biznes Plan Wyższa Szkoła Marketingu i Zarządzania w Lesznie Biznes Plan Leszno, wiosna 2011 roku Cel zajęć Ogólne zapoznanie z biznesplanem Zapoznanie z pojęciami związanymi z modelowaniem Pogłębienie znajomości

Bardziej szczegółowo

III. ZMIENNE LOSOWE JEDNOWYMIAROWE

III. ZMIENNE LOSOWE JEDNOWYMIAROWE III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta

Bardziej szczegółowo

Proces Poissona. Proces {N(t), t 0} nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t.

Proces Poissona. Proces {N(t), t 0} nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t. Procesy stochastyczne WYKŁAD 5 Proces Poissona. Proces {N(t), t } nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t. Proces zliczający musi

Bardziej szczegółowo

Wieloetapowe zagadnienia transportowe

Wieloetapowe zagadnienia transportowe Przykład 1 Wieloetapowe zagadnienia transportowe Dwóch dostawców o podaży 40 i 45 dostarcza towar do trzech odbiorców o popycie 18, 17 i 26 za pośrednictwem dwóch punktów pośrednich o pojemnościach równych

Bardziej szczegółowo

O sztuce zarządzania projektami od początku podstawy teoretyczne, encyklopedia problemu. Eliza Wawiernia Kiszkiel Warszawa, dnia 17 marca 2010 r.

O sztuce zarządzania projektami od początku podstawy teoretyczne, encyklopedia problemu. Eliza Wawiernia Kiszkiel Warszawa, dnia 17 marca 2010 r. O sztuce zarządzania projektami od początku podstawy teoretyczne, encyklopedia problemu Eliza Wawiernia Kiszkiel Warszawa, dnia 17 marca 2010 r. Pułapki intuicyjnej metody zarządzania projektami Przekonanie,

Bardziej szczegółowo

Microsoft Project laboratorium zarządzania projektami

Microsoft Project laboratorium zarządzania projektami Microsoft Project laboratorium zarządzania projektami Jędrzej Wieczorkowski Katedra Informatyki Gospodarczej Szkoła Główna Handlowa jedrzej.wieczorkowski@sgh.waw.pl Przykładowa literatura nt. MS Project

Bardziej szczegółowo

Planowanie i sterowanie produkcją cz. 2

Planowanie i sterowanie produkcją cz. 2 Planowanie i sterowanie produkcją cz. Dr inż. Marek Dudek Ul. Gramatyka 0 p. 6798 Podstawowe techniki planowania harmonogramowanie, metody sieciowe, metody symulacyjne. Harmonogramowanie Graficzną prezentacją

Bardziej szczegółowo

Grafy. Jeżeli, to elementy p i q nazywamy końcami krawędzi e. f a b c d e γ f {1} {1,2} {2,3} {2,3} {1,3}

Grafy. Jeżeli, to elementy p i q nazywamy końcami krawędzi e. f a b c d e γ f {1} {1,2} {2,3} {2,3} {1,3} Grafy Definicja grafu nieskierowanego. Grafem nieskierowanym nazywamy uporządkowaną trójkę: gdzie: V- niepusty zbiór wierzchołków grafu G E- zbiór wszystkich krawędzi grafu G - funkcja ze zbioru E w zbiór

Bardziej szczegółowo

Marek Miszczyński KBO UŁ. Wybrane elementy teorii grafów 1

Marek Miszczyński KBO UŁ. Wybrane elementy teorii grafów 1 Marek Miszczyński KBO UŁ. Wybrane elementy teorii grafów 1 G. Wybrane elementy teorii grafów W matematyce teorię grafów klasyfikuje się jako gałąź topologii. Jest ona jednak ściśle związana z algebrą i

Bardziej szczegółowo

Zarządzanie projektem informatycznym, w2

Zarządzanie projektem informatycznym, w2 Planowanie projektów informatycznych Zarządzanie projektem informatycznym, w2 walery.suslow@ie.tu.koszalin.pl Cykl życia projektu Ocena Inicjacja Realizacja Identyfikacja Planowanie Zanim zacznie się budować

Bardziej szczegółowo

Ekonometria - ćwiczenia 10

Ekonometria - ćwiczenia 10 Ekonometria - ćwiczenia 10 Mateusz Myśliwski Zakład Ekonometrii Stosowanej Instytut Ekonometrii Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa 14 grudnia 2012 Wprowadzenie Optymalizacja liniowa Na

Bardziej szczegółowo

ANALIZA CZASOWO-KOSZTOWA SIECI CPM-COST

ANALIZA CZASOWO-KOSZTOWA SIECI CPM-COST ANALIZA CZASOWO-KOSZTOWA SIECI CPM-COST Maciej Patan Uniwersytet Zielonogórski WPROWADZENIE W metodach CPM i PERT zwraca się uwagę jedynie na analizę ilościowa Równie ważne zagadnienie aspekt ekonomiczny

Bardziej szczegółowo

Treść zajęć. Wprowadzenie w treść studiów, przedstawienie prowadzącego i zapoznanie się grupy Prezentacja sylabusu modułu, jego celów i

Treść zajęć. Wprowadzenie w treść studiów, przedstawienie prowadzącego i zapoznanie się grupy Prezentacja sylabusu modułu, jego celów i PROGRAM SZCZEGÓLOWY I. Wstęp do zarządzania projektami. Wprowadzenie w treść studiów, przedstawienie prowadzącego i zapoznanie się grupy Prezentacja sylabusu modułu, jego celów i.. Pojęcie projektu oraz

Bardziej szczegółowo

Algorytmy genetyczne

Algorytmy genetyczne Algorytmy genetyczne Motto: Zamiast pracowicie poszukiwać najlepszego rozwiązania problemu informatycznego lepiej pozwolić, żeby komputer sam sobie to rozwiązanie wyhodował! Algorytmy genetyczne służą

Bardziej szczegółowo

Metody Programowania

Metody Programowania POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI i TECHNIK INFORMACYJNYCH Metody Programowania www.pk.edu.pl/~zk/mp_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 8: Wyszukiwanie

Bardziej szczegółowo

Zarządzanie projektami. Dr hab. inż. Dorota Kuchta, prof. PWr www.ioz.pwr.wroc.pl/pracownicy/kuchta

Zarządzanie projektami. Dr hab. inż. Dorota Kuchta, prof. PWr www.ioz.pwr.wroc.pl/pracownicy/kuchta Zarządzanie projektami Dr hab. inż. Dorota Kuchta, prof. PWr www.ioz.pwr.wroc.pl/pracownicy/kuchta 1 Projekt Wielozadaniowe zlecenie, dla którego określa się wymagania dotyczące kosztów, czasu, zakresu

Bardziej szczegółowo

ZAGADNIENIA TRANSPORTOWE

ZAGADNIENIA TRANSPORTOWE ZAGADNIENIA TRANSPORTOWE Maciej Patan Uniwersytet Zielonogórski WPROWADZENIE opracowano w 1941 r. (F.L. Hitchcock) Jest to problem opracowania planu przewozu pewnego jednorodnego produktu z kilku różnych

Bardziej szczegółowo

Wprowadzenie do narzędzi zarządzania projektami informatycznymi.

Wprowadzenie do narzędzi zarządzania projektami informatycznymi. Wprowadzenie do narzędzi zarządzania projektami informatycznymi. 1. Wykorzystanie darmowych pakietów oprogramowania. 1.1 Zapoznać się z porównaniem dostępnych platform i narzędzi programistycznych wspomagających

Bardziej szczegółowo

Zarządzanie produkcją dr Mariusz Maciejczak. PROGRAMy. Istota sterowania

Zarządzanie produkcją dr Mariusz Maciejczak. PROGRAMy. Istota sterowania Zarządzanie produkcją dr Mariusz Maciejczak PROGRAMy www.maciejczak.pl Istota sterowania W celu umożliwienia sobie realizacji złożonych celów, każda organizacja tworzy hierarchię planów. Plany różnią się

Bardziej szczegółowo

Adaptacja sterownika PLC do obiektu sterowania. Synteza algorytmu procesu i sterowania metodą GRAFCET i SFC

Adaptacja sterownika PLC do obiektu sterowania. Synteza algorytmu procesu i sterowania metodą GRAFCET i SFC Adaptacja sterownika PLC do obiektu sterowania. Synteza algorytmu procesu i sterowania metodą GRAFCET i SFC Proces technologiczny (etap procesu produkcyjnego/przemysłowego) podstawa współczesnych systemów

Bardziej szczegółowo

Raport z projektu realizowanego w ramach VII grupy problemowej

Raport z projektu realizowanego w ramach VII grupy problemowej Raport z projektu realizowanego w ramach VII grupy problemowej Tematyka: Zarządzanie projektami informatycznymi, wdrażanie oprogramowania dla biznesu Problem: Opracowanie metod postępowania przy realizacji

Bardziej szczegółowo

Metody przeszukiwania

Metody przeszukiwania Metody przeszukiwania Co to jest przeszukiwanie Przeszukiwanie polega na odnajdywaniu rozwiązania w dyskretnej przestrzeni rozwiązao. Zwykle przeszukiwanie polega na znalezieniu określonego rozwiązania

Bardziej szczegółowo

INFRASTRUKTURA I EKOLOGIA TERENÓW WIEJSKICH 4 INFRASTRUCTURE AND ECOLOGY OF RURAL AREAS

INFRASTRUKTURA I EKOLOGIA TERENÓW WIEJSKICH 4 INFRASTRUCTURE AND ECOLOGY OF RURAL AREAS POLSKA AKADEMIA NAUK Oddział w Krakowie KOMISJA TECHNICZNEJ INFRASTRUKTURY WSI POLISH ACADEMY OF SCIENCES Cracow Branch COMMISSION OF TECHNICAL RURAL INFRASTRUCTURE INFRASTRUKTURA I EKOLOGIA TERENÓW WIEJSKICH

Bardziej szczegółowo

Algorytm. Słowo algorytm pochodzi od perskiego matematyka Mohammed ibn Musa al-kowarizimi (Algorismus - łacina) z IX w. ne.

Algorytm. Słowo algorytm pochodzi od perskiego matematyka Mohammed ibn Musa al-kowarizimi (Algorismus - łacina) z IX w. ne. Algorytm znaczenie cybernetyczne Jest to dokładny przepis wykonania w określonym porządku skończonej liczby operacji, pozwalający na rozwiązanie zbliżonych do siebie klas problemów. znaczenie matematyczne

Bardziej szczegółowo

Zarządzanie projektami

Zarządzanie projektami Zarządzanie projektami Dorota Kuchta www.ioz.pwr.wroc.pl/pracownicy/kuchta/dydaktyka.htm Projekt Ma jasny cel Unikatowy zdefiniowany koniec Angażuje zasoby ludzkie Procesy zarządzani projektem Zarządzanie

Bardziej szczegółowo

KONSPEKTY LEKCJI. do przedmiotu ekonomika i organizacja przedmiotów

KONSPEKTY LEKCJI. do przedmiotu ekonomika i organizacja przedmiotów KONSPEKTY LEKCJI do przedmiotu ekonomika i organizacja przedmiotów Zestaw konspektów do lekcji z przedmiotu ekonomika i organizacja przedsiębiorstw dotyczących działu Planowanie działalności gospodarczej

Bardziej szczegółowo

ŚCIEŻKA KRYTYCZNA. W ścieżkach krytycznych kolejne zadanie nie może się rozpocząć, dopóki poprzednie się nie zakończy.

ŚCIEŻKA KRYTYCZNA. W ścieżkach krytycznych kolejne zadanie nie może się rozpocząć, dopóki poprzednie się nie zakończy. ŚCIEŻKA KRYTYCZNA Ciąg następujących po sobie zadań w ramach projektu trwających najdłużej ze wszystkich możliwych ciągów, mających taką własność, że opóźnienie któregokolwiek z nich opóźni zakończenie

Bardziej szczegółowo

Krajowa Koncepcja Obsługi Transportowej UEFA EURO 2012 [01.2012]

Krajowa Koncepcja Obsługi Transportowej UEFA EURO 2012 [01.2012] Krajowa Koncepcja Obsługi Transportowej UEFA EURO 2012 [01.2012] Tytuł prezentacji Tytuł prezentacji Tytuł Tytuł prezentacji Miejscowość, DD MM RRRR Miejscowość, DD DD MM RRRR Na jakiej podstawie powstała

Bardziej szczegółowo

Routing. mgr inż. Krzysztof Szałajko

Routing. mgr inż. Krzysztof Szałajko Routing mgr inż. Krzysztof Szałajko Modele odniesienia 7 Aplikacji 6 Prezentacji 5 Sesji 4 Transportowa 3 Sieciowa 2 Łącza danych 1 Fizyczna Aplikacji Transportowa Internetowa Dostępu do sieci Wersja 1.0

Bardziej szczegółowo

WYBÓR PUNKTÓW POMIAROWYCH

WYBÓR PUNKTÓW POMIAROWYCH Scientific Bulletin of Che lm Section of Technical Sciences No. 1/2008 WYBÓR PUNKTÓW POMIAROWYCH WE WSPÓŁRZĘDNOŚCIOWEJ TECHNICE POMIAROWEJ MAREK MAGDZIAK Katedra Technik Wytwarzania i Automatyzacji, Politechnika

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM Na ocenę dopuszczającą uczeń umie : WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM stosować cztery podstawowe działania na liczbach wymiernych, zna kolejność wykonywania działań

Bardziej szczegółowo

ZAGADNIENIA PROGRAMOWANIA LINIOWEGO

ZAGADNIENIA PROGRAMOWANIA LINIOWEGO ZAGADNIENIA PROGRAMOWANIA LINIOWEGO Maciej Patan Uniwersytet Zielonogórski WSTĘP często spotykane w życiu codziennym wybór asortymentu produkcji jakie wyroby i w jakich ilościach powinno produkować przedsiębiorstwo

Bardziej szczegółowo

Proces rozproszony 1

Proces rozproszony 1 Proces rozproszony 1 Plan wykładu Celem wykładu jest zapoznanie słuchacza z podstawowymi pojęciami związanymi z przetwarzaniem rozproszonym. Wykład ten jest kontynuacją wykładu poprzedniego, w którym zdefiniowano

Bardziej szczegółowo

Wykład 1. Systemy przekazywania wiadomości z założeniem bezbłędności działania

Wykład 1. Systemy przekazywania wiadomości z założeniem bezbłędności działania Mariusz Juszczyk 16 marca 2010 Seminarium badawcze Wykład 1. Systemy przekazywania wiadomości z założeniem bezbłędności działania Wstęp Systemy przekazywania wiadomości wymagają wprowadzenia pewnych podstawowych

Bardziej szczegółowo

Odchudzanie magazynu dzięki kontroli przepływów materiałów w systemie Plan de CAMpagne

Odchudzanie magazynu dzięki kontroli przepływów materiałów w systemie Plan de CAMpagne Odchudzanie magazynu dzięki kontroli przepływów materiałów w systemie Plan de CAMpagne Wstęp Jednym z powodów utraty płynności finansowej przedsiębiorstwa jest utrzymywanie zbyt wysokich poziomów zapasów,

Bardziej szczegółowo

Wprowadzenie do analizy korelacji i regresji

Wprowadzenie do analizy korelacji i regresji Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących

Bardziej szczegółowo

WYKRES GANTTA A METODA ŚCIEŻKI KRYTYCZNEJ (CPM)

WYKRES GANTTA A METODA ŚCIEŻKI KRYTYCZNEJ (CPM) OPTIMUM. STUDIA EKONOMICZNE NR 4 (70) 2014 Anna GRZEŚ 1 WYKRES GANTTA A METODA ŚCIEŻKI KRYTYCZNEJ (CPM) Streszczenie O sprawności i skuteczności każdej organizacji decyduje umiejętność zarządzania szeregiem

Bardziej szczegółowo

Konspekt zajęć z informatyki Wojciech Furgała ZPR-S Oława

Konspekt zajęć z informatyki Wojciech Furgała ZPR-S Oława Konspekt zajęć z informatyki Wojciech Furgała ZPR-S Oława 1. Temat: Planowanie optymalnej wycieczki szlakami górskimi (problem Eulera) 2. Czas trwania lekcji: 2 godziny lekcyjne 3. Przygotowanie uczniów:

Bardziej szczegółowo

Akademickie Mistrzostwa Polski w Programowaniu Zespołowym

Akademickie Mistrzostwa Polski w Programowaniu Zespołowym Akademickie Mistrzostwa Polski w Programowaniu Zespołowym Prezentacja rozwiązań zadań 26 października 2014 a d c k e b g j i f h Adwokat Autor zadania: Jakub Łącki Zgłoszenia: 118 z 857 (13%) Zaakceptowane

Bardziej szczegółowo

Informacje o wybranych funkcjach systemu klasy ERP Zarządzanie produkcją

Informacje o wybranych funkcjach systemu klasy ERP Zarządzanie produkcją iscala Informacje o wybranych funkcjach systemu klasy ERP Zarządzanie produkcją Opracował: Grzegorz Kawaler SCALA Certified Consultant III. Zarządzanie produkcją 1. Umieszczanie w bazie informacji o dostawcach

Bardziej szczegółowo

SYLABUS/KARTA PRZEDMIOTU

SYLABUS/KARTA PRZEDMIOTU PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W GŁOGOWIE SYLABUS/KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU Systemy produkcyjne komputerowo zintegrowane. NAZWA JEDNOSTKI PROWADZĄCEJ PRZEDMIOT Instytut Politechniczny 3. STUDIA

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI 5 MAJA 2015 POZIOM PODSTAWOWY. Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI 5 MAJA 2015 POZIOM PODSTAWOWY. Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 0 KOD UZUPEŁNIA ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM

Bardziej szczegółowo

Diagramy związków encji. Laboratorium. Akademia Morska w Gdyni

Diagramy związków encji. Laboratorium. Akademia Morska w Gdyni Akademia Morska w Gdyni Gdynia 2004 1. Podstawowe definicje Baza danych to uporządkowany zbiór danych umożliwiający łatwe przeszukiwanie i aktualizację. System zarządzania bazą danych (DBMS) to oprogramowanie

Bardziej szczegółowo

6. Organizacja dostępu do danych przestrzennych

6. Organizacja dostępu do danych przestrzennych 6. Organizacja dostępu do danych przestrzennych Duża liczba danych przestrzennych oraz ich specyficzny charakter sprawiają, że do sprawnego funkcjonowania systemu, przetwarzania zgromadzonych w nim danych,

Bardziej szczegółowo

Spis treści. Przedmowa... 11

Spis treści. Przedmowa... 11 Spis treści Przedmowa.... 11 Nowe trendy badawcze w ruchu lotniczym. Zagadnienia wstępne... 13 I. Ruch lotniczy jako efekt potrzeby komunikacyjnej pasażera.... 13 II. Nowe środki transportowe w ruchu lotniczym....

Bardziej szczegółowo

Cykl życia oferty w rękach handlowca

Cykl życia oferty w rękach handlowca Cykl życia oferty w rękach handlowca Optymalizacja pracy handlowca Minimalizacja powtarzalnych czynności Szybki dostęp do aktualnych informacji o zleceniu Historia kontaktów handlowych z każdą firmą w

Bardziej szczegółowo

Wykład Zarządzanie projektami Zajęcia 7 Zarządzanie ryzykiem. dr Stanisław Gasik s.gasik@vistula.edu.pl

Wykład Zarządzanie projektami Zajęcia 7 Zarządzanie ryzykiem. dr Stanisław Gasik s.gasik@vistula.edu.pl 04--7 Wykład Zarządzanie projektami Zajęcia 7 Zarządzanie ryzykiem dr Stanisław Gasik s.gasik@vistula.edu.pl www.sybena.pl/uv/04-wyklad-eko-zp-9-pl/wyklad7.pdf Budowa autostrady Możliwe sytuacje Projekt

Bardziej szczegółowo

Fazy przetwarzania zapytania zapytanie SQL. Optymalizacja zapytań. Klasyfikacja technik optymalizacji zapytań. Proces optymalizacji zapytań.

Fazy przetwarzania zapytania zapytanie SQL. Optymalizacja zapytań. Klasyfikacja technik optymalizacji zapytań. Proces optymalizacji zapytań. 1 Fazy przetwarzania zapytanie SQL 2 Optymalizacja zapytań część I dekompozycja optymalizacja generacja kodu wyraŝenie algebry relacji plan wykonania kod katalog systemowy statystyki bazy danych wykonanie

Bardziej szczegółowo

Rozwiązywanie zadań za pomocą pakietu WinQSB

Rozwiązywanie zadań za pomocą pakietu WinQSB Rozwiązywanie zadań za pomocą pakietu WinQSB Pakiet WinQSB (Windows Quantitative System for Business) jest przeznaczony do komputerowego rozwiązywania zadań z zakresu programowania matematycznego. Uruchomienie

Bardziej szczegółowo

The method for selection and combining the means of transportation according to the Euro standards

The method for selection and combining the means of transportation according to the Euro standards Article citation info: TKACZYK S. The method for selection and combining the means of transportation according to the Euro standards. Combustion Engines. 2015, 162(3), 958-962. ISSN 2300-9896. Sławomir

Bardziej szczegółowo

Temat 9. Zabłocone miasto Minimalne drzewa rozpinające

Temat 9. Zabłocone miasto Minimalne drzewa rozpinające Temat 9 Zabłocone miasto Minimalne drzewa rozpinające Streszczenie Nasze życie związane jest z funkcjonowaniem wielu sieci: telefonicznych, energetycznych, komputerowych i drogowych. W przypadku każdej

Bardziej szczegółowo

Algorytmy Równoległe i Rozproszone Część III - Układy kombinacyjne i P-zupełność

Algorytmy Równoległe i Rozproszone Część III - Układy kombinacyjne i P-zupełność Algorytmy Równoległe i Rozproszone Część III - Układy kombinacyjne i P-zupełność Łukasz Kuszner pokój 209, WETI http://www.kaims.pl/ kuszner/ kuszner@eti.pg.gda.pl Oficjalna strona wykładu http://www.kaims.pl/

Bardziej szczegółowo

Badania Marketingowe. Zajęcia 2 Proces badao marketingowych Struktura logiczna projektu badawczego

Badania Marketingowe. Zajęcia 2 Proces badao marketingowych Struktura logiczna projektu badawczego Badania Marketingowe Zajęcia 2 Proces badao marketingowych Struktura logiczna projektu badawczego 1 Proces badao marketingowych Sporządzenie raportu i prezentacja danych Decydent Określenie problemu decyzyjnego

Bardziej szczegółowo

INFORMATYCZNE SYSTEMY ZARZĄDZANIA

INFORMATYCZNE SYSTEMY ZARZĄDZANIA Dyspozycje do sprawozdania z ćwiczeń laboratoryjnych do przedmiotu INFORMATYCZNE SYSTEMY ZARZĄDZANIA Str. 1 Wydział Informatyki i Zarządzania Wrocław, dnia 24/02/2014 r. Dyspozycje do sprawozdania z ćwiczeń

Bardziej szczegółowo

PKP Polskie Linie Kolejowe S.A.

PKP Polskie Linie Kolejowe S.A. Zarządca narodowej sieci linii kolejowych PKP Polskie Linie Kolejowe S.A. www.plk-sa.pl Warszawa, 22 marca 2013 r. Główne wyzwania kształtowania systemu opłat za korzystanie z linii kolejowych Zmiany w

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA Zadanie 0.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 0 4 p k 1/3 1/6 1/ obliczyć EX, D X. (odp. 4/3;

Bardziej szczegółowo

Problemy z ograniczeniami

Problemy z ograniczeniami Problemy z ograniczeniami 1 2 Dlaczego zadania z ograniczeniami Wiele praktycznych problemów to problemy z ograniczeniami. Problemy trudne obliczeniowo (np-trudne) to prawie zawsze problemy z ograniczeniami.

Bardziej szczegółowo

GPS NAVIGATION SYSTEM QUICK START USER MANUAL

GPS NAVIGATION SYSTEM QUICK START USER MANUAL GPS NAVIGATION SYSTEM QUICK START USER MANUAL POLISH Rozpoczynanie pracy Gdy uruchamiasz program nawigacyjny po raz pierwszy, zostanie automatycznie uruchomiony początkowy proces konfiguracji. Wykonaj

Bardziej szczegółowo

Planowanie projektów - ćwiczenia. Opracowała: Nicoletta Baskiewicz Politechnika Częstochowska Wydział Zarządzania

Planowanie projektów - ćwiczenia. Opracowała: Nicoletta Baskiewicz Politechnika Częstochowska Wydział Zarządzania Planowanie projektów - ćwiczenia Opracowała: Nicoletta Baskiewicz Politechnika Częstochowska Wydział Zarządzania W trakcie realizacji ćwiczeń w ramach przedmiotu PLANOWANIE PROJEKTÓW zgodnie z założeniami

Bardziej szczegółowo

Matura próbna 2014 z matematyki-poziom podstawowy

Matura próbna 2014 z matematyki-poziom podstawowy Matura próbna 2014 z matematyki-poziom podstawowy Klucz odpowiedzi do zadań zamkniętych zad 1 2 3 4 5 6 7 8 9 10 11 12 odp A C C C A A B B C B D A 13 14 15 16 17 18 19 20 21 22 23 24 25 C C A B A D C B

Bardziej szczegółowo

VII Olimpiada Matematyczna Gimnazjalistów

VII Olimpiada Matematyczna Gimnazjalistów VII Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa, test próbny www.omg.edu.pl (wrzesień 2011 r.) Rozwiązania zadań testowych 1. Liczba krawędzi pewnego ostrosłupa jest o

Bardziej szczegółowo

Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami:

Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami: Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami: Pr(X 1 = 0) = 6/10, Pr(X 1 = 1) = 1/10, i gęstością: f(x) = 3/10 na przedziale (0, 1). Wobec tego Pr(X 1 + X 2 5/3) wynosi:

Bardziej szczegółowo

Porównanie wydajności CUDA i OpenCL na przykładzie równoległego algorytmu wyznaczania wartości funkcji celu dla problemu gniazdowego

Porównanie wydajności CUDA i OpenCL na przykładzie równoległego algorytmu wyznaczania wartości funkcji celu dla problemu gniazdowego Porównanie wydajności CUDA i OpenCL na przykładzie równoległego algorytmu wyznaczania wartości funkcji celu dla problemu gniazdowego Mariusz Uchroński 3 grudnia 2010 Plan prezentacji 1. Wprowadzenie 2.

Bardziej szczegółowo

Użytkownik ma możliwość rejestrowania następujących rodzajów przewozów w systemie ANTEEO SPEDYCJA:

Użytkownik ma możliwość rejestrowania następujących rodzajów przewozów w systemie ANTEEO SPEDYCJA: System ANTEEO SPEDYCJA wspomaga organizację różnego rodzaju przewozów zarówno w spedycji drogowej, lotniczej oraz w morskiej. Umożliwia dokładne odwzorowanie procesów logistycznych zachodzących w danej

Bardziej szczegółowo

Zaawansowane planowanie produkcji na bazie wykresu Gantt a

Zaawansowane planowanie produkcji na bazie wykresu Gantt a Zaawansowane planowanie produkcji na bazie wykresu Gantt a W dobie ciągłego rozwoju narzędzi informatycznych, wspierających zarządzanie przedsiębiorstwem produkcyjnym, ewoluują również systemy klasy ERP.

Bardziej szczegółowo

5. WARUNKI REALIZACJI ZADAŃ LOGISTYCZNYCH

5. WARUNKI REALIZACJI ZADAŃ LOGISTYCZNYCH 5. WARUNKI REALIZACJI ZADAŃ LOGISTYCZNYCH Praktyka działania udowadnia, że funkcjonowanie organizacji w sektorze publicznym, jak i poza nim, oparte jest o jej zasoby. Logistyka organizacji wykorzystuje

Bardziej szczegółowo

S1A_W06 makroekonomii niezbędną do rozumienia podstawowych procesów

S1A_W06 makroekonomii niezbędną do rozumienia podstawowych procesów Kierunkowe efekty kształcenia Kierunek: zarządzanie i inŝynieria produkcji Obszar kształcenia: nauki rolnicze, leśne i weterynaryjne, nauki techniczne oraz społeczne Poziom kształcenia: studia pierwszego

Bardziej szczegółowo

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej.

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej. Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE Rozwiązania Zadanie 1 Wartość bezwzględna jest odległością na osi liczbowej. Stop Istnieje wzajemnie jednoznaczne przyporządkowanie między punktami

Bardziej szczegółowo

ĆWICZENIE NR 1 WPROWADZENIE DO INFORMATYKI

ĆWICZENIE NR 1 WPROWADZENIE DO INFORMATYKI J.NAWROCKI, M. ANTCZAK, H. ĆWIEK, W. FROHMBERG, A. HOFFA, M. KIERZYNKA, S.WĄSIK ĆWICZENIE NR 1 WPROWADZENIE DO INFORMATYKI ZAD. 1. Narysowad graf nieskierowany. Zmodyfikowad go w taki sposób, aby stał

Bardziej szczegółowo

Grupy pytań na egzamin magisterski na kierunku Informatyka (dla studentów dziennych studiów II stopnia)

Grupy pytań na egzamin magisterski na kierunku Informatyka (dla studentów dziennych studiów II stopnia) Grupy pytań na egzamin magisterski na kierunku Informatyka (dla studentów dziennych studiów II stopnia) WERSJA WSTĘPNA, BRAK PRZYKŁADOWYCH PYTAŃ DLA NIEKTÓRYCH PRZEDMIOTÓW Należy wybrać trzy dowolne przedmioty.

Bardziej szczegółowo

Gospodarcze zastosowania algorytmów genetycznych

Gospodarcze zastosowania algorytmów genetycznych Marta Woźniak Gospodarcze zastosowania algorytmów genetycznych 1. Wstęp Ekonometria jako nauka zajmująca się ustalaniem za pomocą metod statystycznych ilościowych prawidłowości zachodzących w życiu gospodarczym

Bardziej szczegółowo

MODELOWANIE RUCHU AUTOBUSÓW NA WSPÓLNYM PASIE AUTOBUSOWO-TRAMWAJOWYM

MODELOWANIE RUCHU AUTOBUSÓW NA WSPÓLNYM PASIE AUTOBUSOWO-TRAMWAJOWYM mgr inż. Tomasz Dybicz MODELOWANIE RUCHU AUTOBUSÓW NA WSPÓLNYM PASIE AUTOBUSOWO-TRAMWAJOWYM W Instytucie Dróg i Mostów Politechniki Warszawskiej prowadzone są prace badawcze nad zastosowaniem mikroskopowych

Bardziej szczegółowo

Dodatek Solver Teoria Dodatek Solver jest częścią zestawu poleceń czasami zwaną narzędziami analizy typu co-jśli (analiza typu co, jeśli?

Dodatek Solver Teoria Dodatek Solver jest częścią zestawu poleceń czasami zwaną narzędziami analizy typu co-jśli (analiza typu co, jeśli? Dodatek Solver Teoria Dodatek Solver jest częścią zestawu poleceń czasami zwaną narzędziami analizy typu co-jśli (analiza typu co, jeśli? : Proces zmieniania wartości w komórkach w celu sprawdzenia, jak

Bardziej szczegółowo

Badania operacyjne. Dr hab. inż. Adam Kasperski, prof. PWr. Pokój 509, budynek B4 adam.kasperski@pwr.edu.pl Materiały do zajęć dostępne na stronie:

Badania operacyjne. Dr hab. inż. Adam Kasperski, prof. PWr. Pokój 509, budynek B4 adam.kasperski@pwr.edu.pl Materiały do zajęć dostępne na stronie: Badania operacyjne Dr hab. inż. Adam Kasperski, prof. PWr. Pokój 509, budynek B4 adam.kasperski@pwr.edu.pl Materiały do zajęć dostępne na stronie: www.ioz.pwr.wroc.pl/pracownicy/kasperski Forma zaliczenia

Bardziej szczegółowo

Grafika komputerowa Wykład 6 Krzywe, powierzchnie, bryły

Grafika komputerowa Wykład 6 Krzywe, powierzchnie, bryły Grafika komputerowa Wykład 6 Krzywe, powierzchnie, bryły Instytut Informatyki i Automatyki Państwowa Wyższa Szkoła Informatyki i Przedsiębiorczości w Łomży 2 0 0 9 Spis treści Spis treści 1 2 obiektów

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 2015 WPISUJE ZDAJĄCY KOD PESEL miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY PRZYKŁADOWY

Bardziej szczegółowo

Wykład 9: Markov Chain Monte Carlo

Wykład 9: Markov Chain Monte Carlo RAP 412 17.12.2008 Wykład 9: Markov Chain Monte Carlo Wykładowca: Andrzej Ruciński Pisarz: Ewelina Rychlińska i Wojciech Wawrzyniak Wstęp W tej części wykładu zajmiemy się zastosowaniami łańcuchów Markowa

Bardziej szczegółowo

Egzaminy i inne zadania. Semestr II.

Egzaminy i inne zadania. Semestr II. Egzaminy i inne zadania. Semestr II. Poniższe zadania są wyborem zadań ze Wstępu do Informatyki z egzaminów jakie przeprowadziłem w ciągu ostatnich lat. Ponadto dołączyłem szereg zadań, które pojawiały

Bardziej szczegółowo

Plan wynikowy. Klasa III Technik pojazdów samochodowych/ Technik urządzeń i systemów energetyki odnawialnej. Kształcenie ogólne w zakresie podstawowym

Plan wynikowy. Klasa III Technik pojazdów samochodowych/ Technik urządzeń i systemów energetyki odnawialnej. Kształcenie ogólne w zakresie podstawowym Oznaczenia: wymagania konieczne, P wymagania podstawowe, R wymagania rozszerzające, D wymagania dopełniające, W wymagania wykraczające. Plan wynikowy lasa III Technik pojazdów samochodowych/ Technik urządzeń

Bardziej szczegółowo

Zadania o numerze 4 z zestawów licencjat 2014.

Zadania o numerze 4 z zestawów licencjat 2014. Zadania o numerze 4 z zestawów licencjat 2014. W nawiasie przy zadaniu jego występowanie w numerze zestawu Spis treści (Z1, Z22, Z43) Definicja granicy ciągu. Obliczyć granicę:... 3 Definicja granicy ciągu...

Bardziej szczegółowo

Ekonometria - ćwiczenia 11

Ekonometria - ćwiczenia 11 Ekonometria - ćwiczenia 11 Mateusz Myśliwski Zakład Ekonometrii Stosowanej Instytut Ekonometrii Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa 21 grudnia 2012 Na poprzednich zajęciach zajmowaliśmy

Bardziej szczegółowo

ZADANIE TRANSPORTOWE I PROBLEM KOMIWOJAŻERA

ZADANIE TRANSPORTOWE I PROBLEM KOMIWOJAŻERA Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 3 ZADANIE TRANSPORTOWE I PROBLEM KOMIWOJAŻERA 3.3. ZADANIA Wykorzystując

Bardziej szczegółowo