Ekonometria Finansowa II EARF. Michał Rubaszek

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Ekonometria Finansowa II EARF. Michał Rubaszek"

Transkrypt

1 Ekonometria Finansowa II EARF Michał Rubaszek 1

2 Cele - Zapoznanie z charakterystykami szeregów finansowych - Omówienie jednowymiarowych metod liczenia VaR - Omówienie wielowymiarowych metod liczenia VaR - Backtesting - Programowanie w pakiecie R - Liczenie VaR jako projekt badawczy 2

3 Literatura 3

4 Spotkanie 1 Ryzyko dla pojedynczego aktywa 4

5 Stopy zwrotu Prosta stopa zwrotu: = + = exp 1 Logarytmiczna stopa zwrotu (=stopa o ciągłej kapitalizacji): = ln + ln = ln (1 + ) 5

6 Stopy zwrotu Stopy proste: Łatwiejsze przy liczeniu stóp zwrotu z portfela Inwestorzy zainteresowani stopami prostymi Stopy logarytmiczne Symetryczność Sumowalność Wygodne dla modelowania ekonometrycznego 6

7 Charakterystyki szeregów finansowych 1. Grupowanie zmienności (volatility clustering) 2. Grube ogony (fat tails) wariancja = ryzyko : jedynie dla rozkładu normalnego 3. Brak autokorelacji stóp zwrotu, = 0 4. Nieliniowe zależności autokorelacyjne brak korelacji niezależność, 0: grupowanie zmienności, 0: efekt dźwigni 7

8 Przykład: EUR/PLN 8

9 Grube ogony: rozkład t-studenta Rozkład t-studenta: - dla = rozkład normalny - dla < 2 brak wariancji (która ogólnie wynosi ) - Ogólnie, rozkład ma momenty stopnia do 1 - Dla cen akcji, zazwyczaj 5 - Jak uzyskać zmienną o rozkładzie t-studenta? 5% wartość krytyczna rozkładu t-studenta dla różnej wartości v t*

10 Grube ogony - testowanie 1. Test Jarque-Bera Porównanie skośności i kurtozy do teoretycznych wartości dla rozkładu normalnego 2. Test Kolmogorova-Smirnova Porównanie teoretycznej i empirycznej dystrybuanty 3. Wykres QQ (quantile-quantile plot) Wykres empirycznych percentyli względem percentyli dla teoretycznego rozkładu 4. Wykres rekursywnych momentów Weryfikacja czy moment k-tego rzędu ma asymptotę [zauważ, że dla rozkładu ( ) istnieją momenty rzędu do -1] 10

11 Metody szacowania wariancji A. Średnia ruchoma (moving average, MA) B. Średnia wykładnicza (exponentially weighted MA, EWMA) C. Zmienność implikowana (implied volatility) D. Modele klasy GARCH E. Modele zmienności stochastycznej (stochastic volatility, SV) 11

12 A. Średnia ruchoma, MA Wariancja liczona jako: Opcja ze średnią: = Opcja bez średniej: = Ważne!!! - Oszacowanie wariancji zależy od wyboru okna estymacji - Wszystkie obserwacje traktujemy jednakowo 12

13 B. Średnia wykładnicza, EWMA Zaproponowane przez JP Morgan w 1993, znane równiez jako RiskMetrics Wariancja jako średnia ważona przeszłych obserwacji: = Można to sprowadzić do postaci IGARCH(1,1): = + W ramach EWMA nie estymujemy, ale przyjmujemy, że =. [dla danych dziennych, kalibracja JP Morgan] 13

14 C. Zmienność implikowana, IV Model Blacka-Scholesa: =,,,, Zmienność implikowana: = (,,,, ) Ale, zależy od wyboru opcji Zmienność dla WIG20 implikowana z cen opcji notowanych na GPW 14

15 D. Modele klasy GARCH Podstawowy model GARCH(1,1): = +, h = + gdzie > 0,, 0. + h 0, h Wariancja bezwarunkowa: Rozszerzenia: rozkład bezwarunkowy jest -Studenta wpływ na h zależy od znaku : GJR-GARCH, EGARCH h ma wpływ na : GARCH-in-mean 15

16 E. Modele SV Podstawowy model SV: = +, 0, h h = exp + ln h + (0, ) gdzie > 0, 0. Ważne!!! - W modelu GARCH h w momencie jest deterministyczne, a w modelu SV stochastyczne - Model SV trudniejszy do oszacowania niż model GARCH 16

17 Ryzyko Wartość oczekiwana i wariancja to nie wszystko Trzy szeregi z ( ) = 0 i ( ) = 1 (za Danielson, 2012) 17

18 Ryzyko Value at Risk i Expected Shortfall Wariancja pozwala mierzyć ryzyko gdy rozkład stóp zwrotu jest normalny W innym przypadku lepsze są inne miary: Wartość zagrożona (Value at Risk, VaR) = Oczekiwana strata (Expected shortfall, ES) lub prościej = = ( ) lub trudniej ES = Wartości dla rozkładu normalnego = 18

19 Ryzyko Value at Risk i Expected Shortfall 19

20 Ryzyko Value at Risk i Expected Shortfall Etapy liczenia VaR/ES a. Ustalenie p b. Ustalenie horyzontu (square root method) c. Ustalenie okna estymacji/kalibracji oraz częstotliwości danych d. Wybór modelu e. Metoda weryfikacji modelu Basel ii/iii: Basel iv: miarą ryzyka jest VaR plany zamiany miary ryzyka na ES 20

21 Ryzyko Value at Risk i Expected Shortfall Quantitative standards Basel II a. 99th percentile VaR must be computed on a daily basis b. In calculating VaR the minimum holding period will be ten trading days. Banks may use VaR numbers calculated according to shorter holding periods scaled up to ten days by the square root of time c. The choice of sample period for calculating VaR is constrained to a minimum length of one year. d. banks will be free to use models based, for example, on variance-covariance matrices, historical simulations, or Monte Carlo simulations e. The multiplication factor will be set by individual supervisory authorities on the basis of their assessment of the quality of the bank s risk management system, subject to an absolute minimum of 3. Banks will be required to add to this factor a plus directly related to the ex-post performance of the model, thereby introducing a builtin positive incentive to maintain the predictive quality of the model. The plus will range from 0 to 1 based on the outcome of so-called backtesting. 21

22 Metody szacowania VaR/ES A. Modele nieparametryczne B. Modele parametryczne C. Symulacje Monte-Carlo 22

23 A. Modele nieparametryczne Symulacja historyczna - Zakładamy, że rozkład stóp zwrotu w przeszłości dobrze przybliża rozkład stóp w przyszłości. - Porządkujemy stopy zwrotu od najmniejszej do największej: < - Wartość VaR( ) ustalana na podstawie empirycznego rozkład z ostatnich obserwacji, tj. bierzemy = ( )-tą stopę ( ) = - Wartość ( ) liczona jako średnia stopa zwrotu dla stóp mniejszych niż ( ) = 1 23

24 A. Modele nieparametryczne Symulacja historyczna + Nie potrzebujemy założeń odnoście DGP - Wartości VaR / ES zależą od wyboru - Problemy w przypadku zmian strukturalnych [np. jeżeli panują warunki podwyższonej niepewności] 24

25 B. Modele parametryczne - Poszukujemy postaci rozkładu gęstości stóp zwrotu w przyszłości - Znając ten rozkład, możemy analitycznie obliczyć VaR i ES = oraz ( ) = - Możemy wykorzystać proste modele (mean-variance, rozkład normalny) - Lub bardziej zaawansowane (EWMA, GARCH, SV) - Jak liczyć zmienność dla dalszych horyzontów? - zasada kciuka, tj. Squared root of time - metody Monte Carlo 25

26 C. Symulacje Monte Carlo - Załóżmy, ze znamy model opisujący DGP ale nie potrafimy wyprowadzić analitycznej postaci rozkładu - Aby obliczyć VaR(p) oraz ES(p) możemy wykorzystać metody Monte Carlo. W tym celu: 1. Generujemy sztucznych, przyszłych stóp zwrotu dla = 1,2,, 2. Porządkujemy te stopy od najmniejszej do największej 3. Dla = ( ) liczymy : = oraz = 26

27 Zadanie domowe, spotkanie 1 1. Wybierz surowiec 2. Oblicz VaR i ES na kolejny dzień wykorzystując 7 metod omówionych na wykładzie (inwestycja warta 1mln USD). Przedstaw wyniki obliczeń w tabeli 3. Oblicz VaR i ES dla horyzontu od 1 to 25 dla 2 metod (rozkład normalny, zasada square root of time oraz symulacje MC z modelem GARCH) 4. Stwórz wykres dla (VaR/ES vs horyzont prognozy) dla dwóch metod 5. Omów uzyskane wyniki 27

MODELOWANIE POLSKIEJ GOSPODARKI Z PAKIETEM R Michał Rubaszek

MODELOWANIE POLSKIEJ GOSPODARKI Z PAKIETEM R Michał Rubaszek Tytuł: Autor: MODELOWANIE POLSKIEJ GOSPODARKI Z PAKIETEM R Michał Rubaszek Wstęp Książka "Modelowanie polskiej gospodarki z pakietem R" powstała na bazie materiałów, które wykorzystywałem przez ostatnie

Bardziej szczegółowo

Krzysztof Piontek MODELOWANIE I PROGNOZOWANIE ZMIENNOŚCI INSTRUMENTÓW FINANSOWYCH

Krzysztof Piontek MODELOWANIE I PROGNOZOWANIE ZMIENNOŚCI INSTRUMENTÓW FINANSOWYCH Akademia Ekonomiczna im. Oskara Langego we Wrocławiu Wydział Zarządzania i Informatyki Krzysztof Piontek MODELOWANIE I PROGNOZOWANIE ZMIENNOŚCI INSTRUMENTÓW FINANSOWYCH rozprawa doktorska Promotor: prof.

Bardziej szczegółowo

Spis treści 3 SPIS TREŚCI

Spis treści 3 SPIS TREŚCI Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

Raport i dokumentacja Obliczanie Value-at-Risk portfela metodą Monte Carlo

Raport i dokumentacja Obliczanie Value-at-Risk portfela metodą Monte Carlo Raport i dokumentacja Obliczanie Value-at-Risk portfela metodą Monte Carlo 1. Opis problemu Celem pracy jest policzenie jednodniowej wartości narażonej na ryzyko (Value-at- Risk) portfela składającego

Bardziej szczegółowo

MODELOWANIE ZMIENNOŚCI I RYZYKA INWESTYCJI W ZŁOTO. Celina Otolińska

MODELOWANIE ZMIENNOŚCI I RYZYKA INWESTYCJI W ZŁOTO. Celina Otolińska MODELOWANIE ZMIENNOŚCI I RYZYKA INWESTYCJI W ZŁOTO Celina Otolińska PLAN: 1. Rynek złota-krótka informacja. 2. Wartość zagrożona i dlaczego ona. 3. Badany szereg czasowy oraz jego własności. 4. Modele

Bardziej szczegółowo

Wykorzystanie funkcji powiązań do pomiaru ryzyka rynkowego. Katarzyna Kuziak

Wykorzystanie funkcji powiązań do pomiaru ryzyka rynkowego. Katarzyna Kuziak Wykorzystanie funkcji powiązań do pomiaru ryzyka rynkowego Katarzyna Kuziak Cel: łączenie różnych rodzajów ryzyka rynkowego za pomocą wielowymiarowej funkcji powiązań 2 Ryzyko rynkowe W pomiarze ryzyka

Bardziej szczegółowo

... prognozowanie nie jest celem samym w sobie a jedynie narzędziem do celu...

... prognozowanie nie jest celem samym w sobie a jedynie narzędziem do celu... 4 Prognozowanie historyczne Prognozowanie - przewidywanie przyszłych zdarzeń w oparciu dane - podstawowy element w podejmowaniu decyzji... prognozowanie nie jest celem samym w sobie a jedynie narzędziem

Bardziej szczegółowo

VaR Value atrisk(var) co to jest? Inne nazwy: Wartość zagrożona Wartość narażona na ryzyko

VaR Value atrisk(var) co to jest? Inne nazwy: Wartość zagrożona Wartość narażona na ryzyko VaR 11 Value atrisk(var) co to jest? Inne nazwy: Wartość zagrożona Wartość narażona na ryzyko Popularna miara ryzyka Co może mieć negatywne skutki z punktu widzenia ryzyka systemowego Popularność wspierana

Bardziej szczegółowo

ANALIZA STATYSTYCZNA WYNIKÓW BADAŃ

ANALIZA STATYSTYCZNA WYNIKÓW BADAŃ ANALIZA STATYSTYCZNA WYNIKÓW BADAŃ Dopasowanie rozkładów Dopasowanie rozkładów- ogólny cel Porównanie średnich dwóch zmiennych 2 zmienne posiadają rozkład normalny -> test parametryczny (t- studenta) 2

Bardziej szczegółowo

Wycena papierów wartościowych - instrumenty pochodne

Wycena papierów wartościowych - instrumenty pochodne Matematyka finansowa - 8 Wycena papierów wartościowych - instrumenty pochodne W ujęciu probabilistycznym cena akcji w momencie t jest zmienną losową P t o pewnym (zwykle nieznanym) rozkładzie prawdopodobieństwa,

Bardziej szczegółowo

Spis treści. Ze świata biznesu... 13. Przedmowa do wydania polskiego... 15. Wstęp... 19

Spis treści. Ze świata biznesu... 13. Przedmowa do wydania polskiego... 15. Wstęp... 19 Spis treści Ze świata biznesu............................................................ 13 Przedmowa do wydania polskiego.............................................. 15 Wstęp.......................................................................

Bardziej szczegółowo

Matematyka finansowa i ubezpieczeniowa - 8 Wycena papierów wartościowych

Matematyka finansowa i ubezpieczeniowa - 8 Wycena papierów wartościowych Matematyka finansowa i ubezpieczeniowa - 8 Wycena papierów wartościowych W ujęciu probabilistycznym cena akcji w momencie t jest zmienną losową P t o pewnym (zwykle nieznanym) rozkładzie prawdopodobieństwa,

Bardziej szczegółowo

RYZYKO INWESTYCJI W SPÓŁKI GIEŁDOWE SEKTORA ENERGETYCZNEGO

RYZYKO INWESTYCJI W SPÓŁKI GIEŁDOWE SEKTORA ENERGETYCZNEGO Alicja Ganczarek-Gamrot Uniwersytet Ekonomiczny w Katowicach RYZYKO INWESTYCJI W SPÓŁKI GIEŁDOWE SEKTORA ENERGETYCZNEGO Wprowadzenie Liberalizacja polskiego rynku energii elektrycznej wpłynęła na rozwój

Bardziej szczegółowo

Finansowe szeregi czasowe

Finansowe szeregi czasowe 24 kwietnia 2009 Modelem szeregu czasowego jest proces stochastyczny (X t ) t Z, czyli rodzina zmiennych losowych, indeksowanych liczbami całkowitymi i zdefiniowanych na pewnej przestrzeni probabilistycznej

Bardziej szczegółowo

Wstęp do analitycznych i numerycznych metod wyceny opcji

Wstęp do analitycznych i numerycznych metod wyceny opcji Wstęp do analitycznych i numerycznych metod wyceny opcji Jan Palczewski Wydział Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski Warszawa, 16 maja 2008 Jan Palczewski Wycena opcji Warszawa, 2008

Bardziej szczegółowo

Krzywa dochodowości. termin. SGH Rynki Finansowe

Krzywa dochodowości. termin. SGH Rynki Finansowe Wykład Futures na obligacje Value at Risk % Krzywa dochodowości termin SGH Rynki Finansowe 2015 1 Krzywa dochodowości zmiana kształtu % termin Pytanie do Napoleona: O czym wystarczy pamiętać, by wiedzieć

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Modele zmienności w kalkulacjach Value at Risk ocena i dobór modelu

Modele zmienności w kalkulacjach Value at Risk ocena i dobór modelu Dariusz Letkowski * Modele zmienności w kalkulacjach Value at Risk ocena i dobór modelu Wstęp Do kwantyfikacji ryzyka służą tzw. miary ryzyka. Najczęściej w praktyce wykorzystywane są [Marcinkowska, 2009,

Bardziej szczegółowo

Wycena equity derivatives notowanych na GPW w obliczu wysokiego ryzyka dywidendy

Wycena equity derivatives notowanych na GPW w obliczu wysokiego ryzyka dywidendy Instrumenty pochodne 2014 Wycena equity derivatives notowanych na GPW w obliczu wysokiego ryzyka dywidendy Jerzy Dzieża, WMS, AGH Kraków 28 maja 2014 (Instrumenty pochodne 2014 ) Wycena equity derivatives

Bardziej szczegółowo

Metody oceny ryzyka operacyjnego

Metody oceny ryzyka operacyjnego Instytut Matematyki i Informatyki Wrocław, 10 VII 2009 Bazylejski Komitet Nadzoru Bankowego Umowa Kapitałowa - 1988 Opracowanie najlepszych praktyk rynkowych w zakresie zarządzania ryzykiem Nowa Umowa

Bardziej szczegółowo

SGH, Rynki Finansowe, 2015, Anna Chmielewska 1

SGH, Rynki Finansowe, 2015, Anna Chmielewska 1 Wykład 10 Instrumenty pochodne - obligacje KONTRAKTY TERMINOWE NA OBLIGACJE SGH, Rynki Finansowe, 2015, Anna Chmielewska 1 Pytanie do Napoleona: O czym wystarczy pamiętać, by wiedzieć jak funkcjonuje rynek

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

Identyfikacja i pomiar ryzyka pierwszy krok w zarządzaniu ryzykiem.

Identyfikacja i pomiar ryzyka pierwszy krok w zarządzaniu ryzykiem. Identyfikacja i pomiar ryzyka pierwszy krok w zarządzaniu ryzykiem. Andrzej Podszywałow Własność przemysłowa w innowacyjnej gospodarce. Zarządzanie ryzykiem, strategia zarządzania własnością intelektualną

Bardziej szczegółowo

K wartość kapitału zaangażowanego w proces produkcji, w tys. jp.

K wartość kapitału zaangażowanego w proces produkcji, w tys. jp. Sprawdzian 2. Zadanie 1. Za pomocą KMNK oszacowano następującą funkcję produkcji: Gdzie: P wartość produkcji, w tys. jp (jednostek pieniężnych) K wartość kapitału zaangażowanego w proces produkcji, w tys.

Bardziej szczegółowo

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski Narzędzia statystyczne i ekonometryczne Wykład 1 dr Paweł Baranowski Informacje organizacyjne Wydział Ek-Soc, pok. B-109 pawel@baranowski.edu.pl Strona: baranowski.edu.pl (w tym materiały) Konsultacje:

Bardziej szczegółowo

Stanisław Jędrusik, Andrzej Paliński, Wojciech Chmiel, Piotr Kadłuczka Testowanie wsteczne modeli wartości narażonej na stratę

Stanisław Jędrusik, Andrzej Paliński, Wojciech Chmiel, Piotr Kadłuczka Testowanie wsteczne modeli wartości narażonej na stratę Stanisław Jędrusik, Andrzej Paliński, Wojciech Chmiel, Piotr Kadłuczka Testowanie wsteczne modeli wartości narażonej na stratę Managerial Economics 1, 175-182 2007 Ekonomia Menedżerska 2007, nr 1, s. 175

Bardziej szczegółowo

O wyborze metody estymacji wartości zagrożonej na przykładzie portfela narażonego na ryzyko zmian kursów USD/PLN i EUR/PLN *

O wyborze metody estymacji wartości zagrożonej na przykładzie portfela narażonego na ryzyko zmian kursów USD/PLN i EUR/PLN * 393 Zeszyty Naukowe Wyższej Szkoły Bankowej we Wrocławiu Nr 2(34)/2013 Szkoła Główna Handlowa w Warszawie O wyborze metody estymacji wartości zagrożonej na przykładzie portfela narażonego na ryzyko zmian

Bardziej szczegółowo

Analiza zdarzeń Event studies

Analiza zdarzeń Event studies Analiza zdarzeń Event studies Dobromił Serwa akson.sgh.waw.pl/~dserwa/ef.htm Leratura Campbell J., Lo A., MacKinlay A.C.(997) he Econometrics of Financial Markets. Princeton Universy Press, Rozdział 4.

Bardziej szczegółowo

NOWY PROGRAM STUDIÓW 2016/2017 SYLABUS PRZEDMIOTU AUTORSKIEGO: Wprowadzenie do teorii ekonometrii. Część A

NOWY PROGRAM STUDIÓW 2016/2017 SYLABUS PRZEDMIOTU AUTORSKIEGO: Wprowadzenie do teorii ekonometrii. Część A NOWY PROGRAM STUDIÓW 2016/2017 SYLABUS PRZEDMIOTU AUTORSKIEGO: Autor: 1. Dobromił Serwa 2. Tytuł przedmiotu Sygnatura (będzie nadana, po akceptacji przez Senacką Komisję Programową) Wprowadzenie do teorii

Bardziej szczegółowo

A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XXXIX NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZTYT 389 TORUŃ 2009

A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XXXIX NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZTYT 389 TORUŃ 2009 A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XXXIX NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZTYT 389 TORUŃ 2009 Uniwersytet Ekonomiczny w Poznaniu Katedra Matematyki Stosowanej Marcin

Bardziej szczegółowo

Opcje koszykowe a lokaty strukturyzowane - wycena

Opcje koszykowe a lokaty strukturyzowane - wycena Opcje koszykowe a lokaty strukturyzowane - wycena Basket options and structured deposits - pricing Janusz Gajda Promotor: dr hab. inz. Rafał Weron Politechnika Wrocławska Plan prezentacji Cel pracy Wprowadzenie

Bardziej szczegółowo

Inne kryteria tworzenia portfela. Inne kryteria tworzenia portfela. Poziom bezpieczeństwa. Analiza i Zarządzanie Portfelem cz. 3. Dr Katarzyna Kuziak

Inne kryteria tworzenia portfela. Inne kryteria tworzenia portfela. Poziom bezpieczeństwa. Analiza i Zarządzanie Portfelem cz. 3. Dr Katarzyna Kuziak Inne kryteria tworzenia portfela Analiza i Zarządzanie Portfelem cz. 3 Dr Katarzyna Kuziak. Minimalizacja ryzyka przy zadanym dochodzie Portfel efektywny w rozumieniu Markowitza odchylenie standardowe

Bardziej szczegółowo

Zarządzanie ryzykiem. Opracował: Dr inŝ. Tomasz Zieliński

Zarządzanie ryzykiem. Opracował: Dr inŝ. Tomasz Zieliński Zarządzanie ryzykiem Opracował: Dr inŝ. Tomasz Zieliński I. OGÓLNE INFORMACJE O PRZEDMIOCIE Cel przedmiotu: Celem przedmiotu jest zaprezentowanie studentom podstawowych pojęć z zakresu ryzyka w działalności

Bardziej szczegółowo

IV Krakowska Konferencja Matematyki Finansowej

IV Krakowska Konferencja Matematyki Finansowej IV Krakowska Konferencja Matematyki Finansowej dr inż. Bartosz Krysta Członek Zarządu ds. Zarządzania Portfelem Enea Trading Sp. z o.o. Kraków, 18.04.2015 r. Agenda Wycena ryzyka - istota Zniżkowy trend

Bardziej szczegółowo

Value at Risk: pomiar i wykorzystanie w zarządzaniu ryzykiem

Value at Risk: pomiar i wykorzystanie w zarządzaniu ryzykiem http://www.value-at-risk.prv.pl roguzinski@poczta.onet.pl UWAGA!!! Dokument zaindeksowany w bazie www.plagiat.pl WYŻSZA SZKOŁA FINANSÓW I ZARZĄDZANIA W BIAŁYMSTOKU WYDZIAŁ FINANSÓW I INFORMATYKI KIERUNEK:

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE Uniwersytet Mikołaja Kopernika Wydział Nauk Ekonomicznych i Zarządzania Katedra Ekonometrii i Statystyki DYNAMICZNE MODELE EKONOMETRYCZNE Redaktor naukowy Zygmunt Zieliński TORUŃ 2007 Spis treści Wstęp

Bardziej szczegółowo

WYKORZYSTANIE METODY VALUE AT RISK W ESTYMACJI RYZYKA INWESTYCYJNEGO W SPÓŁKI BRANŻY METALURGICZNEJ

WYKORZYSTANIE METODY VALUE AT RISK W ESTYMACJI RYZYKA INWESTYCYJNEGO W SPÓŁKI BRANŻY METALURGICZNEJ WYKORZYSTANIE METODY VALUE AT RISK W ESTYMACJI RYZYKA INWESTYCYJNEGO W SPÓŁKI BRANŻY METALURGICZNEJ Ewa Miłoś 1 Streszczenie Celem opracowania jest analiza zasadności wykorzystania metody Valua at Risk

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez statystycznych

Bardziej szczegółowo

METODY STATYSTYCZNE W BIOLOGII

METODY STATYSTYCZNE W BIOLOGII METODY STATYSTYCZNE W BIOLOGII 1. Wykład wstępny 2. Populacje i próby danych 3. Testowanie hipotez i estymacja parametrów 4. Planowanie eksperymentów biologicznych 5. Najczęściej wykorzystywane testy statystyczne

Bardziej szczegółowo

Wykład 8 Rynek akcji nisza inwestorów indywidualnych Rynek akcji Jeden z filarów rynku kapitałowego (ok 24% wartości i ok 90% PK globalnie) Źródło: http://www.marketwatch.com (dn. 2015-02-12) SGH, Rynki

Bardziej szczegółowo

MODELE LINIOWE. Dr Wioleta Drobik

MODELE LINIOWE. Dr Wioleta Drobik MODELE LINIOWE Dr Wioleta Drobik MODELE LINIOWE Jedna z najstarszych i najpopularniejszych metod modelowania Zależność między zbiorem zmiennych objaśniających, a zmienną ilościową nazywaną zmienną objaśnianą

Bardziej szczegółowo

STATYSTYKA OD PODSTAW Z SYSTEMEM SAS. wersja 9.2 i 9.3. Szkoła Główna Handlowa w Warszawie

STATYSTYKA OD PODSTAW Z SYSTEMEM SAS. wersja 9.2 i 9.3. Szkoła Główna Handlowa w Warszawie STATYSTYKA OD PODSTAW Z SYSTEMEM SAS wersja 9.2 i 9.3 Szkoła Główna Handlowa w Warszawie Spis treści Wprowadzenie... 6 1. Podstawowe informacje o systemie SAS... 9 1.1. Informacje ogólne... 9 1.2. Analityka...

Bardziej szczegółowo

RYZYKO MODELU A MIARY RYZYKA

RYZYKO MODELU A MIARY RYZYKA Krzysztof Jajuga Uniwersytet Ekonomiczny we Wrocławiu RYZYKO MODELU A MIARY RYZYKA. modelu i miary ryzyka wprowadzenie Nie ulega wątpliwości, iż modele matematyczne są często przydatne w analizie zjawisk

Bardziej szczegółowo

KARTA KURSU. (do zastosowania w roku akademickim 2015/16) Kod Punktacja ECTS* 3. Dr hab. Tadeusz Sozański

KARTA KURSU. (do zastosowania w roku akademickim 2015/16) Kod Punktacja ECTS* 3. Dr hab. Tadeusz Sozański KARTA KURSU (do zastosowania w roku akademickim 2015/16) Nazwa Statystyka 2 Nazwa w j. ang. Statistics 2 Kod Punktacja ECTS* 3 Koordynator Dr hab. Tadeusz Sozański (koordynator, konwersatorium) Zespół

Bardziej szczegółowo

R ozkład norm alny Bardzo często używany do modelowania symetrycznych rozkładów zmiennych losowych ciągłych

R ozkład norm alny Bardzo często używany do modelowania symetrycznych rozkładów zmiennych losowych ciągłych R ozkład norm alny Bardzo często używany do modelowania symetrycznych rozkładów zmiennych losowych ciągłych Przykłady: Błąd pomiarowy Wzrost, wydajność Temperatura ciała Zawartość różnych składników we

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych 1.10.2012 r.

Matematyka ubezpieczeń majątkowych 1.10.2012 r. Zadanie. W pewnej populacji każde ryzyko charakteryzuje się trzema parametrami q, b oraz v, o następującym znaczeniu: parametr q to prawdopodobieństwo, że do szkody dojdzie (może zajść co najwyżej jedna

Bardziej szczegółowo

Ekonometria ćwiczenia 3. Prowadzący: Sebastian Czarnota

Ekonometria ćwiczenia 3. Prowadzący: Sebastian Czarnota Ekonometria ćwiczenia 3 Prowadzący: Sebastian Czarnota Strona - niezbędnik http://sebastianczarnota.com/sgh/ Normalność rozkładu składnika losowego Brak normalności rozkładu nie odbija się na jakości otrzymywanych

Bardziej szczegółowo

Podstawy ekonometrii. Opracował: dr hab. Eugeniusz Gatnar prof. WSBiF

Podstawy ekonometrii. Opracował: dr hab. Eugeniusz Gatnar prof. WSBiF Podstawy ekonometrii Opracował: dr hab. Eugeniusz Gatnar prof. WSBiF Cele przedmiotu: I. Ogólne informacje o przedmiocie. - Opanowanie podstaw teoretycznych, poznanie przykładów zastosowań metod modelowania

Bardziej szczegółowo

Tytuł: Zastosowanie metod ilościowych w finansach i ubezpieczeniach. Autorzy: Stefan Forlicz (red.)

Tytuł: Zastosowanie metod ilościowych w finansach i ubezpieczeniach. Autorzy: Stefan Forlicz (red.) Tytuł: Zastosowanie metod ilościowych w finansach i ubezpieczeniach. Autorzy: Stefan Forlicz (red.) Opis: Finanse i ubezpieczenia to te gałęzie nauk ekonomicznych, w których modele formalne stanowią w

Bardziej szczegółowo

Wycena opcji. Dr inż. Bożena Mielczarek

Wycena opcji. Dr inż. Bożena Mielczarek Wycena opcji Dr inż. Bożena Mielczarek Stock Price Wahania ceny akcji Cena jednostki podlega niewielkim wahaniom dziennym (miesięcznym) wykazując jednak stały trend wznoszący. Cena może się doraźnie obniżać,

Bardziej szczegółowo

Symulacyjne metody wyceny opcji amerykańskich

Symulacyjne metody wyceny opcji amerykańskich Metody wyceny Piotr Małecki promotor: dr hab. Rafał Weron Instytut Matematyki i Informatyki Politechniki Wrocławskiej Wrocław, 0 lipca 009 Metody wyceny Drzewko S 0 S t S t S 3 t S t St St 3 S t St St

Bardziej szczegółowo

Podczas zajęć będziemy zajmować się głownie procesami ergodycznymi zdefiniowanymi na przestrzeniach ciągłych.

Podczas zajęć będziemy zajmować się głownie procesami ergodycznymi zdefiniowanymi na przestrzeniach ciągłych. Trochę teorii W celu przeprowadzenia rygorystycznej ekonometrycznej analizy szeregu finansowego będziemy traktowali obserwowany ciąg danych (x 1, x 2,..., x T ) jako realizację pewnego procesu stochastycznego.

Bardziej szczegółowo

Seminarium Metody obliczania przepływów maksymalnych w zlewniach kontrolowanych i niekontrolowanych, RZGW, Kraków 30 IX 2013 r. Metody obliczania przepływów maksymalnych rocznych o określonym prawdopodobieństwie

Bardziej szczegółowo

II Etap egzaminu na Doradcę Inwestycyjnego Maj 2014. Zadanie 2

II Etap egzaminu na Doradcę Inwestycyjnego Maj 2014. Zadanie 2 II Etap egzaminu na Doradcę Inwestycyjnego Maj 2014 Zadanie 2 1/ Analizowane są dwie spółki Alfa i Gamma. Spółka Alfa finansuje swoją działalność nie korzystając z długu, natomiast spółka Gamma finansuje

Bardziej szczegółowo

Analiza Statystyczna

Analiza Statystyczna Lekcja 5. Strona 1 z 12 Analiza Statystyczna Do analizy statystycznej wykorzystać można wbudowany w MS Excel pakiet Analysis Toolpak. Jest on instalowany w programie Excel jako pakiet dodatkowy. Oznacza

Bardziej szczegółowo

Testy nieparametryczne

Testy nieparametryczne Testy nieparametryczne Testy nieparametryczne możemy stosować, gdy nie są spełnione założenia wymagane dla testów parametrycznych. Stosujemy je również, gdy dane można uporządkować według określonych kryteriów

Bardziej szczegółowo

Sterowanie wielkością zamówienia w Excelu - cz. 3

Sterowanie wielkością zamówienia w Excelu - cz. 3 Sterowanie wielkością zamówienia w Excelu - cz. 3 21.06.2005 r. 4. Planowanie eksperymentów symulacyjnych Podczas tego etapu ważne jest określenie typu rozkładu badanej charakterystyki. Dzięki tej informacji

Bardziej szczegółowo

Giełda. Podstawy inwestowania SPIS TREŚCI

Giełda. Podstawy inwestowania SPIS TREŚCI Giełda. Podstawy inwestowania SPIS TREŚCI Zaremba Adam Wprowadzenie Część I. Zanim zaczniesz inwestować Rozdział 1. Jak wybrać dom maklerski? Na co zwracać uwagę? Opłaty i prowizje Oferta kredytowa Oferta

Bardziej szczegółowo

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej 7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej Definicja 1 n-elementowa losowa próba prosta nazywamy ciag n niezależnych zmiennych losowych o jednakowych rozkładach

Bardziej szczegółowo

Rynek opcji walutowych. dr Piotr Mielus

Rynek opcji walutowych. dr Piotr Mielus Rynek opcji walutowych dr Piotr Mielus Rynek walutowy a rynek opcji Geneza rynku opcji walutowych Charakterystyka rynku opcji Specyfika rynku polskiego jako rynku wschodzącego 2 Geneza rynku opcji walutowych

Bardziej szczegółowo

Modelowanie zachowania kursu EURUSD po ogłoszeniu odczytu US Nonfarm Payrolls z wykorzystaniem modeli ARIMA-GARCH

Modelowanie zachowania kursu EURUSD po ogłoszeniu odczytu US Nonfarm Payrolls z wykorzystaniem modeli ARIMA-GARCH Raport 10/2015 Modelowanie zachowania kursu EURUSD po ogłoszeniu odczytu US Nonfarm Payrolls z wykorzystaniem modeli ARIMA-GARCH autor: Michał Osmoła INIME Instytut nauk informatycznych i matematycznych

Bardziej szczegółowo

S t a t y s t y k a, część 3. Michał Żmihorski

S t a t y s t y k a, część 3. Michał Żmihorski S t a t y s t y k a, część 3 Michał Żmihorski Porównanie średnich -test T Założenia: Zmienne ciągłe (masa, temperatura) Dwie grupy (populacje) Rozkład normalny* Równe wariancje (homoscedasticity) w grupach

Bardziej szczegółowo

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1. tel. 44 683 1 55 tel. kom. 64 566 811 e-mail: biuro@wszechwiedza.pl Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: gdzie: y t X t y t = 1 X 1

Bardziej szczegółowo

Wycena opcji w modelu uwzględniającym efekt AR-GARCH

Wycena opcji w modelu uwzględniającym efekt AR-GARCH Krzysztof Piontek Katedra Inwestycji Finansowych i Ubezpieczeń Akademia Ekonomiczna we Wrocławiu Wycena opcji w modelu uwzględniającym efekt AR-GARCH Wprowadzenie U podstaw modelu Blacka, Scholesa i Mertona

Bardziej szczegółowo

Nowe podejście do pomiaru i zabezpieczenia ryzyka

Nowe podejście do pomiaru i zabezpieczenia ryzyka Warsztat Nowe podejście do pomiaru i zabezpieczenia ryzyka 17/18.12.2014 r. Informacje o wartości ryzyka finansowego stanowią podstawę do podejmowania decyzji o reakcji na ryzyko. Ważne jest, aby aktywność

Bardziej szczegółowo

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2014/2015

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2014/2015 Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu Wydział Inżynierii Środowiska obowiązuje studentów rozpoczynających studia w roku akademickim 2014/2015 Kierunek studiów: Inżynieria Środowiska

Bardziej szczegółowo

Budowa sztucznych sieci neuronowych do prognozowania. Przykład jednostek uczestnictwa otwartego funduszu inwestycyjnego

Budowa sztucznych sieci neuronowych do prognozowania. Przykład jednostek uczestnictwa otwartego funduszu inwestycyjnego Budowa sztucznych sieci neuronowych do prognozowania. Przykład jednostek uczestnictwa otwartego funduszu inwestycyjnego Dorota Witkowska Szkoła Główna Gospodarstwa Wiejskiego w Warszawie Wprowadzenie Sztuczne

Bardziej szczegółowo

Wydłużanie wieku emerytalnego w kontekście poprawy wskaźników. Warszawa, 14.05.2012 Arkadiusz Filip

Wydłużanie wieku emerytalnego w kontekście poprawy wskaźników. Warszawa, 14.05.2012 Arkadiusz Filip Wydłużanie wieku emerytalnego w kontekście poprawy wskaźników umieralności w Polsce Warszawa, 14.05.2012 Arkadiusz Filip Plan 1. Wprowadzenie 2. Model Lee-Cartera metoda estymacji poprawy wskaźników umieralności

Bardziej szczegółowo

Matlab, zajęcia 3. Jeszcze jeden przykład metoda eliminacji Gaussa dla macierzy 3 na 3

Matlab, zajęcia 3. Jeszcze jeden przykład metoda eliminacji Gaussa dla macierzy 3 na 3 Matlab, zajęcia 3. Pętle c.d. Przypomnijmy sobie jak działa pętla for Możemy podać normalnie w Matlabie t=cputime; for i=1:20 v(i)=i; e=cputime-t UWAGA: Taka operacja jest bardzo czasochłonna i nieoptymalna

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA Zadanie 0.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 0 4 p k 1/3 1/6 1/ obliczyć EX, D X. (odp. 4/3;

Bardziej szczegółowo

Mirosław Wójciak Akademia Ekonomiczna w Katowicach Aleksandra Wójcicka Akademia Ekonomiczna w Poznaniu

Mirosław Wójciak Akademia Ekonomiczna w Katowicach Aleksandra Wójcicka Akademia Ekonomiczna w Poznaniu DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 2007 w Toruniu Katedra Ekonometrii i Statystyki, Uniwersytet Mikołaja Kopernika w Toruniu Mirosław Wójciak Akademia Ekonomiczna

Bardziej szczegółowo

II ETAP EGZAMINU EGZAMIN PISEMNY

II ETAP EGZAMINU EGZAMIN PISEMNY II ETAP EGZAMINU NA DORADCĘ INWESTYCYJNEGO EGZAMIN PISEMNY 20 maja 2012 r. Warszawa Treść i koncepcja pytań zawartych w teście są przedmiotem praw autorskich i nie mogą być publikowane lub w inny sposób

Bardziej szczegółowo

Weryfikacja hipotez statystycznych za pomocą testów statystycznych

Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów stat. Hipoteza statystyczna Dowolne przypuszczenie co do rozkładu populacji generalnej

Bardziej szczegółowo

Metoda Johansena objaśnienia i przykłady

Metoda Johansena objaśnienia i przykłady Metoda Johansena objaśnienia i przykłady Model wektorowej autoregresji rzędu p, VAR(p), ma postad gdzie oznacza wektor zmiennych endogenicznych modelu. Model VAR jest stabilny, jeżeli dla, tzn. wielomian

Bardziej szczegółowo

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów

Bardziej szczegółowo

Proces inwestowania jest wyrzeczeniem się bieżącej konsumpcji na rzecz przyszłych, lecz niepewnych zysków [Hirschleifer, 1965, s. 509]. W przytoczonej definicji pojawiają się określenia zysku i niepewności,

Bardziej szczegółowo

Opcje walutowe proste. 1. Czym sa opcje 2. Rodzaje opcji 3. Profile ryzyka i The Greeks 4. Hedging 5. Strategie handlowania zmiennoscia cen

Opcje walutowe proste. 1. Czym sa opcje 2. Rodzaje opcji 3. Profile ryzyka i The Greeks 4. Hedging 5. Strategie handlowania zmiennoscia cen Opcje walutowe proste 1. Czym sa opcje 2. Rodzaje opcji 3. Profile ryzyka i The Greeks 4. Hedging 5. Strategie handlowania zmiennoscia cen Historia opcji Opcje byly znane od setek lat Ich natura spekulacyjna

Bardziej szczegółowo

Strategie VIP. Opis produktu. Tworzymy strategie oparte o systemy transakcyjne wyłącznie dla Ciebie. Strategia stworzona wyłącznie dla Ciebie

Strategie VIP. Opis produktu. Tworzymy strategie oparte o systemy transakcyjne wyłącznie dla Ciebie. Strategia stworzona wyłącznie dla Ciebie Tworzymy strategie oparte o systemy transakcyjne wyłącznie dla Ciebie Strategie VIP Strategia stworzona wyłącznie dla Ciebie Codziennie sygnał inwestycyjny na adres e-mail Konsultacje ze specjalistą Opis

Bardziej szczegółowo

Co trzeba wiedzieć korzystając z modelu ARIMA i które parametry są kluczowe?

Co trzeba wiedzieć korzystając z modelu ARIMA i które parametry są kluczowe? Prognozowanie Co trzeba wiedzieć korzystając z modelu ARIMA Marta Płonka Predictive Solutions W trzecim już artykule dotyczącym szeregów czasowych przyjrzymy się modelom ARIMA. Dzisiaj skupimy się na metodzie

Bardziej szczegółowo

Studia podyplomowe. Ryzyko w finansach i ubezpieczeniach. - z programowaniem i analizą danych

Studia podyplomowe. Ryzyko w finansach i ubezpieczeniach. - z programowaniem i analizą danych Studia podyplomowe Ryzyko w finansach i ubezpieczeniach - z programowaniem i analizą danych Przedmioty Instrumenty finansowe (24 godziny) Notowania i wycena instrumentów finansowych (6 godzin) Metody probabilistyczne

Bardziej szczegółowo

Spis treści. Summaries

Spis treści. Summaries Spis treści Wstęp.............................................................. 7 Ireneusz Kuropka: Przydatność wybranych modeli umieralności do prognozowania natężenia zgonów w Polsce.............................

Bardziej szczegółowo

Table of Contents: 8. Podsumowanie 11 9. References 11. 7.1 Black-Sholes Model 7 7.2 Metoda Monte-Carlo 8 7.3 Model EWMA 10 7.

Table of Contents: 8. Podsumowanie 11 9. References 11. 7.1 Black-Sholes Model 7 7.2 Metoda Monte-Carlo 8 7.3 Model EWMA 10 7. Computational Finance Michał Wojdyła, Wróbel Dariusz http://student.agh.edu.pl/~dwrobel/mownit/comp_finance.pdf http://wmichal9.interia.pl/comp_finance.pdf Table of Contents: 1. Wstęp 3 2. Rozwój rynków

Bardziej szczegółowo

Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski

Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Zadanie 1 Eksploracja (EXAMINE) Informacja o analizowanych danych Obserwacje Uwzględnione Wykluczone Ogółem

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część I Matematyka finansowa Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Rozważmy

Bardziej szczegółowo

Przykład 2. Stopa bezrobocia

Przykład 2. Stopa bezrobocia Przykład 2 Stopa bezrobocia Stopa bezrobocia. Komentarz: model ekonometryczny stopy bezrobocia w Polsce jest modelem nieliniowym autoregresyjnym. Podobnie jak model podaŝy pieniądza zbudowany został w

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA 1. Wykład wstępny 2. Teoria prawdopodobieństwa i elementy kombinatoryki 3. Zmienne losowe 4. Populacje i próby danych 5. Testowanie hipotez i estymacja parametrów 6. Test t 7. Test

Bardziej szczegółowo

Analiza danych. http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU

Analiza danych. http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Analiza danych Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Różne aspekty analizy danych Reprezentacja graficzna danych Metody statystyczne: estymacja parametrów

Bardziej szczegółowo

laboratoria 24 zaliczenie z oceną

laboratoria 24 zaliczenie z oceną Wydział: Psychologia Nazwa kierunku kształcenia: Psychologia Rodzaj przedmiotu: podstawowy Opiekun: dr Andrzej Tarłowski Poziom studiów (I lub II stopnia): Jednolite magisterskie Tryb studiów: Niestacjonarne

Bardziej szczegółowo

Środowisko R Założenie normalności metody nieparametryczne Wykład R4; 4.06.07 Weryfikacja założenia o normalności rozkładu populacji

Środowisko R Założenie normalności metody nieparametryczne Wykład R4; 4.06.07 Weryfikacja założenia o normalności rozkładu populacji Środowisko R Założenie normalności metody nieparametryczne Wykład R4; 4.06.07 Weryfikacja założenia o normalności rozkładu populacji Dane są obserwacje x 1, x 2,..., x n. Czy można założyć, że x 1, x 2,...,

Bardziej szczegółowo

Arkadiusz Manikowski Zbigniew Tarapata. Prognozowanie i symulacja rozwoju przedsiębiorstw

Arkadiusz Manikowski Zbigniew Tarapata. Prognozowanie i symulacja rozwoju przedsiębiorstw Arkadiusz Manikowski Zbigniew Tarapata Prognozowanie i symulacja rozwoju przedsiębiorstw Warszawa 2002 Recenzenci doc. dr. inż. Ryszard Mizera skład i Łamanie mgr. inż Ignacy Nyka PROJEKT OKŁADKI GrafComp,

Bardziej szczegółowo

Finanse behawioralne. Finanse 110630-1165

Finanse behawioralne. Finanse 110630-1165 behawioralne Plan wykładu klasyczne a behawioralne Kiedy są przydatne narzędzia finansów behawioralnych? Przykłady modeli finansów behawioralnych klasyczne a behawioralne klasyczne opierają się dwóch założeniach:

Bardziej szczegółowo

Optymalizacja szacunków ryzyka

Optymalizacja szacunków ryzyka ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO nr 854 Finanse, Rynki Finansowe, Ubezpieczenia nr 73 (015) s. 409 40 Optymalizacja szacunków ryzyka Grzegorz Mentel, Jacek Brożyna * Streszczenie: Cel Charakterystyka

Bardziej szczegółowo

Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych

Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych 3.1. Estymacja parametrów i ocena dopasowania modeli z jedną zmienną 23. Właściciel komisu w celu zbadania

Bardziej szczegółowo

INFORMATYKA W SELEKCJI

INFORMATYKA W SELEKCJI INFORMATYKA W SELEKCJI INFORMATYKA W SELEKCJI - zagadnienia 1. Dane w pracy hodowlanej praca z dużym zbiorem danych (Excel) 2. Podstawy pracy z relacyjną bazą danych w programie MS Access 3. Systemy statystyczne

Bardziej szczegółowo

METODY STATYSTYCZNE W ANALIZIE I ZARZĄDZANIU RYZYKIEM NA POLSKIM RYNKU ENERGII ELEKTRYCZNEJ

METODY STATYSTYCZNE W ANALIZIE I ZARZĄDZANIU RYZYKIEM NA POLSKIM RYNKU ENERGII ELEKTRYCZNEJ METODY STATYSTYCZNE W ANALIZIE I ZARZĄDZANIU RYZYKIEM NA POLSKIM RYNKU ENERGII ELEKTRYCZNEJ Alicja Ganczarek Katedra Statystyki, Akademia Ekonomiczna im Karola Adamieckiego, Katowice 1 WPROWADZENIE Zmiany

Bardziej szczegółowo

ŚREDNI BŁĄD PROGNOZOWANIA DLA METODY EKSTRAPOLACJI PRZYROSTU EMPIRYCZNEGO

ŚREDNI BŁĄD PROGNOZOWANIA DLA METODY EKSTRAPOLACJI PRZYROSTU EMPIRYCZNEGO B A D A N I A O P E R A C Y J N E I D E C Y Z J E Nr 3 4 006 Bogusław GUZIK ŚREDNI BŁĄD PROGNOZOWANIA DLA METODY EKSTRAPOLACJI PRZYROSTU EMPIRYCZNEGO W artykule sformułowano standardowy układ założeń stochastycznych

Bardziej szczegółowo

Projekt z Ekonometrii Dynamicznej

Projekt z Ekonometrii Dynamicznej Projekt z Ekonometrii Dynamicznej Tomasz Tymecki L.p. Nazwa 1 KGHM 2 ORBIS 3 FERRUM 4 VISTULA 5 BORYSZEW 6 MOSTOSTALZAB 7 BYTOM 8 FORTE 9 PRÓCHNIK 1 ŻYWIEC 11 Indeks WIG 12 Indeks WIG2 Spis treści I. Analiza

Bardziej szczegółowo

Testowanie hipotez statystycznych. Wnioskowanie statystyczne

Testowanie hipotez statystycznych. Wnioskowanie statystyczne Testowanie hipotez statystycznych Wnioskowanie statystyczne Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Hipotezy

Bardziej szczegółowo

Matematyka finansowa 11.10.2004 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r.

Matematyka finansowa 11.10.2004 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r. Komisja Egzaminacyjna dla Aktuariuszy XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU Czas egzaminu: 100 minut

Bardziej szczegółowo