Wycena equity derivatives notowanych na GPW w obliczu wysokiego ryzyka dywidendy

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wycena equity derivatives notowanych na GPW w obliczu wysokiego ryzyka dywidendy"

Transkrypt

1 Instrumenty pochodne 2014 Wycena equity derivatives notowanych na GPW w obliczu wysokiego ryzyka dywidendy Jerzy Dzieża, WMS, AGH Kraków 28 maja 2014 (Instrumenty pochodne 2014 ) Wycena equity derivatives 28 maja / 31

2 Plan wystąpienia Wycena kontraktu terminowego dla różnych klas instrumentów bazowych Kontrakt futures na akcje model a rzeczywistość dywidenda implikowana z modelu ryzko bazy Kontrakt futures na indeks WIG20 Opcje na indeks WIG20 wzory Blacka-Scholesa wzory Blacka put-call parity zmieności implikowane z ceny spot i ceny futures (Instrumenty pochodne 2014 ) Wycena equity derivatives 28 maja / 31

3 Instrumenty bazowe Instrument bazowy: akcja, indeks Instrument pochodny: kontrakt terminowy (forward, futures), opcja Klasy finansowych instrumentów bazowych: I. Instrument bazowy nie generuje przepływów pieniężnych w czasie życia instrumentu pochodnego II. Instrument bazowy generuje znane przepływy pieniężne w dyskretnych chwilach czasu w czasie życia instrumentu pochodnego III. Instrument bazowy generuje stopę dywidendy q w czasie życia instrumentu pochodnego Przypomnienie wyceny kontraktu forward jeśli stopy procentowe są deterministyczne (przewidywalne) to cena forward = cena futures (Instrumenty pochodne 2014 ) Wycena equity derivatives 28 maja / 31

4 Założenia modelu Założenia o funkcjonowaniu rynku finansowego: oprocentowanie kredytów i depozytów bankowych jest jednakowe i niezmienne w czasie trwania instrumentu pochodnego, instrumenty bazowe są doskonale podzielne, nie ma kosztów transakcji, nie ma podatków, istnieje możliwość zajmowania (nieograniczonych) długich i krótkich pozycji, inwestorzy posiadają jednakowy dostęp do wszystkich instrumentów i informacji dotyczących cen (symetryczność informacji) (Instrumenty pochodne 2014 ) Wycena equity derivatives 28 maja / 31

5 Wycena kontraktu forward I. I. Instrument bazowy nie generuje przepływów pieniężnych w czasie życia instrumentu pochodnego F (0, T ) 0 T czas S(0) model ciągły model dyskretny F (0, T ) = S(0)e rt F (0, T ) = S(0)(1 + rt ) gdzie: S(0) - cena instrumentu bazowego T - czas zapadalności kontraktu (liczony w latach) r - stopa wolna od ryzyka w czasie życia kontraktu wycena kontraktu = brak możliwości arbitrażu (Instrumenty pochodne 2014 ) Wycena equity derivatives 28 maja / 31

6 Dywidenda w chwili t (t < T ) spółka wypłaca dywidendę gdy t < t akcja jest notowana z prawem do dywidendy (cum-dividend) w chwili t akcjonariusz nabywa prawo do dywidendy gdy t > t akcja jest notowana bez prawa do dywidendy (ex-dividend) Konwencja D+3 WZA ex-dividend date cum-dividend date prawo do dywidendy wypłata dywidendy czas W dniu ex-dividend date mamy korygowaną cenę akcji (wartość indeksu) (Instrumenty pochodne 2014 ) Wycena equity derivatives 28 maja / 31

7 Wycena kontraktu forward II. II. Instrument bazowy generuje znane przepływy pieniężne w dyskretnych chwilach czasu w czasie życia instrumentu pochodnego Przykład: F (0, T ) 2,0 2,3 0 t 1 t 2 T czas 92,0 cena akcji S(0) = 92 PLN, spółka wypłaci dywidendy: div 1 = 2 PLN za 1 miesiąc od dzisiaj oraz div 2 = 2,30 PLN za 5 miesięcy od dzisiaj kontrakt forward: akcja spółki, T = 12 7, r = 6% Zakładamy 2 możliwe scenariusze F m(0, T ): (Instrumenty pochodne 2014 ) Wycena equity derivatives 28 maja / 31

8 Wycena kontraktu forward II. I scenariusz F m(0, T ) = 93,40 PLN. Twierdzimy, że rynkowa cena forward F m(0, T ) jest za wysoka konstruujemy portfel: wystawiamy kontrakt z cena F m(0, T ) = 93,40 PLN pożyczamy w banku 92 PLN nabywamy akcję za S(0) = 92 PLN Po 1 miesiącu: dostajemy dywidendę div 1 = 2 PLN spłacamy cześć zadłużenia w banku; dług w banku po dopisaniu odsetek i spłacie 2 PLN dywidendy wynosi 92 e 0,06 1/12 2 = 90,46 PLN Po upływie 5 miesięcy: dostajemy dywidendę div 2 = 2,3 PLN spłacamy kolejną cześć zadłużenia w banku; dług w banku po dopisaniu odsetek i spłacie 2,30 PLN i wynosi 90,46 e 0,06 4/12 2,30 = 89,99 PLN Po upływie 7 miesięcy: zamykamy kontrakt: dostarczamy akcję za F m(0, 7/12) = 93,40 PLN spłacamy pozostaje zadłużenie w banku w wysokości 89,99 e 0,06 2/12 = 90,89 PLN Zysk portfela: 93,40-90,89 = 2,51 PLN Excel (Instrumenty pochodne 2014 ) Wycena equity derivatives 28 maja / 31

9 Wycena kontraktu forward II. cd. przykładu: II scenariusz F m(0, T ) = 87,20 PLN. Twierdzimy, że rynkowa cena forward F m(0, T ) jest za niska Konstruujemy portfel: nabywamy kontrakt z cena F m(0, T ) = 87,20 PLN pożyczamy akcję i sprzedaje na krótko za S(0) = 92 PLN lokujemy w banku kwotę 92 PLN (Instrumenty pochodne 2014 ) Wycena equity derivatives 28 maja / 31

10 Wycena kontraktu forward II. cd. przykładu: Po miesiącu spółka wypłaca dywidendę div 1 : wyciągamy z lokaty bankowej kwotę 2 PLN, która po wcześniejszym dopisaniu odsetek wynosi 92 e 0,06 1/12 2 = 90,46 PLN, płacimy inwestorowi, od którego pożyczyliśmy akcję, dywidendę div 1 = 2 PLN Po upływie 5 miesięcy spółka wypłaca dywidendę div 2 : wyciągamy z lokaty bankowej kwotę 2,30 PLN, która po wcześniejszym dopisaniu odsetek wynosi 90,46 e 0,06 4/12 2,30 = 89,89 PLN płacimy inwestorowi, od którego pożyczyliśmy akcję, dywidendę div 2 = 2,30 PLN Po upływie 7 miesięcy: wyciągamy z banku kwotę 89,99 e 0,06 2/12 = 90,99 PLN zamykamy kontrakt czyli kupujemy akcję za 87,20 PLN oddajemy akcję inwestorowi od którego pożyczyliśmy Zysk portfela: 90,89-87,20 = 3,69 PLN Excel (Instrumenty pochodne 2014 ) Wycena equity derivatives 28 maja / 31

11 Wycena kontraktu forward II. Ogólnie: liczymy koszt finansowania pozycji w I scenariuszu mamy przepływy pieniężne po przekształceniu ((S(0)e r t1 div 1 )e r (t2 t1) r (T t2) div 2 )e S(0)e r (t1+t2 t1+t t2) div 1 e r (t2 t1+t t2) r (T t2) div 2 e w ostateczności koszt finansowania (replikacja krótkiego forwardu) Czyli: S(0)e r T div 1 e r (T t1) r (T t2) div 2 e r(t )T F (0, T ) = (S(0) div 0 )e gdzie: div 0 = div 1 e r(t1)t1 + + div k e r(t k )t k F (0, T ) div 1 div 2 0 t 1 t 2 T czas S(0) (Instrumenty pochodne 2014 ) Wycena equity derivatives 28 maja / 31

12 Wycena kontraktu forward II. W modelu dyskretnym gdzie F (0, T ) = (S(0) div 0 )(1 + r T ) div 0 = div 1 (1 + r t 1 ) + + div k (1 + r t k ) oczywiście t k < T. W rzeczywistości mamy zwykle 1 dywidendę w czasie życia kontraku i wtedy Zatem cena forward div 0 = div 1 (1 + r t 1 ) F (0, T ) = (S(0) div 1 (1 + r t 1 ) )(1 + r T ) (Instrumenty pochodne 2014 ) Wycena equity derivatives 28 maja / 31

13 Wycena kontraktu forward II. Model wyceny kontraktu implikuje wartość dzisiejszą dywidendy i wysokość dywidendy div 0 = S(0) div 1 = ( S(0) r T F (0, T ) r T F (0, T )) (1 + r t 1 ) Przykład Cena akcji KGHM SA = 117,00 PLN (zamknięcie 27 czerwca 2014) proponowana dywidenda = 2,50 PLN data ustalenia praw = 8 lipca 2014; ex-dividend date = 4 lipca 2014 cena FKGHU14 = 112,90 implikowa wysokość dywidendy div 1 = 5,07 PLN (Instrumenty pochodne 2014 ) Wycena equity derivatives 28 maja / 31

14 Wycena kontraktu forward III. III. Instrument bazowy generuje stopę dywidendy q w czasie życia instrumentu pochodnego (indeks, waluta) model ciągły model dyskretny gdzie: q - stopa dywidendy Model może implikować stopę dywidendy q q = 1 T F (0, T ) = S(0)e (r q)t F (0, T ) = S(0) 1 + r T 1 + q T ( S(0) (1 + r T ) 1) F (0, T ) (Instrumenty pochodne 2014 ) Wycena equity derivatives 28 maja / 31

15 Wycena kontraktu futures T termin zapadalności kontraktów forward oraz futures, r stała stopa procentowa w czasie życia (trwania) kontraktu, F (0, T ) cena forward w chwili 0 kontraktu forward zapadającego w chwili T, f (0, T ) cena futures w chwili 0 kontraktu futures zapadającego w chwili T, Fakt Jeśli stopy procentowe są deterministyczne to F (0, T ) = f (0, T ). r(t t) f (t, T ) = S(t)e r(t t) f (t, T ) = (S(t) div 0 )e (r q)(t t) f (t, T ) = S(t)e Dla losowych stóp procentowych tw. nie zachodzi. (Instrumenty pochodne 2014 ) Wycena equity derivatives 28 maja / 31

16 Ryzyko bazy Baza (basis) kontraktu futures w chwili t zapadającego w chwili T b(t, T ) = f (t, T ) S(t) gdzie: S(t) - cena instrumentu bazowego w chwili t, a f (t, T ) cena futures kontraktu w chwili t zapadającego w chwili T. Alternatywna definicja b(t, T ) = S(t) f (t, T ) (Instrumenty pochodne 2014 ) Wycena equity derivatives 28 maja / 31

17 Ryzyko bazy Obserwacje: bo f (T, T ) = S(T ). Gdy stopy procentowe: r, q stałe: gdy t T to b(t, T ) 0 instrument bazowy, które nie generuje przepływów pieniężnych w czasie trwania kontraktu b(t, T ) = S(t)e r(t t) S(t) = S(t)(e r(t t) 1) instrument bazowy, który generuje znaną dywidendę w dyskretnych chwilach czasu b(t, T ) = (S(t) div 0 )e r(t t) S(t) = S(t)(e r(t t) r(t t) 1) div 0 e instrument bazowy, który generuje stopę dywidendy q b(t, T ) = S(t)e (r q)(t t) S(t) = S(t)(e (r q)(t t) 1) (Instrumenty pochodne 2014 ) Wycena equity derivatives 28 maja / 31

18 Ryzyko ceny a ryzyko bazy Zauważmy, że baza może się zmieniać (osłabiać lub wzmacniać) zmiany bazy są losowe Z definicji bazy mamy b(t, T 1 ) = f (t, T 1 ) S(t) baza w chwili t kontraktu zapadającego w chwili T 1 b(t, T 2 ) = f (t, T 2 ) S(t) baza w chwili t kontraktu zapadającego w chwili T 2. Załóżmy, że mamy długą pozycję w kontrakcie krótszym i krótką pozycję w kontrakcie dłuższym, wtedy nasza ekspozycja ryzyko bazy f (t, T 1 ) f (t, T 2 ) = b(t, T 1 ) S(t) b(t, T 2 ) + S(t) = b(t, T 1 ) b(t, T 2 ) (Instrumenty pochodne 2014 ) Wycena equity derivatives 28 maja / 31

19 Ryzyko ceny a ryzyko bazy Akcje KGHM: baza rynkowa (krzywa zielona) i baza teoretyczna (krzywa fioletowa) dla serii czerwcowej... (Instrumenty pochodne 2014 ) Wycena equity derivatives 28 maja / 31

20 Ryzyko ceny a ryzyko bazy... i wrzesniowej: baza rynkowa (krzywa czerwona) i baza teoretyczna (krzywa zielona) (Instrumenty pochodne 2014 ) Wycena equity derivatives 28 maja / 31

21 Kontrakt na WIG20 Wartość indeksu WIG20 = 2474 pktów ceny futures dla serii: cena baza stopa dywidendy baza teoretyczna FW20M ,45% -14 FW20U ,5% -67 FW20Z ,60% -67 FW20H ,40% -54 stopa dywidendy z pliku DX ZAR ze strony KDPW czy korzystać przy wycenie kontraktu futures z danych z pliku? (Instrumenty pochodne 2014 ) Wycena equity derivatives 28 maja / 31

22 Parytet kupna - sprzedaży r(t t) C (t) P(t) = S(t) Ke Kontrakt futures a parytet put-call Przypominamy: cena futures dla różnych klas instrumentów bazowych Parytet put-call dla kontraktów futures r(t t) f (t, T ) = S(t)e r(t t) f (t, T ) = (S(t) div t)e (r q)(t t) f (t, T ) = S(t)e C (t) P(t) = f (t, T )e r(t t) r(t t) Ke Przykład Kontrakt futures na WIG20: f (0, 12 3 ) = 2540 punktów. Opcja kupna i sprzedaży na WIG20: C (0) = 180 punktów, P(0) = 130 punktów. Opcje i kontrakt zapadają za 3 miesiące; dla opcji K = 2500 punktów. Stopa wolna od ryzyka r = 4,0%. Twierdzimy, że istnieje możliwość arbitrażu. (Instrumenty pochodne 2014 ) Wycena equity derivatives 28 maja / 31

23 Parytet kupna sprzedaży Przykład (cd.) Konstruujemy następującą strategię arbitrażową: nabywamy kontrakt futures wystawiamy opcję kupna: 180 punktów nabywamy opcję sprzedaży: -130 punktów lokujemy 500 PLN (50 punktów) po stopie r W dniu wygaśnięcia opcji i kontraktów: jeśli S(T ) K = 2500 długa pozycja w kontrakcie futures wypłaca: 10 (S(T ) 2540) opcja kupna wygasa bez wartości realizujemy opcję sprzedaży: 10 (2500 S(T )) wypłacamy z lokaty bankowej: 500e 0, = 505,0 PLN Wartość pozycji 10 (S(T ) 2540) + 10 (2500 S(T )) = 105 PLN jeśli S(T ) > K = 2500 Excel (Instrumenty pochodne 2014 ) Wycena equity derivatives 28 maja / 31

24 Wzór Blacka Scholesa Wzór Blacka Scholesa na cenę opcji kupna gdzie C (t) = S(t)N(d 1 ) Ke r(t t) N(d 2 ) d 1 = ln(s(t)/k ) + (r + σ2 /2)(T t) σ T t d 2 = ln(s(t)/k ) + (r σ2 /2)(T t) σ = d 1 σ T t T t N jest dystrybuantą standardowego rozkładu normalnego: d N(d) = gdzie: S(t) - cena akcji w chwili t, K - cena realizacji (wykonania) opcji, T - data zapadalności opcji, r - stopa wolna od ryzyka, σ - zmienność cen instrumentu bazowego. Cena opcji sprzedaży 1 2π e x2 2 dx P(t) = Ke r(t t) N( d 2 ) S(t)N( d 1 ) (Instrumenty pochodne 2014 ) Wycena equity derivatives 28 maja / 31

25 Opcje na indeks Cena europejskiej opcji kupna i sprzedaży na instrument bazowy generujący stopę dywidendy q gdzie C (t) = S(t)e q(t t) N(d 1 ) Ke r(t t) N(d 2 ) P(t) = S(t)e q(t t) N( d 1 ) + Ke r(t t) N( d 2 ) d 1 = d 2 = q(t t) S(t)e ln K + (r σ2 S(t) )(T t) σ ln K = + (r q σ2 )(T t) T t σ T t q(t t) S(t)e ln K (r σ2 )(T t) σ = d 1 σ T t T t (Instrumenty pochodne 2014 ) Wycena equity derivatives 28 maja / 31

26 Wzory Blacka Cena futures wtedy (r q)(t t) f (t, T ) = S(t)e C (t) = f (t, T )e r(t t) N(d 1 ) Ke r(t t) N(d 2 ) = e r(t t) (f (t, T )N(d 1 ) KN(d 2 )) (1) P(t) = e r(t t) ( f (t, T )N( d 1 ) + KN( d 2 )) (2) gdzie d 1 = r(t t) f (t,t )e ln K + (r σ2 f (t,t ) )(T t) σ ln K = σ2 (T t) T t σ T t d 2 = d 1 σ T t a σ jest zmiennością cen futures f (t, T ). (Instrumenty pochodne 2014 ) Wycena equity derivatives 28 maja / 31

27 Zmienności implikowane dla opcji kupna dla opcji call (seria czerwcowa) dla cen spot (krzywa niebieska: ceny bid, krzywa czerwona: ceny ask) (Instrumenty pochodne 2014 ) Wycena equity derivatives 28 maja / 31

28 Zmienności implikowane dla opcji kupna dla opcji call (seria czerwcowa) dla cen futures (krzywa niebieska: ceny bid, krzywa czerwona: ceny ask) (Instrumenty pochodne 2014 ) Wycena equity derivatives 28 maja / 31

29 Zmienności implikowane dla opcji sprzedaży dla opcji put (seria czerwcowa) dla cen spot (krzywa niebieska: ceny bid, krzywa żółta: ceny ask) (Instrumenty pochodne 2014 ) Wycena equity derivatives 28 maja / 31

30 Zmienności implikowane dla opcji sprzedaży dla opcji put (seria czerwcowa) dla cen futures (krzywa niebieska: ceny bid, krzywa żółta: ceny ask) (Instrumenty pochodne 2014 ) Wycena equity derivatives 28 maja / 31

31 Podsumowanie i wnioski istnieją dobre modele wyceny nie przystają do rzeczywistości ryzyko zmiany proponowanej dywidendy ryzyko zmiany terminu ustalenia praw do dywidendy trudno zarządzać ryzykiem cenowym rynek dyskontuje wszystkie informacje (analiza techniczna??) (Instrumenty pochodne 2014 ) Wycena equity derivatives 28 maja / 31

Instrumenty pochodne - Zadania

Instrumenty pochodne - Zadania Jerzy A. Dzieża Instrumenty pochodne - Zadania 27 marca 2011 roku Rozdział 1 Wprowadzenie 1.1. Zadania 1. Spekulant zajął krótką pozycję w kontrakcie forward USD/PLN zapadającym za 2 miesiące o nominale

Bardziej szczegółowo

Wycena papierów wartościowych - instrumenty pochodne

Wycena papierów wartościowych - instrumenty pochodne Matematyka finansowa - 8 Wycena papierów wartościowych - instrumenty pochodne W ujęciu probabilistycznym cena akcji w momencie t jest zmienną losową P t o pewnym (zwykle nieznanym) rozkładzie prawdopodobieństwa,

Bardziej szczegółowo

ANALIZA OPCJI ANALIZA OPCJI - WYCENA. Krzysztof Jajuga Katedra Inwestycji Finansowych i Zarządzania Ryzykiem Uniwersytet Ekonomiczny we Wrocławiu

ANALIZA OPCJI ANALIZA OPCJI - WYCENA. Krzysztof Jajuga Katedra Inwestycji Finansowych i Zarządzania Ryzykiem Uniwersytet Ekonomiczny we Wrocławiu Krzysztof Jajuga Katedra Inwestycji Finansowych i Zarządzania Ryzykiem Uniwersytet Ekonomiczny we Wrocławiu Podstawowe pojęcia Opcja: in-the-money (ITM call: wartość instrumentu podstawowego > cena wykonania

Bardziej szczegółowo

Czy opcje walutowe mogą być toksyczne?

Czy opcje walutowe mogą być toksyczne? Katedra Matematyki Finansowej Wydział Matematyki Stosowanej AGH 11 maja 2012 Kurs walutowy Kurs walutowy cena danej waluty wyrażona w innej walucie np. 1 USD = 3,21 PLN; USD/PLN = 3,21 Rodzaje kursów walutowych:

Bardziej szczegółowo

Matematyka finansowa 03.10.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVIII Egzamin dla Aktuariuszy z 3 października 2011 r.

Matematyka finansowa 03.10.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVIII Egzamin dla Aktuariuszy z 3 października 2011 r. Komisja Egzaminacyjna dla Aktuariuszy LVIII Egzamin dla Aktuariuszy z 3 października 2011 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut

Bardziej szczegółowo

Matematyka finansowa i ubezpieczeniowa - 8 Wycena papierów wartościowych

Matematyka finansowa i ubezpieczeniowa - 8 Wycena papierów wartościowych Matematyka finansowa i ubezpieczeniowa - 8 Wycena papierów wartościowych W ujęciu probabilistycznym cena akcji w momencie t jest zmienną losową P t o pewnym (zwykle nieznanym) rozkładzie prawdopodobieństwa,

Bardziej szczegółowo

Strategie inwestowania w opcje. Filip Duszczyk Dział Rynku Terminowego

Strategie inwestowania w opcje. Filip Duszczyk Dział Rynku Terminowego Strategie inwestowania w opcje Filip Duszczyk Dział Rynku Terminowego Agenda: Opcje giełdowe Zabezpieczenie portfela Spekulacja Strategie opcyjne 2 Opcje giełdowe 3 Co to jest opcja? OPCJA JAK POLISA Zabezpieczenie

Bardziej szczegółowo

Opcje podstawowe własności.

Opcje podstawowe własności. Opcje podstawowe własności. Opcja jest to rodzaj umowy między dwoma podmiotami i jednocześnie instrument finansowy. Opcje kupna (call) dają posiadaczowi prawo do kupienia określonego w umowie aktywa (bazowego)

Bardziej szczegółowo

Matematyka finansowa 08.01.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLI Egzamin dla Aktuariuszy z 8 stycznia 2007 r. Część I

Matematyka finansowa 08.01.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLI Egzamin dla Aktuariuszy z 8 stycznia 2007 r. Część I Komisja Egzaminacyjna dla Aktuariuszy XLI Egzamin dla Aktuariuszy z 8 stycznia 2007 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 00 minut . Ile

Bardziej szczegółowo

OPCJE NA GPW. Zespół Rekomendacji i Analiz Giełdowych Departament Klientów Detalicznych Katowice, luty 2004

OPCJE NA GPW. Zespół Rekomendacji i Analiz Giełdowych Departament Klientów Detalicznych Katowice, luty 2004 OPCJE NA GPW Zespół Rekomendacji i Analiz Giełdowych Departament Klientów Detalicznych Katowice, luty 2004 CO TO JEST OPCJA, RODZAJE OPCJI Opcja - prawo do kupna, lub sprzedaży instrumentu bazowego po

Bardziej szczegółowo

OPCJE - PODSTAWY TEORETYCZNE cz.1

OPCJE - PODSTAWY TEORETYCZNE cz.1 OPCJE - PODSTAWY TEORETYCZNE cz.1 Opcja to prawo do kupna instrumentu bazowego po cenie, która jest z góry określona - głosi definicja opcji. Owa cena, które jest z góry określona to tzw. cena wykonania

Bardziej szczegółowo

OPCJE. Slide 1. This presentation or any of its parts cannot be used without prior written permission of Dom Inwestycyjny BRE Banku S..A.

OPCJE. Slide 1. This presentation or any of its parts cannot be used without prior written permission of Dom Inwestycyjny BRE Banku S..A. OPCJE Slide 1 Informacje ogólne definicje opcji: kupna (call)/sprzedaŝy (put) terminologia typy opcji krzywe zysk/strata Slide 2 Czym jest opcja KUPNA (CALL)? Opcja KUPNA (CALL) jest PRAWEM - nie zobowiązaniem

Bardziej szczegółowo

Matematyka finansowa w pakiecie Matlab

Matematyka finansowa w pakiecie Matlab Matematyka finansowa w pakiecie Matlab Wykład 5. Wycena opcji modele dyskretne Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK Kurs letni dla studentów studiów zamawianych na kierunku Matematyka

Bardziej szczegółowo

O możliwościach arbitrażu na Giełdzie Papierów Wartościowych w Warszawie

O możliwościach arbitrażu na Giełdzie Papierów Wartościowych w Warszawie O możliwościach arbitrażu na Giełdzie Papierów Wartościowych w Warszawie Jerzy A. Dzieża Maj 2005 Spis treści O arbitrażu wstępne rozważania... 3 1. Transakcje arbitrażowe: rynek kasowy - rynek kontraktów

Bardziej szczegółowo

Opcje. istota transakcji opcyjnych, rodzaje opcji, czynniki wpływające na wartość opcji (premii).

Opcje. istota transakcji opcyjnych, rodzaje opcji, czynniki wpływające na wartość opcji (premii). Opcje istota transakcji opcyjnych, rodzaje opcji, czynniki wpływające na wartość opcji (premii). 1 Mała powtórka: instrumenty liniowe Takie, w których funkcja wypłaty jest liniowa (np. forward, futures,

Bardziej szczegółowo

8. Zarządzanie portfelem inwestycyjnym za pomocą instrumentów pochodnych Zabezpieczenie Spekulacja Arbitraż 9. Charakterystyka i teoria wyceny

8. Zarządzanie portfelem inwestycyjnym za pomocą instrumentów pochodnych Zabezpieczenie Spekulacja Arbitraż 9. Charakterystyka i teoria wyceny 8. Zarządzanie portfelem inwestycyjnym za pomocą instrumentów pochodnych Zabezpieczenie Spekulacja Arbitraż 9. Charakterystyka i teoria wyceny kontraktów terminowych Kontrakty forward FRA 1 Zadanie 1 Profil

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część I Matematyka finansowa Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Rozważmy

Bardziej szczegółowo

Instrumenty rynku akcji

Instrumenty rynku akcji Instrumenty rynku akcji Rynek akcji w relacji do PK Źródło: ank Światowy: Kapitalizacja w relacji do PK nna Chmielewska, SGH, 2016 1 Inwestorzy indywidualni na GPW Ok 13% obrotu na rynku podstawowym (w

Bardziej szczegółowo

Kontrakty terminowe na akcje

Kontrakty terminowe na akcje Kontrakty terminowe na akcje Zawartość prezentacji podstawowe informacje o kontraktach terminowych na akcje, zasady notowania, wysokość depozytów zabezpieczających, przykłady wykorzystania kontraktów,

Bardziej szczegółowo

istota transakcji opcyjnych, rodzaje opcji, czynniki wpływające na wartość opcji (premii). Mała powtórka: instrumenty liniowe

istota transakcji opcyjnych, rodzaje opcji, czynniki wpływające na wartość opcji (premii). Mała powtórka: instrumenty liniowe Opcje istota transakcji opcyjnych, rodzaje opcji, czynniki wpływające na wartość opcji (premii). Mała powtórka: instrumenty liniowe Punkt odniesienia dla rozliczania transakcji terminowej forward: ustalony

Bardziej szczegółowo

Kontrakty terminowe na GPW

Kontrakty terminowe na GPW Kontrakty terminowe na GPW Czym jest kontrakt terminowy? Umowa między 2 stronami: nabywcą i sprzedawcą Nabywca zobowiązuje się do kupna instrumentu bazowego w określonym momencie w przyszłości po określonej

Bardziej szczegółowo

Matematyka finansowa 30.09.2013 r. Komisja Egzaminacyjna dla Aktuariuszy. LXV Egzamin dla Aktuariuszy z 30 września 2013 r.

Matematyka finansowa 30.09.2013 r. Komisja Egzaminacyjna dla Aktuariuszy. LXV Egzamin dla Aktuariuszy z 30 września 2013 r. Komisja Egzaminacyjna dla Aktuariuszy LXV Egzamin dla Aktuariuszy z 30 września 2013 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Matematyka finansowa 05.12.2005 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVII Egzamin dla Aktuariuszy z 5 grudnia 2005 r.

Matematyka finansowa 05.12.2005 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVII Egzamin dla Aktuariuszy z 5 grudnia 2005 r. Komisja Egzaminacyjna dla Aktuariuszy XXXVII Egzamin dla Aktuariuszy z 5 grudnia 2005 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU A Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Charakterystyka i wycena kontraktów terminowych forward

Charakterystyka i wycena kontraktów terminowych forward Charakterystyka i wycena kontraktów terminowych forward Profil wypłaty forward Profil wypłaty dla pozycji długiej w kontrakcie terminowym Long position Zysk/strata Cena spot Profil wypłaty dla pozycji

Bardziej szczegółowo

Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1

Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1 Ćwiczenia ZPI 1 Zysk/strata Zysk 1 3,89 4,19 4,33 Cena spot np. EURPLN Strata 1 Zysk/Strata nabywcy = Cena Spot Cena wykonania 2 Zysk/strata Zysk 1 Strata 1 3,89 4,19 4,33 Cena spot np. EURPLN Zysk/Strata

Bardziej szczegółowo

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXI Egzamin dla Aktuariuszy z 1 października 2012 r.

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXI Egzamin dla Aktuariuszy z 1 października 2012 r. Komisja Egzaminacyjna dla Aktuariuszy LXI Egzamin dla Aktuariuszy z 1 października 2012 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1

Bardziej szczegółowo

Greckie współczynniki kalkulowane są po zamknięciu sesji na podstawie następujących danych:

Greckie współczynniki kalkulowane są po zamknięciu sesji na podstawie następujących danych: Metodologia wyznaczania greckich współczynników. (1) Dane wejściowe. Greckie współczynniki kalkulowane są po zamknięciu sesji na podstawie następujących danych: S wartość zamknięcia indeksu WIG20 (pkt),

Bardziej szczegółowo

Opcja jest to prawo przysługujące nabywcy opcji wobec jej wystawcy do:

Opcja jest to prawo przysługujące nabywcy opcji wobec jej wystawcy do: Jesteś tu: Bossa.pl Opcje na WIG20 - wprowadzenie Opcja jest to prawo przysługujące nabywcy opcji wobec jej wystawcy do: żądania w ustalonym terminie dostawy instrumentu bazowego po określonej cenie wykonania

Bardziej szczegółowo

Forward Rate Agreement

Forward Rate Agreement Forward Rate Agreement Nowoczesne rynki finansowe oferują wiele instrumentów pochodnych. Należą do nich: opcje i warranty, kontrakty futures i forward, kontrakty FRA (Forward Rate Agreement) oraz swapy.

Bardziej szczegółowo

Matematyka finansowa, rozkład normalny, Model wyceny aktywów kapitałowych, Forward, Futures

Matematyka finansowa, rozkład normalny, Model wyceny aktywów kapitałowych, Forward, Futures Matematyka finansowa, rozkład normalny, Model wyceny aktywów kapitałowych, Forward, Futures 1 Inwestor ma trzyletnią obligację o wartości nominalnej 2000 zł, oprocentowaną 8% rocznie, przy czym odsetki

Bardziej szczegółowo

OPCJE MIESIĘCZNE NA INDEKS WIG20

OPCJE MIESIĘCZNE NA INDEKS WIG20 OPCJE MIESIĘCZNE NA INDEKS WIG20 1 TROCHĘ HISTORII 1973 Fisher Black i Myron Scholes opracowują precyzyjną metodę obliczania wartości opcji słynny MODEL BLACK/SCHOLES 2 TROCHĘ HISTORII 26 kwietnia 1973

Bardziej szczegółowo

R NKI K I F I F N N NSOW OPCJE

R NKI K I F I F N N NSOW OPCJE RYNKI FINANSOWE OPCJE Wymagania dotyczące opcji Standard opcji Interpretacja nazw Sposoby ustalania ostatecznej ceny rozliczeniowej dla opcji na GPW OPCJE - definicja Kontrakt finansowy, w którym kupujący

Bardziej szczegółowo

Matematyka finansowa 20.06.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVII Egzamin dla Aktuariuszy z 20 czerwca 2011 r.

Matematyka finansowa 20.06.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVII Egzamin dla Aktuariuszy z 20 czerwca 2011 r. Komisja Egzaminacyjna dla Aktuariuszy LVII Egzamin dla Aktuariuszy z 20 czerwca 2011 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Forward kontrakt terminowy o charakterze rzeczywistym (z dostawą instrumentu bazowego).

Forward kontrakt terminowy o charakterze rzeczywistym (z dostawą instrumentu bazowego). Kontrakt terminowy (z ang. futures contract) to umowa pomiędzy dwiema stronami, z których jedna zobowiązuje się do kupna, a druga do sprzedaży, w określonym terminie w przyszłości (w tzw. dniu wygaśnięcia)

Bardziej szczegółowo

Kontrakty teminowe. Kupujący = długa pozycja Sprzedający = krótka pozycja. Przykład. Kontraktowanie płodów rolnych.

Kontrakty teminowe. Kupujący = długa pozycja Sprzedający = krótka pozycja. Przykład. Kontraktowanie płodów rolnych. Kontrakty teminowe Transakcja (kontrakt) forward to umowa sprzedaży określonego dobra (bazowego) realizowana w z góry określonym terminie i po z góry określonej cenie. W dniu realizacji transakcji następuje

Bardziej szczegółowo

INSTRUMENTY POCHODNE KONTRAKTY FORWARD KONTRAKTY TOWAROWE, WALUTOWE KONTRAKTY WYMIANY CENA DOSTAWY CENA TERMINOWA

INSTRUMENTY POCHODNE KONTRAKTY FORWARD KONTRAKTY TOWAROWE, WALUTOWE KONTRAKTY WYMIANY CENA DOSTAWY CENA TERMINOWA INSTRUMENTY POCHODNE KONTRAKTY FORWARD KONTRAKTY TOWAROWE, WALUTOWE KONTRAKTY WYMIANY CENA DOSTAWY CENA TERMINOWA Instrumenty pochodne /definicja Instrument pochodny umowa o przeprowadzeniu w przyszłości

Bardziej szczegółowo

Opcje. Dr hab Renata Karkowska; Wydział Zarządzania UW

Opcje. Dr hab Renata Karkowska; Wydział Zarządzania UW Opcje 1 Opcje Narysuj: Profil wypłaty dla nabywcy opcji kupna. Profil wypłaty dla nabywcy opcji sprzedaży. Profil wypłaty dla wystawcy opcji kupna. Profil wypłaty dla wystawcy opcji sprzedaży. 2 Przykład

Bardziej szczegółowo

Matematyka finansowa 10.12.2012 r. Komisja Egzaminacyjna dla Aktuariuszy. LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r.

Matematyka finansowa 10.12.2012 r. Komisja Egzaminacyjna dla Aktuariuszy. LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r. Komisja Egzaminacyjna dla Aktuariuszy LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Matematyka finansowa 15.12.2008 r. Komisja Egzaminacyjna dla Aktuariuszy. XLVIII Egzamin dla Aktuariuszy z 15 grudnia 2008 r.

Matematyka finansowa 15.12.2008 r. Komisja Egzaminacyjna dla Aktuariuszy. XLVIII Egzamin dla Aktuariuszy z 15 grudnia 2008 r. Komisja Egzaminacyjna dla Aktuariuszy XLVIII Egzamin dla Aktuariuszy z 15 grudnia 2008 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 16 maja 2005 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 16 maja 2005 r. Część I Matematyka finansowa Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 6 maja 005 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU A Czas egzaminu: 00 minut . Inwestorzy

Bardziej szczegółowo

Matematyka finansowa 04.04.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I

Matematyka finansowa 04.04.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Wycena opcji. Dr inż. Bożena Mielczarek

Wycena opcji. Dr inż. Bożena Mielczarek Wycena opcji Dr inż. Bożena Mielczarek Stock Price Wahania ceny akcji Cena jednostki podlega niewielkim wahaniom dziennym (miesięcznym) wykazując jednak stały trend wznoszący. Cena może się doraźnie obniżać,

Bardziej szczegółowo

Kontrakty terminowe w teorii i praktyce. Marcin Kwaśniewski Dział Rynku Terminowego

Kontrakty terminowe w teorii i praktyce. Marcin Kwaśniewski Dział Rynku Terminowego Kontrakty terminowe w teorii i praktyce Marcin Kwaśniewski Dział Rynku Terminowego Czym jest kontrakt terminowy? Kontrakt to umowa między 2 stronami Nabywca/sprzedawca zobowiązuje się do kupna/sprzedaży

Bardziej szczegółowo

Instrumenty pochodne Instrumenty wbudowane

Instrumenty pochodne Instrumenty wbudowane www.pwcacademy.pl Instrumenty pochodne Instrumenty wbudowane Jan Domanik Instrumenty pochodne ogólne zasady ujmowania i wyceny 2 Instrument pochodny definicja. to instrument finansowy: którego wartość

Bardziej szczegółowo

Wprowadzenie do rynku opcji. Marek Suchowolec

Wprowadzenie do rynku opcji. Marek Suchowolec Wprowadzenie do rynku opcji Marek Suchowolec Plan Bibliografia Historia opcji Definicja opcji Porównanie opcji do polisy ubezpieczeniowej Rodzaje opcji Animatorzy opcji Depozyty zabezpieczające Warranty

Bardziej szczegółowo

Metodologia wyznaczania greckich współczynników dla opcji na WIG20

Metodologia wyznaczania greckich współczynników dla opcji na WIG20 Metodologia wyznaczania greckich współczynników dla opcji na WIG20 (1) Dane wejściowe. Greckie współczynniki kalkulowane są po zamknięciu sesji na podstawie następujących danych: S wartość indeksu WIG20

Bardziej szczegółowo

Kontrakty terminowe. This presentation or any of its parts cannot be used without prior written permission of Dom Inwestycyjny BRE Banku S..A.

Kontrakty terminowe. This presentation or any of its parts cannot be used without prior written permission of Dom Inwestycyjny BRE Banku S..A. Kontrakty terminowe Slide 1 Podstawowe zagadnienia podstawowe informacje o kontraktach zasady notowania, depozyty zabezpieczające, przykłady wykorzystania kontraktów, ryzyko związane z inwestycjami w kontrakty,

Bardziej szczegółowo

Ogłoszenie o zmianach statutu KBC OMEGA Funduszu Inwestycyjnego Zamkniętego z dnia 13 czerwca 2014 r.

Ogłoszenie o zmianach statutu KBC OMEGA Funduszu Inwestycyjnego Zamkniętego z dnia 13 czerwca 2014 r. Ogłoszenie o zmianach statutu KBC OMEGA Funduszu Inwestycyjnego Zamkniętego z dnia 13 czerwca 2014 r. KBC Towarzystwo Funduszy Inwestycyjnych S.A. działające jako organ KBC OMEGA Funduszu Inwestycyjnego

Bardziej szczegółowo

Opcje giełdowe. Wprowadzenie teoretyczne oraz zasady obrotu

Opcje giełdowe. Wprowadzenie teoretyczne oraz zasady obrotu Opcje giełdowe Wprowadzenie teoretyczne oraz zasady obrotu NAJWAŻNIEJSZE CECHY OPCJI Instrument pochodny (kontrakt opcyjny), Asymetryczny profil wypłaty, Możliwość budowania portfeli o różnych profilach

Bardziej szczegółowo

Opcje giełdowe i zabezpieczenie inwestycji. Filip Duszczyk Dział Rynku Terminowego

Opcje giełdowe i zabezpieczenie inwestycji. Filip Duszczyk Dział Rynku Terminowego Opcje giełdowe i zabezpieczenie inwestycji Filip Duszczyk Dział Rynku Terminowego Agenda: Analiza Portfela współczynnik Beta (β) Opcje giełdowe wprowadzenie Podstawowe strategie opcyjne Strategia Protective

Bardziej szczegółowo

Matematyka finansowa 8.12.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r. Część I

Matematyka finansowa 8.12.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym. Opcje Strategie opcyjne

Ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym. Opcje Strategie opcyjne Ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym Opcje Strategie opcyjne 1 Współczynniki greckie Współczynniki greckie określają o ile zmieni się kurs opcji w wyniku zmiany wartości poszczególnych

Bardziej szczegółowo

- w art. 8 ust. 3 Statutu otrzymuje nowe, następujące brzmienie:

- w art. 8 ust. 3 Statutu otrzymuje nowe, następujące brzmienie: KBC Towarzystwo Funduszy Inwestycyjnych S.A. działające, jako organ KBC Alfa Specjalistycznego Funduszu Inwestycyjnego Otwartego, uprzejmie informuje o dokonaniu zmian statutu dotyczących polityki inwestycyjnej

Bardziej szczegółowo

Część IX Hedging. Filip Duszczyk Dział Rozwoju Rynku Terminowego

Część IX Hedging. Filip Duszczyk Dział Rozwoju Rynku Terminowego Część IX Hedging Filip Duszczyk Dział Rozwoju Rynku Terminowego Zadanie Domowe Z jakim oprocentowaniem (w skali roku) możemy zaciągnąć pożyczkę w wysokości 10,000 PLN na trzy miesiące, do 18 września (3

Bardziej szczegółowo

INSTRUMENTY POCHODNE OPCJE EUROPEJSKIE OPCJE AMERYKAŃSKIE OPCJE EGZOTYCZNE

INSTRUMENTY POCHODNE OPCJE EUROPEJSKIE OPCJE AMERYKAŃSKIE OPCJE EGZOTYCZNE INSTRUMENTY POCHODNE OPCJE EUROPEJSKIE OPCJE AMERYKAŃSKIE OPCJE EGZOTYCZNE OPCJE / DEFINICJA Opcja jest prawem do zakupu lub sprzedaży określonej ilości wyspecyfikowanego przedmiotu (tzw. instrumentu bazowego)

Bardziej szczegółowo

Matematyka finansowa 26.05.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I

Matematyka finansowa 26.05.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Przyjmijmy

Bardziej szczegółowo

Opcje na akcje. Krzysztof Mejszutowicz Dyrektor Działu Rynku Terminowego GPW

Opcje na akcje. Krzysztof Mejszutowicz Dyrektor Działu Rynku Terminowego GPW Opcje na akcje. Krzysztof Mejszutowicz Dyrektor Działu Rynku Terminowego GPW Warszawa, 14 maja 2014 Czym są opcje indeksowe (1) Kupno opcji Koszt nabycia Zysk Strata Możliwość inwestowania na wzrost lub

Bardziej szczegółowo

1) jednostka posiada wystarczające środki aby zakupić walutę w dniu podpisania kontraktu

1) jednostka posiada wystarczające środki aby zakupić walutę w dniu podpisania kontraktu Przykład 1 Przedsiębiorca będący importerem podpisał kontrakt na zakup materiałów (surowców) o wartości 1 000 000 euro z datą płatności za 3 miesiące. Bieżący kurs 3,7750. Pozostałe koszty produkcji (wynagrodzenia,

Bardziej szczegółowo

Zarabianie pieniędzy to jedno z najbardziej niewinnych zajęć, w jakie może zaangażować się człowiek. Samuel Johnson, 1775

Zarabianie pieniędzy to jedno z najbardziej niewinnych zajęć, w jakie może zaangażować się człowiek. Samuel Johnson, 1775 Rozdział 1 Wprowadzenie Zarabianie pieniędzy to jedno z najbardziej niewinnych zajęć, w jakie może zaangażować się człowiek. Samuel Johnson, 1775 Instrument pochodny 1 (derivative lub derivative security)

Bardziej szczegółowo

Matematyka finansowa 15.06.2015 r. Komisja Egzaminacyjna dla Aktuariuszy. LXXI Egzamin dla Aktuariuszy z 15 czerwca 2015 r.

Matematyka finansowa 15.06.2015 r. Komisja Egzaminacyjna dla Aktuariuszy. LXXI Egzamin dla Aktuariuszy z 15 czerwca 2015 r. Komisja Egzaminacyjna dla Aktuariuszy LXXI Egzamin dla Aktuariuszy z 1 czerwca 201 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Pracownik

Bardziej szczegółowo

Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1

Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1 Ćwiczenia ZPI 1 Kupno opcji Profil wypłaty dla nabywcy opcji kupna. Z/S Premia (P) np. 100 Kurs wykonania opcji (X) np. 2500 Punkt opłacalności X + P 2500+100=2600 WIG20 2 Kupno opcji Profil wypłaty dla

Bardziej szczegółowo

Matematyka finansowa 11.10.2004 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r.

Matematyka finansowa 11.10.2004 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r. Komisja Egzaminacyjna dla Aktuariuszy XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU Czas egzaminu: 100 minut

Bardziej szczegółowo

Czym jest kontrakt terminowy?

Czym jest kontrakt terminowy? Kontrakty terminowe Czym jest kontrakt terminowy? Kontrakt to umowa między 2 stronami Nabywca/sprzedawca zobowiązuje się do kupna/sprzedaży w określonym momencie w przyszłości danego instrumentu bazowego

Bardziej szczegółowo

Futures na Wibor najlepszy sposób zarabiania na stopach. Departament Skarbu, PKO Bank Polski Konferencja Instrumenty Pochodne Warszawa, 28 maja 2014

Futures na Wibor najlepszy sposób zarabiania na stopach. Departament Skarbu, PKO Bank Polski Konferencja Instrumenty Pochodne Warszawa, 28 maja 2014 Futures na Wibor najlepszy sposób zarabiania na stopach Departament Skarbu, PKO Bank Polski Konferencja Instrumenty Pochodne Warszawa, 28 maja 2014 Agenda Wprowadzenie Definicja kontraktu Czynniki wpływające

Bardziej szczegółowo

Część X opcje indeksowe. Filip Duszczyk Dział Rozwoju Rynku Terminowego

Część X opcje indeksowe. Filip Duszczyk Dział Rozwoju Rynku Terminowego Część X opcje indeksowe Filip Duszczyk Dział Rozwoju Rynku Terminowego Agenda 1. Co to jest indeks? 2. Obliczanie indeksu 3. Kontrakty indeksowe 4. Opcje indeksowe 5. Syntetyki Co to jest indeks? Indeks

Bardziej szczegółowo

Inżynieria Finansowa - Egzamin - 28 stycznia Rozwiązania zadań Wersja z dnia 1 marca 2005, z drobnymi poprawkami

Inżynieria Finansowa - Egzamin - 28 stycznia Rozwiązania zadań Wersja z dnia 1 marca 2005, z drobnymi poprawkami Inżynieria Finansowa - Egzamin - 28 stycznia 2005 Rozwiązania zadań Wersja z dnia marca 2005, z drobnymi poprawkami Uwaga: Dla uproszczenia we wszelkich obliczeniach przyjęliśmy, że długość n-miesięcznego

Bardziej szczegółowo

Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym

Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym Ćwiczenia ZPI 1 Współczynniki greckie Odpowiadają na pytanie o ile zmieni się wartość opcji w wyniku: Współczynnik Delta (Δ) - zmiany wartości instrumentu bazowego Współczynnik Theta (Θ) - upływu czasu

Bardziej szczegółowo

Wzory matematyka finansowa

Wzory matematyka finansowa Wzory matematyka finansowa MaciejRomaniuk 29 września 29 K(t) funkcjaopisującaakumulacjęwchwiliczasut,k() kapitał,i stopazyskuwchwilit: i= K(t) K() (1) K() K kapitał,i stałastopaprocentowadlaustalonegookresuczasut,

Bardziej szczegółowo

Analiza inwestycji i zarządzanie portfelem SPIS TREŚCI

Analiza inwestycji i zarządzanie portfelem SPIS TREŚCI Analiza inwestycji i zarządzanie portfelem Frank K. Reilly, Keith C. Brown SPIS TREŚCI TOM I Przedmowa do wydania polskiego Przedmowa do wydania amerykańskiego O autorach Ramy książki CZĘŚĆ I. INWESTYCJE

Bardziej szczegółowo

Inżynieria Finansowa: 4. FRA i Swapy

Inżynieria Finansowa: 4. FRA i Swapy Inżynieria Finansowa: 4. FRA i Swapy Piotr Bańbuła Katedra Rynków i Instytucji Finansowych, KES Październik 2014 r. Warszawa, Szkoła Główna Handlowa Zakup syntetycznej obligacji +1 mln PLN: emisja obligacji/krótka

Bardziej szczegółowo

Dr hab. Renata Karkowska, ćwiczenia Zarządzanie ryzykiem 1

Dr hab. Renata Karkowska, ćwiczenia Zarządzanie ryzykiem 1 1 Rodzaje i źródła ryzyka stopy procentowej: Ryzyko niedopasowania terminów przeszacowania, np. 6M kredyt o stałym oprocentowaniu finansowany miesięcznymi lokatami o zmiennym oprocentowaniu. Ryzyko podstawy

Bardziej szczegółowo

Zarządzanie portfelem inwestycyjnym

Zarządzanie portfelem inwestycyjnym Zarządzanie portfelem inwestycyjnym Dr hab. Renata Karkowska 1 12. Charakterystyka opcji i ich zastosowanie Rodzaje opcji Zastosowanie opcji do zabezpieczania ryzyka rynkowego 13. Wycena opcji i współczynniki

Bardziej szczegółowo

OGŁOSZENIE O ZMIANACH STATUTU SFIO AGRO Kapitał na Rozwój. I. Poniższe zmiany Statutu wchodzą w życie z dniem ogłoszenia.

OGŁOSZENIE O ZMIANACH STATUTU SFIO AGRO Kapitał na Rozwój. I. Poniższe zmiany Statutu wchodzą w życie z dniem ogłoszenia. Warszawa, 25 czerwca 2012 r. OGŁOSZENIE O ZMIANACH STATUTU SFIO AGRO Kapitał na Rozwój Niniejszym Towarzystwo Funduszy Inwestycyjnych AGRO Spółka Akcyjna z siedzibą w Warszawie ogłasza poniższe zmiany

Bardziej szczegółowo

Uniwersytet Ekonomiczny we Wrocławiu Wydział Ekonomii, Zarządzania i Turystyki Katedra Ekonometrii i Informatyki

Uniwersytet Ekonomiczny we Wrocławiu Wydział Ekonomii, Zarządzania i Turystyki Katedra Ekonometrii i Informatyki Wydział Ekonomii, Zarządzania i Turystyki Katedra Ekonometrii i Informatyki http://keii.ue.wroc.pl Analiza ryzyka transakcji wykład ćwiczenia Literatura Literatura podstawowa: 1. Kaczmarek T. (2005), Ryzyko

Bardziej szczegółowo

OGŁOSZENIE O ZMIANACH PROSPEKTU INFORMACYJNEGO COMMERCIAL UNION SPECJALISTYCZNY FUNDUSZ INWESTYCYJNY OTWARTY, z dnia 14 stycznia 2009 r.

OGŁOSZENIE O ZMIANACH PROSPEKTU INFORMACYJNEGO COMMERCIAL UNION SPECJALISTYCZNY FUNDUSZ INWESTYCYJNY OTWARTY, z dnia 14 stycznia 2009 r. OGŁOSZENIE O ZMIANACH PROSPEKTU INFORMACYJNEGO COMMERCIAL UNION SPECJALISTYCZNY FUNDUSZ INWESTYCYJNY OTWARTY, z dnia 14 stycznia 2009 r. Na podstawie 28 ust. 4 Rozporządzenia Rady Ministrów z dnia 6 listopada

Bardziej szczegółowo

Zmiana statutu BPH FIZ Bezpieczna Inwestycja Certyfikat Inwestycyjny, Certyfikat 3. Dyspozycja Deponowania Certyfikatów Inwestycyjnych

Zmiana statutu BPH FIZ Bezpieczna Inwestycja Certyfikat Inwestycyjny, Certyfikat 3. Dyspozycja Deponowania Certyfikatów Inwestycyjnych 2012-03-12 Zmiana statutu BPH FIZ Bezpieczna Inwestycja 3 BPH Towarzystwo Funduszy Inwestycyjnych S.A. na podstawie art. 24 ust. 5 Ustawy z dnia 27 maja 2004 r. o funduszach inwestycyjnych (Dz. U. Nr 146,

Bardziej szczegółowo

Inwestor musi wybrać następujące parametry: instrument bazowy, rodzaj opcji (kupna lub sprzedaży, kurs wykonania i termin wygaśnięcia.

Inwestor musi wybrać następujące parametry: instrument bazowy, rodzaj opcji (kupna lub sprzedaży, kurs wykonania i termin wygaśnięcia. Opcje na GPW (II) Wbrew ogólnej opinii, inwestowanie w opcje nie musi być trudne. Na rynku tym można tworzyć strategie dla doświadczonych inwestorów, ale również dla początkujących. Najprostszym sposobem

Bardziej szczegółowo

Do końca 2003 roku Giełda wprowadziła promocyjne opłaty transakcyjne obniżone o 50% od ustalonych regulaminem.

Do końca 2003 roku Giełda wprowadziła promocyjne opłaty transakcyjne obniżone o 50% od ustalonych regulaminem. Opcje na GPW 22 września 2003 r. Giełda Papierów Wartościowych rozpoczęła obrót opcjami kupna oraz opcjami sprzedaży na indeks WIG20. Wprowadzenie tego instrumentu stanowi uzupełnienie oferty instrumentów

Bardziej szczegółowo

OPCJE FINANSOWE, W TYM OPCJE EGZOTYCZNE, ZBYWALNE STRATEGIE OPCYJNE I ICH ZASTOSOWANIA DARIA LITEWKA I ALEKSANDRA KOŁODZIEJCZYK

OPCJE FINANSOWE, W TYM OPCJE EGZOTYCZNE, ZBYWALNE STRATEGIE OPCYJNE I ICH ZASTOSOWANIA DARIA LITEWKA I ALEKSANDRA KOŁODZIEJCZYK OPCJE FINANSOWE, W TYM OPCJE EGZOTYCZNE, ZBYWALNE STRATEGIE OPCYJNE I ICH ZASTOSOWANIA DARIA LITEWKA I ALEKSANDRA KOŁODZIEJCZYK OPCJE Opcja jest umową, która daje posiadaczowi prawo do kupna lub sprzedaży

Bardziej szczegółowo

OPCJE WARSZTATY INWESTYCYJNE TMS BROKERS

OPCJE WARSZTATY INWESTYCYJNE TMS BROKERS OPCJE WARSZTATY INWESTYCYJNE TMS BROKERS Możliwości inwestycyjne akcje, kontrakty, opcje Akcje zysk: tylko wzrosty lub tylko spadki (krótka sprzedaż), brak dźwigni finansowej strata: w zależności od spadku

Bardziej szczegółowo

MIĘDZYNARODOWE FINANSE PRZEDSIĘBIORSTW. Anna Chmielewska, SGH Warunki zaliczenia

MIĘDZYNARODOWE FINANSE PRZEDSIĘBIORSTW. Anna Chmielewska, SGH Warunki zaliczenia MIĘDZYNARODOWE FINANSE PRZEDSIĘBIORSTW Anna Chmielewska Warunki zaliczenia 40 pkt praca samodzielna (szczegóły na kolejnym wykładzie) 60 pkt egzamin (forma testowa) 14 punktów obecności W przypadku braku

Bardziej szczegółowo

INSTRUMENTY POCHODNE ARKUSZ DO SYMULACJI STRATEGII INWESTYCYJNYCH. Instrukcja obsługi

INSTRUMENTY POCHODNE ARKUSZ DO SYMULACJI STRATEGII INWESTYCYJNYCH. Instrukcja obsługi INSTRUMENTY POCHODNE ARKUSZ DO SYMULACJI STRATEGII INWESTYCYJNYCH Instrukcja obsługi * * * Giełda Papierów Wartościowych w Warszawie nie ponosi odpowiedzialności za skutki decyzji podjętych na podstawie

Bardziej szczegółowo

Matematyka finansowa 13.12.2010 r. Komisja Egzaminacyjna dla Aktuariuszy. LV Egzamin dla Aktuariuszy z 13 grudnia 2010 r. Część I

Matematyka finansowa 13.12.2010 r. Komisja Egzaminacyjna dla Aktuariuszy. LV Egzamin dla Aktuariuszy z 13 grudnia 2010 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LV Egzamin dla Aktuariuszy z 13 grudnia 2010 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Pan

Bardziej szczegółowo

RADA INWESTORÓW Artykuł 4

RADA INWESTORÓW Artykuł 4 2012-03-12 Zmiana statutu BPH FIZ Bezpieczna Inwestycja 5 BPH Towarzystwo Funduszy Inwestycyjnych S.A. na podstawie art. 24 ust. 5 Ustawy z dnia 27 maja 2004 r. o funduszach inwestycyjnych (Dz. U. Nr 146,

Bardziej szczegółowo

Zmiana statutu BPH FIZ Bezpieczna Inwestycja 1 1. 2. Certyfikat Inwestycyjny, Certyfikat 3. Dyspozycja Deponowania Certyfikatów Inwestycyjnych

Zmiana statutu BPH FIZ Bezpieczna Inwestycja 1 1. 2. Certyfikat Inwestycyjny, Certyfikat 3. Dyspozycja Deponowania Certyfikatów Inwestycyjnych 2012-03-12 Zmiana statutu BPH FIZ Bezpieczna Inwestycja 1 BPH Towarzystwo Funduszy Inwestycyjnych S.A. na podstawie art. 24 ust. 5 Ustawy z dnia 27 maja 2004 r. o funduszach inwestycyjnych (Dz. U. Nr 146,

Bardziej szczegółowo

Inga Dębczyńska Paulina Bukowińska

Inga Dębczyńska Paulina Bukowińska OPCJE NA WIG20 Inga Dębczyńska Paulina Bukowińska Informacje ogólne o opcjach Terminologia Opcja KUPNA (CALL) - prawo zakupu po określonej cenie Opcja SPRZEDAŻY (PUT) - prawo sprzedaży po określonej cenie

Bardziej szczegółowo

istota transakcji opcyjnych, rodzaje opcji, czynniki wpływające na wartość opcji (premii). Mała powtórka: instrumenty liniowe

istota transakcji opcyjnych, rodzaje opcji, czynniki wpływające na wartość opcji (premii). Mała powtórka: instrumenty liniowe Opcje istota transakcji opcyjnych, rodzaje opcji, czynniki wpływające na wartość opcji (premii). 1 Mała powtórka: instrumenty liniowe Punkt odniesienia dla rozliczania transakcji terminowej forward: ustalony

Bardziej szczegółowo

FX forward Forward Rate Agreement Index Futures

FX forward Forward Rate Agreement Index Futures Transakcje terminowe FX forward Forward Rate Agreement Index Futures Transakcja terminowa Umowa, która określa, na jakich warunkach transakcja zostanie dokonana w przyszłości Dzięki temu na rynku terminowym

Bardziej szczegółowo

Ogłoszenie o zmianach statutu KBC BETA Specjalistycznego Funduszu Inwestycyjnego Otwartego z dnia 27 lutego 2015 r.

Ogłoszenie o zmianach statutu KBC BETA Specjalistycznego Funduszu Inwestycyjnego Otwartego z dnia 27 lutego 2015 r. Ogłoszenie o zmianach statutu KBC BETA Specjalistycznego Funduszu Inwestycyjnego Otwartego z dnia 27 lutego 2015 r. KBC Towarzystwo Funduszy Inwestycyjnych S.A. działające jako organ KBC BETA Specjalistycznego

Bardziej szczegółowo

Opcje na GPW (I) Możemy wyróżnić dwa rodzaje opcji: opcje kupna (ang. call options), opcje sprzedaży (ang. put options).

Opcje na GPW (I) Możemy wyróżnić dwa rodzaje opcji: opcje kupna (ang. call options), opcje sprzedaży (ang. put options). Opcje na GPW (I) Opcje (ang. options) to podobnie jak kontrakty terminowe bardzo popularny instrument notowany na rynkach giełdowych. Ich konstrukcja jest nieco bardziej złożona od kontraktów. Opcje można

Bardziej szczegółowo

K O N T R A K T Y T E R M I N O W E

K O N T R A K T Y T E R M I N O W E "MATEMATYKA NAJPEWNIEJSZYM KAPITAŁEM ABSOLWENTA" projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego K O N T R A K T Y T E R M I N O W E Autor: Lic. Michał Boczek

Bardziej szczegółowo

mgr Katarzyna Niewińska; Wydział Zarządzania UW Ćwiczenia 7

mgr Katarzyna Niewińska; Wydział Zarządzania UW Ćwiczenia 7 Ćwiczenia 7 Historia instrumentów pochodnych Instrumenty pochodne powstały w celu zabezpieczenia podmiotów gospodarczych przed ryzykiem zmiany cen towarów. Transakcje na pniu Następnie ryzykiem rynkowym:

Bardziej szczegółowo

Podstawy inwestowania

Podstawy inwestowania KOŁO NAUKOWE ZARZĄDZANIA FINANSAMI Opcje na GPW Podstawy inwestowania Wojciech Gudaszewski,, Wojciech Wasilewski (KN MANAGER) Tadeusz Gudaszewski (BM BPHPBK) Prezentacja dla BM BPHPBK Prezentacja dla BM

Bardziej szczegółowo

MoŜliwości inwestowania na giełdzie z wykorzystaniem strategii opcyjnych

MoŜliwości inwestowania na giełdzie z wykorzystaniem strategii opcyjnych MoŜliwości inwestowania na giełdzie z wykorzystaniem strategii opcyjnych Krzysztof Mejszutowicz Zespół Instrumentów Pochodnych Dział Instrumentów Finansowych Zakopane, 1 czerwca 2007 STRATEGIE OPCYJNE

Bardziej szczegółowo

Zarządzanie portfelem inwestycyjnym Opcje

Zarządzanie portfelem inwestycyjnym Opcje Zarządzanie portfelem inwestycyjnym Opcje 1 Opcje definicja umowa, która daje posiadaczowi prawo do kupna lub sprzedaży określonego instrumentu bazowego po z góry określonej cenie (cena wykonania) w terminie

Bardziej szczegółowo

PODSTAWOWE PARAMETRY UMOWY

PODSTAWOWE PARAMETRY UMOWY KARTA INFORMACYJNA Produktu Strukturyzowanego na WIG20 serii PLN-100-WIG20-20110609 PODSTAWOWE PARAMETRY UMOWY Forma prawna Produktu Strukturyzowanego: Emitent: Bankowy Papier Wartościowy Alior Bank SA

Bardziej szczegółowo

RYNKI INSTRUMENTY I INSTYTUCJE FINANSOWE RED. JAN CZEKAJ

RYNKI INSTRUMENTY I INSTYTUCJE FINANSOWE RED. JAN CZEKAJ RYNKI INSTRUMENTY I INSTYTUCJE FINANSOWE RED. JAN CZEKAJ Wstęp Część I. Ogólna charakterystyka rynków finansowych 1. Istota i funkcje rynków finansowych 1.1. Pojęcie oraz podstawowe rodzaje rynków 1.1.1.

Bardziej szczegółowo

INWESTYCJE Instrumenty finansowe, ryzyko SPIS TREŚCI

INWESTYCJE Instrumenty finansowe, ryzyko SPIS TREŚCI INWESTYCJE Instrumenty finansowe, ryzyko Jajuga Krzysztof, Jajuga Teresa SPIS TREŚCI Przedmowa Wprowadzenie - badania w zakresie inwestycji i finansów Literatura Rozdział 1. Rynki i instrumenty finansowe

Bardziej szczegółowo

Kontrakty terminowe na GPW Szkolenie dla uczestników XV edycji SIGG. Bogdan Kornacki - Dział Rozwoju Rynku GPW

Kontrakty terminowe na GPW Szkolenie dla uczestników XV edycji SIGG. Bogdan Kornacki - Dział Rozwoju Rynku GPW Kontrakty terminowe na GPW Szkolenie dla uczestników XV edycji SIGG Bogdan Kornacki - Dział Rozwoju Rynku GPW Czym jest kontrakt terminowy? Kontrakt to umowa między 2 stronami Nabywca/wystawca zobowiązuje

Bardziej szczegółowo

4.5. Obligacja o zmiennym oprocentowaniu

4.5. Obligacja o zmiennym oprocentowaniu .5. Obligacja o zmiennym oprocentowaniu 71.5. Obligacja o zmiennym oprocentowaniu Aby wycenić kontrakt IRS musi bliżej przyjrzeć się obligacji o zmiennym oprocentowaniu (Floating Rate Note lub floater

Bardziej szczegółowo