Wstęp do analitycznych i numerycznych metod wyceny opcji

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wstęp do analitycznych i numerycznych metod wyceny opcji"

Transkrypt

1 Wstęp do analitycznych i numerycznych metod wyceny opcji Jan Palczewski Wydział Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski Warszawa, 16 maja 2008 Jan Palczewski Wycena opcji Warszawa, / 23

2 Rynki finansowe Rynek towarów/akcji obiektem handlu jest towar (ziemniaki, węgiel, ropa) lub dobro umowne (udział w spółce) instrumenty podstawowe sa wielkościami namacalnymi najprostszy do modelowania Rynek walut wymiana abstrakcyjnych obiektów (pieniędzy): środka do zakupu dóbr symetria spojrzenia Rynek stóp procentowych obiektem handlu jest operacja lokowania i pożyczania pieniędzy na ustalonych warunkach stopa procentowa jest abstrakcyjnym opisem jednego z warunków inne to: nominał, okres inwestycji... Jan Palczewski Wycena opcji Warszawa, / 23

3 Instrumenty pochodne akcji i walut dwie podstawowe zasady rozliczeń: opcje europejskie i amerykańskie europejska opcja call możliwość zakupu określonej ilości towaru/waluty po ustalonej cenie K w momencie T reprezentacja jako wypłata: max(s T K, 0) wypłata (S T K) + plus zakup towaru na rynku = opcja europejska opcja put (K S T ) + opcja binarna opcja barierowa Jan Palczewski Wycena opcji Warszawa, / 23

4 Instrumenty pochodne stopy procentowej caplet/floorlet zabezpieczenie przed zbyt wysoka/nisk a stopa procentowa cap/floor pakiet capletów/floorletów swap zamiana stopy stałej na zmienna i vice versa zamiana stopy kredytu/lokaty swapcja Jan Palczewski Wycena opcji Warszawa, / 23

5 Cele matematyki finansowej 1 budowa złożonych instrumentów finansowych (inżynieria finansowa) 2 wycena instrumentów pochodnych 3 zebezpieczenie wypłat czy jest jak zabezpieczać? CDO (Collateral Debt Obligation) subprime crisis 4 ocena ryzyka zabezpieczenia Główny wysiłek praktyków skupiony jest na (1) i (2). Nasz cel: WYCENA Jan Palczewski Wycena opcji Warszawa, / 23

6 Realizacja 1 wyabstrahowanie najważniejszych dla wyceny danego instrumentu cech rynku i budowa modelu matematycznego 2 kalibracja modelu 3 wycena metody analityczne i numeryczne 4 strategie zabezpieczenia; obliczenie Greeks Jan Palczewski Wycena opcji Warszawa, / 23

7 Model Black a-scholes a Instrumenty podstawowe rachunek bankowy ze stopa procentową r B t = e rt akcja S t = S 0 e σw t+(µ σ 2 /2)t, gdzie W t jest procesem Wienera. ds t = S t µdt + S t σdw t Jan Palczewski Wycena opcji Warszawa, / 23

8 Założenia modelowe Jest możliwość krótkiej sprzedaży akcji. Nie ma możliwości arbitrażu. Handlowanie jest ciagłe. Nie ma kosztów transakcji i podatków. Wszystkie instrumenty finansowe sa nieskończenie podzielne. Stopa procentowa pożyczki i lokaty jest identyczna niezależnie od okresu i nominału. Jan Palczewski Wycena opcji Warszawa, / 23

9 Trochę teorii... Definicja Wypłata w momencie T nazywamy zmienna losowa mierzalna względem historii rynku do chwili T. Twierdzenie Jeśli σ 0 to model Black a-scholes a jest zupełny, zaś cena wypłaty X wynosi e rt E Q (X), gdzie Q jest miara probabilistyczna taka, że B t = e rt, oraz S t = S 0 e σ W t +(r σ 2 /2)t, zaś W t jest procesem Wienera względem miary Q. Jan Palczewski Wycena opcji Warszawa, / 23

10 Przykłady optymistyczne 1 Europejska opcja call: X = (S T K) + ) + } cena = e rt E Q {(S 0 e σz+(r σ2 /2)T K, gdzie Z N(0, T). 2 Europejska opcja barierowa down-and-out call: { (S T K) +, jeśli min 0 t T S t > H, X = 0, jeśli min 0 t T S t H, gdzie S t = S 0 e σw t+(r σ 2 /2)t. Wówczas cena = e rt E Q (X) Jan Palczewski Wycena opcji Warszawa, / 23

11 Przykłady nieco mniej optymistyczne 1 Opcja azjatycka call: gdzie X = (S ave K) +, S ave = S t 1 + S t S tn, lub S ave = 1 T S t dt. n T 0 Wówczas cena = e rt E Q (X). 2 Opcja amerykańska put: (twierdzenie) τ to moment stopu. { cena = sup E Q e rτ (K S τ ) +}. 0 τ T Jan Palczewski Wycena opcji Warszawa, / 23

12 Główne problemy kalibracja: znalezienie parametrów modelu stopa procentowa r, zmienność σ, uwaga! stopa zwrotu z akcji µ nie gra żadnej roli przy wycenie policzenie ceny metody analityczne wyrażenie składajace się ze znanych i łatwo obliczalnych funkcji, metody numeryczne jak się nie da analitycznie Jan Palczewski Wycena opcji Warszawa, / 23

13 Kalibracja 1 stopa procentowa różna dla różnych okresów jak wybrać r? 2 σ to zmienność cen akcji (ale to nie działa): σ = 3 zmienność implikowana Var ( 1 log S t+ S t ) 4 rażacy brak zgodności modelu z rzeczywistościa Jan Palczewski Wycena opcji Warszawa, / 23

14 Uśmiech zmienności Tego będzie dziś sporo. Jan Palczewski Wycena opcji Warszawa, / 23

15 Co robić? Nauczyć się sprawnie oszukiwać model obecnie najpowszechniejsza technika w praktyce Budować modele lepiej oddajace funkcjonowanie rynku np. model stochastycznej zmienności ds t = S t µdt + S t Vt dw 1 t, dv t = α(σ V t )dt + βv t dw 2 t. Ale wtedy jeszcze trudniej policzyć cenę = metody numeryczne. Jan Palczewski Wycena opcji Warszawa, / 23

16 Metody numeryczne Kiedy? Wycena trudniejszych wypłat, w tym wielu powszechnie handlowanych. Wycena w bardziej zaawansowanych modelach. Jak? Monte Carlo Równania różniczkowe czastkowe (PDE) Drzewa dwumianowe Jan Palczewski Wycena opcji Warszawa, / 23

17 Monte Carlo - teoria Mocne Prawo Wielkich Liczb Niech (X n ) bedzie ciagiem niezależnych zmiennych losowych o tym samym rozkładzie. Wówczas X X n n E(X 1 ) p.n. Jan Palczewski Wycena opcji Warszawa, / 23

18 Monte Carlo - praktyka Jak policzyć cenę wypłaty X? cena = e rt E Q (X). Symulacja Niech X 1,...,X n niezależne zmienne losowe o rozkładzie zmiennej X względem Q. Wówczas X X n n E Q (X) Jan Palczewski Wycena opcji Warszawa, / 23

19 Oszacowanie błędu Centralne Twierdzenie Graniczne Niech (X n ) bedzie ciagiem niezależnych zmiennych losowych o tym samym rozkładzie. Wówczas X X n n E(X 1 ) sdev(x 1 ) n N ( 0, 1 ) wg. rozkładu. Symulacja Niech X 1,...,X n niezależne zmienne losowe o rozkładzie zmiennej X względem Q. Wówczas X X n n ( N E Q (X), Var Q(X) n ). Jan Palczewski Wycena opcji Warszawa, / 23

20 Metoda różniczkowa - teoria Twierdzenie Jeśli X = h(s T ), to cena X w momencie t wynosi V(S t, t), gdzie funkcja V(s, t) dana jest wzorem Ponadto, V(s, t) = e r(t t) E Q ( h(st ) S t = s ). 1 2 σ2 s 2 V(s, t) V(s, t) V(s, t) s 2 + rs rv(s, t) + = 0. s t Przykłady: TAK: europejska opcja call/put, opcje binarne NIE: opcje barierowe, azjatyckie Jan Palczewski Wycena opcji Warszawa, / 23

21 Metoda różniczkowa - praktyka Opcja call V(s, T) = (s K) +, s > σ2 s 2 V(s, t) V(s, t) V(s, t) s 2 + rs rv(s, t) + = 0 s t lim V(s, t) = 0, t [0, T] s 0 V(s, t) lim = 1, t [0, T] s s Jan Palczewski Wycena opcji Warszawa, / 23

22 Drzewo dwumianowe Aproksymacja modelu Black a-scholes a za pomoca: S 0 S 2 = S 0 u 2... p u S 1 = S 0 u... p u 1 p u 1 p u S 2 = S 0 ud... p u S 1 = S 0 d... 1 p u S 2 = S 0 d 2... B 0 = 1 B 1 = 1 + r B 2 = (1 + r) 2... Wycena przy pomocy wstecznej rekurencji. Jan Palczewski Wycena opcji Warszawa, / 23

23 Podsumowanie 1 Monte Carlo bardzo uniwersalna (opcje zależne od trajektorii; różne modele), łatwa do zapisania wolna zbieżność (da się czasami przyspieszyć) 2 Metoda różniczkowa szybka i dokładna daje cała funkcję wyceniajac a V(s, t) trudna do zapisania (warunki brzegowe, trudne wyprowadzenie równania) 3 Drzewo dwumianowe dobra do opcji niezależnych od trajektorii i opcji amerykańskich aproksymuje tylko model Black s-scholes a (z małymi uogólnieniami) nie nadaje się do wyceny opcji zależnych od trajektorii Jan Palczewski Wycena opcji Warszawa, / 23

Matematyka finansowa w pakiecie Matlab

Matematyka finansowa w pakiecie Matlab Matematyka finansowa w pakiecie Matlab Wykład 6. Wycena opcji modele ciągłe, metoda Monte Carlo Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK Kurs letni dla studentów studiów zamawianych na

Bardziej szczegółowo

Strategie zabezpieczaj ce

Strategie zabezpieczaj ce 04062008 Plan prezentacji Model binarny Model Black Scholesa Bismut- Elworthy -Li formuła Model binarny i opcja call Niech cena akcji w chwili pocz tkowej wynosi S 0 = 21 Zaªó»my,»e ceny akcji po trzech

Bardziej szczegółowo

Wycena papierów wartościowych - instrumenty pochodne

Wycena papierów wartościowych - instrumenty pochodne Matematyka finansowa - 8 Wycena papierów wartościowych - instrumenty pochodne W ujęciu probabilistycznym cena akcji w momencie t jest zmienną losową P t o pewnym (zwykle nieznanym) rozkładzie prawdopodobieństwa,

Bardziej szczegółowo

Inżynieria finansowa Wykład II Stopy Procentowe

Inżynieria finansowa Wykład II Stopy Procentowe Inżynieria finansowa Wykład II Stopy Procentowe Wydział Matematyki Informatyki i Mechaniki UW 11 października 2011 1 Rynkowe stopy procentowe Rodzaje stóp rynkowych Reguły rachunku stóp 2 3 Definicje stóp

Bardziej szczegółowo

Matematyka finansowa w pakiecie Matlab

Matematyka finansowa w pakiecie Matlab Matematyka finansowa w pakiecie Matlab Wykład 5. Wycena opcji modele dyskretne Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK Kurs letni dla studentów studiów zamawianych na kierunku Matematyka

Bardziej szczegółowo

Czy opcje walutowe mogą być toksyczne?

Czy opcje walutowe mogą być toksyczne? Katedra Matematyki Finansowej Wydział Matematyki Stosowanej AGH 11 maja 2012 Kurs walutowy Kurs walutowy cena danej waluty wyrażona w innej walucie np. 1 USD = 3,21 PLN; USD/PLN = 3,21 Rodzaje kursów walutowych:

Bardziej szczegółowo

Opcje koszykowe a lokaty strukturyzowane - wycena

Opcje koszykowe a lokaty strukturyzowane - wycena Opcje koszykowe a lokaty strukturyzowane - wycena Basket options and structured deposits - pricing Janusz Gajda Promotor: dr hab. inz. Rafał Weron Politechnika Wrocławska Plan prezentacji Cel pracy Wprowadzenie

Bardziej szczegółowo

Marcin Bartkowiak Krzysztof Echaust INSTRUMENTY POCHODNE WPROWADZENIE DO INŻYNIERII FINANSOWEJ

Marcin Bartkowiak Krzysztof Echaust INSTRUMENTY POCHODNE WPROWADZENIE DO INŻYNIERII FINANSOWEJ Marcin Bartkowiak Krzysztof Echaust INSTRUMENTY POCHODNE WPROWADZENIE DO INŻYNIERII FINANSOWEJ Spis treści Przedmowa... 7 1. Rynek instrumentów pochodnych... 9 1.1. Instrumenty pochodne... 9 1.2. Rynek

Bardziej szczegółowo

INSTRUMENTY POCHODNE OPCJE EUROPEJSKIE OPCJE AMERYKAŃSKIE OPCJE EGZOTYCZNE

INSTRUMENTY POCHODNE OPCJE EUROPEJSKIE OPCJE AMERYKAŃSKIE OPCJE EGZOTYCZNE INSTRUMENTY POCHODNE OPCJE EUROPEJSKIE OPCJE AMERYKAŃSKIE OPCJE EGZOTYCZNE OPCJE / DEFINICJA Opcja jest prawem do zakupu lub sprzedaży określonej ilości wyspecyfikowanego przedmiotu (tzw. instrumentu bazowego)

Bardziej szczegółowo

ANALIZA OPCJI ANALIZA OPCJI - WYCENA. Krzysztof Jajuga Katedra Inwestycji Finansowych i Zarządzania Ryzykiem Uniwersytet Ekonomiczny we Wrocławiu

ANALIZA OPCJI ANALIZA OPCJI - WYCENA. Krzysztof Jajuga Katedra Inwestycji Finansowych i Zarządzania Ryzykiem Uniwersytet Ekonomiczny we Wrocławiu Krzysztof Jajuga Katedra Inwestycji Finansowych i Zarządzania Ryzykiem Uniwersytet Ekonomiczny we Wrocławiu Podstawowe pojęcia Opcja: in-the-money (ITM call: wartość instrumentu podstawowego > cena wykonania

Bardziej szczegółowo

Wzory matematyka finansowa

Wzory matematyka finansowa Wzory matematyka finansowa MaciejRomaniuk 29 września 29 K(t) funkcjaopisującaakumulacjęwchwiliczasut,k() kapitał,i stopazyskuwchwilit: i= K(t) K() (1) K() K kapitał,i stałastopaprocentowadlaustalonegookresuczasut,

Bardziej szczegółowo

Wycena equity derivatives notowanych na GPW w obliczu wysokiego ryzyka dywidendy

Wycena equity derivatives notowanych na GPW w obliczu wysokiego ryzyka dywidendy Instrumenty pochodne 2014 Wycena equity derivatives notowanych na GPW w obliczu wysokiego ryzyka dywidendy Jerzy Dzieża, WMS, AGH Kraków 28 maja 2014 (Instrumenty pochodne 2014 ) Wycena equity derivatives

Bardziej szczegółowo

Inżynieria finansowa Wykład IV Kontrakty OIS/IRS/CRIS

Inżynieria finansowa Wykład IV Kontrakty OIS/IRS/CRIS Inżynieria finansowa Wykład IV Kontrakty OIS/IRS/CRIS Wydział Matematyki Informatyki i Mechaniki UW 25 października 2011 1 Kontrakty OIS 2 Struktura kontraktu IRS Wycena kontraktu IRS 3 Struktura kontraktu

Bardziej szczegółowo

Quantile hedging. czyli jak tanio i dobrze zabezpieczyć opcję. Michał Krawiec, Piotr Piestrzyński

Quantile hedging. czyli jak tanio i dobrze zabezpieczyć opcję. Michał Krawiec, Piotr Piestrzyński czyli jak tanio i dobrze zabezpieczyć opcję Michał Krawiec Piotr Piestrzyński Koło Naukowe Probabilistyki i Statystyki Matematycznej Uniwersytet Wrocławski Niedziela, 19 kwietnia 2015 Przykład (opis problemu)

Bardziej szczegółowo

INWESTYCJE Instrumenty finansowe, ryzyko SPIS TREŚCI

INWESTYCJE Instrumenty finansowe, ryzyko SPIS TREŚCI INWESTYCJE Instrumenty finansowe, ryzyko Jajuga Krzysztof, Jajuga Teresa SPIS TREŚCI Przedmowa Wprowadzenie - badania w zakresie inwestycji i finansów Literatura Rozdział 1. Rynki i instrumenty finansowe

Bardziej szczegółowo

Obliczanie cen i parametrów greckich opcji walutowych w modelu Blacka-Scholesa

Obliczanie cen i parametrów greckich opcji walutowych w modelu Blacka-Scholesa Bogusław Wróblewski Obliczanie cen i parametrów greckich opcji walutowych w modelu Blacka-Scholesa Raport i dokumentacja 06.06.0 Spis treści. Opis problemu.......................................................

Bardziej szczegółowo

Matematyka finansowa w pakiecie Matlab

Matematyka finansowa w pakiecie Matlab Matematyka finansowa w pakiecie Matlab Wykład 4. Instrumenty pochodne podstawy Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK Kurs letni dla studentów studiów zamawianych na kierunku Matematyka

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część I Matematyka finansowa Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Rozważmy

Bardziej szczegółowo

Inżynieria finansowa Wykład I Wstęp

Inżynieria finansowa Wykład I Wstęp Wykład I Wstęp Wydział Matematyki Informatyki i Mechaniki UW 4 października 2011 1 Podstawowe pojęcia Instrumenty i rynki finansowe 2 Instrumenty i rynki finansowe to dyscyplina, która zajmuje się analizą

Bardziej szczegółowo

Dokumentacja. równań różniczkowych czastkowych

Dokumentacja. równań różniczkowych czastkowych Dokumentacja Wycena opcji za pomoca równań różniczkowych czastkowych Maria Pawłowska Mikołaj Stelmach Piotr Sulewski Spis treści 1 Opcje europejskie 2 1.1 Opis problemu..............................................

Bardziej szczegółowo

Kiedy opcja jest bezpieczna?

Kiedy opcja jest bezpieczna? Kiedy opcja jest bezpieczna? Jacek Podlewski Koło Naukowe Modelowania Finansowego AGH Kraków Toruń, 8 grudnia 2012 Wprowadzenie Plan prezentacji 1 Krótki wstęp do opcji 2 Problem wyceny i osłony 3 Delta

Bardziej szczegółowo

Instrumenty pochodne Instrumenty wbudowane

Instrumenty pochodne Instrumenty wbudowane www.pwcacademy.pl Instrumenty pochodne Instrumenty wbudowane Jan Domanik Instrumenty pochodne ogólne zasady ujmowania i wyceny 2 Instrument pochodny definicja. to instrument finansowy: którego wartość

Bardziej szczegółowo

Spis treści. Ze świata biznesu... 13. Przedmowa do wydania polskiego... 15. Wstęp... 19

Spis treści. Ze świata biznesu... 13. Przedmowa do wydania polskiego... 15. Wstęp... 19 Spis treści Ze świata biznesu............................................................ 13 Przedmowa do wydania polskiego.............................................. 15 Wstęp.......................................................................

Bardziej szczegółowo

Matematyka finansowa 10.12.2012 r. Komisja Egzaminacyjna dla Aktuariuszy. LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r.

Matematyka finansowa 10.12.2012 r. Komisja Egzaminacyjna dla Aktuariuszy. LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r. Komisja Egzaminacyjna dla Aktuariuszy LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Instrumenty pochodne - Zadania

Instrumenty pochodne - Zadania Jerzy A. Dzieża Instrumenty pochodne - Zadania 27 marca 2011 roku Rozdział 1 Wprowadzenie 1.1. Zadania 1. Spekulant zajął krótką pozycję w kontrakcie forward USD/PLN zapadającym za 2 miesiące o nominale

Bardziej szczegółowo

Matematyka finansowa 8.12.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r. Część I

Matematyka finansowa 8.12.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Wycena opcji. Dr inż. Bożena Mielczarek

Wycena opcji. Dr inż. Bożena Mielczarek Wycena opcji Dr inż. Bożena Mielczarek Stock Price Wahania ceny akcji Cena jednostki podlega niewielkim wahaniom dziennym (miesięcznym) wykazując jednak stały trend wznoszący. Cena może się doraźnie obniżać,

Bardziej szczegółowo

Teoretyczna i rzeczywista wartość walutowych instrumentów pochodnych rynek polski

Teoretyczna i rzeczywista wartość walutowych instrumentów pochodnych rynek polski Krzyszto Piontek Katedra Inwestycji Finansowych i Ubezpieczeń Akademia Ekonomiczna we Wrocławiu Teoretyczna i rzeczywista wartość walutowych instrumentów pochodnych rynek polski 1. Wprowadzenie W ostatnim

Bardziej szczegółowo

Zadania o numerze 4 z zestawów licencjat 2014.

Zadania o numerze 4 z zestawów licencjat 2014. Zadania o numerze 4 z zestawów licencjat 2014. W nawiasie przy zadaniu jego występowanie w numerze zestawu Spis treści (Z1, Z22, Z43) Definicja granicy ciągu. Obliczyć granicę:... 3 Definicja granicy ciągu...

Bardziej szczegółowo

MATEMATYKA FINANSOWA

MATEMATYKA FINANSOWA Matematyka Finansowa, 05 06 2006 1 Andrzej Spakowski MATEMATYKA FINANSOWA matematyka finansów i ubezpieczeń. Trajektoria (realizacja) procesu stochastycznego Wspó lczesna, szeroko rozumiana MF opisuje

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 16 maja 2005 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 16 maja 2005 r. Część I Matematyka finansowa Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 6 maja 005 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU A Czas egzaminu: 00 minut . Inwestorzy

Bardziej szczegółowo

Dokumentacja. Hestona i modeli pokrewnych. Mikołaj Bińkowski Wiktor Gromniak

Dokumentacja. Hestona i modeli pokrewnych. Mikołaj Bińkowski Wiktor Gromniak Dokumentacja Wycena opcji za pomoca uogólnionego modelu Hestona i modeli pokrewnych Mikołaj Bińkowski Wiktor Gromniak Spis treści 1 Wstęp teoretyczny 3 1.1 Rozpatrywane modele stochastycznej zmienności...........

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

Współczynniki Greckie

Współczynniki Greckie Wojciech Antniak 05.0.008r. Wstęp Współczynniki greckie określają ryzyko opcji europejskiej na zmiany rynku. ażdy z nich określa w jaki sposób wpłynie zmiana jakiegoś czynnika na cenę akcji. W dalszej

Bardziej szczegółowo

Matematyka finansowa 05.12.2005 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVII Egzamin dla Aktuariuszy z 5 grudnia 2005 r.

Matematyka finansowa 05.12.2005 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVII Egzamin dla Aktuariuszy z 5 grudnia 2005 r. Komisja Egzaminacyjna dla Aktuariuszy XXXVII Egzamin dla Aktuariuszy z 5 grudnia 2005 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU A Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Europejska opcja kupna akcji calloption

Europejska opcja kupna akcji calloption Europejska opcja kupna akcji callopion Nabywca holder: prawo kupna long posiion jednej akcji w okresie epiraiondae po cenie wykonania eercise price K w zamian za opłaę C Wysawca underwrier: obowiązek liabiliy

Bardziej szczegółowo

Metody oceny ryzyka operacyjnego

Metody oceny ryzyka operacyjnego Instytut Matematyki i Informatyki Wrocław, 10 VII 2009 Bazylejski Komitet Nadzoru Bankowego Umowa Kapitałowa - 1988 Opracowanie najlepszych praktyk rynkowych w zakresie zarządzania ryzykiem Nowa Umowa

Bardziej szczegółowo

Problem walutowych instrumentów pochodnych

Problem walutowych instrumentów pochodnych Problem walutowych instrumentów pochodnych (diagnoza, terapia, rekonwalescencja) Dr Andrzej Stopczyński Dyrektor Zrządzający Pionem Nadzoru Bankowego w UKNF 1. Fowardy, swapy, opcje,...? 2. Dlaczego zabezpieczenie

Bardziej szczegółowo

Krzysztof Piontek MODELOWANIE I PROGNOZOWANIE ZMIENNOŚCI INSTRUMENTÓW FINANSOWYCH

Krzysztof Piontek MODELOWANIE I PROGNOZOWANIE ZMIENNOŚCI INSTRUMENTÓW FINANSOWYCH Akademia Ekonomiczna im. Oskara Langego we Wrocławiu Wydział Zarządzania i Informatyki Krzysztof Piontek MODELOWANIE I PROGNOZOWANIE ZMIENNOŚCI INSTRUMENTÓW FINANSOWYCH rozprawa doktorska Promotor: prof.

Bardziej szczegółowo

Metoda Monte Carlo i jej zastosowania

Metoda Monte Carlo i jej zastosowania i jej zastosowania Tomasz Mostowski Zajęcia 31.03.2008 Plan 1 PWL 2 3 Plan PWL 1 PWL 2 3 Przypomnienie PWL Istnieje wiele wariantów praw wielkich liczb. Wspólna ich cecha jest asymptotyczne zachowanie

Bardziej szczegółowo

Informatyka wspomaga przedmioty ścisłe w szkole

Informatyka wspomaga przedmioty ścisłe w szkole Informatyka wspomaga przedmioty ścisłe w szkole Prezentuje : Dorota Roman - Jurdzińska W arkuszu I na obu poziomach występują dwa zadania związane z algorytmiką: Arkusz I bez komputera analiza algorytmów,

Bardziej szczegółowo

Inżynieria Finansowa: 5. Opcje

Inżynieria Finansowa: 5. Opcje Inżynieria Finansowa: 5. Opcje Piotr Bańbuła atedra Ekonomii Ilościowej, AE Listopad 2014 r. Warszawa, Szkoła Główna Handlowa Opcje - typy Opcja jest asymetrycznym instrumentem. Opcja (standardowa, prosta,

Bardziej szczegółowo

KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Matematyka finansowa (MFI222) 2. KIERUNEK: MATEMATYKA. 3. POZIOM STUDIÓW: I stopnia

KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Matematyka finansowa (MFI222) 2. KIERUNEK: MATEMATYKA. 3. POZIOM STUDIÓW: I stopnia KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Matematyka finansowa (MFI222) 2. KIERUNEK: MATEMATYKA 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: II/4 5. LICZBA PUNKTÓW ECTS: 8 6. LICZBA GODZIN: 30 / 30

Bardziej szczegółowo

Matematyka finansowa 15.12.2008 r. Komisja Egzaminacyjna dla Aktuariuszy. XLVIII Egzamin dla Aktuariuszy z 15 grudnia 2008 r.

Matematyka finansowa 15.12.2008 r. Komisja Egzaminacyjna dla Aktuariuszy. XLVIII Egzamin dla Aktuariuszy z 15 grudnia 2008 r. Komisja Egzaminacyjna dla Aktuariuszy XLVIII Egzamin dla Aktuariuszy z 15 grudnia 2008 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1

Bardziej szczegółowo

Papiery wartościowe o stałym dochodzie

Papiery wartościowe o stałym dochodzie Papiery wartościowe o stałym dochodzie Inwestycje i teoria portfela Strona 1 z 42 1. Wartość pieniądza w czasie Złotówka dzisiaj (którą mamy w ręku) jest więcej warta niż (przyrzeczona) złotówka w przyszłości,

Bardziej szczegółowo

Raport i dokumentacja Obliczanie Value-at-Risk portfela metodą Monte Carlo

Raport i dokumentacja Obliczanie Value-at-Risk portfela metodą Monte Carlo Raport i dokumentacja Obliczanie Value-at-Risk portfela metodą Monte Carlo 1. Opis problemu Celem pracy jest policzenie jednodniowej wartości narażonej na ryzyko (Value-at- Risk) portfela składającego

Bardziej szczegółowo

Forward Rate Agreement

Forward Rate Agreement Forward Rate Agreement Nowoczesne rynki finansowe oferują wiele instrumentów pochodnych. Należą do nich: opcje i warranty, kontrakty futures i forward, kontrakty FRA (Forward Rate Agreement) oraz swapy.

Bardziej szczegółowo

Immunizacja ryzyka stopy procentowej ubezpieczycieli życiowych

Immunizacja ryzyka stopy procentowej ubezpieczycieli życiowych Immunizacja ryzyka stopy procentowej ubezpieczycieli życiowych Elżbieta Krajewska Instytut Matematyki Politechnika Łódzka Elżbieta Krajewska Immunizacja ubezpieczycieli życiowych 1/22 Plan prezentacji

Bardziej szczegółowo

Forward kontrakt terminowy o charakterze rzeczywistym (z dostawą instrumentu bazowego).

Forward kontrakt terminowy o charakterze rzeczywistym (z dostawą instrumentu bazowego). Kontrakt terminowy (z ang. futures contract) to umowa pomiędzy dwiema stronami, z których jedna zobowiązuje się do kupna, a druga do sprzedaży, w określonym terminie w przyszłości (w tzw. dniu wygaśnięcia)

Bardziej szczegółowo

istota transakcji opcyjnych, rodzaje opcji, czynniki wpływające na wartość opcji (premii). Mała powtórka: instrumenty liniowe

istota transakcji opcyjnych, rodzaje opcji, czynniki wpływające na wartość opcji (premii). Mała powtórka: instrumenty liniowe Opcje istota transakcji opcyjnych, rodzaje opcji, czynniki wpływające na wartość opcji (premii). Mała powtórka: instrumenty liniowe Punkt odniesienia dla rozliczania transakcji terminowej forward: ustalony

Bardziej szczegółowo

Zarządzanie ryzykiem. Opracował: Dr inŝ. Tomasz Zieliński

Zarządzanie ryzykiem. Opracował: Dr inŝ. Tomasz Zieliński Zarządzanie ryzykiem Opracował: Dr inŝ. Tomasz Zieliński I. OGÓLNE INFORMACJE O PRZEDMIOCIE Cel przedmiotu: Celem przedmiotu jest zaprezentowanie studentom podstawowych pojęć z zakresu ryzyka w działalności

Bardziej szczegółowo

Streszczenia referatów

Streszczenia referatów Streszczenia referatów mgr Marcin Krzywda Jak estymować zmienność na rynku akcji? Do praktycznego zastosowania modeli matematyki finansowej musimy potrafić wyznaczyć parametry zmiennych rynkowych. Jednym

Bardziej szczegółowo

PROFESJONALNE ZARZADZANIE RYZYKIEM WALUTOWYM W FIRMIE

PROFESJONALNE ZARZADZANIE RYZYKIEM WALUTOWYM W FIRMIE PROFESJONALNE ZARZADZANIE RYZYKIEM WALUTOWYM W FIRMIE Jakość potwierdzona doświadczeniem Praktyczne zagadnienia Najlepsi prowadzący O SZKOLENIU 4 lutego 2014 9:00 16:30 ORGANIZATOR SPOTKANIA: MIEJSCE:

Bardziej szczegółowo

dr Bartłomiej Rokicki Katedra Makroekonomii i Teorii Handlu Zagranicznego Wydział Nauk Ekonomicznych UW

dr Bartłomiej Rokicki Katedra Makroekonomii i Teorii Handlu Zagranicznego Wydział Nauk Ekonomicznych UW Katedra Makroekonomii i Teorii Handlu Zagranicznego Wydział Nauk konomicznych UW Warunek arbitrażu Arbitraż jest możliwy jedynie w przypadku występowania różnic w cenie identycznych lub podobnych dóbr

Bardziej szczegółowo

Algorytmy i bazy danych (wykład obowiązkowy dla wszystkich)

Algorytmy i bazy danych (wykład obowiązkowy dla wszystkich) MATEMATYKA I EKONOMIA PROGRAM STUDIÓW DLA II STOPNIA Data: 2010-11-07 Opracowali: Krzysztof Rykaczewski Paweł Umiński Streszczenie: Poniższe opracowanie przedstawia projekt planu studiów II stopnia na

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy. XXXIX Egzamin dla Aktuariuszy z 5 czerwca 2006 r. Część I. Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy. XXXIX Egzamin dla Aktuariuszy z 5 czerwca 2006 r. Część I. Matematyka finansowa Komisja Egzaminacyjna dla Aktuariuszy XXXIX Egzamin dla Aktuariuszy z 5 czerwca 006 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Inwestor dokonuje

Bardziej szczegółowo

Metodologia wyznaczania greckich współczynników dla opcji na WIG20

Metodologia wyznaczania greckich współczynników dla opcji na WIG20 Metodologia wyznaczania greckich współczynników dla opcji na WIG20 (1) Dane wejściowe. Greckie współczynniki kalkulowane są po zamknięciu sesji na podstawie następujących danych: S wartość indeksu WIG20

Bardziej szczegółowo

Wykład VI Kontrakty opcyjne

Wykład VI Kontrakty opcyjne Inżynieria Finansowa - Wykład VI 1 Wykład VI Kontrakty opcyjne Kontrakt opcyjny (krótko: opcja) to umowa na podstawie której jedna strona umowy (posiadacz opcji) nabywa prawo do zrealizowania opisanej

Bardziej szczegółowo

RYNKI INSTRUMENTY I INSTYTUCJE FINANSOWE RED. JAN CZEKAJ

RYNKI INSTRUMENTY I INSTYTUCJE FINANSOWE RED. JAN CZEKAJ RYNKI INSTRUMENTY I INSTYTUCJE FINANSOWE RED. JAN CZEKAJ Wstęp Część I. Ogólna charakterystyka rynków finansowych 1. Istota i funkcje rynków finansowych 1.1. Pojęcie oraz podstawowe rodzaje rynków 1.1.1.

Bardziej szczegółowo

Dokumentacja Analityczna wycena instrumentów pochodnych na stopę procentową

Dokumentacja Analityczna wycena instrumentów pochodnych na stopę procentową Dokumentacja Analityczna wycena instrumentów pochodnych na stopę procentową Tomasz Romanowski Opis wycenianych instrumentów Caplet / Floorlet Jest to pojedyncza opcja kupna/sprzedaży stopy rynkowej L(T,

Bardziej szczegółowo

Proces Poissona. Proces {N(t), t 0} nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t.

Proces Poissona. Proces {N(t), t 0} nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t. Procesy stochastyczne WYKŁAD 5 Proces Poissona. Proces {N(t), t } nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t. Proces zliczający musi

Bardziej szczegółowo

Rynek opcji walutowych. dr Piotr Mielus

Rynek opcji walutowych. dr Piotr Mielus Rynek opcji walutowych dr Piotr Mielus Rynek walutowy a rynek opcji Geneza rynku opcji walutowych Charakterystyka rynku opcji Specyfika rynku polskiego jako rynku wschodzącego 2 Geneza rynku opcji walutowych

Bardziej szczegółowo

INSTRUMENTY ZARZĄDZANIA RYZYKIEM NOTOWANE NA WARSZAWSKIEJ GIEŁDZIE PAPIERÓW WARTOŚCIOWYCH. Streszczenie

INSTRUMENTY ZARZĄDZANIA RYZYKIEM NOTOWANE NA WARSZAWSKIEJ GIEŁDZIE PAPIERÓW WARTOŚCIOWYCH. Streszczenie Karol Klimczak Studenckie Koło Naukowe Stosunków Międzynarodowych TIAL przy Katedrze Stosunków Międzynarodowych Wydziału Ekonomiczno-Socjologicznego Uniwersytetu Łódzkiego INSTRUMENTY ZARZĄDZANIA RYZYKIEM

Bardziej szczegółowo

OPISY PRODUKTÓW. Rabobank Polska S.A.

OPISY PRODUKTÓW. Rabobank Polska S.A. OPISY PRODUKTÓW Rabobank Polska S.A. Warszawa, marzec 2010 Wymiana walut (Foreign Exchange) Wymiana walut jest umową pomiędzy bankiem a klientem, w której strony zobowiązują się wymienić w ustalonym dniu

Bardziej szczegółowo

Część X opcje indeksowe. Filip Duszczyk Dział Rozwoju Rynku Terminowego

Część X opcje indeksowe. Filip Duszczyk Dział Rozwoju Rynku Terminowego Część X opcje indeksowe Filip Duszczyk Dział Rozwoju Rynku Terminowego Agenda 1. Co to jest indeks? 2. Obliczanie indeksu 3. Kontrakty indeksowe 4. Opcje indeksowe 5. Syntetyki Co to jest indeks? Indeks

Bardziej szczegółowo

OPCJE FINANSOWE, W TYM OPCJE EGZOTYCZNE, ZBYWALNE STRATEGIE OPCYJNE I ICH ZASTOSOWANIA DARIA LITEWKA I ALEKSANDRA KOŁODZIEJCZYK

OPCJE FINANSOWE, W TYM OPCJE EGZOTYCZNE, ZBYWALNE STRATEGIE OPCYJNE I ICH ZASTOSOWANIA DARIA LITEWKA I ALEKSANDRA KOŁODZIEJCZYK OPCJE FINANSOWE, W TYM OPCJE EGZOTYCZNE, ZBYWALNE STRATEGIE OPCYJNE I ICH ZASTOSOWANIA DARIA LITEWKA I ALEKSANDRA KOŁODZIEJCZYK OPCJE Opcja jest umową, która daje posiadaczowi prawo do kupna lub sprzedaży

Bardziej szczegółowo

3. Plan studiów PLAN STUDIÓW. Faculty of Fundamental Problems of Technology Field of study: MATHEMATICS

3. Plan studiów PLAN STUDIÓW. Faculty of Fundamental Problems of Technology Field of study: MATHEMATICS 148 3. Plan studiów PLAN STUDIÓW 3.1. MATEMATYKA 3.1. MATHEMATICS - MSc studies - dzienne studia magisterskie - day studies WYDZIAŁ: PPT KIERUNEK: MATEMATYKA SPECJALNOŚCI: Faculty of Fundamental Problems

Bardziej szczegółowo

Aleksandra Rabczyńska. Uniwersytet Ekonomiczny we Wrocławiu. Zarządzanie ryzykiem w tworzeniu wartości na przykładzie

Aleksandra Rabczyńska. Uniwersytet Ekonomiczny we Wrocławiu. Zarządzanie ryzykiem w tworzeniu wartości na przykładzie Aleksandra Rabczyńska Uniwersytet Ekonomiczny we Wrocławiu Zarządzanie ryzykiem w tworzeniu wartości na przykładzie przedsiębiorstwa z branży wydobywczej Working paper JEL Classification: A10 Słowa kluczowe:

Bardziej szczegółowo

Inżynieria finansowa Ćwiczenia III Stopy Forward i Kontrakt FRA

Inżynieria finansowa Ćwiczenia III Stopy Forward i Kontrakt FRA Inżynieria finansowa Ćwiczenia III Stopy Forward i Kontrakt FRA Wydział Matematyki Informatyki i Mechaniki UW 18 października 2011 Zadanie 3.1 W dniu 18 października 2004 Bank X kwotował: 3M PLN Depo -

Bardziej szczegółowo

Strategie inwestowania w opcje. Filip Duszczyk Dział Rynku Terminowego

Strategie inwestowania w opcje. Filip Duszczyk Dział Rynku Terminowego Strategie inwestowania w opcje Filip Duszczyk Dział Rynku Terminowego Agenda: Opcje giełdowe Zabezpieczenie portfela Spekulacja Strategie opcyjne 2 Opcje giełdowe 3 Co to jest opcja? OPCJA JAK POLISA Zabezpieczenie

Bardziej szczegółowo

2.1 Wartość Aktualna Renty Stałej

2.1 Wartość Aktualna Renty Stałej 2.1 Wartość Aktualna Renty Stałej Zakładamy że dana osoba ma dostać kwotę o stałej wartości nominalnej x przez N okresów (zwykle miesięcznie lub rocznie), np. stała renta/emerytura. Zakładamy że pierwsza

Bardziej szczegółowo

Matematyka finansowa 15.06.2015 r. Komisja Egzaminacyjna dla Aktuariuszy. LXXI Egzamin dla Aktuariuszy z 15 czerwca 2015 r.

Matematyka finansowa 15.06.2015 r. Komisja Egzaminacyjna dla Aktuariuszy. LXXI Egzamin dla Aktuariuszy z 15 czerwca 2015 r. Komisja Egzaminacyjna dla Aktuariuszy LXXI Egzamin dla Aktuariuszy z 1 czerwca 201 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Pracownik

Bardziej szczegółowo

NOTA 6 - INSTRUMENTY POCHODNE BPH Fundusz Inwestycyjny Otwarty Parasolowy BPH Subfundusz Obligacji 2 na dzień 31.12.2012 Typ zajętej pozycji Rodzaj instrumentu pochodnego Cel otwarcia pozycji Wartość otwartej

Bardziej szczegółowo

Matematyka finansowa 26.05.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I

Matematyka finansowa 26.05.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Przyjmijmy

Bardziej szczegółowo

Z Wikipedii, wolnej encyklopedii.

Z Wikipedii, wolnej encyklopedii. Rozkład normalny Rozkład normalny jest niezwykle ważnym rozkładem prawdopodobieństwa w wielu dziedzinach. Nazywa się go także rozkładem Gaussa, w szczególności w fizyce i inżynierii. W zasadzie jest to

Bardziej szczegółowo

Matematyka finansowa 11.10.2004 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r.

Matematyka finansowa 11.10.2004 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r. Komisja Egzaminacyjna dla Aktuariuszy XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU Czas egzaminu: 100 minut

Bardziej szczegółowo

Część II teoretyczne modele wyceny opcji. Filip Duszczyk Dział Rynku Terminowego

Część II teoretyczne modele wyceny opcji. Filip Duszczyk Dział Rynku Terminowego Część II teoretyczne modele wyceny opcji Filip Duszczyk Dział Rynku Terminowego Rozwiązanie zagadnienia z 16.04.15 I.) Kurs rozliczeniowy = 90-1 short 90 call = 0 + (8,45 x 1) = + 8,45-2 long 100 calls

Bardziej szczegółowo

Matematyka finansowa 20.06.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVII Egzamin dla Aktuariuszy z 20 czerwca 2011 r.

Matematyka finansowa 20.06.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVII Egzamin dla Aktuariuszy z 20 czerwca 2011 r. Komisja Egzaminacyjna dla Aktuariuszy LVII Egzamin dla Aktuariuszy z 20 czerwca 2011 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej

Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej c Copyright by Ireneusz Krech ikrech@ap.krakow.pl Instytut Matematyki Uniwersytet Pedagogiczny im. KEN w Krakowie

Bardziej szczegółowo

Materiały do samodzielnego kształcenia Inżynieria finansowa i zarządzanie ryzykiem. Temat wykładu: Wycena kontraktów swap

Materiały do samodzielnego kształcenia Inżynieria finansowa i zarządzanie ryzykiem. Temat wykładu: Wycena kontraktów swap Materiały do samodzielnego kształcenia Inżynieria finansowa i zarządzanie ryzykiem Temat wykładu: Wycena kontraktów swap Podstawowe zagadnienia: 1. Wycena swapa procentowego metodą wyceny obligacji 2.

Bardziej szczegółowo

Identyfikacja i pomiar ryzyka pierwszy krok w zarządzaniu ryzykiem.

Identyfikacja i pomiar ryzyka pierwszy krok w zarządzaniu ryzykiem. Identyfikacja i pomiar ryzyka pierwszy krok w zarządzaniu ryzykiem. Andrzej Podszywałow Własność przemysłowa w innowacyjnej gospodarce. Zarządzanie ryzykiem, strategia zarządzania własnością intelektualną

Bardziej szczegółowo

Wykłady specjalistyczne. (specjalność: Matematyka w finansach i ekonomii) oferowane na stacjonarnych studiach I stopnia (dla 3 roku)

Wykłady specjalistyczne. (specjalność: Matematyka w finansach i ekonomii) oferowane na stacjonarnych studiach I stopnia (dla 3 roku) Wykłady specjalistyczne (specjalność: Matematyka w finansach i ekonomii) oferowane na stacjonarnych studiach I stopnia (dla 3 roku) w roku akademickim 2015/2016 (semestr zimowy) Spis treści 1. MODELE SKOŃCZONYCH

Bardziej szczegółowo

4 Kilka klas procesów

4 Kilka klas procesów Marek Beśka, Całka Stochastyczna, wykład 4 48 4 Kilka klas procesów 4.1 Procesy rosnące i przestrzenie V,, loc Jak poprzednio niech (Ω, F, F, P ) będzie zupełną bazą stochastyczną. Definicja 4.1 Proces

Bardziej szczegółowo

OPCJE - PODSTAWY TEORETYCZNE cz.1

OPCJE - PODSTAWY TEORETYCZNE cz.1 OPCJE - PODSTAWY TEORETYCZNE cz.1 Opcja to prawo do kupna instrumentu bazowego po cenie, która jest z góry określona - głosi definicja opcji. Owa cena, które jest z góry określona to tzw. cena wykonania

Bardziej szczegółowo

Analiza instrumentów pochodnych

Analiza instrumentów pochodnych Analiza instrumentów pochodnych Dr Wioletta Nowak Środa 13.15-15.15, p. 205C wnowak@prawo.uni.wroc.pl Sylabus Zasady i metody wyceny kontraktów forward i futures. Kontrakt forward/futures na instrument

Bardziej szczegółowo

Opcje walutowe proste. 1. Czym sa opcje 2. Rodzaje opcji 3. Profile ryzyka i The Greeks 4. Hedging 5. Strategie handlowania zmiennoscia cen

Opcje walutowe proste. 1. Czym sa opcje 2. Rodzaje opcji 3. Profile ryzyka i The Greeks 4. Hedging 5. Strategie handlowania zmiennoscia cen Opcje walutowe proste 1. Czym sa opcje 2. Rodzaje opcji 3. Profile ryzyka i The Greeks 4. Hedging 5. Strategie handlowania zmiennoscia cen Historia opcji Opcje byly znane od setek lat Ich natura spekulacyjna

Bardziej szczegółowo

Analiza danych. http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU

Analiza danych. http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Analiza danych Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Różne aspekty analizy danych Reprezentacja graficzna danych Metody statystyczne: estymacja parametrów

Bardziej szczegółowo

Matematyka finansowa 30.09.2013 r. Komisja Egzaminacyjna dla Aktuariuszy. LXV Egzamin dla Aktuariuszy z 30 września 2013 r.

Matematyka finansowa 30.09.2013 r. Komisja Egzaminacyjna dla Aktuariuszy. LXV Egzamin dla Aktuariuszy z 30 września 2013 r. Komisja Egzaminacyjna dla Aktuariuszy LXV Egzamin dla Aktuariuszy z 30 września 2013 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

CZĘŚĆ 1 OPODATKOWANIE INSTRUMENTÓW POCHODNYCH W PRAKTYCE PODATKOWEJ

CZĘŚĆ 1 OPODATKOWANIE INSTRUMENTÓW POCHODNYCH W PRAKTYCE PODATKOWEJ CZĘŚĆ 1 OPODATKOWANIE INSTRUMENTÓW POCHODNYCH W PRAKTYCE PODATKOWEJ 1 PRZEPISY O RACHUNKOWOŚCI DEFINICJA INSTRMENTÓW POCHODNYCH Pochodne instrumenty finansowe Rozporządzenie Ministra Finansów z dnia 12

Bardziej szczegółowo

Zastosowanie Excela w matematyce

Zastosowanie Excela w matematyce Zastosowanie Excela w matematyce Komputer w dzisiejszych czasach zajmuje bardzo znamienne miejsce. Trudno sobie wyobrazić jakąkolwiek firmę czy instytucję działającą bez tego urządzenia. W szkołach pierwsze

Bardziej szczegółowo

Analiza inwestycji i zarządzanie portfelem SPIS TREŚCI

Analiza inwestycji i zarządzanie portfelem SPIS TREŚCI Analiza inwestycji i zarządzanie portfelem Frank K. Reilly, Keith C. Brown SPIS TREŚCI TOM I Przedmowa do wydania polskiego Przedmowa do wydania amerykańskiego O autorach Ramy książki CZĘŚĆ I. INWESTYCJE

Bardziej szczegółowo

Inżynieria Finansowa: 1. Wprowadzenie: zasady wyceny, spekulacja, arbitraż

Inżynieria Finansowa: 1. Wprowadzenie: zasady wyceny, spekulacja, arbitraż Inżynieria Finansowa: 1. Wprowadzenie: zasady wyceny, spekulacja, arbitraż Piotr Bańbuła pbanbu@sgh.waw.pl Katedra Rynków i Instytucji Finansowych, KES 5 marca 2014 r. Warszawa, Szkoła Główna Handlowa

Bardziej szczegółowo

Statystyka Opisowa z Demografią oraz Biostatystyka. Zmienne losowe. Aleksander Denisiuk. denisjuk@euh-e.edu.pl

Statystyka Opisowa z Demografią oraz Biostatystyka. Zmienne losowe. Aleksander Denisiuk. denisjuk@euh-e.edu.pl Statystyka Opisowa z Demografią oraz Biostatystyka Zmienne losowe Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka p.

Bardziej szczegółowo

Opcje. istota transakcji opcyjnych, rodzaje opcji, czynniki wpływające na wartość opcji (premii).

Opcje. istota transakcji opcyjnych, rodzaje opcji, czynniki wpływające na wartość opcji (premii). Opcje istota transakcji opcyjnych, rodzaje opcji, czynniki wpływające na wartość opcji (premii). 1 Mała powtórka: instrumenty liniowe Takie, w których funkcja wypłaty jest liniowa (np. forward, futures,

Bardziej szczegółowo

Zastosowanie Excela w obliczeniach inżynierskich.

Zastosowanie Excela w obliczeniach inżynierskich. Zastosowanie Excela w obliczeniach inżynierskich. Część I Różniczkowanie numeryczne. Cel ćwiczenia: Zapoznanie się z ilorazami różnicowymi do obliczania wartości pochodnych. Pochodna jest miarą szybkości

Bardziej szczegółowo

Matematyka finansowa 03.10.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVIII Egzamin dla Aktuariuszy z 3 października 2011 r.

Matematyka finansowa 03.10.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVIII Egzamin dla Aktuariuszy z 3 października 2011 r. Komisja Egzaminacyjna dla Aktuariuszy LVIII Egzamin dla Aktuariuszy z 3 października 2011 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut

Bardziej szczegółowo

Zarządzanie ryzykiem. Wykład 3 Instrumenty pochodne

Zarządzanie ryzykiem. Wykład 3 Instrumenty pochodne Zarządzanie ryzykiem Wykład 3 Instrumenty pochodne Definicja instrumenty pochodne to: prawa majątkowe, których cena rynkowa zależy bezpośrednio lub pośrednio od ceny lub wartości papierów wartościowych,

Bardziej szczegółowo

Inwestowanie w obligacje

Inwestowanie w obligacje Inwestowanie w obligacje Ile zapłacić za obligację aby uzyskać oczekiwaną stopę zwrotu? Jaką stopę zwrotu uzyskamy kupując obligację po danej cenie? Jak zmienią się ceny obligacji, kiedy Rada olityki ieniężnej

Bardziej szczegółowo