Zarządzanie ryzykiem finansowym

Wielkość: px
Rozpocząć pokaz od strony:

Download "Zarządzanie ryzykiem finansowym"

Transkrypt

1 Zarządzanie projektami Wrocław, 30 października 2013

2 Spis treści Motywacja Rachunek prawdopodobieństwa Koherentne miary ryzyka Przykłady zastosowań Podsumowanie

3 Po co analizować ryzyko na rynkach finansowych? Fala spekulacyjnych bankructw w latach 90-tych Rosnąca niepewność na rynkach Potrzeba identyfikacji zagrożeń Stabilizacja zysków i minimalizacja możliwości bankructwa Regulacje prawne (Basel II, Solvency II) Integralna część zarządzania

4 Motywacja c.d. 0.1 Zwroty z DJIA Dni [ ] Rozklad zwrotów

5 Spis treści Motywacja Rachunek prawdopodobieństwa Koherentne miary ryzyka Przykłady zastosowań Podsumowanie

6 Zmienna losowa Rzucamy monetą 2 razy, jaki jest rozkład tej zmiennej? 0.5 Prawdopodobieñstwo # reszek

7 Zmienna losowa c.d. Co jeśli zwiększymy liczbę rzutów?

8 Zmienna losowa c.d. Rozkład dyskretny rozkład ciągły

9 Zmienna losowa proces stochastyczny Czas

10 Spis treści Motywacja Rachunek prawdopodobieństwa Koherentne miary ryzyka Przykłady zastosowań Podsumowanie

11 Value at Risk Value at Risk VaR T 1 α = maksymalna wartość straty, jaką a zadanym horyzoncie czasowym T może spowodować badana pozycja w 1 α przypadków. Value at Risk 95% Strata, 5% szans Strata, 95% szans

12 Value at Risk - c.d. Przykład Nasz portfel: W = (A, B) - dwie obligacje o wartościach nominalnych 100zł. Zakładamy, że spółki A, B są niezależne, z prawdopodobieństwem upadłości 4%. Dla α = 5% mamy 0 = VaR A 95% + VaRB 95% < VaRA+B 95% = 100 Portfel zdywersyfikowany ma większe ryzyko niż suma dwóch portfeli

13 Value at Risk - c.d. Przykład Nasz portfel: W = (A, B) - dwie obligacje o wartościach nominalnych 100zł. Zakładamy, że spółki A, B są niezależne, z prawdopodobieństwem upadłości 4%. Dla α = 5% mamy 0 = VaR A 95% + VaRB 95% < VaRA+B 95% = 100 Portfel zdywersyfikowany ma większe ryzyko niż suma dwóch portfeli VaR jest zdefiniowany sprzecznie z intuicją!

14 Koherentna miary ryzyka Od pożądnej miary ryzyka żądamy m.in., aby była subaddytywna. Formalnie: chcemy, by ρ(x + Y ) ρ(x ) + ρ(y ) VaR tej własności nie spełnia Powyższa własność oraz pewne inne gwarantują, że miara ryzyka będzie wypukła

15 Koherentna miary ryzyka Od pożądnej miary ryzyka żądamy m.in., aby była subaddytywna. Formalnie: chcemy, by ρ(x + Y ) ρ(x ) + ρ(y ) VaR tej własności nie spełnia Powyższa własność oraz pewne inne gwarantują, że miara ryzyka będzie wypukła możemy znaleźć portfel o najmniejszym ryzyku

16 Expected Shortfall Definicja ES T 1 α = średnia wartość straty, jaką a zadanym horyzoncie czasowym T osiągniemy w α najgorszych przypadkach. Value at Risk 95% Strata, 5% szans Strata, 95% szans Expected Shortfall 95%

17 Spis treści Motywacja Rachunek prawdopodobieństwa Koherentne miary ryzyka Przykłady zastosowań Podsumowanie

18 Ryzyko kredytowe Definicja Ryzyko poniesienia straty w wyniku niewywiązania się klienta ze zobowiązań wobec banku lub jako ryzyko spadku wartości ekonomicznej wierzytelności banku w wyniku pogorszenia się kondycji finansowej klientów. Metody rozwijały się wraz z wzrostem popularności inżynierii finansowej Złożone modele procesów stochastycznych pozwalają wyznaczyć prawdopodobieństwo niewypłacalności (ang. probability of default)

19 Z punktu widzenia przedsiębiorstwa c.d.

20 Z punktu widzenia przedsiębiorstwa c.d. Value at Risk Cash Flow at Risk + Earnings at Risk symulacje scenariuszy

21 Podsumowanie W rzeczywistości modelowanie ryzyka jest dużo bardziej skomplikowane... Które czynniki ryzyka wybierać? Jak modelować korelacje? Które modele są najskuteczniejsze? Jak dopasować je do danych?... ale dobrze przeprowadzone pozwala redukować potencjalne straty Wszystkie instytucje finansowe na świecie mają działy zarządzania ryzykiem, więc to się opłaca (jeśli nie bankom, to ich pracownikom)

dr Hubert Wiśniewski 1

dr Hubert Wiśniewski 1 dr Hubert Wiśniewski 1 Agenda: 1. Rodzaje i czynniki ryzyka w przedsiębiorstwie ubezpieczeniowym. 2. Miary ryzyka przedsiębiorstwa ubezpieczeniowego. 3. Zarządzanie ryzykiem ubezpieczeniowym w przedsiębiorstwie

Bardziej szczegółowo

Porównanie metod szacowania Value at Risk

Porównanie metod szacowania Value at Risk Porównanie metod szacowania Value at Risk Metoda wariancji i kowariancji i metoda symulacji historycznej Dominika Zarychta Nr indeksu: 161385 Spis treści 1. Wstęp....3 2. Co to jest Value at Risk?...3

Bardziej szczegółowo

Zarządzanie ryzykiem. Opracował: Dr inŝ. Tomasz Zieliński

Zarządzanie ryzykiem. Opracował: Dr inŝ. Tomasz Zieliński Zarządzanie ryzykiem Opracował: Dr inŝ. Tomasz Zieliński I. OGÓLNE INFORMACJE O PRZEDMIOCIE Cel przedmiotu: Celem przedmiotu jest zaprezentowanie studentom podstawowych pojęć z zakresu ryzyka w działalności

Bardziej szczegółowo

Inne kryteria tworzenia portfela. Inne kryteria tworzenia portfela. Poziom bezpieczeństwa. Analiza i Zarządzanie Portfelem cz. 3. Dr Katarzyna Kuziak

Inne kryteria tworzenia portfela. Inne kryteria tworzenia portfela. Poziom bezpieczeństwa. Analiza i Zarządzanie Portfelem cz. 3. Dr Katarzyna Kuziak Inne kryteria tworzenia portfela Analiza i Zarządzanie Portfelem cz. 3 Dr Katarzyna Kuziak. Minimalizacja ryzyka przy zadanym dochodzie Portfel efektywny w rozumieniu Markowitza odchylenie standardowe

Bardziej szczegółowo

Inwestycje finansowe. Wycena obligacji. Stopa zwrotu z akcji. Ryzyko.

Inwestycje finansowe. Wycena obligacji. Stopa zwrotu z akcji. Ryzyko. Inwestycje finansowe Wycena obligacji. Stopa zwrotu z akcji. yzyko. Inwestycje finansowe Instrumenty rynku pieniężnego (np. bony skarbowe). Instrumenty rynku walutowego. Obligacje. Akcje. Instrumenty pochodne.

Bardziej szczegółowo

Symulacyjne metody analizy ryzyka inwestycyjnego wybrane aspekty. Grzegorz Szwałek Katedra Matematyki Stosowanej Uniwersytet Ekonomiczny w Poznaniu

Symulacyjne metody analizy ryzyka inwestycyjnego wybrane aspekty. Grzegorz Szwałek Katedra Matematyki Stosowanej Uniwersytet Ekonomiczny w Poznaniu Symulacyjne metody analizy ryzyka inwestycyjnego wybrane aspekty Grzegorz Szwałek Katedra Matematyki Stosowanej Uniwersytet Ekonomiczny w Poznaniu Plan prezentacji 1. Opis metody wyceny opcji rzeczywistej

Bardziej szczegółowo

Spis treści 3 SPIS TREŚCI

Spis treści 3 SPIS TREŚCI Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe

Bardziej szczegółowo

Ćwiczenia Zarządzanie Ryzykiem. dr hab. Renata Karkowska, ćwiczenia Zarządzanie ryzykiem 1

Ćwiczenia Zarządzanie Ryzykiem. dr hab. Renata Karkowska, ćwiczenia Zarządzanie ryzykiem 1 Ćwiczenia Zarządzanie Ryzykiem 1 VaR to strata wartości instrumentu (portfela) taka, że prawdopodobieństwo osiągnięcia jej lub przekroczenia w określonym przedziale czasowym jest równe zadanemu poziomowi

Bardziej szczegółowo

INTERAKCJE RYZYKA FINANSOWEGO W LASACH I PRZEMYŚLE DRZEWNYM. Autorzy dr hab. Krzysztof Adamowicz mgr Krzysztof Michalski

INTERAKCJE RYZYKA FINANSOWEGO W LASACH I PRZEMYŚLE DRZEWNYM. Autorzy dr hab. Krzysztof Adamowicz mgr Krzysztof Michalski INTERAKCJE RYZYKA FINANSOWEGO W LASACH I PRZEMYŚLE DRZEWNYM Autorzy dr hab. Krzysztof Adamowicz mgr Krzysztof Michalski RYZYKO możliwy negatywny wynik przedsięwzięcia, z którym łączy się uszczerbek, strata,

Bardziej szczegółowo

Krzywa dochodowości. termin. SGH Rynki Finansowe

Krzywa dochodowości. termin. SGH Rynki Finansowe Wykład Futures na obligacje Value at Risk % Krzywa dochodowości termin SGH Rynki Finansowe 2015 1 Krzywa dochodowości zmiana kształtu % termin Pytanie do Napoleona: O czym wystarczy pamiętać, by wiedzieć

Bardziej szczegółowo

Postawy wobec ryzyka

Postawy wobec ryzyka Postawy wobec ryzyka Wskaźnik Sharpe a przykład zintegrowanej miary rentowności i ryzyka Konstrukcja wskaźnika odwołuje się do klasycznej teorii portfelowej Markowitza, której elementem jest mapa ryzyko

Bardziej szczegółowo

PRODUKTY DEPARTAMENTU RYNKÓW FINANSOWYCH

PRODUKTY DEPARTAMENTU RYNKÓW FINANSOWYCH PRODUKTY DEPARTAMENTU RYNKÓW FINANSOWYCH Warszawa, październik 2018 www.pekao.com.pl Cechy ogólne dokumentu i zastrzeżenia prawne Cechy ogólne dokumentu Karta Produktu zawiera podstawowe informacje o instrumencie

Bardziej szczegółowo

Spis treści. Notki o autorach Założenia i cele naukowe Wstęp... 17

Spis treści. Notki o autorach Założenia i cele naukowe Wstęp... 17 Notki o autorach................................................... 11 Założenia i cele naukowe............................................ 15 Wstęp............................................................

Bardziej szczegółowo

Finansowanie przedsiębiorstw z branży budowlanej

Finansowanie przedsiębiorstw z branży budowlanej Deutsche Bank Please send your feedback Finansowanie przedsiębiorstw z branży budowlanej Ocena i możliwości ograniczania ryzyka Piotr Piechota Warszawa, 15 kwietnia 2013 0 Agenda 1. Background. 2. Ocena

Bardziej szczegółowo

dr hab. Renata Karkowska 1

dr hab. Renata Karkowska 1 dr hab. Renata Karkowska 1 Miary zmienności: obrazują zmiany cen, stóp zwrotu instrumentów finansowych, opierają się na rozproszeniu ich rozkładu, tym samym uśredniają ryzyko: wariancja stopy zwrotu, odchylenie

Bardziej szczegółowo

Identyfikacja i pomiar ryzyka pierwszy krok w zarządzaniu ryzykiem.

Identyfikacja i pomiar ryzyka pierwszy krok w zarządzaniu ryzykiem. Identyfikacja i pomiar ryzyka pierwszy krok w zarządzaniu ryzykiem. Andrzej Podszywałow Własność przemysłowa w innowacyjnej gospodarce. Zarządzanie ryzykiem, strategia zarządzania własnością intelektualną

Bardziej szczegółowo

Prognozowanie i Symulacje. Wykład I. Matematyczne metody prognozowania

Prognozowanie i Symulacje. Wykład I. Matematyczne metody prognozowania Prognozowanie i Symulacje. Wykład I. e-mail:e.kozlovski@pollub.pl Spis treści Szeregi czasowe 1 Szeregi czasowe 2 3 Szeregi czasowe Definicja 1 Szereg czasowy jest to proces stochastyczny z czasem dyskretnym

Bardziej szczegółowo

Pojęcie szeregu nieskończonego:zastosowania do rachunku prawdopodobieństwa wykład 1

Pojęcie szeregu nieskończonego:zastosowania do rachunku prawdopodobieństwa wykład 1 Pojęcie szeregu nieskończonego:zastosowania do rachunku prawdopodobieństwa wykład dr Mariusz Grządziel 5 lutego 04 Paradoks Zenona z Elei wersja uwspółcześniona Zenek goni Andrzeja; prędkość Andrzeja:

Bardziej szczegółowo

8. Podejmowanie Decyzji przy Niepewności

8. Podejmowanie Decyzji przy Niepewności 8. Podejmowanie Decyzji przy Niepewności Wcześniej, losowość (niepewność) nie była brana pod uwagę (poza przypadkiem ubezpieczenia życiowego). Na przykład, aby brać pod uwagę ryzyko że pożyczka nie zostanie

Bardziej szczegółowo

5.1 Stopa Inflacji - Dyskonto odpowiadające sile nabywczej

5.1 Stopa Inflacji - Dyskonto odpowiadające sile nabywczej 5.1 Stopa Inflacji - Dyskonto odpowiadające sile nabywczej Stopa inflacji, i, mierzy jak szybko ceny się zmieniają jako zmianę procentową w skali rocznej. Oblicza się ją za pomocą średniej ważonej cząstkowych

Bardziej szczegółowo

Powiązania kapitałowe i osobowe wpływ na indywidualną ocenę kontrahenta / perspektywa ubezpieczyciela

Powiązania kapitałowe i osobowe wpływ na indywidualną ocenę kontrahenta / perspektywa ubezpieczyciela Powiązania kapitałowe i osobowe wpływ na indywidualną ocenę kontrahenta / perspektywa ubezpieczyciela Obszary wpływające na rating kontrahenta 1. Ownership, Management, Strategy -> Własność, zarządzanie,

Bardziej szczegółowo

Wstęp do rachunku prawdopodobieństwa

Wstęp do rachunku prawdopodobieństwa Wstęp do rachunku prawdopodobieństwa Rozdział 06: Zmienne losowe. Katarzyna Rybarczyk-Krzywdzińska semestr zimowy 2015/2016 Wprowadzenie Przykład 6.1 Adam, Bolek i Czesiu wstąpili do kasyna. Postanowili

Bardziej szczegółowo

Modelowanie rynków finansowych

Modelowanie rynków finansowych Modelowanie rynków finansowych Jerzy Mycielski WNE UW 5 października 2017 Jerzy Mycielski (WNE UW) Modelowanie rynków finansowych 5 października 2017 1 / 12 Podstawowe elementy teorii 1 racjonalne oczekiwania

Bardziej szczegółowo

Bezpieczeństwo biznesu - Wykład 8

Bezpieczeństwo biznesu - Wykład 8 Wykład 8. Ryzyko bankowe Pojęcie ryzyka bankowego i jego rodzaje. Ryzyko zagrożenie nieosiągniecia zamierzonych celów Przyczyny wzrostu ryzyka w działalności bankowej. Gospodarcze : wzrost, inflacja, budżet,

Bardziej szczegółowo

Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 3

Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 3 Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 3 Przygotowując wykład korzystam głównie z książki Jakubowski, Sztencel Wstęp do teorii prawdopodobieństwa. Zmienna losowa i jej

Bardziej szczegółowo

Doświadczenia PKP Energetyki w obrocie instrumentami Futures i Forward

Doświadczenia PKP Energetyki w obrocie instrumentami Futures i Forward Doświadczenia PKP Energetyki w obrocie instrumentami Futures i Forward Główne podobieństwa i różnice Futures i Forward Zarówno Futures jak i Forward to kontrakty terminowe. Forward zawsze wiąże się z fizyczną

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład IV: 27 października 2014 Współczynnik korelacji Brak korelacji a niezależność Definicja współczynnika korelacji Współczynnikiem korelacji całkowalnych z kwadratem zmiennych losowych X i Y nazywamy

Bardziej szczegółowo

PRODUKTY DEPARTAMENTU RYNKÓW FINANSOWYCH

PRODUKTY DEPARTAMENTU RYNKÓW FINANSOWYCH PRODUKTY DEPARTAMENTU RYNKÓW FINANSOWYCH Warszawa, październik 2018 www.pekao.com.pl Cechy ogólne dokumentu i zastrzeżenia prawne Cechy ogólne dokumentu Karta Produktu zawiera podstawowe informacje o instrumencie

Bardziej szczegółowo

Quantile hedging. czyli jak tanio i dobrze zabezpieczyć opcję. Michał Krawiec, Piotr Piestrzyński

Quantile hedging. czyli jak tanio i dobrze zabezpieczyć opcję. Michał Krawiec, Piotr Piestrzyński czyli jak tanio i dobrze zabezpieczyć opcję Michał Krawiec Piotr Piestrzyński Koło Naukowe Probabilistyki i Statystyki Matematycznej Uniwersytet Wrocławski Niedziela, 19 kwietnia 2015 Przykład (opis problemu)

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe

Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe 4.1. Zmienne losowe dyskretne. Katarzyna Rybarczyk-Krzywdzińska Definicja/Rozkład Zmienne losowe dyskretne Definicja Zmienną losową, która skupiona

Bardziej szczegółowo

Matematyka finansowa 04.04.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I

Matematyka finansowa 04.04.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Matematyka finansowa 10.12.2012 r. Komisja Egzaminacyjna dla Aktuariuszy. LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r.

Matematyka finansowa 10.12.2012 r. Komisja Egzaminacyjna dla Aktuariuszy. LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r. Komisja Egzaminacyjna dla Aktuariuszy LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Spis treści. Ze świata biznesu... 13. Przedmowa do wydania polskiego... 15. Wstęp... 19

Spis treści. Ze świata biznesu... 13. Przedmowa do wydania polskiego... 15. Wstęp... 19 Spis treści Ze świata biznesu............................................................ 13 Przedmowa do wydania polskiego.............................................. 15 Wstęp.......................................................................

Bardziej szczegółowo

4,5. Dyskretne zmienne losowe (17.03; 31.03)

4,5. Dyskretne zmienne losowe (17.03; 31.03) 4,5. Dyskretne zmienne losowe (17.03; 31.03) Definicja 1 Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór jej wartości x 1, x 2,..., można ustawić w ciag. Zmienna losowa X, która przyjmuje wszystkie

Bardziej szczegółowo

System bonus-malus z mechanizmem korekty składki

System bonus-malus z mechanizmem korekty składki System bonus-malus z mechanizmem korekty składki mgr Kamil Gala Ubezpieczeniowy Fundusz Gwarancyjny dr hab. Wojciech Bijak, prof. SGH Ubezpieczeniowy Fundusz Gwarancyjny, Szkoła Główna Handlowa Zagadnienia

Bardziej szczegółowo

Cele i zadania gospodarki leśnej na tle struktury Państwowego Gospodarstwa Leśnego Lasy Państwowe

Cele i zadania gospodarki leśnej na tle struktury Państwowego Gospodarstwa Leśnego Lasy Państwowe Cele i zadania gospodarki leśnej na tle struktury Państwowego Gospodarstwa Leśnego Lasy Państwowe Dr inŝ. Marian Pigan Dyrekcja Generalna Lasów Państwowych Spis treści 1. Pojęcie ryzyka 2. Źródła i kategorie

Bardziej szczegółowo

Debiut obligacji serii A na rynku Catalyst. Warszawa 7 czerwca 2011 roku

Debiut obligacji serii A na rynku Catalyst. Warszawa 7 czerwca 2011 roku Debiut obligacji serii A na rynku Catalyst Warszawa 7 czerwca 2011 roku SPIS TREŚCI INFORMACJA O OBLIGACJACH WPROWADZANYCH DO OBROTU NAVI GROUP S.A. RYNEK I JEGO PERSPEKTYWY NAVI GROUP S.A. - KADRA ZARZĄDZAJĄCA

Bardziej szczegółowo

Pragma Faktoring SA. I półrocze 2016

Pragma Faktoring SA. I półrocze 2016 Pragma Faktoring SA I półrocze 2016 Kluczowe założenia Strategii Kontynuacja budowy zdywersyfikowanego portfela należności o wysokim bezpieczeństwie duże rozproszenie portfela klientów i dynamiczny wzrost

Bardziej szczegółowo

O WYBRANYCH WŁASNOŚCIACH MIAR RYZYKA. 1. Pojęcie ryzyka oraz miar ryzyka

O WYBRANYCH WŁASNOŚCIACH MIAR RYZYKA. 1. Pojęcie ryzyka oraz miar ryzyka B A D A N I A O P E R A C Y J N E I D E C Y Z J E Nr 3 4 24 Grażyna TRZPIOT* O WYBRANYCH WŁASNOŚCIACH MIAR RYZYKA Powszechnie wykorzystywane do pomiaru ryzyka miary, jakimi są odchylenie standardowe oraz

Bardziej szczegółowo

Matematyczna filozofia IRB. Michał Motoczyński Departament Ryzyka Finansowego

Matematyczna filozofia IRB. Michał Motoczyński Departament Ryzyka Finansowego Matematyczna filozofia IRB Michał Motoczyński Departament Ryzyka Finansowego 2009-05-22 2009-05-28 Kluczowe założenia do modelu IRB:. Dwa rodzaje ryzyka mające wpływ na pojedynczą ekspozycję: ryzyko systematyczne

Bardziej szczegółowo

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 3 - model statystyczny, podstawowe zadania statystyki matematycznej

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 3 - model statystyczny, podstawowe zadania statystyki matematycznej WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 3 - model statystyczny, podstawowe zadania statystyki matematycznej Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 3 1 / 8 ZADANIE z rachunku

Bardziej szczegółowo

Ryzyko i efektywność. Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1

Ryzyko i efektywność. Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1 Ryzyko i efektywność Ćwiczenia ZPI 1 Stopa zwrotu 2 Zadanie 1. Rozkład normalny Prawdopodobieństwa wystąpienia oraz spodziewane stopy zwrotu w przypadku danej spółki giełdowej są zaprezentowane w tabeli.

Bardziej szczegółowo

Zarządzanie ryzykiem. Wykład 1

Zarządzanie ryzykiem. Wykład 1 Zarządzanie ryzykiem Wykład 1 Czym jest ryzyko? Według Słownika języka polskiego: a) możliwość, że coś się nie uda; też: przedsięwzięcie, którego wynik jest niepewny, b) odważenie się na takie niebezpieczeństwo,

Bardziej szczegółowo

1. Klasyfikacja stóp zwrotu 2. Zmienność stóp zwrotu 3. Mierniki ryzyka 4. Mierniki wrażliwości wyceny na ryzyko rynkowe

1. Klasyfikacja stóp zwrotu 2. Zmienność stóp zwrotu 3. Mierniki ryzyka 4. Mierniki wrażliwości wyceny na ryzyko rynkowe I Ryzyko i rentowność instrumentów finansowych 1. Klasyfikacja stóp zwrotu 2. Zmienność stóp zwrotu 3. Mierniki ryzyka 4. Mierniki wrażliwości wyceny na ryzyko rynkowe 1 Stopa zwrotu z inwestycji w ujęciu

Bardziej szczegółowo

Procedura obsługi niewypłacalności

Procedura obsługi niewypłacalności Procedura obsługi niewypłacalności Autor prezentacji: Tomasz Wieczorek Dyrektor Dział Zarządzania Ryzykiem, IRGiT Kontakt: tel. 22 341 98 20, e-mail: tomasz.wieczorek@irgit.pl Izba Rozliczeniowa Giełd

Bardziej szczegółowo

Prof. zw. dr hab. Jan Krzysztof Solarz, Instytut Ekonomiczny Społecznej Akademii Nauk

Prof. zw. dr hab. Jan Krzysztof Solarz, Instytut Ekonomiczny Społecznej Akademii Nauk opis Książka jest pierwszym tak obszernym opracowaniem zawierającym kompleksowy opis modeli do oceny ryzyka systemowego w sektorze bankowym. Autorka szczegółowo omawia istotę i źródła niestabilności systemu

Bardziej szczegółowo

Podejmowanie decyzji w warunkach ryzyka. Tomasz Brzęczek Wydział Inżynierii Zarządzania PP

Podejmowanie decyzji w warunkach ryzyka. Tomasz Brzęczek Wydział Inżynierii Zarządzania PP Podejmowanie decyzji w warunkach ryzyka Tomasz Brzęczek Wydział Inżynierii Zarządzania PP Ryzyko decyzyjne. Przez ryzyko decyzyjne rozumiemy zmienność wyniku decyzji przedsiębiorstwa spowodowaną losowością

Bardziej szczegółowo

DWUKROTNA SYMULACJA MONTE CARLO JAKO METODA ANALIZY RYZYKA NA PRZYKŁADZIE WYCENY OPCJI PRZEŁĄCZANIA FUNKCJI UŻYTKOWEJ NIERUCHOMOŚCI

DWUKROTNA SYMULACJA MONTE CARLO JAKO METODA ANALIZY RYZYKA NA PRZYKŁADZIE WYCENY OPCJI PRZEŁĄCZANIA FUNKCJI UŻYTKOWEJ NIERUCHOMOŚCI DWUKROTNA SYMULACJA MONTE CARLO JAKO METODA ANALIZY RYZYKA NA PRZYKŁADZIE WYCENY OPCJI PRZEŁĄCZANIA FUNKCJI UŻYTKOWEJ NIERUCHOMOŚCI mgr Marcin Pawlak Katedra Inwestycji i Wyceny Przedsiębiorstw Plan wystąpienia

Bardziej szczegółowo

Budowanie strategii przed debiutem na rynku NewConnect

Budowanie strategii przed debiutem na rynku NewConnect ekspert Klubu Przedsiębiorców i Ekspertów przy Polskim Towarzystwie Ekonomicznym ekspert CASE Doradcy Sp. z o.o. Budowanie strategii przed debiutem na rynku NewConnect P1 Plan prezentacji 1 Wprowadzenie

Bardziej szczegółowo

Zarządzanie ryzykiem. Dorota Kuchta

Zarządzanie ryzykiem. Dorota Kuchta Zarządzanie ryzykiem Dorota Kuchta 1 Literatura Krzysztof Jajuga (red.), Zarządzanie ryzykiem, PWN, 2007 Joanna Sokołowska, Psychologia decyzji ryzykownych, Academica, 2005 Iwona Staniec, Janusz Zawiła

Bardziej szczegółowo

Karta Produktu. Ubezpieczenia na życie z ubezpieczeniowym funduszem kapitałowym XYZ

Karta Produktu. Ubezpieczenia na życie z ubezpieczeniowym funduszem kapitałowym XYZ Klient: Jan Kowalski Karta Produktu Ubezpieczenia na życie z ubezpieczeniowym funduszem kapitałowym XYZ Ubezpieczyciel: Towarzystwo Ubezpieczeń na Życie ABC S.A. Agent ubezpieczeniowy: Zbigniew Nowak Karta

Bardziej szczegółowo

Kredyt kupiecki w działalności eksportowej. Warszawa, 15 września 2009 r.

Kredyt kupiecki w działalności eksportowej. Warszawa, 15 września 2009 r. Kredyt kupiecki w działalności eksportowej Warszawa, 15 września 2009 r. Ryzyko sprzedaŝy z odroczonym terminem płatności SprzedaŜ towarów lub świadczenie usług z odroczonym terminem płatności (kredyt

Bardziej szczegółowo

Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej

Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej c Copyright by Ireneusz Krech ikrech@ap.krakow.pl Instytut Matematyki Uniwersytet Pedagogiczny im. KEN w Krakowie

Bardziej szczegółowo

Spacery losowe generowanie realizacji procesu losowego

Spacery losowe generowanie realizacji procesu losowego Spacery losowe generowanie realizacji procesu losowego Michał Krzemiński Streszczenie Omówimy metodę generowania trajektorii spacerów losowych (błądzenia losowego), tj. szczególnych procesów Markowa z

Bardziej szczegółowo

RYZYKO INWESTYCJI W SPÓŁKI GIEŁDOWE SEKTORA ENERGETYCZNEGO

RYZYKO INWESTYCJI W SPÓŁKI GIEŁDOWE SEKTORA ENERGETYCZNEGO Alicja Ganczarek-Gamrot Uniwersytet Ekonomiczny w Katowicach RYZYKO INWESTYCJI W SPÓŁKI GIEŁDOWE SEKTORA ENERGETYCZNEGO Wprowadzenie Liberalizacja polskiego rynku energii elektrycznej wpłynęła na rozwój

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych 1.10.2012 r.

Matematyka ubezpieczeń majątkowych 1.10.2012 r. Zadanie. W pewnej populacji każde ryzyko charakteryzuje się trzema parametrami q, b oraz v, o następującym znaczeniu: parametr q to prawdopodobieństwo, że do szkody dojdzie (może zajść co najwyżej jedna

Bardziej szczegółowo

SGH, Rynki Finansowe, 2015, Anna Chmielewska 1

SGH, Rynki Finansowe, 2015, Anna Chmielewska 1 Wykład 10 Instrumenty pochodne - obligacje KONTRAKTY TERMINOWE NA OBLIGACJE SGH, Rynki Finansowe, 2015, Anna Chmielewska 1 Pytanie do Napoleona: O czym wystarczy pamiętać, by wiedzieć jak funkcjonuje rynek

Bardziej szczegółowo

Certyfikaty Depozytowe. Alternatywa dla tradycyjnych sposobów inwestowania

Certyfikaty Depozytowe. Alternatywa dla tradycyjnych sposobów inwestowania Certyfikaty Depozytowe Alternatywa dla tradycyjnych sposobów inwestowania Spis treści Certyfikaty Depozytowe Cechy Certyfikatów Depozytowych Zalety Certyfikatów Depozytowych Budowa Certyfikatu Depozytowego

Bardziej szczegółowo

Excel i VBA w analizach i modelowaniu finansowym Pomiar ryzyka. Pomiar ryzyka

Excel i VBA w analizach i modelowaniu finansowym Pomiar ryzyka. Pomiar ryzyka Pomiar ryzyka Miary obiektywne stosowane w kwantyfikacji ryzyka rynkowego towarzyszącego zaangażowaniu środków w inwestycjach finansowych obejmują: Miary zmienności, Miary zagrożenia, Miary wrażliwości.

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Ryzyko w ubezpieczeniach Risk in insurances Kierunek: Matematyka Rodzaj przedmiotu: obowiązkowy dla specjalności matematyka finansowa i ubezpieczeniowa Rodzaj zajęć: wykład, ćwiczenia

Bardziej szczegółowo

Wyniki zarządzania portfelami

Wyniki zarządzania portfelami Wyniki zarządzania portfelami Na dzień: 30 września 2011 Analizy Online Asset Management S.A. ul. Nowogrodzka 47A 00-695 Warszawa tel. +48 (22) 585 08 58 fax. +48 (22) 585 08 59 Materiał został przygotowany

Bardziej szczegółowo

Kapitalny senior emerytura nie musi być tylko z ZUS

Kapitalny senior emerytura nie musi być tylko z ZUS Kapitalny senior emerytura nie musi być tylko z ZUS Podstawowe zasady inwestowania na giełdzie Remigiusz Lipiec Kraków, 13 października 2014r. 1 Podstawowe zasady inwestowania Określ cel inwestowania,

Bardziej szczegółowo

KURS DORADCY FINANSOWEGO

KURS DORADCY FINANSOWEGO KURS DORADCY FINANSOWEGO Przykładowy program szkolenia I. Wprowadzenie do planowania finansowego 1. Rola doradcy finansowego Definicja i cechy doradcy finansowego Oczekiwania klienta Obszary umiejętności

Bardziej szczegółowo

Sieci Mobilne i Bezprzewodowe laboratorium 1

Sieci Mobilne i Bezprzewodowe laboratorium 1 Sieci Mobilne i Bezprzewodowe laboratorium 1 Plan laboratoriów Teoria zdarzeń dyskretnych Modelowanie zdarzeń dyskretnych Symulacja zdarzeń dyskretnych Problem rozmieszczenia stacji raportujących i nieraportujących

Bardziej szczegółowo

KOMPUTEROWA SYMULACJA PROCESÓW ZWIĄZANYCH Z RYZYKIEM PRZY WYKORZYSTANIU ŚRODOWISKA ADONIS

KOMPUTEROWA SYMULACJA PROCESÓW ZWIĄZANYCH Z RYZYKIEM PRZY WYKORZYSTANIU ŚRODOWISKA ADONIS KOMPUTEROWA SYMULACJA PROCESÓW ZWIĄZANYCH Z RYZYKIEM PRZY WYKORZYSTANIU ŚRODOWISKA ADONIS Bogdan RUSZCZAK Streszczenie: Artykuł przedstawia metodę komputerowej symulacji czynników ryzyka dla projektu inwestycyjnego

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Zadanie. W pewnej populacji kierowców każdego jej członka charakteryzują trzy zmienne: K liczba przejeżdżanych kilometrów (w tysiącach rocznie) NP liczba szkód w ciągu roku, w których kierowca jest stroną

Bardziej szczegółowo

MUMIO Lab 6 (składki, kontrakt stop-loss)

MUMIO Lab 6 (składki, kontrakt stop-loss) MUMIO Lab 6 (składki, kontrakt stop-loss) 1. (6p.) Niech X oznacza ryzyko (zmienn a losow a o własności P (X 0) = 1), a H( ) niech oznacza formułȩ kalkulacji składki (przyporz adkowuj ac a każdemu ryzyku

Bardziej szczegółowo

Zarządzanie ryzykiem w projektach informatycznych. Marcin Krysiński marcin@krysinski.eu

Zarządzanie ryzykiem w projektach informatycznych. Marcin Krysiński marcin@krysinski.eu Zarządzanie ryzykiem w projektach informatycznych Marcin Krysiński marcin@krysinski.eu O czym będziemy mówić? Zarządzanie ryzykiem Co to jest ryzyko Planowanie zarządzania ryzykiem Identyfikacja czynników

Bardziej szczegółowo

Ryzyko operacyjne metoda zaawansowana. Wyzwania

Ryzyko operacyjne metoda zaawansowana. Wyzwania Ryzyko operacyjne metoda zaawansowana. Wyzwania dr Paweł Matkowski LUKAS BANK SA 1 Ryzyko operacyjne: up-date Dokumenty regulacyjne status: Dyrektywy europejskie: 2006/48/WE, 2006/49/WE Projekty uchwał

Bardziej szczegółowo

SPRAWOZDANIE ZARZĄDU Z DZIAŁALNOŚCI GRUPA EXORIGO-UPOS S.A. ZA ROK ZAKOŃCZONY 31 GRUDNIA 2013 ROKU

SPRAWOZDANIE ZARZĄDU Z DZIAŁALNOŚCI GRUPA EXORIGO-UPOS S.A. ZA ROK ZAKOŃCZONY 31 GRUDNIA 2013 ROKU SPRAWOZDANIE ZARZĄDU Z DZIAŁALNOŚCI GRUPA EXORIGO-UPOS S.A. ZA ROK ZAKOŃCZONY 31 GRUDNIA 2013 ROKU 1. Podstawa prawna działania Spółki Grupa Exorigo-Upos S.A. ( Emitent, Spółka ) jest spółką akcyjną z

Bardziej szczegółowo

Systemy Wspomagania Decyzji

Systemy Wspomagania Decyzji Regresja Szkoła Główna Służby Pożarniczej Zakład Informatyki i Łączności January 24, 2014 1 Wprowadzenie 2 Regresja liniowa 3 Regresja nieliniowa 4 Regresja logistyczna 5 Estymacja parametrów 6 Podsumowanie

Bardziej szczegółowo

Podstawowe zagadnienia opracowane na podstawie wniosków z analizy nadzorczej

Podstawowe zagadnienia opracowane na podstawie wniosków z analizy nadzorczej Stanowisko UKNF w sprawie dobrych praktyk w zakresie walutowych transakcji pochodnych - podstawowe zagadnienia opracowane na podstawie wniosków z analizy nadzorczej Zgromadzony w toku czynności nadzorczych

Bardziej szczegółowo

Optymalne portfele inwestycyjne

Optymalne portfele inwestycyjne Dariusz Zawisza Instytut Matematyki UJ 10 maj 2012 Problem Rozwiązanie problemu Aktywa wolne od ryzyka Estymacja parametrów Pomiar ryzyka Oznaczenia (Ω, F, P) - przestrzeń probablistyczna, r i := S1 i

Bardziej szczegółowo

Wycena papierów wartościowych - instrumenty pochodne

Wycena papierów wartościowych - instrumenty pochodne Matematyka finansowa - 8 Wycena papierów wartościowych - instrumenty pochodne W ujęciu probabilistycznym cena akcji w momencie t jest zmienną losową P t o pewnym (zwykle nieznanym) rozkładzie prawdopodobieństwa,

Bardziej szczegółowo

Kwantyle. Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p. , że. Możemy go obliczyć z dystrybuanty: P(X x p.

Kwantyle. Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p. , że. Możemy go obliczyć z dystrybuanty: P(X x p. Kwantyle Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p, że P(X x p ) p P(X x p ) 1 p Możemy go obliczyć z dystrybuanty: Jeżeli F(x p ) = p, to x p jest kwantylem rzędu p Jeżeli F(x p )

Bardziej szczegółowo

VaR Value atrisk(var) co to jest? Inne nazwy: Wartość zagrożona Wartość narażona na ryzyko

VaR Value atrisk(var) co to jest? Inne nazwy: Wartość zagrożona Wartość narażona na ryzyko VaR 11 Value atrisk(var) co to jest? Inne nazwy: Wartość zagrożona Wartość narażona na ryzyko Popularna miara ryzyka Co może mieć negatywne skutki z punktu widzenia ryzyka systemowego Popularność wspierana

Bardziej szczegółowo

System prognozowania rynków energii

System prognozowania rynków energii System prognozowania rynków energii STERMEDIA Sp. z o. o. Software Development Grupa IT Kontrakt ul. Ostrowskiego13 Wrocław Poland tel.: 0 71 723 43 22 fax: 0 71 733 64 66 http://www.stermedia.eu Piotr

Bardziej szczegółowo

Statystyki dotyczące ratingów nadawanych. przez agencję ratingową EuroRating

Statystyki dotyczące ratingów nadawanych. przez agencję ratingową EuroRating www.eurorating.com tel.: +48 22 349 24 89 fax: +48 22 349 28 43 e-mail: info@eurorating.com ul. Cynamonowa 19 lok. 548, 02-777 Warszawa (Poland) Statystyki dotyczące ratingów nadawanych przez agencję ratingową

Bardziej szczegółowo

Matematyka finansowa i ubezpieczeniowa - 8 Wycena papierów wartościowych

Matematyka finansowa i ubezpieczeniowa - 8 Wycena papierów wartościowych Matematyka finansowa i ubezpieczeniowa - 8 Wycena papierów wartościowych W ujęciu probabilistycznym cena akcji w momencie t jest zmienną losową P t o pewnym (zwykle nieznanym) rozkładzie prawdopodobieństwa,

Bardziej szczegółowo

KARTA KURSU. Probability theory

KARTA KURSU. Probability theory KARTA KURSU Nazwa Nazwa w j. ang. Rachunek prawdopodobieństwa Probability theory Kod Punktacja ECTS* 4 Koordynator Dr Ireneusz Krech Zespół dydaktyczny Dr Ireneusz Krech Dr Robert Pluta Opis kursu (cele

Bardziej szczegółowo

Ryzyko kredytowe banku Istota ryzyka kredytowego

Ryzyko kredytowe banku Istota ryzyka kredytowego Eugeniusz Gostomski Ryzyko kredytowe banku Istota ryzyka kredytowego 1 Ryzyko kredytowe to niebezpieczeństwo, iŝ kredytobiorca nie zwróci w ustalonym terminie kredytu wraz z odsetkami i bank poniesie stratę.

Bardziej szczegółowo

Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1

Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1 Ćwiczenia ZPI 1 W banku A oprocentowanie lokat 4% przy kapitalizacji kwartalnej. W banku B oprocentowanie lokat 4,5% przy kapitalizacji miesięcznej. W banku A ulokowano kwotę 1000 zł. Jaki kapitał należy

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne

Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne 5.2. Momenty rozkładów łącznych. Katarzyna Rybarczyk-Krzywdzińska rozkładów wielowymiarowych Przypomnienie Jeśli X jest zmienną losową o rozkładzie

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Zadanie. W pewnej populacji kierowców każdego jej członka charakteryzują trzy zmienne: K liczba przejeżdżanych kilometrów (w tysiącach rocznie) NP liczba szkód w ciągu roku, w których kierowca jest stroną

Bardziej szczegółowo

Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014

Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014 Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014 Zmienne losowe i ich rozkłady Doświadczenie losowe: Rzut monetą Rzut kostką Wybór losowy n kart z talii 52 Gry losowe

Bardziej szczegółowo

Cenzurowanie danych w bankowości

Cenzurowanie danych w bankowości Cenzurowanie danych w bankowości Ryzyko operacyjne Tomasz Szkutnik Uniwersytet Ekonomiczny w Katowicach Katedra Statystyki, Ekonometrii i Matematyki 2017 Cenzurowanie danych w bankowości Plan wystąpienia

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy. XXXII Egzamin dla Aktuariuszy z 7 czerwca 2004 r. Część I. Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy. XXXII Egzamin dla Aktuariuszy z 7 czerwca 2004 r. Część I. Matematyka finansowa Komisja Egzaminacyjna dla Aktuariuszy XXXII Egzamin dla Aktuariuszy z 7 czerwca 2004 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Trzy osoby biorą

Bardziej szczegółowo

dr hab. Renata Karkowska 1

dr hab. Renata Karkowska 1 dr hab. Renata Karkowska 1 Czym jest ryzyko? Rodzaje ryzyka? Co oznacza zarządzanie? Dlaczego zarządzamy ryzykiem? 2 Przedmiot ryzyka Otoczenie bliższe/dalsze (czynniki ryzyka egzogeniczne vs endogeniczne)

Bardziej szczegółowo

WYKŁAD 6. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Uniwersytet Warszawski. 1 Instytut Matematyki

WYKŁAD 6. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Uniwersytet Warszawski. 1 Instytut Matematyki WYKŁAD 6 Witold Bednorz, Paweł Wolff 1 Instytut Matematyki Uniwersytet Warszawski Rachunek Prawdopodobieństwa, WNE, 2010-2011 Własności Wariancji Przypomnijmy, że VarX = E(X EX) 2 = EX 2 (EX) 2. Własności

Bardziej szczegółowo

Projekt dyplomowy inżynierski

Projekt dyplomowy inżynierski Katedra Analizy Matematycznej i Numerycznej Kierunek Matematyka Specjalność Matematyka finansowa Studia stacjonarne Karolina Pelcer Projekt dyplomowy inżynierski Temat projektu: Ocena ryzyka inwestycyjnego

Bardziej szczegółowo

Forma prawna Agent Ubezpieczyciel. Euro Bank S.A. Okres Odpowiedzialności Wiek Zwrot kapitału lat (włącznie) Zysk Składka Instrument bazowy

Forma prawna Agent Ubezpieczyciel. Euro Bank S.A. Okres Odpowiedzialności Wiek Zwrot kapitału lat (włącznie) Zysk Składka Instrument bazowy produkt strukturyzowany Elita Europy Forma prawna Agent Ubezpieczyciel indywidualne ubezpieczenie na życie i dożycie Euro Bank S.A. Towarzystwo Ubezpieczeń na Życie Europa S.A. Okres Odpowiedzialności

Bardziej szczegółowo

Rysunek 1 Zależność wskaźnika zysk netto/suma bilansowa od ratingu jakości ZZR dla grupy badanych spółek z ratingiem powyżej 9

Rysunek 1 Zależność wskaźnika zysk netto/suma bilansowa od ratingu jakości ZZR dla grupy badanych spółek z ratingiem powyżej 9 32 Zbigniew Krysiak Wartość jest integralnym elementem działalności gospodarczej. Bez nie ma możliwości uzyskiwania przychodów i tworzenia wartości przedsiębiorstwa. jest fundamentem budowania i rozwoju

Bardziej szczegółowo

Grupa Kapitałowa Pragma Inkaso SA Tarnowskie Góry,

Grupa Kapitałowa Pragma Inkaso SA Tarnowskie Góry, Grupa Kapitałowa Pragma Inkaso SA 1.01. 31.03.2015 Organizacja Grupy Kapitałowej Segmenty działalności Windykacja na zlecenie oraz finansowanie wymagalnych wierzytelności biznesowych Nabywanie portfeli

Bardziej szczegółowo

ANEKS NR 2 DO PROSPEKTU EMISYJNEGO PODSTAWOWEGO V PROGRAMU EMISJI OBLIGACJI KRUK SPÓŁKA AKCYJNA

ANEKS NR 2 DO PROSPEKTU EMISYJNEGO PODSTAWOWEGO V PROGRAMU EMISJI OBLIGACJI KRUK SPÓŁKA AKCYJNA ANEKS NR 2 DO PROSPEKTU EMISYJNEGO PODSTAWOWEGO V PROGRAMU EMISJI OBLIGACJI KRUK SPÓŁKA AKCYJNA ZATWIERDZONEGO PRZEZ KOMISJĘ NADZORU FINANSOWEGO W DNIU 16 KWIETNIA 2018 ROKU Niniejszy aneks został sporządzony

Bardziej szczegółowo

Wykład 2. Przykład zastosowania teorii prawdopodobieństwa: procesy stochastyczne (Markova)

Wykład 2. Przykład zastosowania teorii prawdopodobieństwa: procesy stochastyczne (Markova) Wykład 2 Przykład zastosowania teorii prawdopodobieństwa: procesy stochastyczne (Markova) 1. Procesy Markova: definicja 2. Równanie Chapmana-Kołmogorowa-Smoluchowskiego 3. Przykład dyfuzji w kapilarze

Bardziej szczegółowo

Ryzyko nigdy nie śpi

Ryzyko nigdy nie śpi Akademia Młodego Ekonomisty Zarządzanie ryzykiem Prof. Piotr Banaszyk Uniwersytet Ekonomiczny w Poznaniu 17 października 2013 r. Ryzyko nigdy nie śpi Risk Never Sleeps.mp4 2 1 Czym jest ryzyko? Potocznie:

Bardziej szczegółowo

Rachunek prawdopodobieństwa- wykład 6

Rachunek prawdopodobieństwa- wykład 6 Rachunek prawdopodobieństwa- wykład 6 Zmienne losowe dyskretne. Charakterystyki liczbowe zmiennych losowych dyskretnych dr Marcin Ziółkowski Instytut Matematyki i Informatyki Uniwersytet Humanistyczno-Przyrodniczy

Bardziej szczegółowo

Strategia zarządzania ryzykiem w DB Securities S.A.

Strategia zarządzania ryzykiem w DB Securities S.A. Strategia zarządzania ryzykiem w S.A. 1 Opis systemu zarządzania ryzykiem w S.A 1. Oświadczenia S.A. dąży w swojej działalności do zapewnienia zgodności z powszechnie obowiązującymi aktami prawnymi oraz

Bardziej szczegółowo

Tomasz Redliński - Manager, Departament Bezpieczeństwa, PBSG Sp. z o.o. Janusz Słobosz Risk Consulting Manager, Aon Polska Sp. z o.o.

Tomasz Redliński - Manager, Departament Bezpieczeństwa, PBSG Sp. z o.o. Janusz Słobosz Risk Consulting Manager, Aon Polska Sp. z o.o. Rola Zintegrowanego Zarządzania Ryzykiem w organizacji Tomasz Redliński - Manager, Departament Bezpieczeństwa, PBSG Sp. z o.o. Janusz Słobosz Risk Consulting Manager, Aon Polska Sp. z o.o. Agenda 1. Ryzyko

Bardziej szczegółowo

Zmienne losowe. dr Mariusz Grządziel Wykład 12; 20 maja 2014

Zmienne losowe. dr Mariusz Grządziel Wykład 12; 20 maja 2014 Zmienne losowe dr Mariusz Grządziel Wykład 2; 20 maja 204 Definicja. Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór jej wartości x, x 2,..., można ustawić w ciag. Zmienna losowa X, która przyjmuje

Bardziej szczegółowo