Zarządzanie ryzykiem finansowym
|
|
- Maja Brzozowska
- 7 lat temu
- Przeglądów:
Transkrypt
1 Zarządzanie projektami Wrocław, 30 października 2013
2 Spis treści Motywacja Rachunek prawdopodobieństwa Koherentne miary ryzyka Przykłady zastosowań Podsumowanie
3 Po co analizować ryzyko na rynkach finansowych? Fala spekulacyjnych bankructw w latach 90-tych Rosnąca niepewność na rynkach Potrzeba identyfikacji zagrożeń Stabilizacja zysków i minimalizacja możliwości bankructwa Regulacje prawne (Basel II, Solvency II) Integralna część zarządzania
4 Motywacja c.d. 0.1 Zwroty z DJIA Dni [ ] Rozklad zwrotów
5 Spis treści Motywacja Rachunek prawdopodobieństwa Koherentne miary ryzyka Przykłady zastosowań Podsumowanie
6 Zmienna losowa Rzucamy monetą 2 razy, jaki jest rozkład tej zmiennej? 0.5 Prawdopodobieñstwo # reszek
7 Zmienna losowa c.d. Co jeśli zwiększymy liczbę rzutów?
8 Zmienna losowa c.d. Rozkład dyskretny rozkład ciągły
9 Zmienna losowa proces stochastyczny Czas
10 Spis treści Motywacja Rachunek prawdopodobieństwa Koherentne miary ryzyka Przykłady zastosowań Podsumowanie
11 Value at Risk Value at Risk VaR T 1 α = maksymalna wartość straty, jaką a zadanym horyzoncie czasowym T może spowodować badana pozycja w 1 α przypadków. Value at Risk 95% Strata, 5% szans Strata, 95% szans
12 Value at Risk - c.d. Przykład Nasz portfel: W = (A, B) - dwie obligacje o wartościach nominalnych 100zł. Zakładamy, że spółki A, B są niezależne, z prawdopodobieństwem upadłości 4%. Dla α = 5% mamy 0 = VaR A 95% + VaRB 95% < VaRA+B 95% = 100 Portfel zdywersyfikowany ma większe ryzyko niż suma dwóch portfeli
13 Value at Risk - c.d. Przykład Nasz portfel: W = (A, B) - dwie obligacje o wartościach nominalnych 100zł. Zakładamy, że spółki A, B są niezależne, z prawdopodobieństwem upadłości 4%. Dla α = 5% mamy 0 = VaR A 95% + VaRB 95% < VaRA+B 95% = 100 Portfel zdywersyfikowany ma większe ryzyko niż suma dwóch portfeli VaR jest zdefiniowany sprzecznie z intuicją!
14 Koherentna miary ryzyka Od pożądnej miary ryzyka żądamy m.in., aby była subaddytywna. Formalnie: chcemy, by ρ(x + Y ) ρ(x ) + ρ(y ) VaR tej własności nie spełnia Powyższa własność oraz pewne inne gwarantują, że miara ryzyka będzie wypukła
15 Koherentna miary ryzyka Od pożądnej miary ryzyka żądamy m.in., aby była subaddytywna. Formalnie: chcemy, by ρ(x + Y ) ρ(x ) + ρ(y ) VaR tej własności nie spełnia Powyższa własność oraz pewne inne gwarantują, że miara ryzyka będzie wypukła możemy znaleźć portfel o najmniejszym ryzyku
16 Expected Shortfall Definicja ES T 1 α = średnia wartość straty, jaką a zadanym horyzoncie czasowym T osiągniemy w α najgorszych przypadkach. Value at Risk 95% Strata, 5% szans Strata, 95% szans Expected Shortfall 95%
17 Spis treści Motywacja Rachunek prawdopodobieństwa Koherentne miary ryzyka Przykłady zastosowań Podsumowanie
18 Ryzyko kredytowe Definicja Ryzyko poniesienia straty w wyniku niewywiązania się klienta ze zobowiązań wobec banku lub jako ryzyko spadku wartości ekonomicznej wierzytelności banku w wyniku pogorszenia się kondycji finansowej klientów. Metody rozwijały się wraz z wzrostem popularności inżynierii finansowej Złożone modele procesów stochastycznych pozwalają wyznaczyć prawdopodobieństwo niewypłacalności (ang. probability of default)
19 Z punktu widzenia przedsiębiorstwa c.d.
20 Z punktu widzenia przedsiębiorstwa c.d. Value at Risk Cash Flow at Risk + Earnings at Risk symulacje scenariuszy
21 Podsumowanie W rzeczywistości modelowanie ryzyka jest dużo bardziej skomplikowane... Które czynniki ryzyka wybierać? Jak modelować korelacje? Które modele są najskuteczniejsze? Jak dopasować je do danych?... ale dobrze przeprowadzone pozwala redukować potencjalne straty Wszystkie instytucje finansowe na świecie mają działy zarządzania ryzykiem, więc to się opłaca (jeśli nie bankom, to ich pracownikom)
dr Hubert Wiśniewski 1
dr Hubert Wiśniewski 1 Agenda: 1. Rodzaje i czynniki ryzyka w przedsiębiorstwie ubezpieczeniowym. 2. Miary ryzyka przedsiębiorstwa ubezpieczeniowego. 3. Zarządzanie ryzykiem ubezpieczeniowym w przedsiębiorstwie
Bardziej szczegółowoPorównanie metod szacowania Value at Risk
Porównanie metod szacowania Value at Risk Metoda wariancji i kowariancji i metoda symulacji historycznej Dominika Zarychta Nr indeksu: 161385 Spis treści 1. Wstęp....3 2. Co to jest Value at Risk?...3
Bardziej szczegółowoZarządzanie ryzykiem. Opracował: Dr inŝ. Tomasz Zieliński
Zarządzanie ryzykiem Opracował: Dr inŝ. Tomasz Zieliński I. OGÓLNE INFORMACJE O PRZEDMIOCIE Cel przedmiotu: Celem przedmiotu jest zaprezentowanie studentom podstawowych pojęć z zakresu ryzyka w działalności
Bardziej szczegółowoInne kryteria tworzenia portfela. Inne kryteria tworzenia portfela. Poziom bezpieczeństwa. Analiza i Zarządzanie Portfelem cz. 3. Dr Katarzyna Kuziak
Inne kryteria tworzenia portfela Analiza i Zarządzanie Portfelem cz. 3 Dr Katarzyna Kuziak. Minimalizacja ryzyka przy zadanym dochodzie Portfel efektywny w rozumieniu Markowitza odchylenie standardowe
Bardziej szczegółowoInwestycje finansowe. Wycena obligacji. Stopa zwrotu z akcji. Ryzyko.
Inwestycje finansowe Wycena obligacji. Stopa zwrotu z akcji. yzyko. Inwestycje finansowe Instrumenty rynku pieniężnego (np. bony skarbowe). Instrumenty rynku walutowego. Obligacje. Akcje. Instrumenty pochodne.
Bardziej szczegółowoSymulacyjne metody analizy ryzyka inwestycyjnego wybrane aspekty. Grzegorz Szwałek Katedra Matematyki Stosowanej Uniwersytet Ekonomiczny w Poznaniu
Symulacyjne metody analizy ryzyka inwestycyjnego wybrane aspekty Grzegorz Szwałek Katedra Matematyki Stosowanej Uniwersytet Ekonomiczny w Poznaniu Plan prezentacji 1. Opis metody wyceny opcji rzeczywistej
Bardziej szczegółowoSpis treści 3 SPIS TREŚCI
Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe
Bardziej szczegółowoĆwiczenia Zarządzanie Ryzykiem. dr hab. Renata Karkowska, ćwiczenia Zarządzanie ryzykiem 1
Ćwiczenia Zarządzanie Ryzykiem 1 VaR to strata wartości instrumentu (portfela) taka, że prawdopodobieństwo osiągnięcia jej lub przekroczenia w określonym przedziale czasowym jest równe zadanemu poziomowi
Bardziej szczegółowoINTERAKCJE RYZYKA FINANSOWEGO W LASACH I PRZEMYŚLE DRZEWNYM. Autorzy dr hab. Krzysztof Adamowicz mgr Krzysztof Michalski
INTERAKCJE RYZYKA FINANSOWEGO W LASACH I PRZEMYŚLE DRZEWNYM Autorzy dr hab. Krzysztof Adamowicz mgr Krzysztof Michalski RYZYKO możliwy negatywny wynik przedsięwzięcia, z którym łączy się uszczerbek, strata,
Bardziej szczegółowoKrzywa dochodowości. termin. SGH Rynki Finansowe
Wykład Futures na obligacje Value at Risk % Krzywa dochodowości termin SGH Rynki Finansowe 2015 1 Krzywa dochodowości zmiana kształtu % termin Pytanie do Napoleona: O czym wystarczy pamiętać, by wiedzieć
Bardziej szczegółowoPostawy wobec ryzyka
Postawy wobec ryzyka Wskaźnik Sharpe a przykład zintegrowanej miary rentowności i ryzyka Konstrukcja wskaźnika odwołuje się do klasycznej teorii portfelowej Markowitza, której elementem jest mapa ryzyko
Bardziej szczegółowoPRODUKTY DEPARTAMENTU RYNKÓW FINANSOWYCH
PRODUKTY DEPARTAMENTU RYNKÓW FINANSOWYCH Warszawa, październik 2018 www.pekao.com.pl Cechy ogólne dokumentu i zastrzeżenia prawne Cechy ogólne dokumentu Karta Produktu zawiera podstawowe informacje o instrumencie
Bardziej szczegółowoSpis treści. Notki o autorach Założenia i cele naukowe Wstęp... 17
Notki o autorach................................................... 11 Założenia i cele naukowe............................................ 15 Wstęp............................................................
Bardziej szczegółowoFinansowanie przedsiębiorstw z branży budowlanej
Deutsche Bank Please send your feedback Finansowanie przedsiębiorstw z branży budowlanej Ocena i możliwości ograniczania ryzyka Piotr Piechota Warszawa, 15 kwietnia 2013 0 Agenda 1. Background. 2. Ocena
Bardziej szczegółowodr hab. Renata Karkowska 1
dr hab. Renata Karkowska 1 Miary zmienności: obrazują zmiany cen, stóp zwrotu instrumentów finansowych, opierają się na rozproszeniu ich rozkładu, tym samym uśredniają ryzyko: wariancja stopy zwrotu, odchylenie
Bardziej szczegółowoIdentyfikacja i pomiar ryzyka pierwszy krok w zarządzaniu ryzykiem.
Identyfikacja i pomiar ryzyka pierwszy krok w zarządzaniu ryzykiem. Andrzej Podszywałow Własność przemysłowa w innowacyjnej gospodarce. Zarządzanie ryzykiem, strategia zarządzania własnością intelektualną
Bardziej szczegółowoPrognozowanie i Symulacje. Wykład I. Matematyczne metody prognozowania
Prognozowanie i Symulacje. Wykład I. e-mail:e.kozlovski@pollub.pl Spis treści Szeregi czasowe 1 Szeregi czasowe 2 3 Szeregi czasowe Definicja 1 Szereg czasowy jest to proces stochastyczny z czasem dyskretnym
Bardziej szczegółowoPojęcie szeregu nieskończonego:zastosowania do rachunku prawdopodobieństwa wykład 1
Pojęcie szeregu nieskończonego:zastosowania do rachunku prawdopodobieństwa wykład dr Mariusz Grządziel 5 lutego 04 Paradoks Zenona z Elei wersja uwspółcześniona Zenek goni Andrzeja; prędkość Andrzeja:
Bardziej szczegółowo8. Podejmowanie Decyzji przy Niepewności
8. Podejmowanie Decyzji przy Niepewności Wcześniej, losowość (niepewność) nie była brana pod uwagę (poza przypadkiem ubezpieczenia życiowego). Na przykład, aby brać pod uwagę ryzyko że pożyczka nie zostanie
Bardziej szczegółowo5.1 Stopa Inflacji - Dyskonto odpowiadające sile nabywczej
5.1 Stopa Inflacji - Dyskonto odpowiadające sile nabywczej Stopa inflacji, i, mierzy jak szybko ceny się zmieniają jako zmianę procentową w skali rocznej. Oblicza się ją za pomocą średniej ważonej cząstkowych
Bardziej szczegółowoPowiązania kapitałowe i osobowe wpływ na indywidualną ocenę kontrahenta / perspektywa ubezpieczyciela
Powiązania kapitałowe i osobowe wpływ na indywidualną ocenę kontrahenta / perspektywa ubezpieczyciela Obszary wpływające na rating kontrahenta 1. Ownership, Management, Strategy -> Własność, zarządzanie,
Bardziej szczegółowoWstęp do rachunku prawdopodobieństwa
Wstęp do rachunku prawdopodobieństwa Rozdział 06: Zmienne losowe. Katarzyna Rybarczyk-Krzywdzińska semestr zimowy 2015/2016 Wprowadzenie Przykład 6.1 Adam, Bolek i Czesiu wstąpili do kasyna. Postanowili
Bardziej szczegółowoModelowanie rynków finansowych
Modelowanie rynków finansowych Jerzy Mycielski WNE UW 5 października 2017 Jerzy Mycielski (WNE UW) Modelowanie rynków finansowych 5 października 2017 1 / 12 Podstawowe elementy teorii 1 racjonalne oczekiwania
Bardziej szczegółowoBezpieczeństwo biznesu - Wykład 8
Wykład 8. Ryzyko bankowe Pojęcie ryzyka bankowego i jego rodzaje. Ryzyko zagrożenie nieosiągniecia zamierzonych celów Przyczyny wzrostu ryzyka w działalności bankowej. Gospodarcze : wzrost, inflacja, budżet,
Bardziej szczegółowoRachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 3
Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 3 Przygotowując wykład korzystam głównie z książki Jakubowski, Sztencel Wstęp do teorii prawdopodobieństwa. Zmienna losowa i jej
Bardziej szczegółowoDoświadczenia PKP Energetyki w obrocie instrumentami Futures i Forward
Doświadczenia PKP Energetyki w obrocie instrumentami Futures i Forward Główne podobieństwa i różnice Futures i Forward Zarówno Futures jak i Forward to kontrakty terminowe. Forward zawsze wiąże się z fizyczną
Bardziej szczegółowoPrawdopodobieństwo i statystyka
Wykład IV: 27 października 2014 Współczynnik korelacji Brak korelacji a niezależność Definicja współczynnika korelacji Współczynnikiem korelacji całkowalnych z kwadratem zmiennych losowych X i Y nazywamy
Bardziej szczegółowoPRODUKTY DEPARTAMENTU RYNKÓW FINANSOWYCH
PRODUKTY DEPARTAMENTU RYNKÓW FINANSOWYCH Warszawa, październik 2018 www.pekao.com.pl Cechy ogólne dokumentu i zastrzeżenia prawne Cechy ogólne dokumentu Karta Produktu zawiera podstawowe informacje o instrumencie
Bardziej szczegółowoQuantile hedging. czyli jak tanio i dobrze zabezpieczyć opcję. Michał Krawiec, Piotr Piestrzyński
czyli jak tanio i dobrze zabezpieczyć opcję Michał Krawiec Piotr Piestrzyński Koło Naukowe Probabilistyki i Statystyki Matematycznej Uniwersytet Wrocławski Niedziela, 19 kwietnia 2015 Przykład (opis problemu)
Bardziej szczegółowoRachunek prawdopodobieństwa Rozdział 4. Zmienne losowe
Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe 4.1. Zmienne losowe dyskretne. Katarzyna Rybarczyk-Krzywdzińska Definicja/Rozkład Zmienne losowe dyskretne Definicja Zmienną losową, która skupiona
Bardziej szczegółowoMatematyka finansowa 04.04.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I
Komisja Egzaminacyjna dla Aktuariuszy LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.
Bardziej szczegółowoMatematyka finansowa 10.12.2012 r. Komisja Egzaminacyjna dla Aktuariuszy. LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r.
Komisja Egzaminacyjna dla Aktuariuszy LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.
Bardziej szczegółowoSpis treści. Ze świata biznesu... 13. Przedmowa do wydania polskiego... 15. Wstęp... 19
Spis treści Ze świata biznesu............................................................ 13 Przedmowa do wydania polskiego.............................................. 15 Wstęp.......................................................................
Bardziej szczegółowo4,5. Dyskretne zmienne losowe (17.03; 31.03)
4,5. Dyskretne zmienne losowe (17.03; 31.03) Definicja 1 Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór jej wartości x 1, x 2,..., można ustawić w ciag. Zmienna losowa X, która przyjmuje wszystkie
Bardziej szczegółowoSystem bonus-malus z mechanizmem korekty składki
System bonus-malus z mechanizmem korekty składki mgr Kamil Gala Ubezpieczeniowy Fundusz Gwarancyjny dr hab. Wojciech Bijak, prof. SGH Ubezpieczeniowy Fundusz Gwarancyjny, Szkoła Główna Handlowa Zagadnienia
Bardziej szczegółowoCele i zadania gospodarki leśnej na tle struktury Państwowego Gospodarstwa Leśnego Lasy Państwowe
Cele i zadania gospodarki leśnej na tle struktury Państwowego Gospodarstwa Leśnego Lasy Państwowe Dr inŝ. Marian Pigan Dyrekcja Generalna Lasów Państwowych Spis treści 1. Pojęcie ryzyka 2. Źródła i kategorie
Bardziej szczegółowoDebiut obligacji serii A na rynku Catalyst. Warszawa 7 czerwca 2011 roku
Debiut obligacji serii A na rynku Catalyst Warszawa 7 czerwca 2011 roku SPIS TREŚCI INFORMACJA O OBLIGACJACH WPROWADZANYCH DO OBROTU NAVI GROUP S.A. RYNEK I JEGO PERSPEKTYWY NAVI GROUP S.A. - KADRA ZARZĄDZAJĄCA
Bardziej szczegółowoPragma Faktoring SA. I półrocze 2016
Pragma Faktoring SA I półrocze 2016 Kluczowe założenia Strategii Kontynuacja budowy zdywersyfikowanego portfela należności o wysokim bezpieczeństwie duże rozproszenie portfela klientów i dynamiczny wzrost
Bardziej szczegółowoO WYBRANYCH WŁASNOŚCIACH MIAR RYZYKA. 1. Pojęcie ryzyka oraz miar ryzyka
B A D A N I A O P E R A C Y J N E I D E C Y Z J E Nr 3 4 24 Grażyna TRZPIOT* O WYBRANYCH WŁASNOŚCIACH MIAR RYZYKA Powszechnie wykorzystywane do pomiaru ryzyka miary, jakimi są odchylenie standardowe oraz
Bardziej szczegółowoMatematyczna filozofia IRB. Michał Motoczyński Departament Ryzyka Finansowego
Matematyczna filozofia IRB Michał Motoczyński Departament Ryzyka Finansowego 2009-05-22 2009-05-28 Kluczowe założenia do modelu IRB:. Dwa rodzaje ryzyka mające wpływ na pojedynczą ekspozycję: ryzyko systematyczne
Bardziej szczegółowoWYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 3 - model statystyczny, podstawowe zadania statystyki matematycznej
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 3 - model statystyczny, podstawowe zadania statystyki matematycznej Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 3 1 / 8 ZADANIE z rachunku
Bardziej szczegółowoRyzyko i efektywność. Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1
Ryzyko i efektywność Ćwiczenia ZPI 1 Stopa zwrotu 2 Zadanie 1. Rozkład normalny Prawdopodobieństwa wystąpienia oraz spodziewane stopy zwrotu w przypadku danej spółki giełdowej są zaprezentowane w tabeli.
Bardziej szczegółowoZarządzanie ryzykiem. Wykład 1
Zarządzanie ryzykiem Wykład 1 Czym jest ryzyko? Według Słownika języka polskiego: a) możliwość, że coś się nie uda; też: przedsięwzięcie, którego wynik jest niepewny, b) odważenie się na takie niebezpieczeństwo,
Bardziej szczegółowo1. Klasyfikacja stóp zwrotu 2. Zmienność stóp zwrotu 3. Mierniki ryzyka 4. Mierniki wrażliwości wyceny na ryzyko rynkowe
I Ryzyko i rentowność instrumentów finansowych 1. Klasyfikacja stóp zwrotu 2. Zmienność stóp zwrotu 3. Mierniki ryzyka 4. Mierniki wrażliwości wyceny na ryzyko rynkowe 1 Stopa zwrotu z inwestycji w ujęciu
Bardziej szczegółowoProcedura obsługi niewypłacalności
Procedura obsługi niewypłacalności Autor prezentacji: Tomasz Wieczorek Dyrektor Dział Zarządzania Ryzykiem, IRGiT Kontakt: tel. 22 341 98 20, e-mail: tomasz.wieczorek@irgit.pl Izba Rozliczeniowa Giełd
Bardziej szczegółowoProf. zw. dr hab. Jan Krzysztof Solarz, Instytut Ekonomiczny Społecznej Akademii Nauk
opis Książka jest pierwszym tak obszernym opracowaniem zawierającym kompleksowy opis modeli do oceny ryzyka systemowego w sektorze bankowym. Autorka szczegółowo omawia istotę i źródła niestabilności systemu
Bardziej szczegółowoPodejmowanie decyzji w warunkach ryzyka. Tomasz Brzęczek Wydział Inżynierii Zarządzania PP
Podejmowanie decyzji w warunkach ryzyka Tomasz Brzęczek Wydział Inżynierii Zarządzania PP Ryzyko decyzyjne. Przez ryzyko decyzyjne rozumiemy zmienność wyniku decyzji przedsiębiorstwa spowodowaną losowością
Bardziej szczegółowoDWUKROTNA SYMULACJA MONTE CARLO JAKO METODA ANALIZY RYZYKA NA PRZYKŁADZIE WYCENY OPCJI PRZEŁĄCZANIA FUNKCJI UŻYTKOWEJ NIERUCHOMOŚCI
DWUKROTNA SYMULACJA MONTE CARLO JAKO METODA ANALIZY RYZYKA NA PRZYKŁADZIE WYCENY OPCJI PRZEŁĄCZANIA FUNKCJI UŻYTKOWEJ NIERUCHOMOŚCI mgr Marcin Pawlak Katedra Inwestycji i Wyceny Przedsiębiorstw Plan wystąpienia
Bardziej szczegółowoBudowanie strategii przed debiutem na rynku NewConnect
ekspert Klubu Przedsiębiorców i Ekspertów przy Polskim Towarzystwie Ekonomicznym ekspert CASE Doradcy Sp. z o.o. Budowanie strategii przed debiutem na rynku NewConnect P1 Plan prezentacji 1 Wprowadzenie
Bardziej szczegółowoZarządzanie ryzykiem. Dorota Kuchta
Zarządzanie ryzykiem Dorota Kuchta 1 Literatura Krzysztof Jajuga (red.), Zarządzanie ryzykiem, PWN, 2007 Joanna Sokołowska, Psychologia decyzji ryzykownych, Academica, 2005 Iwona Staniec, Janusz Zawiła
Bardziej szczegółowoKarta Produktu. Ubezpieczenia na życie z ubezpieczeniowym funduszem kapitałowym XYZ
Klient: Jan Kowalski Karta Produktu Ubezpieczenia na życie z ubezpieczeniowym funduszem kapitałowym XYZ Ubezpieczyciel: Towarzystwo Ubezpieczeń na Życie ABC S.A. Agent ubezpieczeniowy: Zbigniew Nowak Karta
Bardziej szczegółowoKredyt kupiecki w działalności eksportowej. Warszawa, 15 września 2009 r.
Kredyt kupiecki w działalności eksportowej Warszawa, 15 września 2009 r. Ryzyko sprzedaŝy z odroczonym terminem płatności SprzedaŜ towarów lub świadczenie usług z odroczonym terminem płatności (kredyt
Bardziej szczegółowoZmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej
Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej c Copyright by Ireneusz Krech ikrech@ap.krakow.pl Instytut Matematyki Uniwersytet Pedagogiczny im. KEN w Krakowie
Bardziej szczegółowoSpacery losowe generowanie realizacji procesu losowego
Spacery losowe generowanie realizacji procesu losowego Michał Krzemiński Streszczenie Omówimy metodę generowania trajektorii spacerów losowych (błądzenia losowego), tj. szczególnych procesów Markowa z
Bardziej szczegółowoRYZYKO INWESTYCJI W SPÓŁKI GIEŁDOWE SEKTORA ENERGETYCZNEGO
Alicja Ganczarek-Gamrot Uniwersytet Ekonomiczny w Katowicach RYZYKO INWESTYCJI W SPÓŁKI GIEŁDOWE SEKTORA ENERGETYCZNEGO Wprowadzenie Liberalizacja polskiego rynku energii elektrycznej wpłynęła na rozwój
Bardziej szczegółowoMatematyka ubezpieczeń majątkowych 1.10.2012 r.
Zadanie. W pewnej populacji każde ryzyko charakteryzuje się trzema parametrami q, b oraz v, o następującym znaczeniu: parametr q to prawdopodobieństwo, że do szkody dojdzie (może zajść co najwyżej jedna
Bardziej szczegółowoSGH, Rynki Finansowe, 2015, Anna Chmielewska 1
Wykład 10 Instrumenty pochodne - obligacje KONTRAKTY TERMINOWE NA OBLIGACJE SGH, Rynki Finansowe, 2015, Anna Chmielewska 1 Pytanie do Napoleona: O czym wystarczy pamiętać, by wiedzieć jak funkcjonuje rynek
Bardziej szczegółowoCertyfikaty Depozytowe. Alternatywa dla tradycyjnych sposobów inwestowania
Certyfikaty Depozytowe Alternatywa dla tradycyjnych sposobów inwestowania Spis treści Certyfikaty Depozytowe Cechy Certyfikatów Depozytowych Zalety Certyfikatów Depozytowych Budowa Certyfikatu Depozytowego
Bardziej szczegółowoExcel i VBA w analizach i modelowaniu finansowym Pomiar ryzyka. Pomiar ryzyka
Pomiar ryzyka Miary obiektywne stosowane w kwantyfikacji ryzyka rynkowego towarzyszącego zaangażowaniu środków w inwestycjach finansowych obejmują: Miary zmienności, Miary zagrożenia, Miary wrażliwości.
Bardziej szczegółowoPRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Ryzyko w ubezpieczeniach Risk in insurances Kierunek: Matematyka Rodzaj przedmiotu: obowiązkowy dla specjalności matematyka finansowa i ubezpieczeniowa Rodzaj zajęć: wykład, ćwiczenia
Bardziej szczegółowoWyniki zarządzania portfelami
Wyniki zarządzania portfelami Na dzień: 30 września 2011 Analizy Online Asset Management S.A. ul. Nowogrodzka 47A 00-695 Warszawa tel. +48 (22) 585 08 58 fax. +48 (22) 585 08 59 Materiał został przygotowany
Bardziej szczegółowoKapitalny senior emerytura nie musi być tylko z ZUS
Kapitalny senior emerytura nie musi być tylko z ZUS Podstawowe zasady inwestowania na giełdzie Remigiusz Lipiec Kraków, 13 października 2014r. 1 Podstawowe zasady inwestowania Określ cel inwestowania,
Bardziej szczegółowoKURS DORADCY FINANSOWEGO
KURS DORADCY FINANSOWEGO Przykładowy program szkolenia I. Wprowadzenie do planowania finansowego 1. Rola doradcy finansowego Definicja i cechy doradcy finansowego Oczekiwania klienta Obszary umiejętności
Bardziej szczegółowoSieci Mobilne i Bezprzewodowe laboratorium 1
Sieci Mobilne i Bezprzewodowe laboratorium 1 Plan laboratoriów Teoria zdarzeń dyskretnych Modelowanie zdarzeń dyskretnych Symulacja zdarzeń dyskretnych Problem rozmieszczenia stacji raportujących i nieraportujących
Bardziej szczegółowoKOMPUTEROWA SYMULACJA PROCESÓW ZWIĄZANYCH Z RYZYKIEM PRZY WYKORZYSTANIU ŚRODOWISKA ADONIS
KOMPUTEROWA SYMULACJA PROCESÓW ZWIĄZANYCH Z RYZYKIEM PRZY WYKORZYSTANIU ŚRODOWISKA ADONIS Bogdan RUSZCZAK Streszczenie: Artykuł przedstawia metodę komputerowej symulacji czynników ryzyka dla projektu inwestycyjnego
Bardziej szczegółowoMatematyka ubezpieczeń majątkowych r.
Zadanie. W pewnej populacji kierowców każdego jej członka charakteryzują trzy zmienne: K liczba przejeżdżanych kilometrów (w tysiącach rocznie) NP liczba szkód w ciągu roku, w których kierowca jest stroną
Bardziej szczegółowoMUMIO Lab 6 (składki, kontrakt stop-loss)
MUMIO Lab 6 (składki, kontrakt stop-loss) 1. (6p.) Niech X oznacza ryzyko (zmienn a losow a o własności P (X 0) = 1), a H( ) niech oznacza formułȩ kalkulacji składki (przyporz adkowuj ac a każdemu ryzyku
Bardziej szczegółowoZarządzanie ryzykiem w projektach informatycznych. Marcin Krysiński marcin@krysinski.eu
Zarządzanie ryzykiem w projektach informatycznych Marcin Krysiński marcin@krysinski.eu O czym będziemy mówić? Zarządzanie ryzykiem Co to jest ryzyko Planowanie zarządzania ryzykiem Identyfikacja czynników
Bardziej szczegółowoRyzyko operacyjne metoda zaawansowana. Wyzwania
Ryzyko operacyjne metoda zaawansowana. Wyzwania dr Paweł Matkowski LUKAS BANK SA 1 Ryzyko operacyjne: up-date Dokumenty regulacyjne status: Dyrektywy europejskie: 2006/48/WE, 2006/49/WE Projekty uchwał
Bardziej szczegółowoSPRAWOZDANIE ZARZĄDU Z DZIAŁALNOŚCI GRUPA EXORIGO-UPOS S.A. ZA ROK ZAKOŃCZONY 31 GRUDNIA 2013 ROKU
SPRAWOZDANIE ZARZĄDU Z DZIAŁALNOŚCI GRUPA EXORIGO-UPOS S.A. ZA ROK ZAKOŃCZONY 31 GRUDNIA 2013 ROKU 1. Podstawa prawna działania Spółki Grupa Exorigo-Upos S.A. ( Emitent, Spółka ) jest spółką akcyjną z
Bardziej szczegółowoSystemy Wspomagania Decyzji
Regresja Szkoła Główna Służby Pożarniczej Zakład Informatyki i Łączności January 24, 2014 1 Wprowadzenie 2 Regresja liniowa 3 Regresja nieliniowa 4 Regresja logistyczna 5 Estymacja parametrów 6 Podsumowanie
Bardziej szczegółowoPodstawowe zagadnienia opracowane na podstawie wniosków z analizy nadzorczej
Stanowisko UKNF w sprawie dobrych praktyk w zakresie walutowych transakcji pochodnych - podstawowe zagadnienia opracowane na podstawie wniosków z analizy nadzorczej Zgromadzony w toku czynności nadzorczych
Bardziej szczegółowoOptymalne portfele inwestycyjne
Dariusz Zawisza Instytut Matematyki UJ 10 maj 2012 Problem Rozwiązanie problemu Aktywa wolne od ryzyka Estymacja parametrów Pomiar ryzyka Oznaczenia (Ω, F, P) - przestrzeń probablistyczna, r i := S1 i
Bardziej szczegółowoWycena papierów wartościowych - instrumenty pochodne
Matematyka finansowa - 8 Wycena papierów wartościowych - instrumenty pochodne W ujęciu probabilistycznym cena akcji w momencie t jest zmienną losową P t o pewnym (zwykle nieznanym) rozkładzie prawdopodobieństwa,
Bardziej szczegółowoKwantyle. Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p. , że. Możemy go obliczyć z dystrybuanty: P(X x p.
Kwantyle Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p, że P(X x p ) p P(X x p ) 1 p Możemy go obliczyć z dystrybuanty: Jeżeli F(x p ) = p, to x p jest kwantylem rzędu p Jeżeli F(x p )
Bardziej szczegółowoVaR Value atrisk(var) co to jest? Inne nazwy: Wartość zagrożona Wartość narażona na ryzyko
VaR 11 Value atrisk(var) co to jest? Inne nazwy: Wartość zagrożona Wartość narażona na ryzyko Popularna miara ryzyka Co może mieć negatywne skutki z punktu widzenia ryzyka systemowego Popularność wspierana
Bardziej szczegółowoSystem prognozowania rynków energii
System prognozowania rynków energii STERMEDIA Sp. z o. o. Software Development Grupa IT Kontrakt ul. Ostrowskiego13 Wrocław Poland tel.: 0 71 723 43 22 fax: 0 71 733 64 66 http://www.stermedia.eu Piotr
Bardziej szczegółowoStatystyki dotyczące ratingów nadawanych. przez agencję ratingową EuroRating
www.eurorating.com tel.: +48 22 349 24 89 fax: +48 22 349 28 43 e-mail: info@eurorating.com ul. Cynamonowa 19 lok. 548, 02-777 Warszawa (Poland) Statystyki dotyczące ratingów nadawanych przez agencję ratingową
Bardziej szczegółowoMatematyka finansowa i ubezpieczeniowa - 8 Wycena papierów wartościowych
Matematyka finansowa i ubezpieczeniowa - 8 Wycena papierów wartościowych W ujęciu probabilistycznym cena akcji w momencie t jest zmienną losową P t o pewnym (zwykle nieznanym) rozkładzie prawdopodobieństwa,
Bardziej szczegółowoKARTA KURSU. Probability theory
KARTA KURSU Nazwa Nazwa w j. ang. Rachunek prawdopodobieństwa Probability theory Kod Punktacja ECTS* 4 Koordynator Dr Ireneusz Krech Zespół dydaktyczny Dr Ireneusz Krech Dr Robert Pluta Opis kursu (cele
Bardziej szczegółowoRyzyko kredytowe banku Istota ryzyka kredytowego
Eugeniusz Gostomski Ryzyko kredytowe banku Istota ryzyka kredytowego 1 Ryzyko kredytowe to niebezpieczeństwo, iŝ kredytobiorca nie zwróci w ustalonym terminie kredytu wraz z odsetkami i bank poniesie stratę.
Bardziej szczegółowoĆwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1
Ćwiczenia ZPI 1 W banku A oprocentowanie lokat 4% przy kapitalizacji kwartalnej. W banku B oprocentowanie lokat 4,5% przy kapitalizacji miesięcznej. W banku A ulokowano kwotę 1000 zł. Jaki kapitał należy
Bardziej szczegółowoRachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne
Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne 5.2. Momenty rozkładów łącznych. Katarzyna Rybarczyk-Krzywdzińska rozkładów wielowymiarowych Przypomnienie Jeśli X jest zmienną losową o rozkładzie
Bardziej szczegółowoMatematyka ubezpieczeń majątkowych r.
Zadanie. W pewnej populacji kierowców każdego jej członka charakteryzują trzy zmienne: K liczba przejeżdżanych kilometrów (w tysiącach rocznie) NP liczba szkód w ciągu roku, w których kierowca jest stroną
Bardziej szczegółowoZmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014
Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014 Zmienne losowe i ich rozkłady Doświadczenie losowe: Rzut monetą Rzut kostką Wybór losowy n kart z talii 52 Gry losowe
Bardziej szczegółowoCenzurowanie danych w bankowości
Cenzurowanie danych w bankowości Ryzyko operacyjne Tomasz Szkutnik Uniwersytet Ekonomiczny w Katowicach Katedra Statystyki, Ekonometrii i Matematyki 2017 Cenzurowanie danych w bankowości Plan wystąpienia
Bardziej szczegółowoKomisja Egzaminacyjna dla Aktuariuszy. XXXII Egzamin dla Aktuariuszy z 7 czerwca 2004 r. Część I. Matematyka finansowa
Komisja Egzaminacyjna dla Aktuariuszy XXXII Egzamin dla Aktuariuszy z 7 czerwca 2004 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Trzy osoby biorą
Bardziej szczegółowodr hab. Renata Karkowska 1
dr hab. Renata Karkowska 1 Czym jest ryzyko? Rodzaje ryzyka? Co oznacza zarządzanie? Dlaczego zarządzamy ryzykiem? 2 Przedmiot ryzyka Otoczenie bliższe/dalsze (czynniki ryzyka egzogeniczne vs endogeniczne)
Bardziej szczegółowoWYKŁAD 6. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Uniwersytet Warszawski. 1 Instytut Matematyki
WYKŁAD 6 Witold Bednorz, Paweł Wolff 1 Instytut Matematyki Uniwersytet Warszawski Rachunek Prawdopodobieństwa, WNE, 2010-2011 Własności Wariancji Przypomnijmy, że VarX = E(X EX) 2 = EX 2 (EX) 2. Własności
Bardziej szczegółowoProjekt dyplomowy inżynierski
Katedra Analizy Matematycznej i Numerycznej Kierunek Matematyka Specjalność Matematyka finansowa Studia stacjonarne Karolina Pelcer Projekt dyplomowy inżynierski Temat projektu: Ocena ryzyka inwestycyjnego
Bardziej szczegółowoForma prawna Agent Ubezpieczyciel. Euro Bank S.A. Okres Odpowiedzialności Wiek Zwrot kapitału lat (włącznie) Zysk Składka Instrument bazowy
produkt strukturyzowany Elita Europy Forma prawna Agent Ubezpieczyciel indywidualne ubezpieczenie na życie i dożycie Euro Bank S.A. Towarzystwo Ubezpieczeń na Życie Europa S.A. Okres Odpowiedzialności
Bardziej szczegółowoRysunek 1 Zależność wskaźnika zysk netto/suma bilansowa od ratingu jakości ZZR dla grupy badanych spółek z ratingiem powyżej 9
32 Zbigniew Krysiak Wartość jest integralnym elementem działalności gospodarczej. Bez nie ma możliwości uzyskiwania przychodów i tworzenia wartości przedsiębiorstwa. jest fundamentem budowania i rozwoju
Bardziej szczegółowoGrupa Kapitałowa Pragma Inkaso SA Tarnowskie Góry,
Grupa Kapitałowa Pragma Inkaso SA 1.01. 31.03.2015 Organizacja Grupy Kapitałowej Segmenty działalności Windykacja na zlecenie oraz finansowanie wymagalnych wierzytelności biznesowych Nabywanie portfeli
Bardziej szczegółowoANEKS NR 2 DO PROSPEKTU EMISYJNEGO PODSTAWOWEGO V PROGRAMU EMISJI OBLIGACJI KRUK SPÓŁKA AKCYJNA
ANEKS NR 2 DO PROSPEKTU EMISYJNEGO PODSTAWOWEGO V PROGRAMU EMISJI OBLIGACJI KRUK SPÓŁKA AKCYJNA ZATWIERDZONEGO PRZEZ KOMISJĘ NADZORU FINANSOWEGO W DNIU 16 KWIETNIA 2018 ROKU Niniejszy aneks został sporządzony
Bardziej szczegółowoWykład 2. Przykład zastosowania teorii prawdopodobieństwa: procesy stochastyczne (Markova)
Wykład 2 Przykład zastosowania teorii prawdopodobieństwa: procesy stochastyczne (Markova) 1. Procesy Markova: definicja 2. Równanie Chapmana-Kołmogorowa-Smoluchowskiego 3. Przykład dyfuzji w kapilarze
Bardziej szczegółowoRyzyko nigdy nie śpi
Akademia Młodego Ekonomisty Zarządzanie ryzykiem Prof. Piotr Banaszyk Uniwersytet Ekonomiczny w Poznaniu 17 października 2013 r. Ryzyko nigdy nie śpi Risk Never Sleeps.mp4 2 1 Czym jest ryzyko? Potocznie:
Bardziej szczegółowoRachunek prawdopodobieństwa- wykład 6
Rachunek prawdopodobieństwa- wykład 6 Zmienne losowe dyskretne. Charakterystyki liczbowe zmiennych losowych dyskretnych dr Marcin Ziółkowski Instytut Matematyki i Informatyki Uniwersytet Humanistyczno-Przyrodniczy
Bardziej szczegółowoStrategia zarządzania ryzykiem w DB Securities S.A.
Strategia zarządzania ryzykiem w S.A. 1 Opis systemu zarządzania ryzykiem w S.A 1. Oświadczenia S.A. dąży w swojej działalności do zapewnienia zgodności z powszechnie obowiązującymi aktami prawnymi oraz
Bardziej szczegółowoTomasz Redliński - Manager, Departament Bezpieczeństwa, PBSG Sp. z o.o. Janusz Słobosz Risk Consulting Manager, Aon Polska Sp. z o.o.
Rola Zintegrowanego Zarządzania Ryzykiem w organizacji Tomasz Redliński - Manager, Departament Bezpieczeństwa, PBSG Sp. z o.o. Janusz Słobosz Risk Consulting Manager, Aon Polska Sp. z o.o. Agenda 1. Ryzyko
Bardziej szczegółowoZmienne losowe. dr Mariusz Grządziel Wykład 12; 20 maja 2014
Zmienne losowe dr Mariusz Grządziel Wykład 2; 20 maja 204 Definicja. Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór jej wartości x, x 2,..., można ustawić w ciag. Zmienna losowa X, która przyjmuje
Bardziej szczegółowo