Inżynieria Finansowa: 4. FRA i Swapy

Wielkość: px
Rozpocząć pokaz od strony:

Download "Inżynieria Finansowa: 4. FRA i Swapy"

Transkrypt

1 Inżynieria Finansowa: 4. FRA i Swapy Piotr Bańbuła Katedra Rynków i Instytucji Finansowych, KES Październik 2014 r. Warszawa, Szkoła Główna Handlowa

2 Zakup syntetycznej obligacji +1 mln PLN: emisja obligacji/krótka sprzedaż/pożyczka t1 t2-1,04 mln PLN: zwrot pożyczki t1-1mln PLN: zakup obligacji t2 +1,10mln PLN: wykup obligacji

3 Zakup syntetycznej obligacji +1 mln PLN: emisja obligacji/krótka sprzedaż/pożyczka t1 t2-1,04 mln PLN: zwrot pożyczki t1-1mln PLN: zakup obligacji t2 +1,10mln PLN: wykup obligacji t1 t2 +1,097 mln PLN: obligacja zapada -1,04mln PLN: zakup obligacji

4 Stopy terminowe - przykład F 0,3,4 = (1 + r 4) 4 4 ( ) 3 1 = (1 + r 3 ) ( ) 3 1 =

5 Stopy terminowe - przykład F 0,3,4 = 1 B 0,3 B(0,4) 4 3 B(0,4) = =

6 Stopy terminowe - FRA Niedogodnością składania syntetycznych pożyczek terminowych jest ekspozycja na ryzyko kredytowe instrumentów bazowych, a nie tylko ryzyko stopy procentowej Jest to szczególnie niepożądane jeśli celem operacji jest zabezpieczenie już istniejących pozycji Kontrakt FRA (Forward Rate Agreement) pozwala uniknąć tego zjawiska przy mniejszej ilości transakcji FRA Kontrakt na przyszłą stopę procentową, gdzie w terminie zapadalności kontraktu jedna strona (kupujący FRA) płaci stałą stopę ustaloną w kontrakcie (stopa FRA), a druga strona (sprzedający FRA) płaci obserwowaną właśnie zmienną stopę rynkową (LIBOR) od ustalonego nominału N.

7 Zakup FRA(t1,t2) w czasie t0: FRA - konwencja t0 t1 zmienna stopa Libor(t1,t2) t2-1mln PLN: stała stopa FRA N oznacza nominał kontraktu (np. 1 mln PLN) t1 oznacza początek okresu depozytowego i najczęściej jest także datą rozliczenia kontraktu (np. za 3M) t2 jest końcem okresu depozytowego (np. za 6M) L(t1,t2) oznacza wartość zmiennej stopy rynkowej w czasie t1 (np. 3M Libor za 3M R(FRAt1xt2) to stopa FRA, oznaczana jako FRAstartxend (w naszym przypadku byłoby to R(FRA3x6)) to długość okresu depozytowego, czyli t2-t1 (ACT/365 PLN, ACT/360 EUR, USD)

8 Rozliczenie FRA WIBOR O/N 4,97 1M 6,52 2M 6,67 3M 6,70 6M 6,75 9M 6,86 1Y 6,87 Trade date: 22/09 Short 3x9 FRA PLN 10mln stopa FRA 6,60% Wycena na rozliczeniu (6,60% 6,75%) 0,5 1 6,75% 0, ,9

9 Wielkość straty mark-to-market WIBOR O/N 4,97 1M 6,52 2M 6,67 3M 6,81 6M 6,85 9M 6,86 1Y 6,87 Jaka jest strata na rozliczeniu? Trade date: 22/09 Short 3x9 FRA PLN 6,60% FRA 1x7 6,87 2x8 6,84 3x9 6, (6,60% 6,84%) 0, ,9 1 6,84% 0,5 Jaką stratę musi wykazać bank 22/10/2008? , ,67% ,4

10 Interest Rate Swap (IRS) - intuicja Pod względem obrotu i wartości pozycji swapy stanowią największy rynek na świecie, a IRS jest najpopularniejszym ze swapów Polega na wymianie płatności odsetek od ustalonej kwoty po bieżącej rynkowej stopie na odsetki liczonej według stopy stałej, ustalonej w momencie zawierania umowy t1 L t0 N t2 L t1 N t3 L t2 N

11 Interest Rate Swap (IRS) - dekompozycja t1 L t0 N t2 L t1 N t3 L t2 N +N t1 L t0 N t2 L t1 N t3 L t2 N +N N N

12 Interest Rate Swap (IRS) - dekompozycja +N t1 L t0 N t2 L t1 N t3 L t2 N +N N N

13 Interest Rate Swap (IRS) - dekompozycja t1 L t0 N t2 L t1 N t3 L t2 N +N N Obligacja o zmiennym oprocentowaniu floating rate note (FRN) +N Obligacja stałokuponowa (at par) N

14 IRS - wizualizacja [Długa pozycja w IRS] = [długa pozycja w FRN] + [krótka pozycja w obligacji stałokuponowej] Inaczej [Długa pozycja w IRS] = [długa pozycja w FRN] - [długa pozycja w obligacji stałokuponowej]

15 IRS - konwencja Noga stała (fixed leg, płaci kupujący IRS, the payer) to strumień regularnych płatności C(t i ) dokonywanych po ustalonej w momencie zawierania kontraktu stopie R IRS od nominału N C t i = R IRS i N i gdzie i = (t i 1, t i ) jest długością okresu odsetkowego liczonego według obowiązującej na danym rynku konwencji (zwykle zgodne z konwencją dla rynku obligacji) Można także założyć występowanie amortyzacji (sukcesywnej spłaty) kapitału wysokości A i = N i N i+1. Wtedy C t i = R IRS i N i + A i

16 IRS - konwencja Noga zmienna (floating leg, płaci sprzedający IRS, the receiver) regularnych płatności C(t i ) dokonywanych według zmiennej (rynkowej) stopy procentowej L i od nominału N C(t i ) = L i i N i + A i Amortyzacja kapitału w obydwu nogach następuje w tych samych momentach i znosi się. Płatności odsetkowe nie musza jednak następować w tych samych momentach (np. fix 1Y, float 6M). Konwencja naliczania odsetek stopy zmiennej odpowiada konwencji danego rynku pieniężnego

17 IRS - wycena Wartość kontraktu IRS jest różnica między bieżącą wartością nogi stałej a bieżącą wartością nogi zmiennej P IRS = NPV FIX NPV FLOAT Stopa R IRS jest dobierana tak, by wartość P IRS = 0, czyli: NPV FIX = NPV FLOAT

18 Wycena nogi zmiennej Noga zmienna (floating leg, płaci sprzedający IRS, the receiver) regularnych płatności C(t i ) dokonywanych według zmiennej (rynkowej) stopy procentowej L i od nominału N C(t i ) = L i i N i + A i Amortyzacja kapitału w obydwu nogach następuje w tych samych momentach i znosi się. Płatności odsetkowe nie musza jednak następować w tych samych momentach (np. fix 1Y, float 6M). Konwencja naliczania odsetek stopy zmiennej odpowiada konwencji danego rynku pieniężnego

19 Wycena nogi stałej Wartość bieżąca nogi stałej jest równa zdyskontowanej wartości wszystkich przyszłych płatności C t i = R IRS i N i NPV FIX = DF( t, t i )C t i = R IRS DF( t, t i ) i N i Czynniki dyskontowe pochodzą z krzywej zerokuponowej Wartość stopy IRS poznamy wyceniając nogę zmienną

20 Wycena nogi zmiennej Z rozważań na temat krzywej dochodowości wiemy, że wyceniając przyszłe, niepewne strumienie odsetkowe C(t i ) = L i i N i wyliczane po przyszłej stopie rynkowej L i możemy (z powodu arbitrażu) użyć stóp terminowych F i. NPV FLOAT = DF( t, t i )C t i = DF( t, t i )F i i N i Wycena nogi zmiennej jest jednak daleko bardziej uproszczona. Dla wygody prezentacji przyjmijmy, że wyceniamy 3-okresowy FRN. Jaka jest jego wartość bieżąca?

21 Wycena nogi zmiennej uproszczona NPV = L t0n 1 + L + L t1 N t0 (1 + L t0 )(1 + L t1 ) + L t2 N+N (1 + L t0 )(1 + L t1 )(1 + L t2 ) Zauważmy, że: L t2 N+N (1 + (1 + L t0 )(1 + L t1 )(1 + L t2 ) = L t2)n (1 + L t0 )(1 + L t1 )(1 + L t2 ) = N (1 + L t0 )(1 + L t1 )

22 Wycena nogi zmiennej urposzczona NPV = L t0n 1 + L t0 + L t1n (1 + L t0 )(1 + L t1 ) + L t2n+n (1 + L t0 )(1 + L t1 )(1 + L t2 ) Zauważmy, że: L t2 N+N (1 + (1 + L t0 )(1 + L t1 )(1 + L t2 ) = L t2 )N (1 + L t0 )(1 + L t1 )(1 + L t2 ) = N (1 + L t0 )(1 + L t1 ) Podstawiamy do pierwszego równania: NPV = L t0n 1 + L t0 + L t1n (1 + L t0 )(1 + L t1 ) + N (1 + L t0 )(1 + L t1 )

23 Wycena nogi zmiennej - uproszczona NPV = L t0n L t1n + N L t0 (1 + L t0 )(1 + L t1 ) I jeszcze raz: L t1 N + N (1 + L t0 )(1 + L t1 ) = (1 + L t1 )N (1 + L t0 )(1 + L t1 ) = N (1 + L t0 )

24 Wycena nogi zmiennej - uproszczona NPV = L t0n L t1n + N L t0 (1 + L t0 )(1 + L t1 ) I jeszcze raz: L t1 N + N (1 + L t0 )(1 + L t1 ) = (1 + L t1)n (1 + L t0 )(1 + L t1 ) = N (1 + L t0 ) Powtażając operację: NPV = L t0n 1 + L + N t0 (1 + L t0 ) = (1 + L t0)n 1 + L t0 = N Wniosek: Bieżąca wartość FRN wynosi N w każdym okresie odsetkowym. Wartość pomiędzy okresami? Duracja?

25 Zero w finansach Czym jest poniższy kontrakt? t0 t1 N t2 L t1 N N Jak jest jego wartość przepływów finansowych z okresu t2 na moment t1 obliczona w okresie (t0,t1)?

26 Zero w finansach Jak jest jego wartość przepływów finansowych z okresu t2 na moment t1 obliczona w okresie (t0,t1)? t0 t1 N t2 (L t1 )N N PV t1, t2 = L t1 N 1 + L t1 + N 1 + L t1 = 1 + L t1 N 1 + L t1 = N

27 Zero w finansach Jak jest wartość instrumentu w okresie (t0,t1)? Wartość przepływów z okresu t2 na moment t1: PV CF(t1, t2) = PV CF(t1, t1) = N L t1 N 1 + L t1 + N 1 + L t1 = 1 + L t1 N 1 + L t1 = N Wartość przepływów z okresu t1 na moment t1: Wartość instrumentu na moment t1 PV t1 = 0 Zanim poznamy prawdziwą wartość przyszłych stóp (tj. w okresie t1) zmiany stopy terminowej są równe zmianom stopy dyskontowej dla tego samego okresu

28 Zero w finansach L (t0,t1) (t1, t2) t0? t1 N t2 L t1 N N Czy w okresie (t0,t1) zmienność przyszłych stóp wpływa na bieżącą wartość instrumentu? Jaka jest jego mod. duracja w okresie t0-t1?

29 Interest Rate Swap (IRS) - wycena NPV FIX = NPV FLOAT R IRS DF( t, t i ) i N i = DF( t, t i )F i i N i R IRS = DF( t, t i ) i F i DF( t, t i ) i t1 L t0 N t2 L t1 N t3 L t2 N

30 IRS wycena NPV FIX = NPV FLOAT R IRS = DF( t, t i ) i F i DF( t, t i ) i Stopa IRS jest więc średnią ważoną stóp terminowych, czyli stóp FRA Pionowa dekompozycja kontraktu IRS: złożenie płatności zmiennych i stopy stałej, ale nierównej w każdym okresie stopie FRA. Wniosek: pionowa dekompozycja jest niemożliwa (arbitraż). W trakcie trwania kontraktu wartość nóg zmienia się wraz ze stopami, a P IRS 0

31 IRS - zastosowania Zarządzanie ryzykiem stopy procentowej (zamiana stopy stałej na zmienną, zmiana duracji portfela) Spekulacja na zmiany stóp procentowych Tworzenie syntetycznych instrumentów stopy procentowej

32 IRS Zarządzanie ryzykiem stopy procentowej Bank posiada portfel 5-letnich kredytów o stałej stopie oraz zobowiązania w postaci 6-miesięcznych lokat ludności odnawianych po bieżącej stopie rynkowej Bank zamierza ograniczyć ryzyko stopy procentowej Kredyty, fixed 7% Bank IRS Stopa IRS Swap dealer Depozyty, Float WIBOR-50 pb WIBOR

33 IRS - spekulacja Uważamy, że krzywa przesunie się na krótkim końcu w dół. Co możemy zrobić podejmując ryzyko (spekulując)? 1. Możemy kupić obligację finansując się stopą zmienną (LIBOR) 2. Możemy sprzedać (wystawić) IRS otrzymując stopę stałą w zamian płacąc zmienną Druga strategia zwykle będzie tańsza do przeprowadzenia

34 IRS - syntetyki Firma emituje tylko dług jedynie o stałej (zmiennej) stopie. Chcielibyśmy kupić jej dług, ale o zmiennej (stałej) stopie. Przypomnijmy blokowe równanie IRS: [Długa pozycja w IRS] = [długa pozycja w FRN] - [długa pozycja w obligacji stałokuponowej] Chcemy mieć: długa pozycja w FRN [długa pozycja w FRN] = [Długa pozycja w IRS] + [długa pozycja w obligacji stałokuponowej (tej firmy)] Powyższe jest zasadne z uwagi na niskie ryzyko kredytowe IRS wynikające z braku wymiany kapitału, a jedynie odsetek

35 IRS vs. Treasury yield

Inżynieria finansowa Ćwiczenia III Stopy Forward i Kontrakt FRA

Inżynieria finansowa Ćwiczenia III Stopy Forward i Kontrakt FRA Inżynieria finansowa Ćwiczenia III Stopy Forward i Kontrakt FRA Wydział Matematyki Informatyki i Mechaniki UW 18 października 2011 Zadanie 3.1 W dniu 18 października 2004 Bank X kwotował: 3M PLN Depo -

Bardziej szczegółowo

TRANSAKCJE SWAP: - PROCENTOWE - WALUTOWE - WALUTOWO-PROCENTOWE - KREDYTOWE

TRANSAKCJE SWAP: - PROCENTOWE - WALUTOWE - WALUTOWO-PROCENTOWE - KREDYTOWE TRANSAKCJE SWAP: - PROCENTOWE - WALUTOWE - WALUTOWO-PROCENTOWE - KREDYTOWE 1 SWAP - fixed-to-floating rate IRS - swap procentowy jest umową, w której dwie strony uzgadniają, że będą w ustalonych terminach

Bardziej szczegółowo

Obligacje, Swapy, FRAsy i Bob Citron

Obligacje, Swapy, FRAsy i Bob Citron Obligacje, Swapy, FRAsy i Bob Citron Andrzej Kulik andrzej.kulik@pioneer.com.pl +22 321 4106/ 609 691 729 1 Plan Przypomnienie informacji o rynku długu Rodzaje obligacji Ryzyko obligacji yield curve Duration

Bardziej szczegółowo

Inżynieria finansowa Wykład IV Kontrakty OIS/IRS/CIRS

Inżynieria finansowa Wykład IV Kontrakty OIS/IRS/CIRS Inżynieria finansowa Wykład IV Kontrakty OIS/IRS/CIRS Wydział Matematyki Informatyki i Mechaniki UW 25 października 2011 1 Kontrakty OIS Struktura kontraktu OIS Wycena kontraktu OIS 2 Struktura kontraktu

Bardziej szczegółowo

Inżynieria finansowa Wykład IV Kontrakty OIS/IRS/CRIS

Inżynieria finansowa Wykład IV Kontrakty OIS/IRS/CRIS Inżynieria finansowa Wykład IV Kontrakty OIS/IRS/CRIS Wydział Matematyki Informatyki i Mechaniki UW 25 października 2011 1 Kontrakty OIS 2 Struktura kontraktu IRS Wycena kontraktu IRS 3 Struktura kontraktu

Bardziej szczegółowo

IRS Interest Rate Swap. Transakcja wymiany płatności odsetkowych

IRS Interest Rate Swap. Transakcja wymiany płatności odsetkowych IRS Interest Rate Swap Transakcja wymiany płatności odsetkowych 1 Kontrakt IRS Kupujący IRS Odsetki wg ustalonej stopy stałej Odsetki według rzeczywistej stopy zmiennej Sprzedający IRS Strumienie płatności

Bardziej szczegółowo

4.5. Obligacja o zmiennym oprocentowaniu

4.5. Obligacja o zmiennym oprocentowaniu .5. Obligacja o zmiennym oprocentowaniu 71.5. Obligacja o zmiennym oprocentowaniu Aby wycenić kontrakt IRS musi bliżej przyjrzeć się obligacji o zmiennym oprocentowaniu (Floating Rate Note lub floater

Bardziej szczegółowo

IRS Interest Rate Swap. Transakcja wymiany płatności odsetkowych

IRS Interest Rate Swap. Transakcja wymiany płatności odsetkowych IRS Interest Rate Swap Transakcja wymiany płatności odsetkowych 1 Kontrakt IRS Kupujący IRS Odsetki wg ustalonej stopy stałej Odsetki według rzeczywistej stopy zmiennej Sprzedający IRS Strumienie płatności

Bardziej szczegółowo

IRS Interest Rate Swap. Transakcja wymiany płatności odsetkowych

IRS Interest Rate Swap. Transakcja wymiany płatności odsetkowych IRS Interest Rate Swap Transakcja wymiany płatności odsetkowych 1 IRS - Interest Rate Swap (1) Umowa (transakcja) pomiędzy dwoma podmiotami, w której strony zobowiązują się do cyklicznej wymiany, w ustalonym

Bardziej szczegółowo

Analiza instrumentów pochodnych

Analiza instrumentów pochodnych Analiza instrumentów pochodnych Dr Wioletta Nowak Wykład 2-3 Kontrakt forward na przyszłą stopę procentową Kontrakty futures na długoterminowe instrumenty procentowe Swapy procentowe Przykład 1 Inwestor

Bardziej szczegółowo

Forward Rate Agreement

Forward Rate Agreement Forward Rate Agreement Nowoczesne rynki finansowe oferują wiele instrumentów pochodnych. Należą do nich: opcje i warranty, kontrakty futures i forward, kontrakty FRA (Forward Rate Agreement) oraz swapy.

Bardziej szczegółowo

płatności odsetkowych

płatności odsetkowych IRS Interest Rate Swap Transakcja wymiany płatności odsetkowych 1 Kontrakt IRS Kupujący IRS Odsetki wg ustalonej stopy stałej Odsetki według rzeczywistej stopy zmiennej Sprzedający IRS Strumienie płatności

Bardziej szczegółowo

OPISY PRODUKTÓW. Rabobank Polska S.A.

OPISY PRODUKTÓW. Rabobank Polska S.A. OPISY PRODUKTÓW Rabobank Polska S.A. Warszawa, marzec 2010 Wymiana walut (Foreign Exchange) Wymiana walut jest umową pomiędzy bankiem a klientem, w której strony zobowiązują się wymienić w ustalonym dniu

Bardziej szczegółowo

Materiały do samodzielnego kształcenia Inżynieria finansowa i zarządzanie ryzykiem. Temat wykładu: Wycena kontraktów swap

Materiały do samodzielnego kształcenia Inżynieria finansowa i zarządzanie ryzykiem. Temat wykładu: Wycena kontraktów swap Materiały do samodzielnego kształcenia Inżynieria finansowa i zarządzanie ryzykiem Temat wykładu: Wycena kontraktów swap Podstawowe zagadnienia: 1. Wycena swapa procentowego metodą wyceny obligacji 2.

Bardziej szczegółowo

Instrumenty pochodne Instrumenty wbudowane

Instrumenty pochodne Instrumenty wbudowane www.pwcacademy.pl Instrumenty pochodne Instrumenty wbudowane Jan Domanik Instrumenty pochodne ogólne zasady ujmowania i wyceny 2 Instrument pochodny definicja. to instrument finansowy: którego wartość

Bardziej szczegółowo

Sposób wyliczania depozytów zabezpieczających oraz zasady wyceny instrumentów pochodnych i transakcji repo

Sposób wyliczania depozytów zabezpieczających oraz zasady wyceny instrumentów pochodnych i transakcji repo Sposób wyliczania depozytów zabezpieczających oraz zasady wyceny instrumentów pochodnych i transakcji repo 1 Wprowadzenie Dokument przedstawia zaimplementowane w systemie KDPW_CCP formuły wyceny instrumentów

Bardziej szczegółowo

Forward, FX Swap & CIRS

Forward, FX Swap & CIRS Forward, FX Swap & CIRS Andrzej Kulik andrzej.kulik@pioneer.com.pl +22 321 4106/ 609 691 729 1 Plan prezentacji Bob Citron & Orange County Transakcje forward FX Swap CIRS FRA 2 Orange County & Bob Citron

Bardziej szczegółowo

Inżynieria Finansowa: 3. Ceny obligacji i stopy procentowe

Inżynieria Finansowa: 3. Ceny obligacji i stopy procentowe Inżynieria Finansowa: 3. Ceny obligacji i stopy procentowe Piotr Bańbuła Katedra Ekonomii Ilościowej, KAE Październik 2014 r. Warszawa, Szkoła Główna Handlowa Stopy procentowe Co to jest stopa procentowa?

Bardziej szczegółowo

ZARZĄDZANIE RYZYKIEM STOPY PROCENTOWEJ. dr Grzegorz Kotliński; Katedra Bankowości AE w Poznaniu

ZARZĄDZANIE RYZYKIEM STOPY PROCENTOWEJ. dr Grzegorz Kotliński; Katedra Bankowości AE w Poznaniu ZARZĄDZANIE RYZYKIEM STOPY PROCENTOWEJ 1 DEFINICJA RYZYKA STOPY PROCENTOWEJ Ryzyko stopy procentowej to niebezpieczeństwo negatywnego wpływu zmian rynkowej stopy procentowej na sytuację finansową banku

Bardziej szczegółowo

Dokumentacja Wycena papierów wartościowych o stałym oprocentowaniu

Dokumentacja Wycena papierów wartościowych o stałym oprocentowaniu Dokumentacja Wycena papierów wartościowych o stałym oprocentowaniu Piotr Szawlis Wstęp Wycena papierów wartościowych ze wzorów analitycznych jest najprostszym możliwym zadaniem obliczeniowym. W poniższym

Bardziej szczegółowo

Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1

Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1 Ćwiczenia ZPI 1 Zadanie 1. Wycena stałej stopy swap Bank A podpisuje z Bankiem B swap na stopy procentowe. Wyznacz wartość teoretyczną oprocentowania stałego, wiedząc że swap ma być o terminie 1 rok, a

Bardziej szczegółowo

Swap. Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1

Swap. Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1 Swap Ćwiczenia ZPI 1 Obliczanie ceny swapa za pomocą kontraktów FRA Ile wynosi cena swapa odsetkowego, gdzie płacimy stałą stopę procentową, a w zamian chcemy otrzymywać 3M WIBOR. Swap zawierany w celu

Bardziej szczegółowo

Swap. Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1

Swap. Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1 Swap Ćwiczenia ZPI 1 Obliczanie ceny swapa za pomocą kontraktów FRA Ile wynosi cena swapa odsetkowego, gdzie płacimy stałą stopę procentową, a w zamian chcemy otrzymywać 3M WIBOR. Swap zawierany w celu

Bardziej szczegółowo

8. Zarządzanie portfelem inwestycyjnym za pomocą instrumentów pochodnych Zabezpieczenie Spekulacja Arbitraż 9. Charakterystyka i teoria wyceny

8. Zarządzanie portfelem inwestycyjnym za pomocą instrumentów pochodnych Zabezpieczenie Spekulacja Arbitraż 9. Charakterystyka i teoria wyceny 8. Zarządzanie portfelem inwestycyjnym za pomocą instrumentów pochodnych Zabezpieczenie Spekulacja Arbitraż 9. Charakterystyka i teoria wyceny kontraktów terminowych Kontrakty forward FRA 1 Zadanie 1 Profil

Bardziej szczegółowo

Inżynieria finansowa Wykład II Stopy Procentowe

Inżynieria finansowa Wykład II Stopy Procentowe Inżynieria finansowa Wykład II Stopy Procentowe Wydział Matematyki Informatyki i Mechaniki UW 11 października 2011 1 Rynkowe stopy procentowe Rodzaje stóp rynkowych Reguły rachunku stóp 2 3 Definicje stóp

Bardziej szczegółowo

Dr hab. Renata Karkowska, ćwiczenia Zarządzanie ryzykiem 1

Dr hab. Renata Karkowska, ćwiczenia Zarządzanie ryzykiem 1 1 Rodzaje i źródła ryzyka stopy procentowej: Ryzyko niedopasowania terminów przeszacowania, np. 6M kredyt o stałym oprocentowaniu finansowany miesięcznymi lokatami o zmiennym oprocentowaniu. Ryzyko podstawy

Bardziej szczegółowo

Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1

Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1 Ćwiczenia ZPI 1 Obliczanie ceny swapa za pomocą kontraktów FRA Ile wynosi cena swapa odsetkowego, gdzie płacimy stałą stopę procentową, a w zamian chcemy otrzymywać 3M WIBOR. Swap zawierany w celu zabezpieczenia

Bardziej szczegółowo

Matematyka finansowa 03.10.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVIII Egzamin dla Aktuariuszy z 3 października 2011 r.

Matematyka finansowa 03.10.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVIII Egzamin dla Aktuariuszy z 3 października 2011 r. Komisja Egzaminacyjna dla Aktuariuszy LVIII Egzamin dla Aktuariuszy z 3 października 2011 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut

Bardziej szczegółowo

MIĘDZYNARODOWE FINANSE PRZEDSIĘBIORSTW. Anna Chmielewska, SGH Warunki zaliczenia

MIĘDZYNARODOWE FINANSE PRZEDSIĘBIORSTW. Anna Chmielewska, SGH Warunki zaliczenia MIĘDZYNARODOWE FINANSE PRZEDSIĘBIORSTW Anna Chmielewska Warunki zaliczenia 40 pkt praca samodzielna (szczegóły na kolejnym wykładzie) 60 pkt egzamin (forma testowa) 14 punktów obecności W przypadku braku

Bardziej szczegółowo

dr hab. Marcin Jędrzejczyk

dr hab. Marcin Jędrzejczyk dr hab. Marcin Jędrzejczyk Przez inwestycje należy rozumieć aktywa nabyte w celu osiągnięcia korzyści ekonomicznych, wynikających z przyrostu wartości tych zasobów, uzyskania z nich przychodów w postaci

Bardziej szczegółowo

Inżynieria Finansowa - Egzamin - 28 stycznia Rozwiązania zadań Wersja z dnia 1 marca 2005, z drobnymi poprawkami

Inżynieria Finansowa - Egzamin - 28 stycznia Rozwiązania zadań Wersja z dnia 1 marca 2005, z drobnymi poprawkami Inżynieria Finansowa - Egzamin - 28 stycznia 2005 Rozwiązania zadań Wersja z dnia marca 2005, z drobnymi poprawkami Uwaga: Dla uproszczenia we wszelkich obliczeniach przyjęliśmy, że długość n-miesięcznego

Bardziej szczegółowo

Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1

Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1 Ćwiczenia ZPI 1 Zysk/strata Zysk 1 3,89 4,19 4,33 Cena spot np. EURPLN Strata 1 Zysk/Strata nabywcy = Cena Spot Cena wykonania 2 Zysk/strata Zysk 1 Strata 1 3,89 4,19 4,33 Cena spot np. EURPLN Zysk/Strata

Bardziej szczegółowo

II ETAP EGZAMINU EGZAMIN PISEMNY

II ETAP EGZAMINU EGZAMIN PISEMNY II ETAP EGZAMINU NA DORADCĘ INWESTYCYJNEGO EGZAMIN PISEMNY 7 grudnia 2014 r. Warszawa Treść i koncepcja pytań zawartych w teście są przedmiotem praw autorskich i nie mogą być publikowane lub w inny sposób

Bardziej szczegółowo

Dokumentacja Analityczna wycena instrumentów pochodnych na stopę procentową

Dokumentacja Analityczna wycena instrumentów pochodnych na stopę procentową Dokumentacja Analityczna wycena instrumentów pochodnych na stopę procentową Tomasz Romanowski Opis wycenianych instrumentów Caplet / Floorlet Jest to pojedyncza opcja kupna/sprzedaży stopy rynkowej L(T,

Bardziej szczegółowo

NOTA 6 - INSTRUMENTY POCHODNE BPH Fundusz Inwestycyjny Otwarty Parasolowy BPH Subfundusz Obligacji 2 na dzień 31.12.2012 Typ zajętej pozycji Rodzaj instrumentu pochodnego Cel otwarcia pozycji Wartość otwartej

Bardziej szczegółowo

mgr Katarzyna Niewińska; Wydział Zarządzania UW Ćwiczenia 8

mgr Katarzyna Niewińska; Wydział Zarządzania UW Ćwiczenia 8 Ćwiczenia 8 Opcja jest to umowa między nabywcą (posiadaczem) a sprzedawcą (wystawcą), dająca nabywcy prawo do kupna (opcja kupna) lub sprzedaży (opcja sprzedaży) instrumentu bazowego przed lub w ustalonym

Bardziej szczegółowo

Instrumenty pochodne - Zadania

Instrumenty pochodne - Zadania Jerzy A. Dzieża Instrumenty pochodne - Zadania 27 marca 2011 roku Rozdział 1 Wprowadzenie 1.1. Zadania 1. Spekulant zajął krótką pozycję w kontrakcie forward USD/PLN zapadającym za 2 miesiące o nominale

Bardziej szczegółowo

Inżynieria finansowa Ćwiczenia II Stopy Procentowe

Inżynieria finansowa Ćwiczenia II Stopy Procentowe Inżynieria finansowa Ćwiczenia II Stopy Procentowe Wydział Matematyki Informatyki i Mechaniki UW 11 października 2011 Zadanie 2.1 Oprocentowanie 3M pożyczki wynosi 5.00% (ACT/365). Natomiast, 3M bon skarbowy

Bardziej szczegółowo

II Etap egzaminu na Doradcę Inwestycyjnego Maj 2014. Zadanie 2

II Etap egzaminu na Doradcę Inwestycyjnego Maj 2014. Zadanie 2 II Etap egzaminu na Doradcę Inwestycyjnego Maj 2014 Zadanie 2 1/ Analizowane są dwie spółki Alfa i Gamma. Spółka Alfa finansuje swoją działalność nie korzystając z długu, natomiast spółka Gamma finansuje

Bardziej szczegółowo

Ryzyko walutowe i zarządzanie nim. dr Grzegorz Kotliński, Katedra Bankowości AE w Poznaniu

Ryzyko walutowe i zarządzanie nim. dr Grzegorz Kotliński, Katedra Bankowości AE w Poznaniu 1 Ryzyko walutowe i zarządzanie nim 2 Istota ryzyka walutowego Istota ryzyka walutowego sprowadza się do konieczności przewalutowania należności i zobowiązań (pozycji bilansu banku) wyrażonych w walutach

Bardziej szczegółowo

Matematyka finansowa 15.12.2008 r. Komisja Egzaminacyjna dla Aktuariuszy. XLVIII Egzamin dla Aktuariuszy z 15 grudnia 2008 r.

Matematyka finansowa 15.12.2008 r. Komisja Egzaminacyjna dla Aktuariuszy. XLVIII Egzamin dla Aktuariuszy z 15 grudnia 2008 r. Komisja Egzaminacyjna dla Aktuariuszy XLVIII Egzamin dla Aktuariuszy z 15 grudnia 2008 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1

Bardziej szczegółowo

Matematyka finansowa 04.04.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I

Matematyka finansowa 04.04.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Market wizards. Kontrakty na stopę procentową IRS, CCIRS. Piotrek Chabrowski 2005

Market wizards. Kontrakty na stopę procentową IRS, CCIRS. Piotrek Chabrowski 2005 Market wizards Kontrakty na stopę procentową IRS, CCIRS Piotrek Chabrowski 2005 Transakcje SWAP w dzisiejszych czasach Służą do zabezpieczania się nie tylko przed zmianami stóp procentowych i kursów walutowych

Bardziej szczegółowo

TRANSAKCJE KASOWE. Sekcja I (produkty inwestycyjne)

TRANSAKCJE KASOWE. Sekcja I (produkty inwestycyjne) Kwestionariusz oceny odpowiedniości w odniesieniu do transakcji skarbowych Zgodnie z Dyrektywą MIFID, Alior Bank SA, świadcząc usługi nabywania i zbywania instrumentów finansowych na własny rachunek, jest

Bardziej szczegółowo

Matematyka finansowa, rozkład normalny, Model wyceny aktywów kapitałowych, Forward, Futures

Matematyka finansowa, rozkład normalny, Model wyceny aktywów kapitałowych, Forward, Futures Matematyka finansowa, rozkład normalny, Model wyceny aktywów kapitałowych, Forward, Futures 1 Inwestor ma trzyletnią obligację o wartości nominalnej 2000 zł, oprocentowaną 8% rocznie, przy czym odsetki

Bardziej szczegółowo

Instrumenty rynku stopy procentowej

Instrumenty rynku stopy procentowej Instrumenty rynku stopy procentowej KRZYWA DOCHODOWOŚCI Zależność między rentownością (YTM) a terminem zapadalności przy innych czynnikach niezmienionych Wyprowadzana zwykle na podstawie kwotowań obligacji

Bardziej szczegółowo

Charakterystyka i wycena kontraktów terminowych forward

Charakterystyka i wycena kontraktów terminowych forward Charakterystyka i wycena kontraktów terminowych forward Profil wypłaty forward Profil wypłaty dla pozycji długiej w kontrakcie terminowym Long position Zysk/strata Cena spot Profil wypłaty dla pozycji

Bardziej szczegółowo

Ogłoszenie o zmianach statutu KBC OMEGA Funduszu Inwestycyjnego Zamkniętego z dnia 13 czerwca 2014 r.

Ogłoszenie o zmianach statutu KBC OMEGA Funduszu Inwestycyjnego Zamkniętego z dnia 13 czerwca 2014 r. Ogłoszenie o zmianach statutu KBC OMEGA Funduszu Inwestycyjnego Zamkniętego z dnia 13 czerwca 2014 r. KBC Towarzystwo Funduszy Inwestycyjnych S.A. działające jako organ KBC OMEGA Funduszu Inwestycyjnego

Bardziej szczegółowo

KARTY TRANSAKCJI POCHODNYCH

KARTY TRANSAKCJI POCHODNYCH KARTY TRANSAKCJI POCHODNYCH SPIS TREŚCI Informacje ogólne str. 3 Kontrakt Terminowy na Kurs Walutowy Transakcja Forward.. str. 5 Kontrakt Terminowy na Kurs Walutowy z Opcją Transakcja Forward z Opcją Czasową

Bardziej szczegółowo

Różnorodność swapów i ich zastosowań, przyczyny popularności swapów w porównaniu z pozostałymi grupami instrumentów pochodnych

Różnorodność swapów i ich zastosowań, przyczyny popularności swapów w porównaniu z pozostałymi grupami instrumentów pochodnych Różnorodność swapów i ich zastosowań, przyczyny popularności swapów w porównaniu z pozostałymi grupami instrumentów pochodnych Monika Michalak Klaudia Michrowska Swap polega na zawarciu dwóch umów natychmiastowej

Bardziej szczegółowo

Forward kontrakt terminowy o charakterze rzeczywistym (z dostawą instrumentu bazowego).

Forward kontrakt terminowy o charakterze rzeczywistym (z dostawą instrumentu bazowego). Kontrakt terminowy (z ang. futures contract) to umowa pomiędzy dwiema stronami, z których jedna zobowiązuje się do kupna, a druga do sprzedaży, w określonym terminie w przyszłości (w tzw. dniu wygaśnięcia)

Bardziej szczegółowo

Kwestionariusz oceny odpowiedniości w odniesieniu do transakcji skarbowych

Kwestionariusz oceny odpowiedniości w odniesieniu do transakcji skarbowych Kwestionariusz oceny odpowiedniości w odniesieniu do transakcji skarbowych Zgodnie z Dyrektywą MIFID, Bank BPH S.A., świadcząc usługi nabywania i zbywania instrumentów finansowych na własny rachunek, jest

Bardziej szczegółowo

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXIII Egzamin dla Aktuariuszy z 25 marca 2013 r. Część I

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXIII Egzamin dla Aktuariuszy z 25 marca 2013 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LXIII Egzamin dla Aktuariuszy z 25 marca 2013 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

System finansowy gospodarki. Instrumenty pochodne Forward, Futures, Swapy

System finansowy gospodarki. Instrumenty pochodne Forward, Futures, Swapy System finansowy gospodarki Instrumenty pochodne Forward, Futures, Swapy Rynki finansowe Rynek kasowy spot Ustalenie ceny i przeniesienie praw jest jednoczesne Rynek terminowy Termin przeniesienia praw

Bardziej szczegółowo

Matematyka finansowa 20.06.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVII Egzamin dla Aktuariuszy z 20 czerwca 2011 r.

Matematyka finansowa 20.06.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVII Egzamin dla Aktuariuszy z 20 czerwca 2011 r. Komisja Egzaminacyjna dla Aktuariuszy LVII Egzamin dla Aktuariuszy z 20 czerwca 2011 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Matematyka finansowa 8.12.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r. Część I

Matematyka finansowa 8.12.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Rynek walutowy - swapy. Część 3

Rynek walutowy - swapy. Część 3 Rynek walutowy - swapy. Część 3 Dotychczas zastanawialiśmy się nad metodami zabezpieczenia ryzyka walutowego. W tym artykule zostanie opisany podstawowy instrument służący zabezpieczaniu również ryzyka

Bardziej szczegółowo

Matematyka finansowa 26.05.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I

Matematyka finansowa 26.05.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Przyjmijmy

Bardziej szczegółowo

Zarządzanie portfelem instrumentów dłużnych

Zarządzanie portfelem instrumentów dłużnych Zarządzanie portfelem instrumentów dłużnych Bogusław C. Moskała BRE Bank Warszawa 12 grudzień 2005 r. Portfel instrumentów dłużnych Portfelem instrumentów dłużnych nazywać będziemy zbiór obligacji, bonów

Bardziej szczegółowo

Wstęp. Część pierwsza. Rynek walutowy i pieniężny. Rozdział 1. Geneza rynku walutowego i pieniężnego

Wstęp. Część pierwsza. Rynek walutowy i pieniężny. Rozdział 1. Geneza rynku walutowego i pieniężnego Wstęp Część pierwsza. Rynek walutowy i pieniężny Rozdział 1. Geneza rynku walutowego i pieniężnego Rynki natychmiastowe Rynek pieniężny Transakcje na rynku pieniężnym Rynek walutowy Geneza rynku walutowego

Bardziej szczegółowo

- w art. 8 ust. 3 Statutu otrzymuje nowe, następujące brzmienie:

- w art. 8 ust. 3 Statutu otrzymuje nowe, następujące brzmienie: KBC Towarzystwo Funduszy Inwestycyjnych S.A. działające, jako organ KBC Alfa Specjalistycznego Funduszu Inwestycyjnego Otwartego, uprzejmie informuje o dokonaniu zmian statutu dotyczących polityki inwestycyjnej

Bardziej szczegółowo

System finansowy gospodarki. Zajęcia nr 7 Krzywa rentowności, zadania (mat. fin.), marża w handlu, NPV i IRR, obligacje

System finansowy gospodarki. Zajęcia nr 7 Krzywa rentowności, zadania (mat. fin.), marża w handlu, NPV i IRR, obligacje System finansowy gospodarki Zajęcia nr 7 Krzywa rentowności, zadania (mat. fin.), marża w handlu, NPV i IRR, obligacje Krzywa rentowności (dochodowości) Yield Curve Krzywa ta jest graficznym przedstawieniem

Bardziej szczegółowo

Matematyka finansowa 13.12.2010 r. Komisja Egzaminacyjna dla Aktuariuszy. LV Egzamin dla Aktuariuszy z 13 grudnia 2010 r. Część I

Matematyka finansowa 13.12.2010 r. Komisja Egzaminacyjna dla Aktuariuszy. LV Egzamin dla Aktuariuszy z 13 grudnia 2010 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LV Egzamin dla Aktuariuszy z 13 grudnia 2010 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Pan

Bardziej szczegółowo

Zadania przygotowujące do egzaminu z wykładu Inżynieria Finansowa

Zadania przygotowujące do egzaminu z wykładu Inżynieria Finansowa Zadania przygotowujące do egzaminu z wykładu Inżynieria Finansowa Rozpisywanie przepływów gotówkowych, zabezpieczanie, spekulacja: 1. Za 9 miesięcy musisz zapłacić za wycieczkę 1500 EUR. Posiadasz konto

Bardziej szczegółowo

Transakcje repo Swapy walutowe (fx swap)

Transakcje repo Swapy walutowe (fx swap) Rynek pieniężny Transakcje repo Swapy walutowe (fx swap) oraz Reverse Jednoczesna sprzedaż i przyszłe odkupienie papieru wartościowego Cena Nabycia i Cena Odkupu Równoważnych Papierów Wartościowych Sprzedający

Bardziej szczegółowo

Wykład Zarządzanie portfelem inwestycyjnym

Wykład Zarządzanie portfelem inwestycyjnym Wykład Zarządzanie portfelem inwestycyjnym Transakcje typu SWAP - walutowe - procentowe - kapitałowe - kredytowe 1 SWAP definicja Swap jest umową między dwoma stronami, określającą zasady okresowych, wzajemnych

Bardziej szczegółowo

1) jednostka posiada wystarczające środki aby zakupić walutę w dniu podpisania kontraktu

1) jednostka posiada wystarczające środki aby zakupić walutę w dniu podpisania kontraktu Przykład 1 Przedsiębiorca będący importerem podpisał kontrakt na zakup materiałów (surowców) o wartości 1 000 000 euro z datą płatności za 3 miesiące. Bieżący kurs 3,7750. Pozostałe koszty produkcji (wynagrodzenia,

Bardziej szczegółowo

Matematyka finansowa 10.12.2012 r. Komisja Egzaminacyjna dla Aktuariuszy. LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r.

Matematyka finansowa 10.12.2012 r. Komisja Egzaminacyjna dla Aktuariuszy. LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r. Komisja Egzaminacyjna dla Aktuariuszy LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Matematyka finansowa 30.09.2013 r. Komisja Egzaminacyjna dla Aktuariuszy. LXV Egzamin dla Aktuariuszy z 30 września 2013 r.

Matematyka finansowa 30.09.2013 r. Komisja Egzaminacyjna dla Aktuariuszy. LXV Egzamin dla Aktuariuszy z 30 września 2013 r. Komisja Egzaminacyjna dla Aktuariuszy LXV Egzamin dla Aktuariuszy z 30 września 2013 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXI Egzamin dla Aktuariuszy z 1 października 2012 r.

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXI Egzamin dla Aktuariuszy z 1 października 2012 r. Komisja Egzaminacyjna dla Aktuariuszy LXI Egzamin dla Aktuariuszy z 1 października 2012 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1

Bardziej szczegółowo

System finansowy gospodarki. Zajęcia nr 6 Matematyka finansowa

System finansowy gospodarki. Zajęcia nr 6 Matematyka finansowa System finansowy gospodarki Zajęcia nr 6 Matematyka finansowa Rachunek rentowy (annuitetowy) Mianem rachunku rentowego określa się regularne płatności w stałych odstępach czasu przy założeniu stałej stopy

Bardziej szczegółowo

R NKI K I F I F N N NSOW OPCJE

R NKI K I F I F N N NSOW OPCJE RYNKI FINANSOWE OPCJE Wymagania dotyczące opcji Standard opcji Interpretacja nazw Sposoby ustalania ostatecznej ceny rozliczeniowej dla opcji na GPW OPCJE - definicja Kontrakt finansowy, w którym kupujący

Bardziej szczegółowo

ZASTOSOWANIE KONTRAKTÓW CIRS W MECHANIZMIE CURRENCY CARRYTRADES

ZASTOSOWANIE KONTRAKTÓW CIRS W MECHANIZMIE CURRENCY CARRYTRADES Katedra Rynków Kapitałowych Szkoła Główna Handlowa w Warszawie Jacek Tomaszewski ZASTOSOWANIE KONTRAKTÓW CIRS W MECHANIZMIE CURRENCY CARRYTRADES Rynek kapitałowy, a koniunktura gospodarcza Łódź, 3 4 grudnia

Bardziej szczegółowo

Opcje. istota transakcji opcyjnych, rodzaje opcji, czynniki wpływające na wartość opcji (premii).

Opcje. istota transakcji opcyjnych, rodzaje opcji, czynniki wpływające na wartość opcji (premii). Opcje istota transakcji opcyjnych, rodzaje opcji, czynniki wpływające na wartość opcji (premii). 1 Mała powtórka: instrumenty liniowe Takie, w których funkcja wypłaty jest liniowa (np. forward, futures,

Bardziej szczegółowo

Papiery wartościowe o stałym dochodzie

Papiery wartościowe o stałym dochodzie Papiery wartościowe o stałym dochodzie Inwestycje i teoria portfela Strona 1 z 42 1. Wartość pieniądza w czasie Złotówka dzisiaj (którą mamy w ręku) jest więcej warta niż (przyrzeczona) złotówka w przyszłości,

Bardziej szczegółowo

Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1

Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1 Ćwiczenia ZPI 1 Zysk/strata Zysk 1 3,89 4,19 4,33 Cena spot np. EURPLN Strata 1 Zysk/Strata nabywcy = Cena Spot Cena wykonania 2 Zysk/strata Zysk 1 Strata 1 3,89 4,19 4,33 Cena spot np. EURPLN Zysk/Strata

Bardziej szczegółowo

Obligacje o stałym oprocentowaniu (fixed- interest bonds) Najprostsze z nich to

Obligacje o stałym oprocentowaniu (fixed- interest bonds) Najprostsze z nich to Obligacje (bonds) Obligacja papier wartościowy emitowany w serii, w którym emitent stwierdza, że jest dłużnikiem obligatariusza i zobowiązuje się wobec niego do spełnienia określonego świadczenia. Najczęściej

Bardziej szczegółowo

Wycena equity derivatives notowanych na GPW w obliczu wysokiego ryzyka dywidendy

Wycena equity derivatives notowanych na GPW w obliczu wysokiego ryzyka dywidendy Instrumenty pochodne 2014 Wycena equity derivatives notowanych na GPW w obliczu wysokiego ryzyka dywidendy Jerzy Dzieża, WMS, AGH Kraków 28 maja 2014 (Instrumenty pochodne 2014 ) Wycena equity derivatives

Bardziej szczegółowo

FX forward Forward Rate Agreement Index Futures

FX forward Forward Rate Agreement Index Futures Transakcje terminowe FX forward Forward Rate Agreement Index Futures Transakcja terminowa Umowa, która określa, na jakich warunkach transakcja zostanie dokonana w przyszłości Dzięki temu na rynku terminowym

Bardziej szczegółowo

mgr Katarzyna Niewińska; Wydział Zarządzania UW Ćwiczenia 2

mgr Katarzyna Niewińska; Wydział Zarządzania UW Ćwiczenia 2 Ćwiczenia 2 Wartość pieniądza w czasie Zmienna wartość pieniądza w czasie jest pojęciem, które pozwala porównać wartość różnych sum pieniężnych otrzymanych w różnych okresach czasu. Czy 1000 PLN otrzymane

Bardziej szczegółowo

Regulamin Transakcji Swap Procentowy

Regulamin Transakcji Swap Procentowy Regulamin Transakcji Swap Procentowy 1. 1. Regulamin Transakcji Swap Procentowy zwany dalej Regulaminem SP określa szczegółowe zasady i tryb zawierania oraz rozliczania Transakcji Swap Procentowy na podstawie

Bardziej szczegółowo

Inżynieria finansowa Wykład I Wstęp

Inżynieria finansowa Wykład I Wstęp Wykład I Wstęp Wydział Matematyki Informatyki i Mechaniki UW 4 października 2011 1 Podstawowe pojęcia Instrumenty i rynki finansowe 2 Instrumenty i rynki finansowe to dyscyplina, która zajmuje się analizą

Bardziej szczegółowo

Futures na Wibor najlepszy sposób zarabiania na stopach. Departament Skarbu, PKO Bank Polski Konferencja Instrumenty Pochodne Warszawa, 28 maja 2014

Futures na Wibor najlepszy sposób zarabiania na stopach. Departament Skarbu, PKO Bank Polski Konferencja Instrumenty Pochodne Warszawa, 28 maja 2014 Futures na Wibor najlepszy sposób zarabiania na stopach Departament Skarbu, PKO Bank Polski Konferencja Instrumenty Pochodne Warszawa, 28 maja 2014 Agenda Wprowadzenie Definicja kontraktu Czynniki wpływające

Bardziej szczegółowo

1/ W oparciu o znajomość MSSF, które zostały zatwierdzone przez UE (dalej: MSR/MSSF): (Punktacja dot. pkt 1, razem: od 0 do 20 pkt)

1/ W oparciu o znajomość MSSF, które zostały zatwierdzone przez UE (dalej: MSR/MSSF): (Punktacja dot. pkt 1, razem: od 0 do 20 pkt) Egzamin na Doradcę Inwestycyjnego II etap 11.2015 Zadanie 1 1/ W oparciu o znajomość MSSF, które zostały zatwierdzone przez UE (dalej: MSR/MSSF): (Punktacja dot. pkt 1, razem: od 0 do 20 pkt) 1.1/ podaj

Bardziej szczegółowo

Matematyka finansowa 15.06.2015 r. Komisja Egzaminacyjna dla Aktuariuszy. LXXI Egzamin dla Aktuariuszy z 15 czerwca 2015 r.

Matematyka finansowa 15.06.2015 r. Komisja Egzaminacyjna dla Aktuariuszy. LXXI Egzamin dla Aktuariuszy z 15 czerwca 2015 r. Komisja Egzaminacyjna dla Aktuariuszy LXXI Egzamin dla Aktuariuszy z 1 czerwca 201 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Pracownik

Bardziej szczegółowo

Matematyka finansowa 11.10.2004 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r.

Matematyka finansowa 11.10.2004 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r. Komisja Egzaminacyjna dla Aktuariuszy XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU Czas egzaminu: 100 minut

Bardziej szczegółowo

Tabela Oprocentowania Produktów Bankowych Spółdzielczego Banku Rozwoju

Tabela Oprocentowania Produktów Bankowych Spółdzielczego Banku Rozwoju Załącznik do Uchwały nr 36/2012 Zarządu Spółdzielczego Rozwoju z dnia 24.05.2012 r. Tabela Oprocentowania Spółdzielczego Rozwoju (obowiązuje od 18.06.2012 r.) Lp. KLIENCI INDYWIDUALNI Nazwa produktu I.

Bardziej szczegółowo

Model wyceny aktywów kapitałowych. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1

Model wyceny aktywów kapitałowych. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1 Model wyceny aktywów kapitałowych 1 Model wyceny aktywów kapitałowych Najczęściej stosowana metoda zakłada wykorzystanie danych historycznych do wskazania korelacji między stopa zwrotu z danej inwestycji

Bardziej szczegółowo

Wykaz zmian wprowadzonych do statutu KBC LIDERÓW RYNKU Funduszu Inwestycyjnego Zamkniętego w dniu 10 czerwca 2010 r.

Wykaz zmian wprowadzonych do statutu KBC LIDERÓW RYNKU Funduszu Inwestycyjnego Zamkniętego w dniu 10 czerwca 2010 r. Wykaz zmian wprowadzonych do statutu KBC LIDERÓW RYNKU Funduszu Inwestycyjnego Zamkniętego w dniu 10 czerwca 2010 r. art. 12 ust. 2 Statutu Brzmienie dotychczasowe: 2. Cel Subfunduszu Global Partners Kredyt

Bardziej szczegółowo

Wykaz zmian wprowadzonych do statutu KBC Rynków Azjatyckich Funduszu Inwestycyjnego Zamkniętego w dniu 23 maja 2011 r.

Wykaz zmian wprowadzonych do statutu KBC Rynków Azjatyckich Funduszu Inwestycyjnego Zamkniętego w dniu 23 maja 2011 r. Wykaz zmian wprowadzonych do statutu KBC Rynków Azjatyckich Funduszu Inwestycyjnego Zamkniętego w dniu 23 maja 2011 r. art. 12 ust. 10 Statutu Brzmienie dotychczasowe: 10. W związku z określonym celem

Bardziej szczegółowo

Mechanizm rozliczeń i rozrachunku walutowych instrumentów pochodnych

Mechanizm rozliczeń i rozrachunku walutowych instrumentów pochodnych Mechanizm rozliczeń i rozrachunku walutowych instrumentów pochodnych Wersja 2.4 październik 2014 r. Spis Treści 1 Harmonogram prac... 4 2 Założenia biznesowe... 4 3 Model rozliczeń... 6 3.1 Transakcje

Bardziej szczegółowo

Analiza instrumentów pochodnych

Analiza instrumentów pochodnych Analiza instrumentów pochodnych Dr Wioletta Nowak Środa 13.15-15.15, p. 205C wnowak@prawo.uni.wroc.pl Sylabus Zasady i metody wyceny kontraktów forward i futures. Kontrakt forward/futures na instrument

Bardziej szczegółowo

ZASADY WYCENY AKTYWÓW FUNDUSZU WPROWADZONE ZE WZGLĘDU NA ZMIANĘ NORM PRAWNYCH. Wycena aktywów Funduszu, ustalenie zobowiązań i wyniku z operacji

ZASADY WYCENY AKTYWÓW FUNDUSZU WPROWADZONE ZE WZGLĘDU NA ZMIANĘ NORM PRAWNYCH. Wycena aktywów Funduszu, ustalenie zobowiązań i wyniku z operacji ZASADY WYCENY AKTYWÓW FUNDUSZU WPROWADZONE ZE WZGLĘDU NA ZMIANĘ NORM PRAWNYCH Wycena aktywów Funduszu, ustalenie zobowiązań i wyniku z operacji 1. Wycena Aktywów Funduszu oraz ustalenie Wartości Aktywów

Bardziej szczegółowo

Kontrakty terminowe w teorii i praktyce. Marcin Kwaśniewski Dział Rynku Terminowego

Kontrakty terminowe w teorii i praktyce. Marcin Kwaśniewski Dział Rynku Terminowego Kontrakty terminowe w teorii i praktyce Marcin Kwaśniewski Dział Rynku Terminowego Czym jest kontrakt terminowy? Kontrakt to umowa między 2 stronami Nabywca/sprzedawca zobowiązuje się do kupna/sprzedaży

Bardziej szczegółowo

Wykład 8 Instrumenty pochodne

Wykład 8 Instrumenty pochodne Wykład 8 Instrumenty pochodne Z czego składa się instrument pochodny? KWOTA UMOWNA + ZASADA ROZLICZANIA RÓŻNIC CENOWYCH KONTRAKTY FRA KWOTA UMOWNA Oczekiwany dzisiejsza terminowa aktualnie x przyszły stopa

Bardziej szczegółowo

istota transakcji opcyjnych, rodzaje opcji, czynniki wpływające na wartość opcji (premii). Mała powtórka: instrumenty liniowe

istota transakcji opcyjnych, rodzaje opcji, czynniki wpływające na wartość opcji (premii). Mała powtórka: instrumenty liniowe Opcje istota transakcji opcyjnych, rodzaje opcji, czynniki wpływające na wartość opcji (premii). Mała powtórka: instrumenty liniowe Punkt odniesienia dla rozliczania transakcji terminowej forward: ustalony

Bardziej szczegółowo

Transakcje terminowe

Transakcje terminowe Transakcje terminowe FX forward Forward Rate Agreement Index Futures Transakcja terminowa Umowa, która określa, na jakich warunkach transakcja zostanie dokonana w przyszłości Dzięki temu na rynku terminowym

Bardziej szczegółowo

Efektywność rynku. SGH Rynki Finansowe

Efektywność rynku. SGH Rynki Finansowe Wykład Rynek długu Efektywność rynku = SGH Rynki Finansowe 2015 1 Oczekiwana stopa zwrotu Wniosek z teorii portfela M B σ M Ryzyko Co reprezentuje stopa zwrotu wolna od ryzyka Rynek pożyczek kontrakty

Bardziej szczegółowo

NOTA INFORMACYJNA DLA OBLIGACJI SERII A SPÓŁKI RUBICON PARTNERS NFI SA. obligacje zdefiniowane w punkcie 2 poniżej

NOTA INFORMACYJNA DLA OBLIGACJI SERII A SPÓŁKI RUBICON PARTNERS NFI SA. obligacje zdefiniowane w punkcie 2 poniżej NOTA INFORMACYJNA DLA OBLIGACJI SERII A SPÓŁKI RUBICON PARTNERS NFI SA Definicje i skróty Emitent Obligacje Odsetki Rubicon Partners NFI SA obligacje zdefiniowane w punkcie 2 poniżej odsetki od Obligacji,

Bardziej szczegółowo

Wykład XII. Instrumenty pochodne stopy procentowej

Wykład XII. Instrumenty pochodne stopy procentowej Inżynieria Finansowa - Wykład XII 1 Wykład XII Instrumenty pochodne stopy procentowej Proste instrumenty pochodne stopy procentowej Instrumenty pochodne, których wypłaty zależą od struktury stóp procentowych,

Bardziej szczegółowo