Inżynieria finansowa Wykład II Stopy Procentowe

Wielkość: px
Rozpocząć pokaz od strony:

Download "Inżynieria finansowa Wykład II Stopy Procentowe"

Transkrypt

1 Inżynieria finansowa Wykład II Stopy Procentowe Wydział Matematyki Informatyki i Mechaniki UW 11 października 2011

2 1 Rynkowe stopy procentowe Rodzaje stóp rynkowych Reguły rachunku stóp 2 3 Definicje stóp zerokuponowych Interpolacje i ekstrapolacje Chwilowa stopa natychmiastowa

3 Rodzaje stóp rynkowych Reguły rachunku stóp Obserwujemy wiele różnych stóp procentowych, z których każda na swój sposób określa cenę pieniądza w czasie i premię za ryzyko związane z obrotem instrumentami finansowymi w których instrumentem bazowym jest dana stopa. Głównymi rodzajami ryzyka wycenianymi w stopie są ryzyko kredytowe emitenta długu, przedrozliczeniowe stron transakcji, ryzyko płynności rynku na którym odbywa się obrót danym instrumentem.

4 Rodzaje stóp rynkowych Reguły rachunku stóp Główne typy rynkowych stóp procentowych Stopy skarbowe - stopy po których rządy (skarby) państw pożyczają pieniądze rentowności bonów skarbowych (w przypadku amerykańskich bonów skarbowych stopa dyskonta) stopy dochodowości obligacji skarbowych Stopy międzybankowe - stopy instrumentów, które są przedmiotem transakcji zawieranych między bankami stopy lokat/depozytów - w tym stopy referencyjne typu LIBOR, WIBOR, EURIBOR stopy kontraktów wymiany procentowej FRA, OIS, IRS Stopy dochodowości papierów komercyjnych - stopy dochodowości papierów wartościowych emitowanych przez przedsiębiorstwa (banki, korporacje), jednostki samorządu terytorialnego (gminy, miasta)

5 Rodzaje stóp rynkowych Reguły rachunku stóp Uwagi Do niedawna zwykło się uważać stopy skarbowe za stopy wolne od ryzyka kredytowego. W krajach, które suwerennie mogą zarządzać swoim pieniądzem, dług emitowany przez te kraje w swojej walucie, można wciąż uważać za wolny od ryzyka kredytowego (tego kraju). Dług rządowy emitowany w walucie zagranicznej, na przykład polskie EURO obligacje, zawiera w sobie już dodatkowe ryzyko polegające na tym, że rząd ten nie będzie w stanie obsługiwać tego długu z powodu niemożności wymiany swojej waluty na walutę długu.

6 Rodzaje stóp rynkowych Reguły rachunku stóp Stopy procentowe są bezpośrednio obserwowane na rynku, to znaczy, są kwotowane lub są ogłaszane przez uprawnionych agentów (stopy referencyjne), wynikają (są implikowane), przez odpowiednie transformacje, z cen pewnych instrumentów - na przykład, stopy dochodowości (wewnętrzne stopy zwrotu) obligacji, stopy forward implikowane z cen kontraktów futures na depozyty (Eurodollar futures), stopy zerokuponowe - stopy dochodowości hipotetycznych obligacji zerokuponowych, które są związane z czynnikami dyskontowymi dopasowanymi do cen określonej grupy instrumentów finansowych. W matematyce finansowej używa się również stóp teoretycznych, które nie są obserwowalne na rynku, na przykład chwilowa (krótkoterminowa) stopa spot, chwilowa (krótkoterminowa) stopa forward.

7 Rodzaje stóp rynkowych Reguły rachunku stóp Annualizacja stóp procentowych Odległość między dwoma datami wyznaczającymi okresu czasu wyrażamy liczbami rzeczywistymi, to jest w latach (rok jest jednostką czasu), bowiem stopy procentowe będziemy zawsze podawać zannualizowane, tzn. w skali jednego roku. Ułamek roku to funkcja yf (T 1, T 2, baza) sparametryzowana tzw. bazą stopy procentowej, określająca specyficzny dla tej stopy sposób kalkulacji długości okresu czasu, wyznaczonego przez datę początku T 1 oraz datę jego końca T 2, wyrażonego liczbą rzeczywistą. Będziemy też pisać umownie T 2 T 1 = yf (T 1, T 2, baza).

8 Rodzaje stóp rynkowych Reguły rachunku stóp Przykłady ułamków roku dla bazy stopy ACT/365 yf (T 1, T 2, ACT /365) = liczba_dni od T 1 do T dla bazy stopy ACT/360 yf (T 1, T 2, ACT /360) = liczba_dni od T 1 do T dla bazy stopy 30/360 yf (T 1, T 2, 30/365) = liczba_dni 30 od T 1 do T gdzie liczba_dni 30 między dwoma datami jest liczona przy założeniu, że każdy pełny miesiąc w tym okresie ma 30 dni.

9 Czynnik dyskontowy Czynnik dyskontowy DF (t, T ) to wielkość, która sprowadza do chwili t wartość przepływu pieniężnego CF (T ) następującego w chwili T, to znaczy, NPV (t, CF (T )) = DF (t, T ) CF (T ) Zatem, w szczególności, jeżeli istnieje obligacja zerokuponowa zapadająca w chwili T, to DF (t, T ) = DF (t, T ) gdzie B(t, T ) jest bieżącą ceną tej obligacji za jednostkę nominału i wówczas te dwa pojęcia możemy używać wymiennie.

10 Wartość strumienia przepływów pieniężnych Niech C(t i ) oznacza przepływ pieniężny, który następuje w chwili t i t. Wartość strumienia (portfela) przepływów {C(t i )} i=1,...,n (w tej samej walucie) w chwili t wynosi P(t) = n DF (t, t i )C(t i ). (2.1) i=1 Jeśli t jest chwilą bieżącą, wielkość P(t) nazywamy wartością bieżącą strumienia {C(t i )} i=1,...,n i zwykle oznaczamy symbolem NPV (t). Ponieważ wiele instrumentów finansowych można przedstawić w postaci strumienia przepływów pieniężnych, wzór (2.1) jest podstawowym modelem wyceny takich instrumentów.

11 Krzywa czynników dyskontowych czyli funkcja [t, + ) T DF (t, T ) jest fundamentalnym pojęciem używanym w inżynierii finansowej. Podstawowe własności DF (t, T ) DF (t, T ) < 1 dla 0 t < T DF (T, T ) = 1 obserwując w chwili t 0: funkcja DF (t, ) jest malejąca, to jest DF (t, T 1 ) > DF (t, T 2 ) dla każdych t T 1 < T 2 funkcja DF (t, ) jest różniczkowalna (to jest założenie) dla ustalonego T : (0, T ) t DF (t, T ) jest procesem stochastycznym

12 Wyznaczenie krzywej czynników dyskontowych odbywa się przez dopasowanie krzywej czynników dyskontowych DF (t, T ) do obserwowanych cen wybranej grupy instrumentów finansowych, tak by wycena z modelu tych instrumentów wyznaczona z zastosowaniem tej krzywej była zgodna z cenami rynkowymi tych instrumentów. Sens tworzenia krzywych czynników dyskontowych Krzywa czynników dyskontowych odzwierciedla w jednolity spójny sposób informację o wartości pieniądza w czasie i cenie za ryzyko związane z obrotem grupą instrumentów do cen których została ona dopasowana.

13 Główne kategorie krzywych czynników dyskontowych krzywe obligacyjne - dopasowane do cen obligacji krzywe międzybankowe - dopasowane do cen instrumentów handlowanych na rynku międzybankowym krzywe swapowe - zbudowane na depozytach, FRA, IRS krzywe OIS -zbudowane na kontraktach OIS krzywe dwuwalutowe swapowe - zbudowane na kontraktach FX swap, CIRS Krzywa czynników dyskontowych jest w procesie jej wyznaczania pozbawiona specyfiki związanej z atrybutami instrumentów finansowych na bazie których była wyznaczona co ułatwia jej stosowanie na potrzeby wyceny lub analizy ryzyka.

14 Uwagi By zaznaczyć walutę (CUR) w której dyskontowany jest przepływ pieniężny będziemy czasami stosować notację DF CUR (t, T ) W teorii modeli stóp procentowych definiuje się również stochastyczny czynnik dyskontowy ( T ) D(t, T ) = exp r u du gdzie r t jest krótko-terminową (chwilową) stopą natychmiastową (o tej stopie będziemy mówić w dalszej części wykładu). W ramach tej teorii pokazuje się, że B(t, T ) = E Q (D(t, T ) F t ) gdzie F t jest tzw. filtracją (zasobem informacji dostępnej do chwili t włącznie). t

15 Definicje stóp zerokuponowych Interpolacje i ekstrapolacje Chwilowa stopa natychmiastowa Stopa zerokuponowa dla terminu T to stopa dochodowości hipotetycznej obligacji zerokuponowej zapadającej w chwili T, której bieżąca wartość wynosi DF (t, T ). W zależności od przyjętego mechanizmu kapitalizacji stopy dochodowości w powyższej definicji otrzymujemy różnego rodzaju stopy zerokuponowe.

16 Definicje stóp zerokuponowych Interpolacje i ekstrapolacje Chwilowa stopa natychmiastowa Zerokuponowa stopa prosta L(t, T ) dla okresu [t, T ] to wewnętrzna stopa zwrotu obligacji zerokuponowej zapadającej w chwili T wyznaczona jako stopa o tzw. prostej kapitalizacji odsetek skąd DF (t, T ) = (T t)l(t, T ) L(t, T ) = 1 1 DF (t, T ) T t DF (t, T ) (2.2) (2.3)

17 Definicje stóp zerokuponowych Interpolacje i ekstrapolacje Chwilowa stopa natychmiastowa Zerokuponowa stopa kapitalizowana w sposób ciągły R(t, T ) dla okresu [t, T ] to wewnętrzna stopa zwrotu obligacji zerokuponowej zapadającej w chwili T wyznaczona jako stopa o tzw. ciągłej kapitalizacji odsetek skąd DF (t, T ) = 1 exp ((T t)r(t, T )) ln DF (t, T ) R(t, T ) = T t (2.4) (2.5)

18 Definicje stóp zerokuponowych Interpolacje i ekstrapolacje Chwilowa stopa natychmiastowa Zerokuponowa stopa kapitalizowana m-krotnie Y m (t, T ) dla okresu [t, T ] to wewnętrzna stopa zwrotu obligacji zerokuponowej zapadającej w chwili T wyznaczona jako stopa o tzw. m-krotnej (w ciągu roku) kapitalizacji odsetek DF (t, T ) = ( Ym(t,T ) m ) m(t t) (2.6) skąd ( ) 1 Y m (t, T ) = m 1 DF (t, T ) 1/(m(T t)) (2.7)

19 Definicje stóp zerokuponowych Interpolacje i ekstrapolacje Chwilowa stopa natychmiastowa Uwagi Korzystając z warunków (2.2), (2.4), oraz (2.6) możemy wyprowadzić formuły wiążące wzajemnie stopy L(t, T ), R(t, T ), oraz Y m (t, T ). Wszystkie te stopy wyrażają to samo, tj. koszt pieniądza w czasie i premię za ryzyko wbudowane w instrumenty do cen których krzywa czynników została dopasowana, z tym że każda w na swój sposób. Określenie R(t, T ) jako stopa kapitalizowana w sposób ciągły jest uzasadnione przez następujący fakt. Mianowicie, jeśli granica lim m Y m (t, T ) istnieje, to lim Y m(t, T ) = R(t, T ) m Definiując stopy zerokuponowe, należy zwrócić uwagę na sposób obliczania długości okresu czasu (tzw. ułamek roku, czyli wielkość T t).

20 Definicje stóp zerokuponowych Interpolacje i ekstrapolacje Chwilowa stopa natychmiastowa Ponieważ krzywa swapowa jest określona jedynie przez wartości czynników dyskontowych DF (t, T i ) dla standardowych tenorów T i (i = 1,..., p), które odpowiadają czasom trwania instrumentów użytych do ich wygenerowana, należy jeszcze wyspecyfikować metodę interpolacji metodę ekstrapolacji przy pomocy których wyznacza się wartości DF (t, T ) dla dowolnych tenorów T.

21 Definicje stóp zerokuponowych Interpolacje i ekstrapolacje Chwilowa stopa natychmiastowa Przykład interpolacji Dla T i T T i+1 określamy DF (t, T ) = ( DF (t, T i ) ) 1 τ ( DF (t, Ti+1 ) ) τ (2.8a) gdzie τ = T T i T i+1 T i Przykład ekstrapolacji Dla t T < T 1 lub T > T p określamy DF (t, T ) = ( DF (t, T i ) ) T /T i gdzie i = 1 lub p (2.8b)

22 Definicje stóp zerokuponowych Interpolacje i ekstrapolacje Chwilowa stopa natychmiastowa W matematycznym modelowaniu stóp procentowych operuje się również pewnymi abstrakcyjnymi teoretycznymi stopami procentowymi. Jedną z takich stóp jest Krótko-terminowa (chwilowa) stopa natychmiastowa (ang. spot short interest rate), zdefiniowana w następujący sposób r(t) = lim R(t, T ) T t + Dla oznaczenia tej stopy będziemy również używać symbolu r t.

23 Definicje stóp zerokuponowych Interpolacje i ekstrapolacje Chwilowa stopa natychmiastowa Z powyższej definicji, oraz z własności funkcji DF (t ) wynika, że r t = DF (t, T ) ln DF (tt) lim ln = T t + T t T ln DF (t, T ) T =t Można również pokazać, że lim L(t, T ) = r(t) T t + Z tego powodu za rynkowy odpowiednik stopy chwilowej czasami przyjmuje się krótko terminową stopę lokat/depozytów na rynku międzybankowym.

24 Definicje stóp zerokuponowych Interpolacje i ekstrapolacje Chwilowa stopa natychmiastowa Dynamikę struktury stóp procentowych próbuje się modelować formułując stochastyczne równania różniczkowe dla odpowiednio dobranych stóp procentowych. Podstawowa klasa modeli stóp procentowych dotyczy stopy chwilowej r t = r(t). Jednym z takich modeli jest następujący model Hull-White a gdzie a i σ są stałymi, dr t = (θ(t) ar t )dt + σdw t θ(t) pewną funkcją deterministyczną. Model Hull-White a jest modelem z powrotem do średniej - stopa krótko terminowa powraca do średniej θ(t)/a w tempie a. Parametry modelu (funkcję θ, stałe a i σ) dobiera się w taki sposób by dopasować go bieżącej struktury stóp procentowych.

Inżynieria finansowa Wykład IV Kontrakty OIS/IRS/CRIS

Inżynieria finansowa Wykład IV Kontrakty OIS/IRS/CRIS Inżynieria finansowa Wykład IV Kontrakty OIS/IRS/CRIS Wydział Matematyki Informatyki i Mechaniki UW 25 października 2011 1 Kontrakty OIS 2 Struktura kontraktu IRS Wycena kontraktu IRS 3 Struktura kontraktu

Bardziej szczegółowo

Inżynieria finansowa Ćwiczenia II Stopy Procentowe

Inżynieria finansowa Ćwiczenia II Stopy Procentowe Inżynieria finansowa Ćwiczenia II Stopy Procentowe Wydział Matematyki Informatyki i Mechaniki UW 11 października 2011 Zadanie 2.1 Oprocentowanie 3M pożyczki wynosi 5.00% (ACT/365). Natomiast, 3M bon skarbowy

Bardziej szczegółowo

OPISY PRODUKTÓW. Rabobank Polska S.A.

OPISY PRODUKTÓW. Rabobank Polska S.A. OPISY PRODUKTÓW Rabobank Polska S.A. Warszawa, marzec 2010 Wymiana walut (Foreign Exchange) Wymiana walut jest umową pomiędzy bankiem a klientem, w której strony zobowiązują się wymienić w ustalonym dniu

Bardziej szczegółowo

Inżynieria finansowa Wykład IV Kontrakty OIS/IRS/CIRS

Inżynieria finansowa Wykład IV Kontrakty OIS/IRS/CIRS Inżynieria finansowa Wykład IV Kontrakty OIS/IRS/CIRS Wydział Matematyki Informatyki i Mechaniki UW 25 października 2011 1 Kontrakty OIS Struktura kontraktu OIS Wycena kontraktu OIS 2 Struktura kontraktu

Bardziej szczegółowo

Inżynieria finansowa Wykład I Wstęp

Inżynieria finansowa Wykład I Wstęp Wykład I Wstęp Wydział Matematyki Informatyki i Mechaniki UW 4 października 2011 1 Podstawowe pojęcia Instrumenty i rynki finansowe 2 Instrumenty i rynki finansowe to dyscyplina, która zajmuje się analizą

Bardziej szczegółowo

4.5. Obligacja o zmiennym oprocentowaniu

4.5. Obligacja o zmiennym oprocentowaniu .5. Obligacja o zmiennym oprocentowaniu 71.5. Obligacja o zmiennym oprocentowaniu Aby wycenić kontrakt IRS musi bliżej przyjrzeć się obligacji o zmiennym oprocentowaniu (Floating Rate Note lub floater

Bardziej szczegółowo

Instrumenty pochodne Instrumenty wbudowane

Instrumenty pochodne Instrumenty wbudowane www.pwcacademy.pl Instrumenty pochodne Instrumenty wbudowane Jan Domanik Instrumenty pochodne ogólne zasady ujmowania i wyceny 2 Instrument pochodny definicja. to instrument finansowy: którego wartość

Bardziej szczegółowo

Inżynieria finansowa Ćwiczenia III Stopy Forward i Kontrakt FRA

Inżynieria finansowa Ćwiczenia III Stopy Forward i Kontrakt FRA Inżynieria finansowa Ćwiczenia III Stopy Forward i Kontrakt FRA Wydział Matematyki Informatyki i Mechaniki UW 18 października 2011 Zadanie 3.1 W dniu 18 października 2004 Bank X kwotował: 3M PLN Depo -

Bardziej szczegółowo

Inżynieria Finansowa

Inżynieria Finansowa Matematyka stosowana Inżynieria Finansowa Włodzimierz Waluś w.walus@mimuw.edu.pl Mariusz Baryło mbarylo@mimuw.edu.pl Uniwersytet Warszawski, 2011 Streszczenie. Wykład przedstawia podstawowe instrumenty

Bardziej szczegółowo

Materiały do samodzielnego kształcenia Inżynieria finansowa i zarządzanie ryzykiem. Temat wykładu: Wycena kontraktów swap

Materiały do samodzielnego kształcenia Inżynieria finansowa i zarządzanie ryzykiem. Temat wykładu: Wycena kontraktów swap Materiały do samodzielnego kształcenia Inżynieria finansowa i zarządzanie ryzykiem Temat wykładu: Wycena kontraktów swap Podstawowe zagadnienia: 1. Wycena swapa procentowego metodą wyceny obligacji 2.

Bardziej szczegółowo

Obligacje, Swapy, FRAsy i Bob Citron

Obligacje, Swapy, FRAsy i Bob Citron Obligacje, Swapy, FRAsy i Bob Citron Andrzej Kulik andrzej.kulik@pioneer.com.pl +22 321 4106/ 609 691 729 1 Plan Przypomnienie informacji o rynku długu Rodzaje obligacji Ryzyko obligacji yield curve Duration

Bardziej szczegółowo

RYNKI INSTRUMENTY I INSTYTUCJE FINANSOWE RED. JAN CZEKAJ

RYNKI INSTRUMENTY I INSTYTUCJE FINANSOWE RED. JAN CZEKAJ RYNKI INSTRUMENTY I INSTYTUCJE FINANSOWE RED. JAN CZEKAJ Wstęp Część I. Ogólna charakterystyka rynków finansowych 1. Istota i funkcje rynków finansowych 1.1. Pojęcie oraz podstawowe rodzaje rynków 1.1.1.

Bardziej szczegółowo

Forward Rate Agreement

Forward Rate Agreement Forward Rate Agreement Nowoczesne rynki finansowe oferują wiele instrumentów pochodnych. Należą do nich: opcje i warranty, kontrakty futures i forward, kontrakty FRA (Forward Rate Agreement) oraz swapy.

Bardziej szczegółowo

Papiery wartościowe o stałym dochodzie

Papiery wartościowe o stałym dochodzie Papiery wartościowe o stałym dochodzie Inwestycje i teoria portfela Strona 1 z 42 1. Wartość pieniądza w czasie Złotówka dzisiaj (którą mamy w ręku) jest więcej warta niż (przyrzeczona) złotówka w przyszłości,

Bardziej szczegółowo

Jak inwestować w obligacje? Ewa Dziwok Uniwersytet Ekonomiczny w Katowicach Katedra Matematyki Stosowanej

Jak inwestować w obligacje? Ewa Dziwok Uniwersytet Ekonomiczny w Katowicach Katedra Matematyki Stosowanej Jak inwestować w obligacje? Katedra Matematyki Stosowanej YTM a obligacja kuponowa i = IRR YTM IRR 0 1 2 3 4 P - cena gdzie : P - cena obligacji N - nominał i - wymagana stopa zwrotu n - czas do wykupu

Bardziej szczegółowo

Wycena papierów wartościowych - instrumenty pochodne

Wycena papierów wartościowych - instrumenty pochodne Matematyka finansowa - 8 Wycena papierów wartościowych - instrumenty pochodne W ujęciu probabilistycznym cena akcji w momencie t jest zmienną losową P t o pewnym (zwykle nieznanym) rozkładzie prawdopodobieństwa,

Bardziej szczegółowo

Inżynieria Finansowa: 3. Ceny obligacji i stopy procentowe

Inżynieria Finansowa: 3. Ceny obligacji i stopy procentowe Inżynieria Finansowa: 3. Ceny obligacji i stopy procentowe Piotr Bańbuła Katedra Ekonomii Ilościowej, KAE Październik 2014 r. Warszawa, Szkoła Główna Handlowa Stopy procentowe Co to jest stopa procentowa?

Bardziej szczegółowo

IRS Interest Rate Swap. Transakcja wymiany płatności odsetkowych

IRS Interest Rate Swap. Transakcja wymiany płatności odsetkowych IRS Interest Rate Swap Transakcja wymiany płatności odsetkowych 1 IRS - Interest Rate Swap (1) Umowa (transakcja) pomiędzy dwoma podmiotami, w której strony zobowiązują się do cyklicznej wymiany, w ustalonym

Bardziej szczegółowo

Struktura terminowa rynku obligacji

Struktura terminowa rynku obligacji Krzywa dochodowości pomaga w inwestowaniu w obligacje Struktura terminowa rynku obligacji Wskazuje, które obligacje są atrakcyjne a których unikać Obrazuje aktualną sytuację na rynku długu i zmiany w czasie

Bardziej szczegółowo

płatności odsetkowych

płatności odsetkowych IRS Interest Rate Swap Transakcja wymiany płatności odsetkowych 1 Kontrakt IRS Kupujący IRS Odsetki wg ustalonej stopy stałej Odsetki według rzeczywistej stopy zmiennej Sprzedający IRS Strumienie płatności

Bardziej szczegółowo

Sposób wyliczania depozytów zabezpieczających oraz zasady wyceny instrumentów pochodnych i transakcji repo

Sposób wyliczania depozytów zabezpieczających oraz zasady wyceny instrumentów pochodnych i transakcji repo Sposób wyliczania depozytów zabezpieczających oraz zasady wyceny instrumentów pochodnych i transakcji repo 1 Wprowadzenie Dokument przedstawia zaimplementowane w systemie KDPW_CCP formuły wyceny instrumentów

Bardziej szczegółowo

Wycena equity derivatives notowanych na GPW w obliczu wysokiego ryzyka dywidendy

Wycena equity derivatives notowanych na GPW w obliczu wysokiego ryzyka dywidendy Instrumenty pochodne 2014 Wycena equity derivatives notowanych na GPW w obliczu wysokiego ryzyka dywidendy Jerzy Dzieża, WMS, AGH Kraków 28 maja 2014 (Instrumenty pochodne 2014 ) Wycena equity derivatives

Bardziej szczegółowo

TRANSAKCJE SWAP: - PROCENTOWE - WALUTOWE - WALUTOWO-PROCENTOWE - KREDYTOWE

TRANSAKCJE SWAP: - PROCENTOWE - WALUTOWE - WALUTOWO-PROCENTOWE - KREDYTOWE TRANSAKCJE SWAP: - PROCENTOWE - WALUTOWE - WALUTOWO-PROCENTOWE - KREDYTOWE 1 SWAP - fixed-to-floating rate IRS - swap procentowy jest umową, w której dwie strony uzgadniają, że będą w ustalonych terminach

Bardziej szczegółowo

Matematyka finansowa 20.06.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVII Egzamin dla Aktuariuszy z 20 czerwca 2011 r.

Matematyka finansowa 20.06.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVII Egzamin dla Aktuariuszy z 20 czerwca 2011 r. Komisja Egzaminacyjna dla Aktuariuszy LVII Egzamin dla Aktuariuszy z 20 czerwca 2011 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

NOTA 6 - INSTRUMENTY POCHODNE BPH Fundusz Inwestycyjny Otwarty Parasolowy BPH Subfundusz Obligacji 2 na dzień 31.12.2012 Typ zajętej pozycji Rodzaj instrumentu pochodnego Cel otwarcia pozycji Wartość otwartej

Bardziej szczegółowo

Forward, FX Swap & CIRS

Forward, FX Swap & CIRS Forward, FX Swap & CIRS Andrzej Kulik andrzej.kulik@pioneer.com.pl +22 321 4106/ 609 691 729 1 Plan prezentacji Bob Citron & Orange County Transakcje forward FX Swap CIRS FRA 2 Orange County & Bob Citron

Bardziej szczegółowo

Ekonomika i Logistyka w Przedsiębiorstwach Transportu Morskiego wykład 06 MSTiL niestacjonarne (II stopień)

Ekonomika i Logistyka w Przedsiębiorstwach Transportu Morskiego wykład 06 MSTiL niestacjonarne (II stopień) dr Adam Salomon Ekonomika i Logistyka w Przedsiębiorstwach Transportu Morskiego wykład 06 MSTiL niestacjonarne (II stopień) program wykładu 06. Rola współczynnika procentowego i współczynnika dyskontowego

Bardziej szczegółowo

OGŁOSZENIE O ZMIANACH PROSPEKTU INFORMACYJNEGO COMMERCIAL UNION SPECJALISTYCZNY FUNDUSZ INWESTYCYJNY OTWARTY, z dnia 14 stycznia 2009 r.

OGŁOSZENIE O ZMIANACH PROSPEKTU INFORMACYJNEGO COMMERCIAL UNION SPECJALISTYCZNY FUNDUSZ INWESTYCYJNY OTWARTY, z dnia 14 stycznia 2009 r. OGŁOSZENIE O ZMIANACH PROSPEKTU INFORMACYJNEGO COMMERCIAL UNION SPECJALISTYCZNY FUNDUSZ INWESTYCYJNY OTWARTY, z dnia 14 stycznia 2009 r. Na podstawie 28 ust. 4 Rozporządzenia Rady Ministrów z dnia 6 listopada

Bardziej szczegółowo

Zmiany statutu, o których mowa w pkt od 1) do 3) niniejszego ogłoszenia, wchodzą w życie z dniem ich ogłoszenia.

Zmiany statutu, o których mowa w pkt od 1) do 3) niniejszego ogłoszenia, wchodzą w życie z dniem ich ogłoszenia. 3 sierpnia 2015 r. OGŁOSZENIE O ZMIANIE STATUTU ALIOR SPECJALISTYCZNEGO FUNDUSZU INWESTYCYJNEGO OTWARTEGO Money Makers Towarzystwo Funduszy Inwestycyjnych Spółka Akcyjna z siedzibą w Warszawie, działając

Bardziej szczegółowo

Ogłoszenie o zmianach statutu KBC OMEGA Funduszu Inwestycyjnego Zamkniętego z dnia 13 czerwca 2014 r.

Ogłoszenie o zmianach statutu KBC OMEGA Funduszu Inwestycyjnego Zamkniętego z dnia 13 czerwca 2014 r. Ogłoszenie o zmianach statutu KBC OMEGA Funduszu Inwestycyjnego Zamkniętego z dnia 13 czerwca 2014 r. KBC Towarzystwo Funduszy Inwestycyjnych S.A. działające jako organ KBC OMEGA Funduszu Inwestycyjnego

Bardziej szczegółowo

Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1

Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1 Ćwiczenia ZPI 1 Zysk/strata Zysk 1 3,89 4,19 4,33 Cena spot np. EURPLN Strata 1 Zysk/Strata nabywcy = Cena Spot Cena wykonania 2 Zysk/strata Zysk 1 Strata 1 3,89 4,19 4,33 Cena spot np. EURPLN Zysk/Strata

Bardziej szczegółowo

INWESTYCJE Instrumenty finansowe, ryzyko SPIS TREŚCI

INWESTYCJE Instrumenty finansowe, ryzyko SPIS TREŚCI INWESTYCJE Instrumenty finansowe, ryzyko Jajuga Krzysztof, Jajuga Teresa SPIS TREŚCI Przedmowa Wprowadzenie - badania w zakresie inwestycji i finansów Literatura Rozdział 1. Rynki i instrumenty finansowe

Bardziej szczegółowo

Spis treści: Wstęp. ROZDZIAŁ 1. Istota i funkcje systemu finansowego Adam Dmowski

Spis treści: Wstęp. ROZDZIAŁ 1. Istota i funkcje systemu finansowego Adam Dmowski Rynki finansowe., Książka stanowi kontynuację rozważań nad problematyką zawartą we wcześniejszych publikacjach autorów: Podstawy finansów i bankowości oraz Finanse i bankowość wydanych odpowiednio w 2005

Bardziej szczegółowo

Fundusz PKO Strategii Obligacyjnych FIZ

Fundusz PKO Strategii Obligacyjnych FIZ Fundusz PKO Strategii Obligacyjnych FIZ 1 Wpływ polityki pieniężnej na obszar makro i wyceny funduszy obligacji Polityka pieniężna kluczowym narzędziem w walce z recesją Utrzymująca się duża podaż taniego

Bardziej szczegółowo

Futures na Wibor najlepszy sposób zarabiania na stopach. Departament Skarbu, PKO Bank Polski Konferencja Instrumenty Pochodne Warszawa, 28 maja 2014

Futures na Wibor najlepszy sposób zarabiania na stopach. Departament Skarbu, PKO Bank Polski Konferencja Instrumenty Pochodne Warszawa, 28 maja 2014 Futures na Wibor najlepszy sposób zarabiania na stopach Departament Skarbu, PKO Bank Polski Konferencja Instrumenty Pochodne Warszawa, 28 maja 2014 Agenda Wprowadzenie Definicja kontraktu Czynniki wpływające

Bardziej szczegółowo

Forward kontrakt terminowy o charakterze rzeczywistym (z dostawą instrumentu bazowego).

Forward kontrakt terminowy o charakterze rzeczywistym (z dostawą instrumentu bazowego). Kontrakt terminowy (z ang. futures contract) to umowa pomiędzy dwiema stronami, z których jedna zobowiązuje się do kupna, a druga do sprzedaży, w określonym terminie w przyszłości (w tzw. dniu wygaśnięcia)

Bardziej szczegółowo

Ryzyko walutowe i zarządzanie nim. dr Grzegorz Kotliński, Katedra Bankowości AE w Poznaniu

Ryzyko walutowe i zarządzanie nim. dr Grzegorz Kotliński, Katedra Bankowości AE w Poznaniu 1 Ryzyko walutowe i zarządzanie nim 2 Istota ryzyka walutowego Istota ryzyka walutowego sprowadza się do konieczności przewalutowania należności i zobowiązań (pozycji bilansu banku) wyrażonych w walutach

Bardziej szczegółowo

Wstęp do analitycznych i numerycznych metod wyceny opcji

Wstęp do analitycznych i numerycznych metod wyceny opcji Wstęp do analitycznych i numerycznych metod wyceny opcji Jan Palczewski Wydział Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski Warszawa, 16 maja 2008 Jan Palczewski Wycena opcji Warszawa, 2008

Bardziej szczegółowo

Dokumentacja Wycena papierów wartościowych o stałym oprocentowaniu

Dokumentacja Wycena papierów wartościowych o stałym oprocentowaniu Dokumentacja Wycena papierów wartościowych o stałym oprocentowaniu Piotr Szawlis Wstęp Wycena papierów wartościowych ze wzorów analitycznych jest najprostszym możliwym zadaniem obliczeniowym. W poniższym

Bardziej szczegółowo

PLANOWANIE I OCENA PRZEDSIĘWZIĘĆ INWESTYCYJNYCH

PLANOWANIE I OCENA PRZEDSIĘWZIĘĆ INWESTYCYJNYCH Mariusz Próchniak Katedra Ekonomii II, SGH PLANOWANIE I OCENA PRZEDSIĘWZIĘĆ INWESTYCYJNYCH Ekonomia menedżerska 1 2 Wartość przyszła (FV future value) r roczna stopa procentowa B kwota pieniędzy, którą

Bardziej szczegółowo

Ekonomiczno-techniczne aspekty wykorzystania gazu w energetyce

Ekonomiczno-techniczne aspekty wykorzystania gazu w energetyce Ekonomiczno-techniczne aspekty wykorzystania gazu w energetyce Janusz Kotowicz W8 Wydział Inżynierii i Ochrony Środowiska Politechnika Częstochowska Wpływ stopy dyskonta na przepływ gotówki. Janusz Kotowicz

Bardziej szczegółowo

Podział rynku finansowego. Podział rynku finansowego. Rynek pienięŝny. Rynek lokat międzybankowych

Podział rynku finansowego. Podział rynku finansowego. Rynek pienięŝny. Rynek lokat międzybankowych Podział rynku finansowego Podział rynku finansowego 1. Ze względu na rodzaj instrumentów będących przedmiotem obrotu: rynek pienięŝny rynek kapitałowy rynek walutowy rynek instrumentów pochodnych 2. Ze

Bardziej szczegółowo

OGŁOSZENIE O ZMIANIE STATUTU UNIOBLIGACJE HIGH YIELD FUNDUSZU INWESTYCYJNEGO ZAMKNIĘTEGO Z DNIA 23 CZERWCA 2016 R.

OGŁOSZENIE O ZMIANIE STATUTU UNIOBLIGACJE HIGH YIELD FUNDUSZU INWESTYCYJNEGO ZAMKNIĘTEGO Z DNIA 23 CZERWCA 2016 R. OGŁOSZENIE O ZMIANIE STATUTU UNIOBLIGACJE HIGH YIELD FUNDUSZU INWESTYCYJNEGO ZAMKNIĘTEGO Z DNIA 23 CZERWCA 2016 R. Niniejszym, Union Investment Towarzystwo Funduszy Inwestycyjnych S.A. ogłasza o zmianie

Bardziej szczegółowo

ZARZĄDZANIE RYZYKIEM STOPY PROCENTOWEJ. dr Grzegorz Kotliński; Katedra Bankowości AE w Poznaniu

ZARZĄDZANIE RYZYKIEM STOPY PROCENTOWEJ. dr Grzegorz Kotliński; Katedra Bankowości AE w Poznaniu ZARZĄDZANIE RYZYKIEM STOPY PROCENTOWEJ 1 DEFINICJA RYZYKA STOPY PROCENTOWEJ Ryzyko stopy procentowej to niebezpieczeństwo negatywnego wpływu zmian rynkowej stopy procentowej na sytuację finansową banku

Bardziej szczegółowo

System finansowy gospodarki. Zajęcia nr 7 Krzywa rentowności, zadania (mat. fin.), marża w handlu, NPV i IRR, obligacje

System finansowy gospodarki. Zajęcia nr 7 Krzywa rentowności, zadania (mat. fin.), marża w handlu, NPV i IRR, obligacje System finansowy gospodarki Zajęcia nr 7 Krzywa rentowności, zadania (mat. fin.), marża w handlu, NPV i IRR, obligacje Krzywa rentowności (dochodowości) Yield Curve Krzywa ta jest graficznym przedstawieniem

Bardziej szczegółowo

Rozwój systemu finansowego w Polsce

Rozwój systemu finansowego w Polsce Departament Systemu Finansowego Rozwój systemu finansowego w Polsce Warszawa 213 Struktura systemu finansowego (1) 2 Struktura aktywów systemu finansowego w Polsce w latach 25-VI 213 1 % 8 6 4 2 25 26

Bardziej szczegółowo

29.01.2010 Komunikat TFI PZU SA w sprawie zmiany statutu PZU SFIO Globalnych Inwestycji

29.01.2010 Komunikat TFI PZU SA w sprawie zmiany statutu PZU SFIO Globalnych Inwestycji 29.01.2010 Komunikat TFI PZU SA w sprawie zmiany statutu PZU SFIO Globalnych Inwestycji Towarzystwo Funduszy Inwestycyjnych PZU S.A., działając na podstawie art. 24 ust. 5 ustawy z dnia 27 maja 2004 r.

Bardziej szczegółowo

Analiza inwestycji i zarządzanie portfelem SPIS TREŚCI

Analiza inwestycji i zarządzanie portfelem SPIS TREŚCI Analiza inwestycji i zarządzanie portfelem Frank K. Reilly, Keith C. Brown SPIS TREŚCI TOM I Przedmowa do wydania polskiego Przedmowa do wydania amerykańskiego O autorach Ramy książki CZĘŚĆ I. INWESTYCJE

Bardziej szczegółowo

Wzory matematyka finansowa

Wzory matematyka finansowa Wzory matematyka finansowa MaciejRomaniuk 29 września 29 K(t) funkcjaopisującaakumulacjęwchwiliczasut,k() kapitał,i stopazyskuwchwilit: i= K(t) K() (1) K() K kapitał,i stałastopaprocentowadlaustalonegookresuczasut,

Bardziej szczegółowo

Matematyka finansowa 03.10.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVIII Egzamin dla Aktuariuszy z 3 października 2011 r.

Matematyka finansowa 03.10.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVIII Egzamin dla Aktuariuszy z 3 października 2011 r. Komisja Egzaminacyjna dla Aktuariuszy LVIII Egzamin dla Aktuariuszy z 3 października 2011 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut

Bardziej szczegółowo

Matematyka finansowa 13.12.2010 r. Komisja Egzaminacyjna dla Aktuariuszy. LV Egzamin dla Aktuariuszy z 13 grudnia 2010 r. Część I

Matematyka finansowa 13.12.2010 r. Komisja Egzaminacyjna dla Aktuariuszy. LV Egzamin dla Aktuariuszy z 13 grudnia 2010 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LV Egzamin dla Aktuariuszy z 13 grudnia 2010 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Pan

Bardziej szczegółowo

Mechanizm rozliczeń i rozrachunku walutowych instrumentów pochodnych

Mechanizm rozliczeń i rozrachunku walutowych instrumentów pochodnych Mechanizm rozliczeń i rozrachunku walutowych instrumentów pochodnych Wersja 2.4 październik 2014 r. Spis Treści 1 Harmonogram prac... 4 2 Założenia biznesowe... 4 3 Model rozliczeń... 6 3.1 Transakcje

Bardziej szczegółowo

Efektywność rynku. SGH Rynki Finansowe

Efektywność rynku. SGH Rynki Finansowe Wykład Rynek długu Efektywność rynku = SGH Rynki Finansowe 2015 1 Oczekiwana stopa zwrotu Wniosek z teorii portfela M B σ M Ryzyko Co reprezentuje stopa zwrotu wolna od ryzyka Rynek pożyczek kontrakty

Bardziej szczegółowo

STOPA PROCENTOWA I STOPA ZWROTU

STOPA PROCENTOWA I STOPA ZWROTU Piotr Cegielski, MAI, MRICS, CCIM STOPA PROCENTOWA I STOPA ZWROTU (Wybrane fragmenty artykułu opublikowanego w C.H. Beck Nieruchomości, numer 9 z 2011 r. Całość dostępna pod adresem internetowym: www.nieruchomosci.beck.pl)

Bardziej szczegółowo

OGŁOSZENIE O ZMIANIE PROSPEKTU INFORMACYJNEGO UNIFUNDUSZE SPECJALISTYCZNEGO FUNDUSZU INWESTYCYJNEGO OTWARTEGO Z DNIA 11 PAŹDZIERNIKA 2013 R.

OGŁOSZENIE O ZMIANIE PROSPEKTU INFORMACYJNEGO UNIFUNDUSZE SPECJALISTYCZNEGO FUNDUSZU INWESTYCYJNEGO OTWARTEGO Z DNIA 11 PAŹDZIERNIKA 2013 R. OGŁOSZENIE O ZMIANIE PROSPEKTU INFORMACYJNEGO UNIFUNDUSZE SPECJALISTYCZNEGO FUNDUSZU INWESTYCYJNEGO OTWARTEGO Z DNIA 11 PAŹDZIERNIKA 2013 R. Niniejszym Union Investment Towarzystwo Funduszy Inwestycyjnych

Bardziej szczegółowo

Rynek kapitałowopieniężny. Wykład 1 Istota i podział rynku finansowego

Rynek kapitałowopieniężny. Wykład 1 Istota i podział rynku finansowego Rynek kapitałowopieniężny Wykład 1 Istota i podział rynku finansowego Uczestnicy rynku finansowego Gospodarstwa domowe Przedsiębiorstwa Jednostki administracji państwowej i lokalnej Podmioty zagraniczne

Bardziej szczegółowo

II Etap egzaminu na Doradcę Inwestycyjnego Maj 2014. Zadanie 2

II Etap egzaminu na Doradcę Inwestycyjnego Maj 2014. Zadanie 2 II Etap egzaminu na Doradcę Inwestycyjnego Maj 2014 Zadanie 2 1/ Analizowane są dwie spółki Alfa i Gamma. Spółka Alfa finansuje swoją działalność nie korzystając z długu, natomiast spółka Gamma finansuje

Bardziej szczegółowo

Spis treści: Wprowadzenie. Rozdział 1. System bankowy w Polsce Joanna Świderska

Spis treści: Wprowadzenie. Rozdział 1. System bankowy w Polsce Joanna Świderska Bank komercyjny w Polsce. Podręcznik akademicki., Ideą prezentowanej publikacji jest całościowa analiza działalności operacyjnej banków komercyjnych zarówno w aspekcie teoretycznym, jak i w odniesieniu

Bardziej szczegółowo

Rynkowy system finansowy Marian Górski

Rynkowy system finansowy Marian Górski Rynkowy system finansowy Marian Górski Podręcznik obejmuje całościową analizę rynkowego systemu finansowego, który wraz z sektorem finansów publicznych tworzy system finansowy gospodarki. Autor podzielił

Bardziej szczegółowo

Spis treści. Opis funduszy OF/ULS2/1/2015. Polityka inwestycyjna i opis ryzyka UFK Portfel Dłużny...3. UFK Portfel Konserwatywny...

Spis treści. Opis funduszy OF/ULS2/1/2015. Polityka inwestycyjna i opis ryzyka UFK Portfel Dłużny...3. UFK Portfel Konserwatywny... Opis funduszy Spis treści Opis funduszy OF/ULS2/1/2015 Rozdział 1. Rozdział 2. Rozdział 3. Rozdział 4. Rozdział 5. Rozdział 6. Rozdział 7. Rozdział 8. Rozdział 9. Rozdział 10. Postanowienia ogólne...3

Bardziej szczegółowo

Integracja walutowa. Wykład 7: Podaż pieniądza, instrumenty, kanały transmisji

Integracja walutowa. Wykład 7: Podaż pieniądza, instrumenty, kanały transmisji Integracja walutowa Wykład 7: Podaż pieniądza, instrumenty, kanały transmisji Mechanizm zmian podaży pieniądza przez bank centralny M1 (M2, M3) zależy od M0 i depozytów, a M0 zależy od gotówki i rezerw;

Bardziej szczegółowo

[AMARA GALBARCZYK JOANNA ŚWIDERSKA

[AMARA GALBARCZYK JOANNA ŚWIDERSKA [AMARA GALBARCZYK JOANNA ŚWIDERSKA :Y Podręcznik akademicki Spis treś«wprowadzenie 11 Rozdział 1 System bankowy w Polsce 13 1.1. Organizacja i funkcjonowanie systemu bankowego 13 1.2. Instytucje centralne

Bardziej szczegółowo

EFEKTYWNE OSZCZĘDZANIE Jędrzej Stachura 18.10.2014

EFEKTYWNE OSZCZĘDZANIE Jędrzej Stachura 18.10.2014 EFEKTYWNE OSZCZĘDZANIE Jędrzej Stachura 18.10.2014 Jak oszczędzać pieniądze? Przykładowe sposoby na zaoszczędzenie pieniędzy Zmień przekonania, zostań freeganem Za każdym razem gaś światło w pokoju Co

Bardziej szczegółowo

Ryzyko stopy procentowej (opracował: Grzegorz Szafrański)

Ryzyko stopy procentowej (opracował: Grzegorz Szafrański) Ryzyko stopy procentowej (opracował: Grzegorz Szafrański) Przykłady i teoria na podstawie: Bank Management, 6th edition. Timothy W. Koch and S. Scott MacDonald Klasyfikacja 1. ryzyko podstawowe (struktury

Bardziej szczegółowo

STOPA DYSKONTOWA 1+ =

STOPA DYSKONTOWA 1+ = Piotr Cegielski, MAI, MRICS, CCIM STOPA DYSKONTOWA (Wybrane fragmenty artykułu opublikowanego w C.H. Beck Nieruchomości, numer 10 z 2011 r. Całość dostępna pod adresem internetowym: www.nieruchomosci.beck.pl)

Bardziej szczegółowo

System finansowy gospodarki. Instrumenty pochodne Forward, Futures, Swapy

System finansowy gospodarki. Instrumenty pochodne Forward, Futures, Swapy System finansowy gospodarki Instrumenty pochodne Forward, Futures, Swapy Rynki finansowe Rynek kasowy spot Ustalenie ceny i przeniesienie praw jest jednoczesne Rynek terminowy Termin przeniesienia praw

Bardziej szczegółowo

OPIS FUNDUSZY OF/ULS2/1/2014

OPIS FUNDUSZY OF/ULS2/1/2014 OPIS FUNDUSZY OF/ULS2/1/2014 SPIS TREŚCI ROZDZIAŁ 1. POSTANOWIENIA OGÓLNE 3 ROZDZIAŁ 2. POLITYKA INWESTYCYJNA I OPIS RYZYKA UFK PORTFEL DŁUŻNY 3 ROZDZIAŁ 3. POLITYKA INWESTYCYJNA I OPIS RYZYKA UFK PORTFEL

Bardziej szczegółowo

Czy opcje walutowe mogą być toksyczne?

Czy opcje walutowe mogą być toksyczne? Katedra Matematyki Finansowej Wydział Matematyki Stosowanej AGH 11 maja 2012 Kurs walutowy Kurs walutowy cena danej waluty wyrażona w innej walucie np. 1 USD = 3,21 PLN; USD/PLN = 3,21 Rodzaje kursów walutowych:

Bardziej szczegółowo

Inwestowanie w obligacje

Inwestowanie w obligacje Inwestowanie w obligacje Ile zapłacić za obligację aby uzyskać oczekiwaną stopę zwrotu? Jaką stopę zwrotu uzyskamy kupując obligację po danej cenie? Jak zmienią się ceny obligacji, kiedy Rada olityki ieniężnej

Bardziej szczegółowo

Podstawy finansów i inwestowania w biznesie. Wykład 6

Podstawy finansów i inwestowania w biznesie. Wykład 6 Podstawy finansów i inwestowania w biznesie Wykład 6 Plan wykładu Cechy inwestycji finansowych: dochód ryzyko płynność Depozyty bankowe Fundusze inwestycyjne 2015-11-05 2 Najważniejszymi cechami inwestycji

Bardziej szczegółowo

Transakcje repo Swapy walutowe (fx swap)

Transakcje repo Swapy walutowe (fx swap) Rynek pieniężny Transakcje repo Swapy walutowe (fx swap) oraz Reverse Jednoczesna sprzedaż i przyszłe odkupienie papieru wartościowego Cena Nabycia i Cena Odkupu Równoważnych Papierów Wartościowych Sprzedający

Bardziej szczegółowo

Kontrakty forward i futures.

Kontrakty forward i futures. Kontrakty forward i futures. 1.1 Charakterystyka transakcji walutowych SPOT Walutowa transakcja spot polega na zakupie waluty obcej za walutę krajową na termin spot (dokładnie za dwa dni robocze). Zakup

Bardziej szczegółowo

Budowa i odbudowa zaufania na rynku finansowym. Piotr Szpunar Departament Systemu Finansowego Narodowy Bank Polski

Budowa i odbudowa zaufania na rynku finansowym. Piotr Szpunar Departament Systemu Finansowego Narodowy Bank Polski Budowa i odbudowa zaufania na rynku finansowym Piotr Szpunar Departament Systemu Finansowego Narodowy Bank Polski Aktywa instytucji finansowych w Polsce w latach 2000-2008 (w mld zł) 2000 2001 2002 2003

Bardziej szczegółowo

ZŁOTA PRZYSZŁOŚĆ POSTANOWIENIA OGÓLNE

ZŁOTA PRZYSZŁOŚĆ POSTANOWIENIA OGÓLNE Zasady Działania Funduszy i Planów Inwestycyjnych Załącznik do Ogólnych Warunków Ubezpieczenia Indywidualne Ubezpieczenie na Życie z Ubezpieczeniowym Funduszem Kapitałowym ZŁOTA PRZYSZŁOŚĆ POSTANOWIENIA

Bardziej szczegółowo

Nauka o finansach. Prowadzący: Dr Jarosław Hermaszewski

Nauka o finansach. Prowadzący: Dr Jarosław Hermaszewski Nauka o finansach Prowadzący: Dr Jarosław Hermaszewski WARTOŚĆ PIENIĄDZA W CZASIE Wykład 4 Prawda ekonomiczna Pieniądz, który mamy realnie w ręku, dziś jest wart więcej niż oczekiwana wartość tej samej

Bardziej szczegółowo

Opis efektów kształcenia dla modułu zajęć

Opis efektów kształcenia dla modułu zajęć Nazwa modułu: Rynek kapitałowy i pieniężny Rok akademicki: 2013/2014 Kod: ZIE-1-417-n Punkty ECTS: 2 Wydział: Zarządzania Kierunek: Informatyka i Ekonometria Specjalność: - Poziom studiów: Studia I stopnia

Bardziej szczegółowo

RYNEK INSTRUMENTÓW POCHODNYCH instrumenty liniowe. dr Piotr Mielus Szkoła Główna Handlowa

RYNEK INSTRUMENTÓW POCHODNYCH instrumenty liniowe. dr Piotr Mielus Szkoła Główna Handlowa RYNEK INSTRUMENTÓW POCHODNYCH instrumenty liniowe dr Piotr Mielus Szkoła Główna Handlowa DATA WALUTY (value date) Data, w której następuje rozliczenie transakcji walutowej (poprzez dostawę walut lub rozliczenie

Bardziej szczegółowo

OGŁOSZENIE O ZMIANIE STATUTU MCI.CreditVentures 2.0. Funduszu Inwestycyjnego Zamkniętego z dnia 27 maja 2015 r.

OGŁOSZENIE O ZMIANIE STATUTU MCI.CreditVentures 2.0. Funduszu Inwestycyjnego Zamkniętego z dnia 27 maja 2015 r. OGŁOSZENIE O ZMIANIE STATUTU MCI.CreditVentures 2.0. Funduszu Inwestycyjnego Zamkniętego z dnia 27 maja 2015 r. Niniejszym, MCI Capital Towarzystwo Funduszy Inwestycyjnych S.A. z siedzibą w Warszawie,

Bardziej szczegółowo

Pytania testowe Rynki finansowe Uwaga: tylko niektóre zdania w tym zestawie są prawdziwe!

Pytania testowe Rynki finansowe Uwaga: tylko niektóre zdania w tym zestawie są prawdziwe! Pytania testowe Rynki finansowe Uwaga: tylko niektóre zdania w tym zestawie są prawdziwe! 1. Rynek finansowy to ta część rynku, gdzie przeprowadza się wyłącznie transakcje instrumentami dłużnymi. 2. Dłużne

Bardziej szczegółowo

REGULAMIN FUNDUSZU UFK OPEN LIFE OBLIGACJI KORPORACYJNYCH

REGULAMIN FUNDUSZU UFK OPEN LIFE OBLIGACJI KORPORACYJNYCH Załącznik nr 2 z 2 do Warunków Ubezpieczenia grupowego na życie i dożycie z Ubezpieczeniowym Funduszem Kapitałowym Obligacje Korporacyjne Plus Kod warunków: UB_OGIJ129 REGULAMIN FUNDUSZU UFK OPEN LIFE

Bardziej szczegółowo

Ogłoszenie o zmianach statutu KBC BETA Specjalistycznego Funduszu Inwestycyjnego Otwartego z dnia 27 lutego 2015 r.

Ogłoszenie o zmianach statutu KBC BETA Specjalistycznego Funduszu Inwestycyjnego Otwartego z dnia 27 lutego 2015 r. Ogłoszenie o zmianach statutu KBC BETA Specjalistycznego Funduszu Inwestycyjnego Otwartego z dnia 27 lutego 2015 r. KBC Towarzystwo Funduszy Inwestycyjnych S.A. działające jako organ KBC BETA Specjalistycznego

Bardziej szczegółowo

PORTFEL MODELOWY STRATEGIA ŻÓŁTA (średnie ryzyko)

PORTFEL MODELOWY STRATEGIA ŻÓŁTA (średnie ryzyko) PORTFEL MODELOWY STRATEGIA ŻÓŁTA (średnie ryzyko) Portfel Modelowy Strategia Żółta (średnie ryzyko) to aktywnie zarządzany poprzez Trigon Dom Maklerski S.A. Ubezpieczeniowy Fundusz Kapitałowy, którego

Bardziej szczegółowo

Matematyka finansowa 30.09.2013 r. Komisja Egzaminacyjna dla Aktuariuszy. LXV Egzamin dla Aktuariuszy z 30 września 2013 r.

Matematyka finansowa 30.09.2013 r. Komisja Egzaminacyjna dla Aktuariuszy. LXV Egzamin dla Aktuariuszy z 30 września 2013 r. Komisja Egzaminacyjna dla Aktuariuszy LXV Egzamin dla Aktuariuszy z 30 września 2013 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Zadania przygotowujące do egzaminu z wykładu Inżynieria Finansowa

Zadania przygotowujące do egzaminu z wykładu Inżynieria Finansowa Zadania przygotowujące do egzaminu z wykładu Inżynieria Finansowa Rozpisywanie przepływów gotówkowych, zabezpieczanie, spekulacja: 1. Za 9 miesięcy musisz zapłacić za wycieczkę 1500 EUR. Posiadasz konto

Bardziej szczegółowo

Powtórka I kilka przykładowych pytań 1 Help Desk Materiały: podręcznik do wykładu www.rynkifinansowe.pl Inne podręczniki SGH, Rynki Finansowe, 2015 1

Powtórka I kilka przykładowych pytań 1 Help Desk Materiały: podręcznik do wykładu www.rynkifinansowe.pl Inne podręczniki SGH, Rynki Finansowe, 2015 1 Powtórka I kilka przykładowych pytań 1 Help Desk Materiały: podręcznik do wykładu www.rynkifinansowe.pl Inne podręczniki SGH, Rynki Finansowe, 2015 1 POŚREDNICY FINANSOWI BANKI KOMERCYJNE BANKI INWESTYCYJNE

Bardziej szczegółowo

Matematyka finansowa w pakiecie Matlab

Matematyka finansowa w pakiecie Matlab Matematyka finansowa w pakiecie Matlab Wykład 5. Wycena opcji modele dyskretne Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK Kurs letni dla studentów studiów zamawianych na kierunku Matematyka

Bardziej szczegółowo

OGŁOSZENIE Z DNIA 23 GRUDNIA 2015 r. O ZMIANIE STATUTU UNIFUNDUSZE SPECJALISTYCZNEGO FUNDUSZU INWESTYCYJNEGO OTWARTEGO

OGŁOSZENIE Z DNIA 23 GRUDNIA 2015 r. O ZMIANIE STATUTU UNIFUNDUSZE SPECJALISTYCZNEGO FUNDUSZU INWESTYCYJNEGO OTWARTEGO OGŁOSZENIE Z DNIA 23 GRUDNIA 2015 r. O ZMIANIE STATUTU UNIFUNDUSZE SPECJALISTYCZNEGO FUNDUSZU INWESTYCYJNEGO OTWARTEGO Niniejszym, Union Investment Towarzystwo Funduszy Inwestycyjnych S.A. ogłasza o zmianie

Bardziej szczegółowo

Rynki finansowe. udziałowy (własnościowy) np. akcje (share,stock). Nabywca akcji staje się współwłaścicielem spółki akcyjnej, która emituje akcje.

Rynki finansowe. udziałowy (własnościowy) np. akcje (share,stock). Nabywca akcji staje się współwłaścicielem spółki akcyjnej, która emituje akcje. Rynki finansowe 1 Rynek finansowy Rynek finansowy to rynek, na którym dokonuje się sprzedaży i kupna instrumentów finansowych. Instrument finansowy (financial instrument) to kontrakt między dwiema stronami

Bardziej szczegółowo

Spotkanie Grupy Roboczej ds. centralnego rozliczania transakcji OTC. Warszawa, 14 sierpnia 2014 r.

Spotkanie Grupy Roboczej ds. centralnego rozliczania transakcji OTC. Warszawa, 14 sierpnia 2014 r. Spotkanie Grupy Roboczej ds. centralnego rozliczania transakcji OTC Warszawa, 14 sierpnia 2014 r. Agenda spotkania Podsumowanie testów współpracy systemów Plan kolejnych działań Projekt regulacji dotyczących

Bardziej szczegółowo

Marcin Bartkowiak Krzysztof Echaust INSTRUMENTY POCHODNE WPROWADZENIE DO INŻYNIERII FINANSOWEJ

Marcin Bartkowiak Krzysztof Echaust INSTRUMENTY POCHODNE WPROWADZENIE DO INŻYNIERII FINANSOWEJ Marcin Bartkowiak Krzysztof Echaust INSTRUMENTY POCHODNE WPROWADZENIE DO INŻYNIERII FINANSOWEJ Spis treści Przedmowa... 7 1. Rynek instrumentów pochodnych... 9 1.1. Instrumenty pochodne... 9 1.2. Rynek

Bardziej szczegółowo

Jak wybrać kredyt? Waldemar Wyka Instytut Matematyki Politechniki Łódzkiej. 22 listopada 2014

Jak wybrać kredyt? Waldemar Wyka Instytut Matematyki Politechniki Łódzkiej. 22 listopada 2014 Waldemar Wyka Instytut Matematyki Politechniki Łódzkiej 22 listopada 2014 Plan prezentacji 1 Powtórzenie 2 3 Plany spłaty długu - stałe raty Plany spłaty długu - stałe raty kapitałowe Plany spłaty długu

Bardziej szczegółowo

Instrumenty Rynku Pieniężnego

Instrumenty Rynku Pieniężnego Rodzaje i opis instrumentów finansowych wchodzących w skład portfeli Definicje pojęć użytych w opisie instrumentów Zmienność ceny miara niepewności co do przyszłej wartości instrumentu finansowego, im

Bardziej szczegółowo

Zawiera zobowiązania obu stron przedstawione w regulaminie. Obowiązkowo określa typ oprocentowania depozytu i sposób kapitalizacji odsetek.

Zawiera zobowiązania obu stron przedstawione w regulaminie. Obowiązkowo określa typ oprocentowania depozytu i sposób kapitalizacji odsetek. Depozyty i BFG Umowa o prowadzenie rachunku depozytowego Ma charakter cywilnoprawny. Zawiera zobowiązania obu stron przedstawione w regulaminie Regulamin prowadzenia rachunku integralna częśd umowy Obowiązkowo

Bardziej szczegółowo

Pioneer Pekao Investments Śniadanie prasowe

Pioneer Pekao Investments Śniadanie prasowe Pioneer Pekao Investments Śniadanie prasowe Warszawa, 06 maja 2010 r. Agenda Wyniki sprzedażowe Pioneer Pekao TFI Rynek obligacji nieskarbowych Odpowiedź Pioneer Pekao TFI nowe produkty Strona 2 Wyniki

Bardziej szczegółowo

W ocenie banków kandydujących do pełnienia funkcji DRP w 2015 r. NBP zwiększa w porównaniu do wyboru DRP na rok 2014 wagę kryterium III do 30 punktów.

W ocenie banków kandydujących do pełnienia funkcji DRP w 2015 r. NBP zwiększa w porównaniu do wyboru DRP na rok 2014 wagę kryterium III do 30 punktów. Kryteria wyboru przez Narodowy Bank Polski banków krajowych, oddziałów banków zagranicznych i oddziałów instytucji kredytowych do pełnienia funkcji Dealera Rynku Pieniężnego Wybór przez NBP kontrahentów

Bardziej szczegółowo

Kwestie organizacyjne

Kwestie organizacyjne Rynki finansowe 1 Kwestie organizacyjne Zaliczenie: obecność (max. 1 nieusprawiedliwiona) Aktywność: podniesienie oceny o 0,5 stopnia Materiały: www.rynkifinansowe.pl Kontakt: andrzej.sowin@gmail.com 2

Bardziej szczegółowo

Matematyka finansowa 05.12.2005 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVII Egzamin dla Aktuariuszy z 5 grudnia 2005 r.

Matematyka finansowa 05.12.2005 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVII Egzamin dla Aktuariuszy z 5 grudnia 2005 r. Komisja Egzaminacyjna dla Aktuariuszy XXXVII Egzamin dla Aktuariuszy z 5 grudnia 2005 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU A Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Unia bankowa skutki dla UE, strefy euro i dla Polski. Warszawa, 29 listopada 2012 r.

Unia bankowa skutki dla UE, strefy euro i dla Polski. Warszawa, 29 listopada 2012 r. Unia bankowa skutki dla UE, strefy euro i dla Polski Warszawa, 29 listopada 2012 r. Unia bankowa skutki dla UE i dla strefy euro Andrzej Raczko Narodowy Bank Polski Strefa euro Strefa euro doświadcza bardzo

Bardziej szczegółowo

Matematyka finansowa 26.05.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I

Matematyka finansowa 26.05.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Przyjmijmy

Bardziej szczegółowo

Informacje o Instrumentach Finansowych

Informacje o Instrumentach Finansowych Informacje o Instrumentach Finansowych Opis istoty oraz ryzyka związanego z inwestowaniem w instrumenty finansowe wykorzystywane w ramach świadczenia przez Towarzystwo usług w zakresie zarządzania portfelami,

Bardziej szczegółowo