Prace semestralne luty 2011 czerwiec Z każdej pracy wybieramy jeden poziom i robimy zadania TYLKO z tego poziomu

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Prace semestralne luty 2011 czerwiec Z każdej pracy wybieramy jeden poziom i robimy zadania TYLKO z tego poziomu"

Transkrypt

1 Prace semestralne luty 2011 czerwiec 2011 Z każdej pracy wybieramy jeden poziom i robimy zadania TYLKO z tego poziomu Praca semestralna nr 1a Semestr II Funkcje, funkcja liniowa. Zadania na ocenę dopuszczającą: 1. Dana jest funkcja opisana tabelką: n f(n) Zapisz tę funkcję za pomocą grafu i narysuj jej wykres. 2. Narysuj wykres funkcji f(x) = 3x 5 i określ jej monotoniczność. : 1. Funkcja f liczbie dwucyfrowej mniejszej od 20 przyporządkowuje sumę jej cyfr. Narysuj graf, tabelkę i wykres tej funkcji. 2. Narysuj wykres, oblicz miejsce zerowe i określ monotoniczność funkcji f(x) = ¾x + 2. : 1. Narysuj wykres funkcji: 2x+4 dla x < 0 f(x) = 4 dla 0 x 4-4x + 20 dla x 4 2. Znajdź wzór funkcji, której wykres jest równoległy do wykresu funkcji f(x) = 3x 1 i przechodzi przez punkt o współrzędnych ( 2, -1 ) : 1. Narysuj wykres funkcji : f(x) = -x + 2 dla x 2x + 3 dla x < 0 Oblicz jej miejsca zerowe, określ monotoniczność, podaj argumenty dla których funkcja przyjmuje wartości dodatnie. 2. Dana jest funkcja f(x) = ( 3m 1 )x 7. Wyznacz m, aby miejscem zerowym funkcji była liczbą x = - 3. Narysuj wykres otrzymanej funkcji i określ jej monotoniczność.

2 Zadania na ocenę dopuszczającą Praca semestralna nr 1b semestr II Funkcja kwadratowa. 1. Narysuj wykres funkcji f(x) = -3x x Podaj postać kanoniczną i iloczynową funkcji f(x) = 2x 2-5x Wyznacz najmniejszą wartość funkcji f(x) = 3x 2-2x Rozwiąż nierówność 2x 2 + 5x 8 > x 2 + 4x Znajdź wzór funkcji kwadratowej, której wykresem jest parabola o wierzchołku ( 3, -7 ) przechodząca przez punkt ( 5, 9 ) 2. Zaznacz na osi liczbowej zbiór A B, gdzie A = { x R : 2x 2 - x 3 > 0 }, B = { x R : -2x 2 + x + 15 > 0 } 1. Narysuj wykres funkcji f(x) = -x 2 + 6x, gdzie dziedziną funkcji jest przedział < -1, 5 >. Podaj zbiór wartości funkcji, przedziały, e których funkcja przyjmuje wartości ujemne i zapisz jej wzór w postaci kanonicznej Funkcja f(x) = - 2x 2 + bx + c przyjmuje jednakowe wartości dla argumentów 1 i 5. Do wykresu funkcji należy początek układu współrzędnych. Wyznacz wartości współczynników b i c, Dla wyznaczonych współczynników narysuj wykres funkcji i podaj przedziały monotoniczności.

3 Praca semestralna nr 2 Semestr II Funkcje trygonometryczne. Zadania na ocenę dopuszczającą 1. Jedna z przyprostokątnych trójkąta prostokątnego ma długość 3 2, a przeciwprostokątna ma długość 3 3. Oblicz wartości funkcji trygonometrycznych kąta pomiędzy danymi bokami ( do zadania wykonaj rysunek ) Wiedząc, że sinα = 7 oblicz wartości pozostałych funkcji trygonometrycznych kąta α. 1. W trójkącie prostokątnym cosα = ⅔, a przeciwprostokątna tego trójkąta ma długość 15 oblicz długości pozostałych boków tego trójkąta. 2. Wiedząc, że tgα = oblicz wartości pozostałych funkcji trygonometrycznych kąta α. Do zadania wykonaj rysunek. 1. Czy istnieje kąt α, taki, że sinα =. 3 /3 i tgα. = ⅔. 2. Dany jest trapez równoramienny, w którym długości podstaw wynoszą 3 i 5, a ramię ma długość 4. Oblicz tangens kąta ostrego tego trapezu i podaj jego wartość z dokładnością do 0, Dla pewnego kąta ostrego prawdziwa jest równość: tgα +1/tgα = 5/cosα.Oblicz wartość sinα, cosα i tgα. 2. Na morzu widać z żaglówki światło latarni morskiej pod kątem o mierze 30 do poziomu. Po przepłynięciu 50 m w kierunklu latarni światło latarni widać pod kątem 60 do poziomu. Oblicz wysokość latarni. Wynik podaj z dokładnością 0,1 m.

4 Praca semestralna nr 3 Semestr II Wielomiany. Zadania na ocenę dopuszczającą 1. Dane są wielomiany W(x) = 2x 1, V(x) = x 2 2x + 1, U(x) = x 3 + 2x 2 3x + 5 wykonaj działania : U(x) + 2V(x) W(x) 2. Rozwiąż równania wielomianowe : a) 2x 3 4x 2 = 0 b) x 3 3x 2 4x +12 = 0 1. Dane są wielomiany W(x) = 2x 1, V(x) = x 2 2x + 1, U(x) = x 3 + 2x 2 3x + 5 wykonaj działania : a) U(x) + 2V(x) W(x) b) V(x) W(x) U(x) 2. Rozwiąż równania wielomianowe : a) 2x 3 4x 2 = 0 b) x 3 3x 2 4x +12 = 0 c) x 5 9x 3 =0 d) 2x = x 2 + 6x 1. Rozłóż na czynniki możliwie jak najniższego stopnia wielomian: x 3 +2x 2 9x Przekształć wyrażenie do najprostszej postaci i oblicz dla x = 2 i y = 8 wartość wyrażenia ( 2x + 3y) (2x 3y) - ( 2x 3y) 2 1. Wykaż, że jeśli od iloczynu dwóch kolejnych liczb całkowitych odejmiemy trzykrotność mniejszej z nich, to otrzymamy kwadrat liczby o jeden mniejszej od mniejszej z tych liczb pomniejszony o jeden. 2. Liczby a i b przy dzieleniu przez 4 dają tę sama resztę równa 1. Uzasadnij, że różnica kwadratów liczb a i b jest podzielna przez 4.

5 Praca semestralna nr 1 Semestr IV Graniastosłupy i ostrosłupy. Zadania na ocenę dopuszczającą 1. Narysuj i omów własności sześcianu. 2. Oblicz objętość graniastosłupa prawidłowego czworokątnego o krawędzi podstawy długości 6, jeżeli pole powierzchni całkowitej bryły wynosi Narysuj i omów własności czworościanu foremnego. 2. Podstawą graniastosłupa jest trójkąt równoboczny o wysokości 4 cm. Krawędź boczna ma długość równą krawędzi podstawy. Oblicz pole powierzchni całkowitej i objętość graniastosłupa. 1. Narysuj i omów własności ośmiościanu foremnego. 2. W ostrosłupie prawidłowym sześciokątnym krawędź boczna ma długość 16 i tworzy z płaszczyzną podstawy kąt o mierze 60. Oblicz objętość i pole powierzchni całkowitej ostrosłupa. 1. Narysuj i omów własności dwunastościanu foremnego. 2. Ściany boczne ostrosłupa prawidłowego trójkątnego są trójkątami prostokątnymi o przyprostokątnych długości a. Oblicz objętość i pole powierzchni całkowitej ostrosłupa.

6 Praca semestralna numer 2 Semestr IV Statystyka i rachunek prawdopodobieństwa. Zadania na ocenę dopuszczającą: 1. Oblicz średnią masę pięciu czternastolatków, których wagi wynoszą: 46 kg, 47 kg, 44 kg, 43 kg, 45 kg, Wyznacz medianę i dominantę tego zestawu danych. 2. Rzucamy dwoma kostkami do gry. Jakie jest prawdopodobieństwo, że suma oczek będzie większa niż 6? 3. : 1. Oblicz średnią, medianę i dominantę zestawu danych przedstawionych w tabelce: Liczba godzin snu Liczba wskazań Rzucamy dwiema symetrycznymi monetami. Oblicz prawdopodobieństwo, że na obu monetach wypadł orzeł. : 1. Tabela przedstawia pewne dane statystyczne. Wartość

7 Liczebno ść a) Wyznacz wariancję tych danych. b) Wyznacz odchylenie standardowe tych danych z dokładnością do 0, Ze zbioru cyfr { 1,2,3,4,5,6,7 } losujemy kolejno bez zwracania dwie cyfry I zapisujemy w kolejności losowań otrzymując lioczbę dwucyfrową. Oblicz prawdopodobieństwo, że otrzymana w ten sposób liczba jest parzysta. : 1. Pewna wyższa uczelnia przyjmuje kandydatów na podstawie wyników otrzymanych na maturze, obliczając średnią ważoną liczby zdobytych przez nich procentów z trzech przedmiotów: fizyki ( z wagą 0,5 ), chemii ( z wagą 0,4 ), I biologii ( z wagą 0,1 ). Sprawdż który z kandydatów ma większe szanse na dostanie się na tę uczelnię. Kandydat Fizyka Chemia Biologia I II Swpośród wierzchołków sześciokąta foremnego wybieramy trzy wierzchołki. Jakie jest prawdopodobieństwo, że wybrane wierzchołki utworzą trójkąt równoboczny?

8 Zadania na ocenę dopuszczającą Praca semestralna numer 3 Semestr IV Bryły obrotowe 1. Przekrój osiowy walca jest kwadratem o przekątnej długości 3. Oblicz objętość walca. 2. Przekrój osiowy stożka jest trójkątem równobocznym o boku długości 3 cm. Oblicz pole powierzchni stożka. 1. Oblicz pole powierzchni i objętość bryły powstałej przy obrocie trójkąta prostokątnego o przyprostokątnych długości 6 i 8 dookoła dłuższej przyprostokątnej. 2. Oblicz ile kropel deszczu napełni szklankę w kształcie walca o średnicy podstawy 6 cm i wysokości 8 cm, jeśli kropla wody jest kuleczką o średnicy 2 mm. 1. Oblicz pole powierzchni i objętość bryły powstałej przy obrocie trójkąta prostokątnego o przyprostokątnych długości 6 i 8 dookoła przeciwprostokątnej. 2. Stożek, w którym tworząca o długości tworzy z podstawą kąt 45, przecięto płaszczyzną równoległą do podstawy, przechodzącą przez środek wysokości stożka. Znajdź objętość obu brył powstałych z podziału. 1. W stożek została wpisana kula. Wiadomo, że pole powierzchni całkowitej stożka jest dwa razy większe od pola powierzchni kuli. Znajdź kąt, jaki tworzy z płaszczyzną podstawy tworząca stożka. 2. Wysokość stożka podzielono w stosunku 1 : 4 licząc od wierzchołka, przez punkt podziału poprowadzono płaszczyznę równoległą do podstawy stożka. Oblicz objętość mniejszej z brył, na jakie został podzielony stożek, jeśli wiadomo, że pole podstawy stożka jest równe P i wysokość H.

9 Praca semestralna nr 3 semestr IV Geometria analityczna Zadania na ocenę dopuszczającą 1. Dane są punkty A = ( -2, 3 ), B = ( 1, 2 ), oblicz współrzędne oraz długość wektora AB. 2. Oblicz odległość punktu A = ( 2, -1 ) od prostej 3x 4y 2 = 0 1. Napisz równanie prostej przechodzącej przez punkty A = ( -4, -2 ), B = ( 5, 4 ) i zapisz to równanie w postaci kierunkowej i ogólnej. 2. Napisz równanie okręgu o środku w punkcie S = ( 3, -1 ), przechodzącego przez punkt A = ( 0, 3 ). 3. Napisz równanie prostej równoległej do prostej 2x + y + 3 = 0 i przechodzącej przez punkt P = ( -1, 1 ). 4. Oblicz obwód trójkąta ABC, wiedząc, że A = ( 0, 2 ), B = ( -4, -1 ), C = ( 3, 2 ). 1. Sprawdź, czy czworokąt o wierzchołkach A = ( 0, 0 ), B = ( 3, 1 ), C = ( 2, 4 ), D = ( - 1, 3 ) jest kwadratem. 2. Uzasadnij, że przekątna AC rozcina czworokąt ABCD o wierzchołkach A = ( -2,-1 ), B = ( 3, 2 ), C = ( 1, 2 ), D = ( 1, 4 ) na dwie figury przystające.

10 Zadania na ocenę dopuszczającą: 1. Oblicz: log₂ 16 = log₅ 125 = log₃ 81 = Praca semestralna nr 1 Semestr V Logarytmy. 2. Oblicz stosując prawa działań na logarytmach: log2 +log10+log5 = log₃ 36 log₃ 4 = : 1. Znajdź x : x = log₃ 27 ; x = log₂ 8 ; x = log₄ 4 2. Oblicz stosując prawa działań na logarytmach: 2log₉ 3 + log₆ 2 + log₆ 3 = 3. Znajdź liczbę a jeżeli loga = - log5 + 2log0,4 : 1. Oblicz x; log₅ x = -1 ; log₃ x = 3 ; logₓ5 = 1/3 log₂ ( x-1 ) = 3 log₅ ( x-2 ) = 0 2. Zapisz w postaci logarytmu: 1 + log₂ 5 log₂ 10 = 2log3 + log2 + 1 = 3 log₅ 6 = : 1. Wykaż, że ( log₄ 2 log₂ 4 ) : ( log₄ 2 + log₂ 4 ) = - 0,6 2. ( 2log 10 + log100) : log0,1 < 0 3. Wskaż równanie prawdziwe: a) logx + log 1/y log x² = logx/y b) 2log x logx + logy/x + logx/y = 1

11 Zadania na ocenę dopuszczającą 1. Wyznacz dziedzinę i rozwiąż równanie 4x 11 6x 2 = 0 2. Wyznacz dziedzinę wyrażenia i oblicz: Praca semestralna nr 2 Semestr V Wyrażenia wymierne wymierne. 5x x x 4 2 ( x 2) 2 4x 12 = 1. Wyznacz dziedzinę i rozwiąż róenanie: 3x 4 6x 1 = 2x 7 4x Wyznacz dziedzinę i rozwiąż równanie : 4x 11 = 6x 2 1. Przekształć wyrażenie do najprostszej postaci i oblicz dla x = 2 i y = 8 wartość wyrażenia ( 2x + 3y) (2x 3y) - ( 2x 3y) 2 2. Rozwiąż równania, wyznacz dziedzinę równań : 3x 4 2x 7 a) 6x 1 = 4x 1 3 b) 3 - x 2 = 2x 1. Wykaż, że jeśli od iloczynu dwóch kolejnych liczb całkowitych odejmiemy trzykrotność mniejszej z nich, to otrzymamy kwadrat liczby o jeden mniejszej od mniejszej z tych liczb pomniejszony o jeden. 2. Liczby a i b przy dzieleniu przez 4 dają tę sama resztę równa 1. Uzasadnij, że różnica kwadratów liczb a i b jest podzielna przez Wykaż, Ze dla dowolnych liczb rzeczywistych dodatnich a i b zachodzi nierówność: 2:( + ) ab

12 Praca semestralna nr 3 semestr V Geometria analityczna Zadania na ocenę dopuszczającą 3. Dane są punkty A = ( -2, 3 ), B = ( 1, 2 ), oblicz współrzędne oraz długość wektora AB. 4. Oblicz odległość punktu A = ( 2, -1 ) od prostej 3x 4y 2 = 0 3. Napisz równanie prostej przechodzącej przez punkty A = ( -4, -2 ), B = ( 5, 4 ) i zapisz to równanie w postaci kierunkowej i ogólnej. 4. Napisz równanie okręgu o środku w punkcie S = ( 3, -1 ), przechodzącego przez punkt A = ( 0, 3 ). 5. Napisz równanie prostej równoległej do prostej 2x + y + 3 = 0 i przechodzącej przez punkt P = ( -1, 1 ). 6. Oblicz obwód trójkąta ABC, wiedząc, że A = ( 0, 2 ), B = ( -4, -1 ), C = ( 3, 2 ). 3. Sprawdź, czy czworokąt o wierzchołkach A = ( 0, 0 ), B = ( 3, 1 ), C = ( 2, 4 ), D = ( - 1, 3 ) jest kwadratem. 4. Uzasadnij, że przekątna AC rozcina czworokąt ABCD o wierzchołkach A = ( -2,-1 ), B = ( 3, 2 ), C = ( 1, 2 ), D = ( 1, 4 ) na dwie figury przystające.

13 Praca semestralna nr 1 Semestr VI Równania. Zadania na ocenę dopuszczającą: Rozwiąż równania: 3(2x 1) + 5x = 2 4x +(1 2x) x² + 4x 121 = 0 x³ 5x² x + 5 = 0 = 0 : Rozwiąż równania: x (x 2) (x + 1)(x 3) = 1 + 2x ⅓x² 4x + 12 = 0 x 4x³ 8x + 32 = 0 = : Rozwiąż równania: x(x + 1) (x² + 1)< 2(-x + ) x³ + 4x² + 3x + 12 = 0 ⅓( x² + 5x) (x + 2) = x 1 - = 4 : 1. Wykaż, że równanie x² = 800x ma dwa rozwiązania których suma wynosi Rozwiąż równanie: = 4 / oznacza kreskę ułamkową.

14 Praca semestralna nr 2 Semestr VI Funkcje, funkcja liniowa i kwadratowa. Zadania na ocenę dopuszczającą: 1. Dana jest funkcja opisana tabelką: n f(n) Zapisz tę funkcję za pomocą grafu i narysuj jej wykres. 2. Narysuj wykres funkcji f(x) = 3x 5 i określ jej monotoniczność. 3. Narysuj wykres funkcji f(x) = -3x x Podaj postać kanoniczną i iloczynową funkcji f(x) = 2x 2-5x 3 : 1. Funkcja f liczbie dwucyfrowej mniejszej od 20 przyporządkowuje sumę jej cyfr. Narysuj graf, tabelkę i wykres tej funkcji. 2. Narysuj wykres, oblicz miejsce zerowe i określ monotoniczność funkcji f(x) = ¾x Wyznacz najmniejszą wartość funkcji f(x) = 3x 2-2x Rozwiąż nierówność 2x 2 + 5x 8 > x 2 + 4x + 12 : 1. Narysuj wykres funkcji: 2x+4 dla x < 0 f(x) = 4 dla 0 x 4-4x + 20 dla x 4 2. Znajdź wzór funkcji, której wykres jest równoległy do wykresu funkcji f(x) = 3x 1 i przechodzi przez punkt o współrzędnych ( 2, -1 ) 3. Znajdź wzór funkcji kwadratowej, której wykresem jest parabola o wierzchołku ( 3, -7 ) przechodząca przez punkt ( 5, 9 )

15 4. Zaznacz na osi liczbowej zbiór A B, gdzie A = { x R : 2x 2 - x 3 > 0 }, B = { x R : -2x 2 + x + 15 > 0 } : 1. Narysuj wykres funkcji : f(x) = -x + 2 dla x 2x + 3 dla x < 0 Oblicz jej miejsca zerowe, określ monotoniczność, podaj argumenty dla których funkcja przyjmuje wartości dodatnie. 2. Dana jest funkcja f(x) = ( 3m 1 )x 7. Wyznacz m, aby miejscem zerowym funkcji była liczbą x = - 3. Narysuj wykres otrzymanej funkcji i określ jej monotoniczność. 3. Narysuj wykres funkcji f(x) = -x 2 + 6x, gdzie dziedziną funkcji jest przedział < -1, 5 >. Podaj zbiór wartości funkcji, przedziały, e których funkcja przyjmuje wartości ujemne i zapisz jej wzór w postaci kanonicznej Funkcja f(x) = - 2x 2 + bx + c przyjmuje jednakowe wartości dla argumentów 1 i 5. Do wykresu funkcji należy początek układu współrzędnych. Wyznacz wartości współczynników b i c, Dla wyznaczonych współczynników narysuj wykres funkcji i podaj przedziały monotoniczności.

16 Praca semestralna nr 3 Semestr VI Ciągi. Zadania na ocenę dopuszczającą 1. Dany jest ciąg a n = 2n 2 3n. Podaj pierwsze cztery wyrazy tego ciągu i dla nich narysuj jego wykres. 2. W ciągu arytmetycznym a 2 = 7, a 3 = 5. Oblicz a 26 i sumę dwudziestu początkowych wyrazów tego ciągu. 1. W ciągu geometrycznym a 2 =3, a 3 = 4,5. Oblicz a 5 i S Zbadaj, czy ciąg o wyrazie ogólnym a n = 3n - 5 jest ciągiem rosnącym. 1. Zbadaj monotoniczność ciągu o wyrazie ogólnym a n = 4n Sprawdź, że nie istnieje liczba rzeczywista x taka, że ciąg ( 2x, x 2 + x + 5, x 7 ) był ciągiem arytmetycznym. Sprawdź, czy ten ciąg dla x = 2 jest ciągiem geometrycznym. 1. Wyznacz sumę dziesięciu początkowych wyrazów ciągu geometrycznego, mając dane a 5 = 19 i a 9 = W pewnym ciągu sumę n początkowych wyrazów można obliczyć z wzoru S n= 5(1-2 n ). Wykaż, że jest to ciąg geometryczny.

Praca kontrolna z matematyki nr 1 Liceum Ogólnokształcące dla Dorosłych Semestr 5 Rok szkolny 2014/2015

Praca kontrolna z matematyki nr 1 Liceum Ogólnokształcące dla Dorosłych Semestr 5 Rok szkolny 2014/2015 Praca kontrolna z matematyki nr 1 Liceum Ogólnokształcące dla Dorosłych Semestr 5 Rok szkolny 2014/2015 2 6 + 3 1. Oblicz 3. 3 x 1 3x 2. Rozwiąż nierówność > x. 2 3 3. Funkcja f przyporządkowuje każdej

Bardziej szczegółowo

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zad. 1 (2 pkt) Rozwiąż równanie Zad.2 (2 pkt) 2 3x 1 = 1 2x 2 Rozwiąż układ równań x +3y =5 2x y = 3 Zad.3 (2 pkt) 2 Rozwiąż nierówność x + 6x 7 0 Zad.4 (2 pkt) 3 2

Bardziej szczegółowo

Zagadnienia z matematyki dla klasy II oraz przykładowe zadania

Zagadnienia z matematyki dla klasy II oraz przykładowe zadania Zagadnienia z matematyki dla klasy II oraz przykładowe zadania FUNKCJA KWADRATOWA Wykres funkcji f () = a Przesunięcie wykresu funkcji f() = a o wektor Postać kanoniczna i postać ogólna funkcji kwadratowej

Bardziej szczegółowo

Tematy: zadania tematyczne

Tematy: zadania tematyczne Tematy: zadania tematyczne 1. Ciągi liczbowe zadania typu udowodnij 1) Udowodnij, Ŝe jeŝeli liczby,, tworzą ciąg arytmetyczny ), to liczby,, takŝe tworzą ciąg arytmetyczny. 2) Ciąg jest ciągiem geometrycznym.

Bardziej szczegółowo

Matura 2011 maj. Zadanie 1. (1 pkt) Wskaż nierówność, którą spełnia liczba π A. x + 1 > 5 B. x 1 < 2 C. x D. x 1 3 3

Matura 2011 maj. Zadanie 1. (1 pkt) Wskaż nierówność, którą spełnia liczba π A. x + 1 > 5 B. x 1 < 2 C. x D. x 1 3 3 Matura 2011 maj Zadanie 1. (1 pkt) Wskaż nierówność, którą spełnia liczba π A. x + 1 > 5 B. x 1 < 2 C. x + 2 3 4 D. x 1 3 3 Zadanie 2. (1 pkt) Pierwsza rata, która stanowi 9% ceny roweru, jest równa 189

Bardziej szczegółowo

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zadanie 51. ( pkt) Rozwiąż równanie 3 x = 1. 1 x Zadanie 5. ( pkt) x+ 3y = 5 Rozwiąż układ równań. x y = 3 Zadanie 53. ( pkt) Rozwiąż nierówność x + 6x 7 0. ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zadanie

Bardziej szczegółowo

PRZYKŁADOWE ZADANIA Z MATEMATYKI NA POZIOMIE PODSTAWOWYM

PRZYKŁADOWE ZADANIA Z MATEMATYKI NA POZIOMIE PODSTAWOWYM PRZYKŁADOWE ZADANIA Z MATEMATYKI NA POZIOMIE PODSTAWOWYM Zad.1. (0-1) Liczba 3 8 3 3 9 2 A. 3 3 Zad.2. (0-1) jest równa: Liczba log24 jest równa: B. 3 32 9 C. 3 4 D. 3 5 A. 2log2 + log20 B. log6 + 2log2

Bardziej szczegółowo

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zadanie 51. ( pkt) Rozwiąż równanie 3 x = 1. 1 x Zadanie 5. ( pkt) x+ 3y = 5 Rozwiąż układ równań. x y = 3 Zadanie 53. ( pkt) Rozwiąż nierówność x + 6x 7 0. ZNI OTWRTE KRÓTKIEJ OPOWIEZI Zadanie 54. ( pkt)

Bardziej szczegółowo

Zestaw VI. Zadanie 1. (1 pkt) Wskaż nierówność, którą spełnia liczba π A. (x + 1) 2 > 18 B. (x 1) 2 < 5 C. (x + 4) 2 < 50 D.

Zestaw VI. Zadanie 1. (1 pkt) Wskaż nierówność, którą spełnia liczba π A. (x + 1) 2 > 18 B. (x 1) 2 < 5 C. (x + 4) 2 < 50 D. Zestaw VI Zadanie. ( pkt) Wskaż nierówność, którą spełnia liczba π A. (x + ) 2 > 8 B. (x ) 2 < C. (x + 4) 2 < 0 D. (x 2 )2 8 Zadanie 2. ( pkt) Pierwsza rata, która stanowi 8% ceny roweru, jest równa 92

Bardziej szczegółowo

I. FUNKCJA WYKŁADNICZA I LOGARYTMY 1. POTĘGI Zad.1. Zapisz za pomocą potęgi o podanej podstawie:

I. FUNKCJA WYKŁADNICZA I LOGARYTMY 1. POTĘGI Zad.1. Zapisz za pomocą potęgi o podanej podstawie: Strona 1 z 9 I. FUNKCJA WYKŁADNICZA I LOGARYTMY 1. POTĘGI Zapisz za pomocą potęgi o podanej podstawie: 5 4 ( 27) ( ) a), podstawa : ( ) b) 6 ( 9) c), podstawa: (5) d) Oblicz: a) 1 6 4 2 1 1 1 2 (0,25)

Bardziej szczegółowo

Zadanie 01 Zaznacz w układzie współrzędnych zbiory : A = { (x, y) ; x R i y R i x + y 1 } oraz. B m = { (x, y) ; x R i y R i 4x 2 + 4y 2 4x 4m+1 }

Zadanie 01 Zaznacz w układzie współrzędnych zbiory : A = { (x, y) ; x R i y R i x + y 1 } oraz. B m = { (x, y) ; x R i y R i 4x 2 + 4y 2 4x 4m+1 } Zadanie 0 Zaznacz w układzie współrzędnych zbiory : A = { (x, y) ; x R i y R i x + y } oraz B = { (x, y) ; x R i y R i 4x + 4y 4x 5 } Zaznacz osobno zbiór B-A ( ) Niech m N. Oznaczmy zbiory : A m = { (x,

Bardziej szczegółowo

VIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH

VIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH VIII. ZIÓR PRZYKŁDOWYCH ZDŃ MTURLNYCH ZDNI ZMKNIĘTE Zadanie. ( pkt) 0 90 Liczba 9 jest równa 0.. 00 C. 0 9 D. 700 7 Zadanie. 8 ( pkt) Liczba 9 jest równa.. 9 C. D. 5 Zadanie. ( pkt) Liczba log jest równa.

Bardziej szczegółowo

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna Arkusz A01 2 Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Liczba log 1 3 3 27 jest równa:

Bardziej szczegółowo

Matura 2014 z WSiP Arkusz egzaminacyjny z matematyki Poziom podstawowy

Matura 2014 z WSiP Arkusz egzaminacyjny z matematyki Poziom podstawowy Wypełnia uczeń Numer PESEL Kod ucznia Matura 0 z WSiP Arkusz egzaminacyjny z matematyki Poziom podstawowy Informacje dla ucznia. Sprawdź, czy zestaw egzaminacyjny zawiera stron. Ewentualny brak stron lub

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI WPISUJE ZDAJĄCY KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY PRZED MATURĄ MAJ 015 1. Sprawdź, czy arkusz egzaminacyjny zawiera 16 stron (zadania 1 34). Ewentualny brak zgłoś przewodniczącemu

Bardziej szczegółowo

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale Zestaw nr 1 Poziom Rozszerzony Zad.1. (1p) Liczby oraz, są jednocześnie ujemne wtedy i tylko wtedy, gdy A. B. C. D. Zad.2. (1p) Funkcja przyjmuje wartości większe od funkcji dokładnie w przedziale. Wtedy

Bardziej szczegółowo

postaci kanonicznej i iloczynowej trójmiany: y = 0,5x 2. Podaj określenie ciągu arytmetycznego. Dany jest ciąg a n

postaci kanonicznej i iloczynowej trójmiany: y = 0,5x 2. Podaj określenie ciągu arytmetycznego. Dany jest ciąg a n Propozycje pytań na maturę ustną ( profil podstawowy ) Elżbieta Kujawińska ZESTAW Podaj wzory na postać kanoniczną i iloczynową funkcji kwadratowej Sprowadź do postaci kanonicznej i iloczynowej trójmiany:

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI 5 MAJA 2016 POZIOM PODSTAWOWY. Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI 5 MAJA 2016 POZIOM PODSTAWOWY. Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 013 KOD UZUPEŁNIA ZDAJĄCY PESEL dyskalkulia miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI

Bardziej szczegółowo

Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA

Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Marzec 015 POZIOM PODSTAWOWY 1. Sprawdź, czy arkusz egzaminacyjny zawiera

Bardziej szczegółowo

Zadanie 1. (1p.) W grupie 150 losowo wybranych osób zadano pytanie: Ile godzin w tygodniu poświęcasz na uprawianie sportu? 10%

Zadanie 1. (1p.) W grupie 150 losowo wybranych osób zadano pytanie: Ile godzin w tygodniu poświęcasz na uprawianie sportu? 10% Test Instrukcja dla ucznia Zadania obejmują wiadomości i umiejętności ze statystyki i stereometrii - wielościany. Pisz czytelnie. Przedstaw tok rozumowania prowadzący do ostatecznego rezultatu. Sporządź

Bardziej szczegółowo

Zestaw zadań powtórzeniowych dla maturzystów

Zestaw zadań powtórzeniowych dla maturzystów Zestaw zadań powtórzeniowych dla maturzystów LICZBY RZECZYWISTE Zad Ze zbioru liczb {,; 8; ; 0,; 0, (); ; ; π ; 0; 8; 8%; } wybierz liczby: a) naturalne b) niewymierne Zad Oblicz: a) : b) ( ) : +,8 Zad

Bardziej szczegółowo

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale Zestaw nr 1 Poziom Rozszerzony Zad.1. (1p) Liczby oraz, są jednocześnie ujemne wtedy i tylko wtedy, gdy A. B. C. D. Zad.2. (1p) Funkcja przyjmuje wartości większe od funkcji dokładnie w przedziale. Wtedy

Bardziej szczegółowo

ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska. 2 3x. 2. Sformułuj odpowiedź.

ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska. 2 3x. 2. Sformułuj odpowiedź. ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska Zad.1. (5 pkt) Sprawdź, czy funkcja określona wzorem x( x 1)( x ) x 3x dla x 1 i x dla x 1 f ( x) 1 3 dla

Bardziej szczegółowo

a) Wykaż, że przekształcenie P jest izometrią b) W prostokątnym układzie współrzędnych narysuj trójkąt o wierzchołkach A ( 1;2)

a) Wykaż, że przekształcenie P jest izometrią b) W prostokątnym układzie współrzędnych narysuj trójkąt o wierzchołkach A ( 1;2) ZESTAW I R Zad (3 pkt) Suma pierwiastków trójmianu a, c R R trójmianu jest równa 8 y ax bx c jest równa log c log a, gdzie Uzasadnij, że odcięta wierzchołka paraboli będącej wykresem tego a c Zad (7 pkt)

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY+ 19 MARCA 2011 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT.) Wskaż nierówność, która

Bardziej szczegółowo

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej.

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej. Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE Rozwiązania Zadanie 1 Wartość bezwzględna jest odległością na osi liczbowej. Stop Istnieje wzajemnie jednoznaczne przyporządkowanie między punktami

Bardziej szczegółowo

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM.

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM. ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM. I Geometria analityczna 1. Równanie prostej w postaci ogólnej i kierunkowej powtórzenie 2. Wzajemne położenie dwóch prostych powtórzenie

Bardziej szczegółowo

MATURA probna listopad 2010

MATURA probna listopad 2010 MATURA probna listopad 00 ZADANIA ZAMKNIĘTE W zadaniach od. do 5. wybierz i zaznacz poprawną odpowiedź. Zadanie. ( pkt) - 4 $ 4 Liczba 0 jest równa 4-0, 5 A. B. C. D. 4 Zadanie. ( pkt) Liczba log 6 - log

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI PRZED MATURĄ MAJ 2017 POZIOM PODSTAWOWY Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 15 stron (zadania 1 33). 2. Rozwiązania zadań wpisuj

Bardziej szczegółowo

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE 3 ZASADNICZEJ SZKOŁY ZAWODOWEJ

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE 3 ZASADNICZEJ SZKOŁY ZAWODOWEJ ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE 3 ZASADNICZEJ SZKOŁY ZAWODOWEJ I. Funkcja kwadratowa i wymierna 1. Funkcja kwadratowa i jej postacie. 2. Wykres funkcji kwadratowej. 3. Równania

Bardziej szczegółowo

Próbny egzamin maturalny z matematyki Poziom podstawowy. Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA

Próbny egzamin maturalny z matematyki Poziom podstawowy. Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Marzec 2017 we współpracy z 1. Sprawdź, czy arkusz egzaminacyjny

Bardziej szczegółowo

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM.

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM. ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM. I GEOMETRIA ANALITYCZNA 1. Równanie prostej w postaci ogólnej i kierunkowej powtórzenie 2. Wzajemne położenie dwóch prostych powtórzenie

Bardziej szczegółowo

STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH

STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI 2 proste

Bardziej szczegółowo

1. Równania i nierówności liniowe

1. Równania i nierówności liniowe Równania i nierówności liniowe Wykonać działanie: Rozwiązać równanie: ( +x + ) x a) 5x 5x+ 5 = 50 x 0 b) 6(x + x + ) = (x + ) (x ) c) x 0x (0 x) 56 = 6x 5 5 ( x) Rozwiązać równanie: a) x + x = 4 b) x x

Bardziej szczegółowo

POZIOM PODSTAWOWY - GR 1 Czas pracy 170 minut

POZIOM PODSTAWOWY - GR 1 Czas pracy 170 minut POZIOM PODSTAWOWY - GR 1 Czas pracy 170 minut Klasa Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron.. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.. W zadaniach

Bardziej szczegółowo

MATURA PRÓBNA - odpowiedzi

MATURA PRÓBNA - odpowiedzi MATURA PRÓBNA - odpowiedzi Zadanie 1. (1pkt) Zbiorem wartości funkcji = + 6 7 jest przedział: A., B., C., D., Zadanie. (1pkt) Objętość kuli wpisanej w sześcian o krawędzi długości 6 jest równa: A. B. 4

Bardziej szczegółowo

Przygotowanie do poprawki klasa 1li

Przygotowanie do poprawki klasa 1li Zadanie Rozwiąż równanie x 6 5 x 4 Przygotowanie do poprawki klasa li Zadanie Rozwiąż nierówność x 4 x 5 Zadanie Oblicz: a) 9 b) 6 5 c) 64 4 d) 6 0 e) 8 f) 7 5 6 Zadanie 4 Zapisz podane liczby bez znaku

Bardziej szczegółowo

Stowarzyszenie Nauczycieli Matematyki

Stowarzyszenie Nauczycieli Matematyki WPISUJE ZDAJĄCY KOD PESEL Miejsce na naklejkę z kodem (podczas egzaminu w maju) PRÓBNY ARKUSZ MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 1. Sprawdź czy arkusz zawiera 13 stron (zadania 1-32). STYCZEŃ 2015

Bardziej szczegółowo

Rozkład materiału nauczania

Rozkład materiału nauczania Dział/l.p. Ilość godz. Typ szkoły: TECHNIKUM Zawód: TECHNIK USŁUG FRYZJERSKICH Rok szkolny 2017/2018 Przedmiot: MATEMATYKA Klasa: III 60 godzin numer programu T5/O/5/12 Rozkład materiału nauczania Temat

Bardziej szczegółowo

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI SPIS TREŚCI WSTĘP.................................................................. 8 1. LICZBY RZECZYWISTE Teoria............................................................ 11 Rozgrzewka 1.....................................................

Bardziej szczegółowo

MATERIAŁ ĆWICZENIOWY Z MATEMATYKI

MATERIAŁ ĆWICZENIOWY Z MATEMATYKI MATERIAŁ ĆWICZENIOWY Z MATEMATYKI STYCZEŃ 0 POZIOM PODSTAWOWY Czas pracy 70 minut Instrukcja dla zdającego. Sprawdź, czy arkusz zawiera 0 stron.. W zadaniach od. do 0. są podane odpowiedzi: A, B, C, D,

Bardziej szczegółowo

Matematyka rozszerzona matura 2017

Matematyka rozszerzona matura 2017 Matematyka rozszerzona matura 017 Zadanie 1 Liczba ( 3 + 3) jest równa A. B. 4 C. 3 D. 3 ( 3 + 3) = 3 ( 3)( + 3) + + 3 = A. 3 4 3 + + 3 = 4 1 = 4 = Zadanie. Nieskończony ciąg liczbowy jest określony wzorem

Bardziej szczegółowo

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć

Bardziej szczegółowo

Zagadnienia z matematyki dla klasy II oraz przykładowe zadania

Zagadnienia z matematyki dla klasy II oraz przykładowe zadania Zagadnienia z matematyki dla klasy II oraz przykładowe zadania FUNKCJA KWADRATOWA Wykres funkcji f (x) = ax Przesunięcie wykresu funkcji f(x) = ax o wektor Postać kanoniczna i postać ogólna funkcji kwadratowej

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera

Bardziej szczegółowo

Tematyka do egzaminu ustnego z matematyki. 3 semestr LO dla dorosłych

Tematyka do egzaminu ustnego z matematyki. 3 semestr LO dla dorosłych Tematyka do egzaminu ustnego z matematyki 3 semestr LO dla dorosłych I. Sumy algebraiczne 1. Dodawanie i odejmowanie sum algebraicznych 2. Mnożenie sum algebraicznych 3. Wzory skróconego mnożenia - zastosowanie

Bardziej szczegółowo

KORESPONDENCYJNY KURS PRZYGOTOWAWCZY Z MATEMATYKI

KORESPONDENCYJNY KURS PRZYGOTOWAWCZY Z MATEMATYKI KORESPONDENCYJNY KURS PRZYGOTOWAWCZY Z MATEMATYKI PRACA KONTROLNA nr 1 październik 1999 r 1. Stop składa się z 40% srebra próby 0,6, 30% srebra próby 0,7 oraz 1 kg srebra próby 0,8. Jaka jest waga i jaka

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 016 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dyskalkulia dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 017 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 14

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 2 CZERWCA 2015. Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 2 CZERWCA 2015. Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 013 KOD UZUPEŁNIA ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM

Bardziej szczegółowo

ZBIÓR PRZYKŁADOWYCH ZADAŃ Z MATEMATYKI POZIOM PODSTAWOWY ZADANIA ZAMKNIĘTE

ZBIÓR PRZYKŁADOWYCH ZADAŃ Z MATEMATYKI POZIOM PODSTAWOWY ZADANIA ZAMKNIĘTE ZBIÓR PRZYKŁADOWYCH ZADAŃ Z MATEMATYKI POZIOM PODSTAWOWY ZADANIA ZAMKNIĘTE Zad.1. (1p) Liczba 3 30 9 90 jest równa: A. 3 210 B. 3 300 C. 9 120 D. 27 2700 Zad.2. (1p) Liczba 3 8 3 3 9 2 jest równa: A. 3

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 014 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 1

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY MARZEC 016 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 17 stron

Bardziej szczegółowo

Rozwiązania zadań. Arkusz maturalny z matematyki nr 1 POZIOM PODSTAWOWY

Rozwiązania zadań. Arkusz maturalny z matematyki nr 1 POZIOM PODSTAWOWY Rozwiązania zadań Arkusz maturalny z matematyki nr POZIOM PODSTAWOWY Zadanie (pkt) Sposób I Skoro liczba jest środkiem przedziału, więc odległość punktu x od zapisujemy przy pomocy wartości bezwzględnej.

Bardziej szczegółowo

Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.

Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź. ZADANIA ZAMKNIĘTE W zadaniach -5 wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź. Zadanie. ( pkt) Wskaż rysunek, na którym zaznaczony jest zbiór wszystkich liczb rzeczywistych spełniających nierówność

Bardziej szczegółowo

2 cos α 4. 2 h) g) tgx. i) ctgx

2 cos α 4. 2 h) g) tgx. i) ctgx ZESTAW I - FUNKCJE TRYGONOMETRYCZNE - powtórzenie. Znajdź wartości pozostałych funkcji trygonometrycznych, jeśli: sin α b). Oblicz wartość wyrażenia: tg ctg 77 = b) sin 0 (cos ) = c) sin = d) [( sin 0

Bardziej szczegółowo

ZBIÓR ZADAŃ Z MATEMATYKI DLA KLASY II GIMNAZJUM W ZAKRESIE WYMAGAŃ KONIECZNYCH I PODSTAWOWYCH

ZBIÓR ZADAŃ Z MATEMATYKI DLA KLASY II GIMNAZJUM W ZAKRESIE WYMAGAŃ KONIECZNYCH I PODSTAWOWYCH ZBIÓR ZADAŃ Z MATEMATYKI DLA KLASY II GIMNAZJUM W ZAKRESIE WYMAGAŃ KONIECZNYCH I PODSTAWOWYCH Opracowała: nauczyciel matematyki mgr Małgorzata Drejka Legionowo 007 SPIS TREŚCI ALGEBRA potęgi i pierwiastki

Bardziej szczegółowo

PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P1 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron.. W zadaniach od 1. do 5. są podane 4 odpowiedzi:

Bardziej szczegółowo

EGZAMIN MATURALNY OD ROKU SZKOLNEGO

EGZAMIN MATURALNY OD ROKU SZKOLNEGO EGZAMIN MATURALNY OD ROKU SZKOLNEGO 204/205 MATEMATYKA POZIOM PODSTAWOWY PRZYKŁADOWY ZESTAW ZADAŃ (A) W czasie trwania egzaminu zdający może korzystać z zestawu wzorów matematycznych, linijki i cyrkla

Bardziej szczegółowo

ZAGADANIENIA NA EGZAMIN USTNY Z MATEMATYKI

ZAGADANIENIA NA EGZAMIN USTNY Z MATEMATYKI ZAGADANIENIA NA EGZAMIN USTNY Z MATEMATYKI SEMESTR I ZESTAW. Podaj liczbę przeciwną i odwrotną do liczby 2 2. Jak zmieniła się cena wyrobu po podwyżce o 20%, a następnie po obniżeniu otrzymanej ceny o

Bardziej szczegółowo

MINIMUM PROGRAMOWE DLA SŁUCHACZY CKU NR 1

MINIMUM PROGRAMOWE DLA SŁUCHACZY CKU NR 1 MINIMUM PROGRAMOWE DLA SŁUCHACZY CKU NR 1 Rozkład materiału nauczania wraz z celami kształcenia oraz osiągnięciami dla słuchaczy CKU Nr 1 ze specyficznymi potrzebami edukacyjnymi ( z podziałem na semestry

Bardziej szczegółowo

MATURA PODSTAWOWA nr 1 NOWA FORMUŁA, czas pracy 170 minut

MATURA PODSTAWOWA nr 1 NOWA FORMUŁA, czas pracy 170 minut MATURA PODSTAWOWA nr 1 NOWA FORMUŁA, czas pracy 170 minut Każde zadanie od początku do końca jest mojego autorstwa. Odkąd istnieje nowa matura, każde z zadań rozwiązałem na wiele sposobów. Zaznajomiłem

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 2017 poziom podstawowy

LUBELSKA PRÓBA PRZED MATURĄ 2017 poziom podstawowy LUELSK PRÓ PRZE MTURĄ 07 poziom podstawowy Schemat oceniania Uwaga: kceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania (podajemy kartotekę zadań, gdyż łatwiej będzie

Bardziej szczegółowo

Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KLUCZ PUNKTOWANIA ZADAŃ ZAMKNIĘTYCH B D C A B B A B A C D A

Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KLUCZ PUNKTOWANIA ZADAŃ ZAMKNIĘTYCH B D C A B B A B A C D A Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KLUCZ PUNKTOWANIA ZADAŃ ZAMKNIĘTYCH Nr zad Odp. 1 2 3 4 5 6 7 8 9 10 11 12 B D C A B B A B A C D A Nr zad Odp. 13 14 15

Bardziej szczegółowo

PRACA KONTROLNA nr 1

PRACA KONTROLNA nr 1 XXXIII KORESPONDENCYJNY KURS Z MATEMATYKI PRACA KONTROLNA nr 1 październik 2003r. 1. Podstawą trójkąta równoramiennego jest odcinek AB o końcach A( 1, 3), B(1, 1), a wierzchołek C tego trójkąta leży na

Bardziej szczegółowo

na postać kanoniczną, podaj współrzędne wierzchołka paraboli i określ czy jej ramiona są skierowane w górę czy w dół.

na postać kanoniczną, podaj współrzędne wierzchołka paraboli i określ czy jej ramiona są skierowane w górę czy w dół. Zadania na poprawkę dla sa f x x 1x na postać kanoniczną, podaj współrzędne wierzchołka paraboli i określ czy jej ramiona są skierowane w górę czy w dół. 1. Zamień postać ogólną funkcji kwadratowej 5.

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 011 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 15

Bardziej szczegółowo

UZUPEŁNIA ZDAJĄCY miejsce na naklejkę

UZUPEŁNIA ZDAJĄCY miejsce na naklejkę Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 017 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY DATA: 5 maja 017 r.

Bardziej szczegółowo

I Liceum Ogólnokształcące w Warszawie

I Liceum Ogólnokształcące w Warszawie I Liceum Ogólnokształcące w Warszawie Imię i Nazwisko Klasa Nauczyciel PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Liczba punktów Wynik procentowy Informacje dla ucznia 1 Sprawdź, czy zestaw

Bardziej szczegółowo

EGZAMIN MATURALNY OD ROKU SZKOLNEGO

EGZAMIN MATURALNY OD ROKU SZKOLNEGO EGZAMIN MATURALNY OD ROKU SZKOLNEGO 204/205 MATEMATYKA POZIOM PODSTAWOWY PRZYKŁADOWY ZESTAW ZADAŃ DLA OSÓB Z AUTYZMEM, W TYM Z ZESPOŁEM ASPERGERA (A2) W czasie trwania egzaminu zdający może korzystać z

Bardziej szczegółowo

odczytywać własności funkcji y = ax 2 na podstawie funkcji y = ax 2 szkicować wykresy funkcji postaci y = ax,

odczytywać własności funkcji y = ax 2 na podstawie funkcji y = ax 2 szkicować wykresy funkcji postaci y = ax, Funkcja kwadratowa Typ szkoły: ZASADNICZA SZKOŁA ZAWODOWA Zawód: FRYZJER, STOLARZ, MECHANIK POJAZDÓW SAMOCHODOWYCH, BLACHARZ SAMOCHODOWY I inne Rok szkolny 2012/2013 Przedmiot: MATEMATYKA Numer programu

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 2 KWIETNIA 204 CZAS PRACY: 70 MINUT Zadania zamknięte ZADANIE ( PKT) Liczba 2 2 3 2 3 jest równa

Bardziej szczegółowo

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h)

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h) Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony (według podręczników z serii MATeMAtyka) Klasa I (90 h) Temat Liczba godzin 1. Liczby rzeczywiste 15

Bardziej szczegółowo

Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności

Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności I. Pojęcie funkcji definicja różne sposoby opisu funkcji określenie dziedziny, zbioru wartości, miejsc zerowych. Należy

Bardziej szczegółowo

Wskazówki do zadań testowych. Matura 2016

Wskazówki do zadań testowych. Matura 2016 Wskazówki do zadań testowych. Matura 2016 Zadanie 1 la każdej dodatniej liczby a iloraz jest równy.. C.. Korzystamy ze wzoru Zadanie 2 Liczba jest równa.. 2 C.. 3 Zadanie 3 Liczby a i c są dodatnie. Liczba

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 2015

LUBELSKA PRÓBA PRZED MATURĄ 2015 1 MATEMATYKA - poziom podstawowy klasa 2 CZERWIEC 2015 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 17 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to

Bardziej szczegółowo

Dział I FUNKCJE I ICH WŁASNOŚCI

Dział I FUNKCJE I ICH WŁASNOŚCI MATEMATYKA ZAKRES PODSTAWOWY Rok szkolny 01/013 Klasa: II Nauczyciel: Mirosław Kołomyjski Dział I FUNKCJE I ICH WŁASNOŚCI Lp. Zagadnienie Osiągnięcia ucznia. 1. Podstawowe własności funkcji.. Podaje określenie

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 5 LUTEGO 017 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba x jest przybliżeniem

Bardziej szczegółowo

Zagadnienia na egzamin poprawkowy z matematyki - klasa I 1. Liczby rzeczywiste

Zagadnienia na egzamin poprawkowy z matematyki - klasa I 1. Liczby rzeczywiste Zagadnienia na egzamin poprawkowy z matematyki - klasa I 1. Liczby rzeczywiste Liczby naturalne Liczby całkowite. Liczby wymierne Liczby niewymierne Rozwinięcie dziesiętne liczby rzeczywistej Pierwiastek

Bardziej szczegółowo

1. FUNKCJE DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia

1. FUNKCJE DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia L.P. DZIAŁ Z PODRĘCZNIKA 1. FUNKCJE 2. POTĘGI I PIERWIASTKI NaCoBeZu kryteria sukcesu w języku ucznia 1. Wiem, co to jest układ współrzędnych, potrafię nazwać osie układu. 2. Rysuję układ współrzędnych

Bardziej szczegółowo

PRACA KONTROLNA nr 1

PRACA KONTROLNA nr 1 XXXV KORESPONDENCYJNY KURS Z MATEMATYKI PRACA KONTROLNA nr 1 październik 005r. 1. Niech f(x) = x + bx + 5. Wyznaczyć wszystkie wartości parametru b, dla których: a) wykres funkcji f jest symetryczny względem

Bardziej szczegółowo

1 wyznacza współrzędne punktów przecięcia prostej danej

1 wyznacza współrzędne punktów przecięcia prostej danej Wymagania edukacyjne z matematyki DLA II i III KLASY ZASADNICEJ SZKOŁY ZAWODOWEJ Gwiazdką * oznaczono te hasła i wymagania, które są rozszerzeniem podstawy programowej. Nauczyciel może je realizować jedynie

Bardziej szczegółowo

Wymagania z wiedzy i umiejętności na poszczególne stopnie szkolne z matematyki w Zasadniczej Szkole Zawodowej nr 14

Wymagania z wiedzy i umiejętności na poszczególne stopnie szkolne z matematyki w Zasadniczej Szkole Zawodowej nr 14 z wiedzy i umiejętności na poszczególne stopnie szkolne z matematyki w Zasadniczej Szkole Zawodowej nr 14 Liczby rzeczywiste Wiadomości i umiejętności rozpoznać liczby naturalne w tym pierwsze i złożone,

Bardziej szczegółowo

ZAKRES PODSTAWOWY CZĘŚĆ II. Wyrażenia wymierne

ZAKRES PODSTAWOWY CZĘŚĆ II. Wyrażenia wymierne CZĘŚĆ II ZAKRES PODSTAWOWY Wyrażenia wymierne Temat: Wielomiany-przypomnienie i poszerzenie wiadomości. (2 godz.) znać i rozumieć pojęcie jednomianu (2) znać i rozumieć pojęcie wielomianu stopnia n (2)

Bardziej szczegółowo

( ) Arkusz I Zadanie 1. Wartość bezwzględna Rozwiąż równanie. Naszkicujmy wykresy funkcji f ( x) = x + 3 oraz g ( x) 2x

( ) Arkusz I Zadanie 1. Wartość bezwzględna Rozwiąż równanie. Naszkicujmy wykresy funkcji f ( x) = x + 3 oraz g ( x) 2x Arkusz I Zadanie. Wartość bezwzględna Rozwiąż równanie x + 3 x 4 x 7. Naszkicujmy wykresy funkcji f ( x) x + 3 oraz g ( x) x 4 uwzględniając tylko ich miejsca zerowe i monotoniczność w ten sposób znajdziemy

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc

WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc 1, Ciągi zna definicję ciągu (ciągu liczbowego); potrafi wyznaczyć dowolny wyraz ciągu liczbowego określonego wzorem ogólnym;

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 00 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN

Bardziej szczegółowo

Przedmiotowe Ocenianie Z Matematyki Liceum Ogólnokształcące obowiązuje w roku szkolnym 2016 / 2017

Przedmiotowe Ocenianie Z Matematyki Liceum Ogólnokształcące obowiązuje w roku szkolnym 2016 / 2017 Przedmiotowe Ocenianie Z Matematyki Liceum Ogólnokształcące obowiązuje w roku szkolnym 2016 / 2017 1. Rok szkolny dzieli się na dwa semestry. Każdy semestr kończy się klasyfikacją. 2. Na początku roku

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI MARZEC ROK 017 PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 4 strony (zadania 1 34). Ewentualny brak

Bardziej szczegółowo

PRÓBNA MATURA Z MATEMATYKI Z NOWINAMI POZIOM PODSTAWOWY

PRÓBNA MATURA Z MATEMATYKI Z NOWINAMI POZIOM PODSTAWOWY UZUPEŁNIA ZDAJĄCY KOD PESEL PRÓBNA MATURA Z MATEMATYKI Z NOWINAMI POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT LICZBA PUNKTÓW DO UZYSKANIA: 50 Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera

Bardziej szczegółowo

1 + x 1 x 1 + x + 1 x. dla x 0.. Korzystając z otrzymanego wykresu wyznaczyć funkcję g(m) wyrażającą liczbę pierwiastków równania.

1 + x 1 x 1 + x + 1 x. dla x 0.. Korzystając z otrzymanego wykresu wyznaczyć funkcję g(m) wyrażającą liczbę pierwiastków równania. 10 1 Wykazać, że liczba 008 008 10 + + jest większa od Nie używając kalkulatora, porównać liczby a = log 5 log 0 + log oraz b = 6 5 Rozwiązać równanie x + 4y + x y + 1 = 4xy 4 W prostokątnym układzie współrzędnych

Bardziej szczegółowo

Wymagania kl. 3. Zakres podstawowy i rozszerzony

Wymagania kl. 3. Zakres podstawowy i rozszerzony Wymagania kl. 3 Zakres podstawowy i rozszerzony Temat lekcji Zakres treści Osiągnięcia ucznia 1. RACHUNEK PRAWDOPODOBIEŃSTWA 1. Reguła mnożenia reguła mnożenia ilustracja zbioru wyników doświadczenia za

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 89195 WYGENEROWANY AUTOMATYCZNIE W SERWISIE WWW.ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Punkty A = ( 6

Bardziej szczegółowo

1. Sprawdź, czy arkusz egzaminacyjny zawiera 14 stron (zadania ). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.

1. Sprawdź, czy arkusz egzaminacyjny zawiera 14 stron (zadania ). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin. Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY MARZEC 205 Instrukcja dla zdającego Czas pracy: 70 minut. Sprawdź, czy arkusz egzaminacyjny zawiera 4 stron

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 015 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY DATA: 5 sierpnia

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY (TECHNIKUM) 18 KWIETNIA 2015 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) 2+1 Liczba

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 4 MARCA 201 CZAS PRACY: 10 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Suma sześciu kolejnych liczb

Bardziej szczegółowo

Przykładowe zestawy pytań maturalnych z matematyki na egzamin ustny.

Przykładowe zestawy pytań maturalnych z matematyki na egzamin ustny. Przykładowe zestawy pytań maturalnych z matematyki na egzamin ustny Zestaw I 1) Przedstaw i omów postać kanoniczną i iloczynową funkcjikwadratowej Daną funkcję przedstaw w postaci kanonicznej: y = ( )(

Bardziej szczegółowo