Podstawy Informatyki Maszyna Turinga

Wielkość: px
Rozpocząć pokaz od strony:

Download "Podstawy Informatyki Maszyna Turinga"

Transkrypt

1 Podstawy Informatyki

2 Plan wykładu 1 Czym jest Programowanie maszyny Turinga Teza Churcha-Turinga 2 3 4

3 Czym jest Programowanie maszyny Turinga Teza Churcha-Turinga, 1936r. Stworzony w 1936 roku przez Alana Turinga model abstrakcyjnej maszyny obliczeniowej służący do analizy algorytmów. Składa się z: nieskończenie długiej taśmy podzielonej na pola, w których zapisane są symbole głowicy zaspisująco-odczytującej, będącej w jednym ze stanów, przesuwającej się nad taśmą. Podstawowe pojęcia: zbiór symboli, alfabet S = {s i : i = 1, 2,..., n} zbiór stanów maszyny Q = {q j : j = 1, 2,..., m} ruch głowicy R = {P, L, N}

4 Programowanie maszyny Turinga Czym jest Programowanie maszyny Turinga Teza Churcha-Turinga Algorytm dla maszyny Turinga zapisany jest za pomocą tablicy charakterystycznej. T q 0 q 1... q j... q m s 1... s i s k, q l, R s n..

5 Rozkaz maszyny Turinga Czym jest Programowanie maszyny Turinga Teza Churcha-Turinga (s i, q j ) (s k, q l, R) s i q j odczytany symbol na taśmie pod głowicą bieżący wewnętrzny stan głowicy s k q l nowy symbol, który ma być zapisany na taśmie nowy wewnętrzny stan głowicy R kierunek ruchu głowicy

6 Teza Churcha-Turinga Czym jest Programowanie maszyny Turinga Teza Churcha-Turinga Teza Churcha-Turinga Każdy algorytm może być zrealizowany przez odpowiednio zaprogramowaną maszynę Turinga. Wynika z tego, że: nawet najpotężniejszy superkomputer z wieloma najwymyślniejszymi językami programowania, interpretatorami, kompilatorami nie jest potężniejszy od domowego komputera z jego uproszczonym językiem programowania mając nieograniczoną ilość czasu i pamięci obydwa mogą rozwiązać te same problemy algorytmiczne, a żaden z nich nie może rozwiązać problemów nierozstrzygalnych (nieobliczalnych).

7 Schemat blokowy algorytmu Sprawdzanie poprawności napisu - sformułowanie problemu Na taśmie zapisano 3-literowy ciąg złożony z symboli: a, b i c. Tylko napis abc jest poprawny Podać algorytm rozpoznawania tego napisu

8 Schemat blokowy algorytmu Schemat blokowy algorytmu

9 Schemat blokowy algorytmu Założenie: Głowica na początku znajduje się nad pierwszym symbolem (z lewej). T q 1 q 2 q 3 q 4 q 5 a aq 2 P aq 5 N aq 5 N aq 5 N b bq 5 N bq 3 P bq 5 N bq 5 N c cq 5 N cq 5 N cq 4 N cq 4 N cq 5 N q 1 sprawdź czy stoisz nad a q 2 sprawdź czy stoisz nad b q 3 sprawdź czy stoisz nad c q 4 napis poprawny q 5 napis niepoprawny

10 Schemat blokowy algorytmu - napis niepoprawny T q 1 q 2 q 3 q 4 q 5 a aq 2 P aq 5 N aq 5 N aq 5 N b bq 5 N bq 3 P bq 5 N bq 5 N c cq 5 N cq 5 N cq 4 N cq 4 N G = q 1 a b b

11 Schemat blokowy algorytmu - napis niepoprawny T q 1 q 2 q 3 q 4 q 5 a aq 2 P aq 5 N aq 5 N aq 5 N b bq 5 N bq 3 P bq 5 N bq 5 N c cq 5 N cq 5 N cq 4 N cq 4 N G = q 2 a b b

12 Schemat blokowy algorytmu - napis niepoprawny T q 1 q 2 q 3 q 4 q 5 a aq 2 P aq 5 N aq 5 N aq 5 N b bq 5 N bq 3 P bq 5 N bq 5 N c cq 5 N cq 5 N cq 4 N cq 4 N G = q 3 a b b

13 Schemat blokowy algorytmu - napis niepoprawny T q 1 q 2 q 3 q 4 q 5 a aq 2 P aq 5 N aq 5 N aq 5 N b bq 5 N bq 3 P bq 5 N bq 5 N c cq 5 N cq 5 N cq 4 N cq 4 N G = q 5 a b b

14 - napis poprawny Schemat blokowy algorytmu T q 1 q 2 q 3 q 4 q 5 a aq 2 P aq 5 N aq 5 N aq 5 N b bq 5 N bq 3 P bq 5 N bq 5 N c cq 5 N cq 5 N cq 4 N cq 4 N G = q 1 a b c

15 - napis poprawny Schemat blokowy algorytmu T q 1 q 2 q 3 q 4 q 5 a aq 2 P aq 5 N aq 5 N aq 5 N b bq 5 N bq 3 P bq 5 N bq 5 N c cq 5 N cq 5 N cq 4 N cq 4 N G = q 2 a b c

16 - napis poprawny Schemat blokowy algorytmu T q 1 q 2 q 3 q 4 q 5 a aq 2 P aq 5 N aq 5 N aq 5 N b bq 5 N bq 3 P bq 5 N bq 5 N c cq 5 N cq 5 N cq 4 N cq 4 N G = q 3 a b c

17 - napis poprawny Schemat blokowy algorytmu T q 1 q 2 q 3 q 4 q 5 a aq 2 P aq 5 N aq 5 N aq 5 N b bq 5 N bq 3 P bq 5 N bq 5 N c cq 5 N cq 5 N cq 4 N cq 4 N G = q 4 a b c

18 System pozycyjny trójkowy Inkrementacja liczby trójkowej - sformułowanie problemu Na taśmie zapisano liczbę w systemie pozycyjnym trójkowym. Liczba otoczona jest znakami pustymi Φ. Głowica znajduje się na prawo od liczby. Podać algorytm inkremetujący tę liczbę.

19 System pozycyjny trójkowy System pozycyjny trójkowy Tylko napisy złożone z cyfr 0, 1, 2 są poprawne, np. (2101) 3 = = = = 64

20 System pozycyjny trójkowy Założenie: Głowica po wykonaniu algorytmu ma zatrzymać się na pierwszym znaku pustym Φ z lewej strony liczby. q 1 q 2 q 3 q 4 Φ Φq 1 L 1q 3 L Φq 4 N Φq 4 N 0 1q 3 L 1q 3 L 0q 3 L 1 2q 3 L 2q 3 L 1q 3 L 2 0q 2 L 0q 2 L 2q 3 L q 1 szukanie liczby i dodawanie q 2 dodawanie z przeniesiem q 3 przesunięcie głowicy na lewo q 4 stop

21 System pozycyjny trójkowy q 1 q 2 q 3 q 4 Φ Φq 1 L 1q 3 L Φq 4 N Φq 4 N 0 1q 3 L 1q 3 L 0q 3 L 1 2q 3 L 2q 3 L 1q 3 L 2 0q 2 L 0q 2 L 2q 3 L G = q 1 Φ Φ Φ

22 System pozycyjny trójkowy q 1 q 2 q 3 q 4 Φ Φq 1 L 1q 3 L Φq 4 N Φq 4 N 0 1q 3 L 1q 3 L 0q 3 L 1 2q 3 L 2q 3 L 1q 3 L 2 0q 2 L 0q 2 L 2q 3 L G = q 1 Φ Φ Φ

23 System pozycyjny trójkowy q 1 q 2 q 3 q 4 Φ Φq 1 L 1q 3 L Φq 4 N Φq 4 N 0 1q 3 L 1q 3 L 0q 3 L 1 2q 3 L 2q 3 L 1q 3 L 2 0q 2 L 0q 2 L 2q 3 L G = q 1 Φ Φ Φ

24 System pozycyjny trójkowy q 1 q 2 q 3 q 4 Φ Φq 1 L 1q 3 L Φq 4 N Φq 4 N 0 1q 3 L 1q 3 L 0q 3 L 1 2q 3 L 2q 3 L 1q 3 L 2 0q 2 L 0q 2 L 2q 3 L G = q 2 Φ Φ Φ

25 System pozycyjny trójkowy q 1 q 2 q 3 q 4 Φ Φq 1 L 1q 3 L Φq 4 N Φq 4 N 0 1q 3 L 1q 3 L 0q 3 L 1 2q 3 L 2q 3 L 1q 3 L 2 0q 2 L 0q 2 L 2q 3 L G = q 2 Φ Φ Φ

26 System pozycyjny trójkowy q 1 q 2 q 3 q 4 Φ Φq 1 L 1q 3 L Φq 4 N Φq 4 N 0 1q 3 L 1q 3 L 0q 3 L 1 2q 3 L 2q 3 L 1q 3 L 2 0q 2 L 0q 2 L 2q 3 L G = q 3 Φ Φ Φ

27 System pozycyjny trójkowy q 1 q 2 q 3 q 4 Φ Φq 1 L 1q 3 L Φq 4 N Φq 4 N 0 1q 3 L 1q 3 L 0q 3 L 1 2q 3 L 2q 3 L 1q 3 L 2 0q 2 L 0q 2 L 2q 3 L G = q 3 Φ Φ Φ

28 System pozycyjny trójkowy q 1 q 2 q 3 q 4 Φ Φq 1 L 1q 3 L Φq 4 N Φq 4 N 0 1q 3 L 1q 3 L 0q 3 L 1 2q 3 L 2q 3 L 1q 3 L 2 0q 2 L 0q 2 L 2q 3 L G = q 4 Φ Φ Φ

29 Zapis binarnych liczb całkowitych Zakres liczb w zapisie uzupełnieniowym do 2 Wartość bezwzględna liczby - sformułowanie problemu Na taśmie zapisano liczbę całkowitą ze znakiem w systemie pozycyjnym dwójkowym w zapisie uzupełnieniowym do 2. Liczba otoczona jest znakami pustymi Φ. Głowica znajduje się na lewo od liczby. Podać algorytm wyznaczający wartość bezwzględną tej liczby.

30 Zapis binarnych liczb całkowitych Zapis binarnych liczb całkowitych Zakres liczb w zapisie uzupełnieniowym do 2 Liczba binarna to napis złożony z cyfr 0, 1, np. (1101) 2 = = = 13 Znak reprezentowany w postaci dodatkowego bitu zwanego bitem znaku: 0 - liczba dodatnia, 1 - liczba ujemna. Najpopularniejsze formy zapisu: znak moduł, uzupełnieniowy do 1, uzupełnieniowy do 2.

31 Zapis binarnych liczb całkowitych Zapis binarnych liczb całkowitych Zakres liczb w zapisie uzupełnieniowym do 2 Liczba binarna to napis złożony z cyfr 0, 1, np. (1101) 2 = = = 13 Znak reprezentowany w postaci dodatkowego bitu zwanego bitem znaku: 0 - liczba dodatnia, 1 - liczba ujemna. Najpopularniejsze formy zapisu: znak moduł, uzupełnieniowy do 1, uzupełnieniowy do 2.

32 Zapis uzupełnieniowy do 2 Zapis binarnych liczb całkowitych Zakres liczb w zapisie uzupełnieniowym do 2 Liczba dodatnia (liczba bez znaku z dodatkowym bitem 0), np: 13 = (1101) 2 liczba bez znaku

33 Zapis uzupełnieniowy do 2 Zapis binarnych liczb całkowitych Zakres liczb w zapisie uzupełnieniowym do 2 Liczba dodatnia (liczba bez znaku z dodatkowym bitem 0), np: 13 = (1101) 2 liczba bez znaku + 13 = (01101) 2 liczba dodatnia ze znakiem

34 Zapis uzupełnieniowy do 2 Zapis binarnych liczb całkowitych Zakres liczb w zapisie uzupełnieniowym do 2 Liczba dodatnia (liczba bez znaku z dodatkowym bitem 0), np: 13 = (1101) 2 liczba bez znaku + 13 = (01101) 2 liczba dodatnia ze znakiem Liczba ujemna (zanegowana liczba bez znaku z dodaną jedynką i dodatkowym bitem 1), np.: 13 = (1101) 2 liczba bez znaku

35 Zapis uzupełnieniowy do 2 Zapis binarnych liczb całkowitych Zakres liczb w zapisie uzupełnieniowym do 2 Liczba dodatnia (liczba bez znaku z dodatkowym bitem 0), np: 13 = (1101) 2 liczba bez znaku + 13 = (01101) 2 liczba dodatnia ze znakiem Liczba ujemna (zanegowana liczba bez znaku z dodaną jedynką i dodatkowym bitem 1), np.: 13 = (1101) 2 liczba bez znaku (0010) 2 zanegowana liczba bez znaku (inwersja)

36 Zapis uzupełnieniowy do 2 Zapis binarnych liczb całkowitych Zakres liczb w zapisie uzupełnieniowym do 2 Liczba dodatnia (liczba bez znaku z dodatkowym bitem 0), np: 13 = (1101) 2 liczba bez znaku + 13 = (01101) 2 liczba dodatnia ze znakiem Liczba ujemna (zanegowana liczba bez znaku z dodaną jedynką i dodatkowym bitem 1), np.: 13 = (1101) 2 liczba bez znaku (0010) 2 zanegowana liczba bez znaku (inwersja) (0011) 2 z dodaną liczbą 1

37 Zapis uzupełnieniowy do 2 Zapis binarnych liczb całkowitych Zakres liczb w zapisie uzupełnieniowym do 2 Liczba dodatnia (liczba bez znaku z dodatkowym bitem 0), np: 13 = (1101) 2 liczba bez znaku + 13 = (01101) 2 liczba dodatnia ze znakiem Liczba ujemna (zanegowana liczba bez znaku z dodaną jedynką i dodatkowym bitem 1), np.: 13 = (1101) 2 liczba bez znaku (0010) 2 zanegowana liczba bez znaku (inwersja) (0011) 2 z dodaną liczbą 1 13 = (10011) 2 liczba ujemna ze znakiem

38 Zapis binarnych liczb całkowitych Zakres liczb w zapisie uzupełnieniowym do 2 Zakres liczb w zapisie uzupełnieniowym do 2 Zakres liczb 4-bitowych: dodatnich liczba binarna liczba dziesiętna

39 Zapis binarnych liczb całkowitych Zakres liczb w zapisie uzupełnieniowym do 2 Zakres liczb w zapisie uzupełnieniowym do 2 Zakres liczb 4-bitowych: dodatnich ujemnych liczba binarna liczba dziesiętna liczba binarna liczba dziesiętna

40 Zapis binarnych liczb całkowitych Zakres liczb w zapisie uzupełnieniowym do 2 Zakres liczb w zapisie uzupełnieniowym do 2 Zakres liczb 4-bitowych: dodatnich ujemnych liczba binarna liczba dziesiętna liczba binarna liczba dziesiętna Zakres liczb N-bitowych: [ 2 N 1 ; 2 N 1 1].

41 Zapis binarnych liczb całkowitych Zakres liczb w zapisie uzupełnieniowym do 2 Założenie: Głowica po wykonaniu algorytmu ma zatrzymać się na pierwszym znaku pustym Φ z lewej strony liczby. Jeśli liczba była dodatnia (bit znaku 0), to KONIEC. Jeśli liczba była ujemna (bit znaku 1), to dokonaj inwersji bitów i dodaj jedynkę.

42 Zapis binarnych liczb całkowitych Zakres liczb w zapisie uzupełnieniowym do 2 q 0 q 1 q 2 q 3 q 4 q 5 Φ Φq 0 P Φq 1 N Φq 3 L 0q 1 L Φq 1 N 0 0q 1 L 1q 2 P 1q 4 L 0q 5 L 0q 5 L 1 0q 2 P 0q 2 P 0q 3 L 1q 5 L 1q 5 L q 0 szukanie liczby i sprawdzanie znaku q 1 KONIEC q 2 negacja bitów q 3 dodawanie jedynki (negacja bitów aż do napotkania 0 włącznie) q 4 sprawdzenie czy zanegowane 0 nie było bitem znaku q 5 przesunięcie głowicy na lewo

Wstęp do informatyki- wykład 2

Wstęp do informatyki- wykład 2 MATEMATYKA 1 Wstęp do informatyki- wykład 2 Systemy liczbowe Treści prezentowane w wykładzie zostały oparte o: S. Prata, Język C++. Szkoła programowania. Wydanie VI, Helion, 2012 www.cplusplus.com Jerzy

Bardziej szczegółowo

Samodzielnie wykonaj następujące operacje: 13 / 2 = 30 / 5 = 73 / 15 = 15 / 23 = 13 % 2 = 30 % 5 = 73 % 15 = 15 % 23 =

Samodzielnie wykonaj następujące operacje: 13 / 2 = 30 / 5 = 73 / 15 = 15 / 23 = 13 % 2 = 30 % 5 = 73 % 15 = 15 % 23 = Systemy liczbowe Dla każdej liczby naturalnej x Î N oraz liczby naturalnej p >= 2 istnieją jednoznacznie wyznaczone: liczba n Î N oraz ciąg cyfr c 0, c 1,..., c n-1 (gdzie ck Î {0, 1,..., p - 1}) taki,

Bardziej szczegółowo

ARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010

ARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010 ARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010 Do zapisu liczby ze znakiem mamy tylko 8 bitów, pierwszy od lewej bit to bit znakowy, a pozostałem 7 to bity na liczbę. bit znakowy 1 0 1 1

Bardziej szczegółowo

Wielkości liczbowe. Wykład z Podstaw Informatyki dla I roku BO. Piotr Mika

Wielkości liczbowe. Wykład z Podstaw Informatyki dla I roku BO. Piotr Mika Wielkości liczbowe Wykład z Podstaw Informatyki dla I roku BO Piotr Mika Wprowadzenie, liczby naturalne Komputer to podstawowe narzędzie do wykonywania obliczeń Jeden bajt reprezentuje 0 oraz liczby naturalne

Bardziej szczegółowo

MASZYNA TURINGA UPRASZCZANIE DANYCH

MASZYNA TURINGA UPRASZCZANIE DANYCH MASZYNA TURINGA Maszyna Turinga jest prostym urządzeniem algorytmicznym, uderzająco prymitywnym w porównaniu z dzisiejszymi komputerami i językami programowania, a jednak na tyle silnym, że pozwala na

Bardziej szczegółowo

Wstęp do informatyki- wykład 1 Systemy liczbowe

Wstęp do informatyki- wykład 1 Systemy liczbowe 1 Wstęp do informatyki- wykład 1 Systemy liczbowe Treści prezentowane w wykładzie zostały oparte o: S. Prata, Język C++. Szkoła programowania. Wydanie VI, Helion, 2012 www.cplusplus.com Jerzy Grębosz,

Bardziej szczegółowo

Wielkości liczbowe. Wykład z Podstaw Informatyki. Piotr Mika

Wielkości liczbowe. Wykład z Podstaw Informatyki. Piotr Mika Wielkości liczbowe Wykład z Podstaw Informatyki Piotr Mika Wprowadzenie, liczby naturalne Komputer to podstawowe narzędzie do wykonywania obliczeń Jeden bajt reprezentuje oraz liczby naturalne od do 255

Bardziej szczegółowo

Arytmetyka binarna - wykład 6

Arytmetyka binarna - wykład 6 SWB - Arytmetyka binarna - wykład 6 asz 1 Arytmetyka binarna - wykład 6 Adam Szmigielski aszmigie@pjwstk.edu.pl SWB - Arytmetyka binarna - wykład 6 asz 2 Naturalny kod binarny (NKB) pozycja 7 6 5 4 3 2

Bardziej szczegółowo

Podstawy Informatyki

Podstawy Informatyki Podstawy Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 3 Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 1 / 42 Reprezentacja liczb całkowitych

Bardziej szczegółowo

Podstawy Informatyki. Inżynieria Ciepła, I rok. Wykład 5 Liczby w komputerze

Podstawy Informatyki. Inżynieria Ciepła, I rok. Wykład 5 Liczby w komputerze Podstawy Informatyki Inżynieria Ciepła, I rok Wykład 5 Liczby w komputerze Jednostki informacji Bit (ang. bit) (Shannon, 948) Najmniejsza ilość informacji potrzebna do określenia, który z dwóch równie

Bardziej szczegółowo

Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych

Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1 Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1. Podstawowe operacje logiczne dla cyfr binarnych Jeśli cyfry 0 i 1 potraktujemy tak, jak wartości logiczne fałsz i prawda, to działanie

Bardziej szczegółowo

SYSTEMY LICZBOWE. Zapis w systemie dziesiętnym

SYSTEMY LICZBOWE. Zapis w systemie dziesiętnym SYSTEMY LICZBOWE 1. Systemy liczbowe Najpopularniejszym systemem liczenia jest system dziesiętny, który doskonale sprawdza się w życiu codziennym. Jednak jego praktyczna realizacja w elektronice cyfrowej

Bardziej szczegółowo

Wykład 2. Informatyka Stosowana. 10 października Informatyka Stosowana Wykład 2 10 października / 42

Wykład 2. Informatyka Stosowana. 10 października Informatyka Stosowana Wykład 2 10 października / 42 Wykład 2 Informatyka Stosowana 10 października 2016 Informatyka Stosowana Wykład 2 10 października 2016 1 / 42 Systemy pozycyjne Informatyka Stosowana Wykład 2 10 października 2016 2 / 42 Definicja : system

Bardziej szczegółowo

Wykład 2. Informatyka Stosowana. 9 października Informatyka Stosowana Wykład 2 9 października / 42

Wykład 2. Informatyka Stosowana. 9 października Informatyka Stosowana Wykład 2 9 października / 42 Wykład 2 Informatyka Stosowana 9 października 2017 Informatyka Stosowana Wykład 2 9 października 2017 1 / 42 Systemy pozycyjne Informatyka Stosowana Wykład 2 9 października 2017 2 / 42 Definicja : system

Bardziej szczegółowo

SYSTEMY LICZBOWE 275,538 =

SYSTEMY LICZBOWE 275,538 = SYSTEMY LICZBOWE 1. Systemy liczbowe Najpopularniejszym systemem liczenia jest system dziesiętny, który doskonale sprawdza się w życiu codziennym. Jednak jego praktyczna realizacja w elektronice cyfrowej

Bardziej szczegółowo

Kod U2 Opracował: Andrzej Nowak

Kod U2 Opracował: Andrzej Nowak PODSTAWY TEORII UKŁADÓW CYFROWYCH Kod U2 Opracował: Andrzej Nowak Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz http://pl.wikipedia.org/ System zapisu liczb ze znakiem opisany w poprzednim

Bardziej szczegółowo

Zapis liczb binarnych ze znakiem

Zapis liczb binarnych ze znakiem Zapis liczb binarnych ze znakiem W tej prezentacji: Zapis Znak-Moduł (ZM) Zapis uzupełnień do 1 (U1) Zapis uzupełnień do 2 (U2) Zapis Znak-Moduł (ZM) Koncepcyjnie zapis znak - moduł (w skrócie ZM - ang.

Bardziej szczegółowo

Kod znak-moduł. Wartość liczby wynosi. Reprezentacja liczb w kodzie ZM w 8-bitowym formacie:

Kod znak-moduł. Wartość liczby wynosi. Reprezentacja liczb w kodzie ZM w 8-bitowym formacie: Wykład 3 3-1 Reprezentacja liczb całkowitych ze znakiem Do przedstawienia liczb całkowitych ze znakiem stosowane są następujące kody: - ZM (znak-moduł) - U1 (uzupełnienie do 1) - U2 (uzupełnienie do 2)

Bardziej szczegółowo

Zestaw 3. - Zapis liczb binarnych ze znakiem 1

Zestaw 3. - Zapis liczb binarnych ze znakiem 1 Zestaw 3. - Zapis liczb binarnych ze znakiem 1 Zapis znak - moduł (ZM) Zapis liczb w systemie Znak - moduł Znak liczby o n bitach zależy od najstarszego bitu b n 1 (tzn. cyfry o najwyższej pozycji): b

Bardziej szczegółowo

Naturalny kod binarny (NKB)

Naturalny kod binarny (NKB) SWB - Arytmetyka binarna - wykład 6 asz 1 Naturalny kod binarny (NKB) pozycja 7 6 5 4 3 2 1 0 wartość 2 7 2 6 2 5 2 4 2 3 2 2 2 1 2 0 wartość 128 64 32 16 8 4 2 1 bity b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 System

Bardziej szczegółowo

Pracownia Komputerowa wykład VI

Pracownia Komputerowa wykład VI Pracownia Komputerowa wykład VI dr Magdalena Posiadała-Zezula http://www.fuw.edu.pl/~mposiada 1 Przypomnienie 125 (10) =? (2) Liczby całkowite : Operacja modulo % reszta z dzielenia: 125%2=62 reszta 1

Bardziej szczegółowo

1.1. Pozycyjne systemy liczbowe

1.1. Pozycyjne systemy liczbowe 1.1. Pozycyjne systemy liczbowe Systemami liczenia nazywa się sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach. Dla dowolnego

Bardziej szczegółowo

O ALGORYTMACH I MASZYNACH TURINGA

O ALGORYTMACH I MASZYNACH TURINGA O ALGORYTMACH I MASZYNACH TURINGA ALGORYTM (objaśnienie ogólne) Algorytm Pojęcie o rodowodzie matematycznym, oznaczające współcześnie precyzyjny schemat mechanicznej lub maszynowej realizacji zadań określonego

Bardziej szczegółowo

Wstęp do informatyki. Pojęcie liczebności. Zapis liczb. Liczenie bez liczebników. Podstawy arytmetyki komputerowej. Cezary Bolek

Wstęp do informatyki. Pojęcie liczebności. Zapis liczb. Liczenie bez liczebników. Podstawy arytmetyki komputerowej. Cezary Bolek Pojęcie liczebności Wstęp do informatyki Podstawy arytmetyki komputerowej Cezary Bolek cbolek@ki.uni.lodz.pl Uniwersytet Łódzki Wydział Zarządzania Katedra Informatyki Naturalna zdolność człowieka do postrzegania

Bardziej szczegółowo

9 10 = U1. Przykład dla liczby dziesiętnej ( 9): negacja 1001= =10110 U1. Podsumowując: w zapisie dziesiętnym

9 10 = U1. Przykład dla liczby dziesiętnej ( 9): negacja 1001= =10110 U1. Podsumowując: w zapisie dziesiętnym 2 Egzamin maturalny z informatyki Zadanie 1. Liczba binarna (8 pkt) Kod uzupełnień do jedności to jeden ze sposobów maszynowego zapisu liczb całkowitych, tradycyjnie oznaczany skrótem U1. Zapis liczb całkowitych

Bardziej szczegółowo

ARYTMETYKA BINARNA. Dziesiątkowy system pozycyjny nie jest jedynym sposobem kodowania liczb z jakim mamy na co dzień do czynienia.

ARYTMETYKA BINARNA. Dziesiątkowy system pozycyjny nie jest jedynym sposobem kodowania liczb z jakim mamy na co dzień do czynienia. ARYTMETYKA BINARNA ROZWINIĘCIE DWÓJKOWE Jednym z najlepiej znanych sposobów kodowania informacji zawartej w liczbach jest kodowanie w dziesiątkowym systemie pozycyjnym, w którym dla przedstawienia liczb

Bardziej szczegółowo

Systemy liczbowe. 1. Przedstawić w postaci sumy wag poszczególnych cyfr liczbę rzeczywistą R = (10).

Systemy liczbowe. 1. Przedstawić w postaci sumy wag poszczególnych cyfr liczbę rzeczywistą R = (10). Wprowadzenie do inżynierii przetwarzania informacji. Ćwiczenie 1. Systemy liczbowe Cel dydaktyczny: Poznanie zasad reprezentacji liczb w systemach pozycyjnych o różnych podstawach. Kodowanie liczb dziesiętnych

Bardziej szczegółowo

EGZAMIN MATURALNY 2011 INFORMATYKA

EGZAMIN MATURALNY 2011 INFORMATYKA Centralna Komisja Egzaminacyjna w Warszawie EGZAMIN MATURALNY 2011 INFORMATYKA POZIOM PODSTAWOWY MAJ 2011 2 Zadanie 1. a) (0 1) Egzamin maturalny z informatyki poziom podstawowy CZĘŚĆ I Obszar standardów

Bardziej szczegółowo

Liczby rzeczywiste są reprezentowane w komputerze przez liczby zmiennopozycyjne. Liczbę k można przedstawid w postaci:

Liczby rzeczywiste są reprezentowane w komputerze przez liczby zmiennopozycyjne. Liczbę k można przedstawid w postaci: Reprezentacja liczb rzeczywistych w komputerze. Liczby rzeczywiste są reprezentowane w komputerze przez liczby zmiennopozycyjne. Liczbę k można przedstawid w postaci: k = m * 2 c gdzie: m częśd ułamkowa,

Bardziej szczegółowo

Wstęp do informatyki. Pojęcie liczebności. Liczenie bez liczebników. Podstawy arytmetyki komputerowej. Cezary Bolek

Wstęp do informatyki. Pojęcie liczebności. Liczenie bez liczebników. Podstawy arytmetyki komputerowej. Cezary Bolek Wstęp do informatyki Podstawy arytmetyki komputerowej Cezary Bolek cbolek@ki.uni.lodz.pl Uniwersytet Łódzki Wydział Zarządzania Katedra Informatyki Pojęcie liczebności Naturalna zdolność człowieka do postrzegania

Bardziej szczegółowo

System liczbowy jest zbiorem reguł określających jednolity sposób zapisu i nazewnictwa liczb.

System liczbowy jest zbiorem reguł określających jednolity sposób zapisu i nazewnictwa liczb. 2. Arytmetyka komputera. Systemy zapisu liczb: dziesietny, dwójkowy (binarny), ósemkowy, szesnatskowy. Podstawowe operacje arytmetyczne na liczbach binarnych. Zapis liczby binarnej ze znakiem. Reprezentacja

Bardziej szczegółowo

Wstęp do programowania. Reprezentacje liczb. Liczby naturalne, całkowite i rzeczywiste w układzie binarnym

Wstęp do programowania. Reprezentacje liczb. Liczby naturalne, całkowite i rzeczywiste w układzie binarnym Wstęp do programowania Reprezentacje liczb Liczby naturalne, całkowite i rzeczywiste w układzie binarnym System dwójkowy W komputerach stosuje się dwójkowy system pozycyjny do reprezentowania zarówno liczb

Bardziej szczegółowo

Turing i jego maszyny

Turing i jego maszyny Turing Magdalena Lewandowska Politechnika Śląska, wydział MS, semestr VI 20 kwietnia 2016 1 Kim był Alan Turing? Biografia 2 3 Mrówka Langtona Bomba Turinga 4 Biografia Kim był Alan Turing? Biografia Alan

Bardziej szczegółowo

Techniki multimedialne

Techniki multimedialne Techniki multimedialne Digitalizacja podstawą rozwoju systemów multimedialnych. Digitalizacja czyli obróbka cyfrowa oznacza przetwarzanie wszystkich typów informacji - słów, dźwięków, ilustracji, wideo

Bardziej szczegółowo

Arytmetyka. Arytmetyka. Magdalena Lemańska. Magdalena Lemańska,

Arytmetyka. Arytmetyka. Magdalena Lemańska. Magdalena Lemańska, Arytmetyka Magdalena Lemańska System dziesiętny System dziesiętny Weźmy liczbę 178. Składa się ona z jednej setki, siedmiu dziesiątek i ośmiu jedności. System dziesiętny System dziesiętny Weźmy liczbę

Bardziej szczegółowo

Pozycyjny system liczbowy

Pozycyjny system liczbowy Arytmetyka binarna Pozycyjny system liczbowy w pozycyjnych systemach liczbowych wkład danego symbolu do wartości liczby jest określony zarówno przez sam symbol, jak i jego pozycję w liczbie i tak np. w

Bardziej szczegółowo

Złożoność obliczeniowa zadania, zestaw 2

Złożoność obliczeniowa zadania, zestaw 2 Złożoność obliczeniowa zadania, zestaw 2 Określanie złożoności obliczeniowej algorytmów, obliczanie pesymistycznej i oczekiwanej złożoności obliczeniowej 1. Dana jest tablica jednowymiarowa A o rozmiarze

Bardziej szczegółowo

Arytmetyka liczb binarnych

Arytmetyka liczb binarnych Wartość dwójkowej liczby stałoprzecinkowej Wartość dziesiętna stałoprzecinkowej liczby binarnej Arytmetyka liczb binarnych b n-1...b 1 b 0,b -1 b -2...b -m = b n-1 2 n-1 +... + b 1 2 1 + b 0 2 0 + b -1

Bardziej szczegółowo

Wojewódzki Przedmiotowy Konkurs z informatyki dla uczniów szkół gimnazjalnych ETAP REJONOWY 2010/2011 TEST

Wojewódzki Przedmiotowy Konkurs z informatyki dla uczniów szkół gimnazjalnych ETAP REJONOWY 2010/2011 TEST TEST. Test składa się z 35 zadań. Na jego rozwiązanie masz 90 minut. W każdym zadaniu wybierz jedną, najlepszą według Ciebie odpowiedź i zaznacz na karcie odpowiedzi znakiem x. Do dyspozycji masz wszystkie

Bardziej szczegółowo

Pracownia Komputerowa wykład V

Pracownia Komputerowa wykład V Pracownia Komputerowa wykład V dr Magdalena Posiadała-Zezula http://www.fuw.edu.pl/~mposiada/pk16 1 Reprezentacje liczb i znaków! Liczby:! Reprezentacja naturalna nieujemne liczby całkowite naturalny system

Bardziej szczegółowo

Podstawy Informatyki dla Nauczyciela

Podstawy Informatyki dla Nauczyciela Podstawy Informatyki dla Nauczyciela Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 2 Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki dla Nauczyciela Wykład 2 1 / 1 Informacja

Bardziej szczegółowo

Stan wysoki (H) i stan niski (L)

Stan wysoki (H) i stan niski (L) PODSTAWY Przez układy cyfrowe rozumiemy układy, w których w każdej chwili występują tylko dwa (zwykle) możliwe stany, np. tranzystor, jako element układu cyfrowego, może być albo w stanie nasycenia, albo

Bardziej szczegółowo

Hierarchia Chomsky ego Maszyna Turinga

Hierarchia Chomsky ego Maszyna Turinga Hierarchia Chomsky ego Maszyna Turinga Języki formalne i automaty Dr inż. Janusz Majewski Katedra Informatyki Gramatyka Gramatyką G nazywamy czwórkę uporządkowaną gdzie: G = V skończony zbiór

Bardziej szczegółowo

INFORMATYKA. Zajęcia organizacyjne. Arytmetyka komputerowa.

INFORMATYKA. Zajęcia organizacyjne. Arytmetyka komputerowa. INFORMATYKA Zajęcia organizacyjne Arytmetyka komputerowa http://www.infoceram.agh.edu.pl http://home.agh.edu.pl/~grzesik/ KONSULTACJE Zbigniew Grzesik środa, 9 ; A-3, p. 2 tel.: 67-249 e-mail: grzesik@agh.edu.pl

Bardziej szczegółowo

Kod uzupełnień do dwóch jest najczęściej stosowanym systemem zapisu liczb ujemnych wśród systemów binarnych.

Kod uzupełnień do dwóch jest najczęściej stosowanym systemem zapisu liczb ujemnych wśród systemów binarnych. Kod uzupełnień do dwóch jest najczęściej stosowanym systemem zapisu liczb ujemnych wśród systemów binarnych. Jeśli bit znaku przyjmie wartość 0 to liczba jest dodatnia lub posiada wartość 0. Jeśli bit

Bardziej szczegółowo

Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015

Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 1 Metody numeryczne Dział matematyki Metody rozwiązywania problemów matematycznych za pomocą operacji na liczbach. Otrzymywane

Bardziej szczegółowo

LABORATORIUM PROCESORY SYGNAŁOWE W AUTOMATYCE PRZEMYSŁOWEJ. Zasady arytmetyki stałoprzecinkowej oraz operacji arytmetycznych w formatach Q

LABORATORIUM PROCESORY SYGNAŁOWE W AUTOMATYCE PRZEMYSŁOWEJ. Zasady arytmetyki stałoprzecinkowej oraz operacji arytmetycznych w formatach Q LABORAORIUM PROCESORY SYGAŁOWE W AUOMAYCE PRZEMYSŁOWEJ Zasady arytmetyki stałoprzecinkowej oraz operacji arytmetycznych w formatach Q 1. Zasady arytmetyki stałoprzecinkowej. Kody stałopozycyjne mają ustalone

Bardziej szczegółowo

Dr inż. Grażyna KRUPIŃSKA. D-10 pokój 227 WYKŁAD 1 WSTĘP DO INFORMATYKI

Dr inż. Grażyna KRUPIŃSKA.  D-10 pokój 227 WYKŁAD 1 WSTĘP DO INFORMATYKI Dr inż. Grażyna KRUPIŃSKA Grazyna.Krupinska@fis.agh.edu.pl http://orion.fis.agh.edu.pl/~grazyna/ D-10 pokój 227 WYKŁAD 1 WSTĘP DO INFORMATYKI Plan wykładu 2 Wprowadzenie, trochę historii, systemy liczbowe

Bardziej szczegółowo

RODZAJE INFORMACJI. Informacje analogowe. Informacje cyfrowe. U(t) U(t) Umax. Umax. R=(0,Umax) nieskończony zbiór możliwych wartości. Umax.

RODZAJE INFORMACJI. Informacje analogowe. Informacje cyfrowe. U(t) U(t) Umax. Umax. R=(0,Umax) nieskończony zbiór możliwych wartości. Umax. RODZAJE INFORMACJI Informacje analogowe U(t) Umax Umax 0 0 R=(0,Umax) nieskończony zbiór możliwych wartości WE MASZYNA ANALOGOWA WY Informacje cyfrowe U(t) Umaxq Umax R=(U, 2U, 3U, 4U) # # MASZYNA # CYFROWA

Bardziej szczegółowo

1259 (10) = 1 * * * * 100 = 1 * * * *1

1259 (10) = 1 * * * * 100 = 1 * * * *1 Zamiana liczba zapisanych w dowolnym systemie na system dziesiętny: W systemie pozycyjnym o podstawie 10 wartości kolejnych cyfr odpowiadają kolejnym potęgom liczby 10 licząc od strony prawej i numerując

Bardziej szczegółowo

Wstęp do Informatyki

Wstęp do Informatyki Wstęp do Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 4 Bożena Woźna-Szcześniak (AJD) Wstęp do Informatyki Wykład 4 1 / 1 DZIELENIE LICZB BINARNYCH Dzielenie

Bardziej szczegółowo

MNOŻENIE W SYSTEMACH UZUPEŁNIENIOWYCH PEŁNYCH (algorytm uniwersalny)

MNOŻENIE W SYSTEMACH UZUPEŁNIENIOWYCH PEŁNYCH (algorytm uniwersalny) MNOŻENIE W SYSTEMACH UZUPEŁNIENIOWYCH PEŁNYCH (algorytm uniwersalny) SPOSÓB 1 (z rozszerzeniem mnożnika): Algorytm jak zwykle jest prosty: lewostronne rozszerzenie mnożnej o kilka cyfr (na pewno wystarczy

Bardziej szczegółowo

L6.1 Systemy liczenia stosowane w informatyce

L6.1 Systemy liczenia stosowane w informatyce L6.1 Systemy liczenia stosowane w informatyce Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Publikacja jest dystrybuowana bezpłatnie Program Operacyjny Kapitał

Bardziej szczegółowo

Arytmetyka komputera. Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka. Opracował: Kamil Kowalski klasa III TI

Arytmetyka komputera. Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka. Opracował: Kamil Kowalski klasa III TI Arytmetyka komputera Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka Opracował: Kamil Kowalski klasa III TI Spis treści 1. Jednostki informacyjne 2. Systemy liczbowe 2.1. System

Bardziej szczegółowo

Cyfrowy zapis informacji

Cyfrowy zapis informacji F1-1 Cyfrowy zapis informacji Alfabet: uporządkowany zbiór znaków, np. A = {a,b,..., z} Słowa (ciągi) informacyjne: łańcuchy znakowe, np. A i = gdtr Długość słowa n : liczba znaków słowa, np. n(sbdy) =

Bardziej szczegółowo

SYSTEMY LICZBOWE. SYSTEMY POZYCYJNE: dziesiętny (arabski): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 rzymski: I, II, III, V, C, M

SYSTEMY LICZBOWE. SYSTEMY POZYCYJNE: dziesiętny (arabski): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 rzymski: I, II, III, V, C, M SYSTEMY LICZBOWE SYSTEMY POZYCYJNE: dziesiętny (arabski):,, 2, 3, 4, 5, 6, 7, 8, 9 rzymski: I, II, III, V, C, M System pozycyjno wagowy: na przykład liczba 444 4 4 4 4 4 4 Wagi systemu dziesiętnego:,,,,...

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI

EGZAMIN MATURALNY Z INFORMATYKI Miejsce na naklejkę z kodem (Wpisuje zdający przed rozpoczęciem pracy) KOD ZDAJĄCEGO MIN-W1D1P-021 EGZAMIN MATURALNY Z INFORMATYKI Czas pracy 90 minut ARKUSZ I STYCZEŃ ROK 2003 Instrukcja dla zdającego

Bardziej szczegółowo

Pracownia Komputerowa wyk ad VI

Pracownia Komputerowa wyk ad VI Pracownia Komputerowa wyk ad VI dr Magdalena Posiada a-zezula Magdalena.Posiadala@fuw.edu.pl http://www.fuw.edu.pl/~mposiada Magdalena.Posiadala@fuw.edu.pl 1 Przypomnienie 125 (10) =? (2) Liczby ca kowite

Bardziej szczegółowo

Języki, automaty i obliczenia

Języki, automaty i obliczenia Języki, automaty i obliczenia Wykład 10: Maszyny Turinga Sławomir Lasota Uniwersytet Warszawski 29 kwietnia 2015 Plan Maszyny Turinga (Niedeterministyczna) maszyna Turinga M = (A, Q, q 0, F, T, B, δ) A

Bardziej szczegółowo

Algorytmy i struktury danych. wykład 2

Algorytmy i struktury danych. wykład 2 Plan wykładu: Pojęcie algorytmu. Projektowanie wstępujące i zstępujące. Rekurencja. Pojęcie algorytmu Pojęcie algorytmu Algorytm skończony zbiór operacji, koniecznych do wykonania zadania z pewnej klasy

Bardziej szczegółowo

Podstawy Informatyki

Podstawy Informatyki Podstawy Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 5 Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 5 1 / 23 LICZBY RZECZYWISTE - Algorytm Hornera

Bardziej szczegółowo

Alan M. TURING. Matematyk u progu współczesnej informatyki

Alan M. TURING. Matematyk u progu współczesnej informatyki Alan M. TURING n=0 1 n! Matematyk u progu współczesnej informatyki Wykład 5. Alan Turing u progu współczesnej informatyki O co pytał Alan TURING? Czym jest algorytm? Czy wszystkie problemy da się rozwiązać

Bardziej szczegółowo

Pracownia Komputerowa wykład IV

Pracownia Komputerowa wykład IV Pracownia Komputerowa wykład IV dr Magdalena Posiadała-Zezula http://www.fuw.edu.pl/~mposiada/pk16 1 Reprezentacje liczb i znaków! Liczby:! Reprezentacja naturalna nieujemne liczby całkowite naturalny

Bardziej szczegółowo

Wprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne

Wprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne Wprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne 1. Bit Pozycja rejestru lub komórki pamięci służąca do przedstawiania (pamiętania) cyfry w systemie (liczbowym)

Bardziej szczegółowo

Wstęp do informatyki- wykład 1

Wstęp do informatyki- wykład 1 MATEMATYKA 1 Wstęp do informatyki- wykład 1 Systemy liczbowe Treści prezentowane w wykładzie zostały oparte o: S. Prata, Język C++. Szkoła programowania. Wydanie VI, Helion, 2012 www.cplusplus.com Jerzy

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI MAJ 2011 POZIOM PODSTAWOWY CZĘŚĆ I WYBRANE: Czas pracy: 75 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z INFORMATYKI MAJ 2011 POZIOM PODSTAWOWY CZĘŚĆ I WYBRANE: Czas pracy: 75 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY

Bardziej szczegółowo

Systemy zapisu liczb.

Systemy zapisu liczb. Systemy zapisu liczb. Cele kształcenia: Zapoznanie z systemami zapisu liczb: dziesiętny, dwójkowy, ósemkowy, szesnastkowy. Zdobycie umiejętności wykonywania działań na liczbach w różnych systemach. Zagadnienia:

Bardziej szczegółowo

Układy arytmetyczne. Joanna Ledzińska III rok EiT AGH 2011

Układy arytmetyczne. Joanna Ledzińska III rok EiT AGH 2011 Układy arytmetyczne Joanna Ledzińska III rok EiT AGH 2011 Plan prezentacji Metody zapisu liczb ze znakiem Układy arytmetyczne: Układy dodające Półsumator Pełny sumator Półsubtraktor Pełny subtraktor Układy

Bardziej szczegółowo

Arytmetyka stałopozycyjna

Arytmetyka stałopozycyjna Wprowadzenie do inżynierii przetwarzania informacji. Ćwiczenie 3. Arytmetyka stałopozycyjna Cel dydaktyczny: Nabycie umiejętności wykonywania podstawowych operacji arytmetycznych na liczbach stałopozycyjnych.

Bardziej szczegółowo

Maszyna Turinga Złożoność obliczeniowa

Maszyna Turinga Złożoność obliczeniowa Maszyna Turinga Złożoność obliczeniowa Weryfikacja poprawności programu W celu uniezależnienia się od typu komputera służącego do realizowania obliczeń, musimy się posłużyć ogólnym abstrakcyjnym modelem

Bardziej szczegółowo

Kodowanie liczb całkowitych w systemach komputerowych

Kodowanie liczb całkowitych w systemach komputerowych Kodowanie liczb całkowitych w systemach komputerowych System pozycyjny Systemy addytywne znaczenie historyczne Systemy pozycyjne r podstawa systemu liczbowego (radix) A wartość liczby a - cyfra i pozycja

Bardziej szczegółowo

Maszyna Turinga (Algorytmy Część III)

Maszyna Turinga (Algorytmy Część III) Maszyna Turinga (Algorytmy Część III) wer. 9 z drobnymi modyfikacjami! Wojciech Myszka 2018-12-18 08:22:34 +0100 Upraszczanie danych Komputery są coraz szybsze i sprawniejsze. Na potrzeby rozważań naukowych

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI MAJ 2013 POZIOM ROZSZERZONY WYBRANE: CZĘŚĆ I. Czas pracy: 90 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z INFORMATYKI MAJ 2013 POZIOM ROZSZERZONY WYBRANE: CZĘŚĆ I. Czas pracy: 90 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WISUJE ZDAJĄCY ESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY

Bardziej szczegółowo

2 Arytmetyka. d r 2 r + d r 1 2 r 1...d d 0 2 0,

2 Arytmetyka. d r 2 r + d r 1 2 r 1...d d 0 2 0, 2 Arytmetyka Niech b = d r d r 1 d 1 d 0 będzie zapisem liczby w systemie dwójkowym Zamiana zapisu liczby b na system dziesiętny odbywa się poprzez wykonanie dodawania d r 2 r + d r 1 2 r 1 d 1 2 1 + d

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Architektura komputerów Wykład 4 Jan Kazimirski 1 Reprezentacja danych 2 Plan wykładu Systemy liczbowe Zapis dwójkowy liczb całkowitych Działania arytmetyczne Liczby rzeczywiste Znaki i łańcuchy znaków

Bardziej szczegółowo

MODELOWANIE RZECZYWISTOŚCI

MODELOWANIE RZECZYWISTOŚCI MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/ Podręcznik Iwo Białynicki-Birula Iwona

Bardziej szczegółowo

ZADANIE 1. Rozwiązanie:

ZADANIE 1. Rozwiązanie: EUROELEKTR Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 200/20 Rozwiązania zadań dla grupy teleinformatycznej na zawody II. stopnia ZNIE ramka logiczna w technologii MOS składa

Bardziej szczegółowo

Maszyna Turinga. Algorytm. czy program???? Problem Hilberta: Przykłady algorytmów. Cechy algorytmu: Pojęcie algorytmu

Maszyna Turinga. Algorytm. czy program???? Problem Hilberta: Przykłady algorytmów. Cechy algorytmu: Pojęcie algorytmu Problem Hilberta: 9 Czy istnieje ogólna mechaniczna procedura, która w zasadzie pozwoliłaby nam po kolei rozwiązać wszystkie matematyczne problemy (należące do odpowiednio zdefiniowanej klasy)? 2 Przykłady

Bardziej szczegółowo

PROBLEMY NIEROZSTRZYGALNE

PROBLEMY NIEROZSTRZYGALNE PROBLEMY NIEROZSTRZYGALNE Zestaw 1: T Przykład - problem domina T Czy podanym zestawem kafelków można pokryć dowolny płaski obszar zachowując odpowiedniość kolorów na styku kafelków? (dysponujemy nieograniczoną

Bardziej szczegółowo

Informatyka kodowanie liczb. dr hab. inż. Mikołaj Morzy

Informatyka kodowanie liczb. dr hab. inż. Mikołaj Morzy Informatyka kodowanie liczb dr hab. inż. Mikołaj Morzy plan wykładu definicja informacji sposoby kodowania reprezentacja liczb naturalnych i całkowitych arytmetyka binarna arytmetyka oktalna arytmetyka

Bardziej szczegółowo

Maszyna Turinga języki

Maszyna Turinga języki Maszyna Turinga języki Teoria automatów i języków formalnych Dr inż. Janusz Majewski Katedra Informatyki Maszyna Turinga (1) b b b A B C B D A B C b b Q Zależnie od symbolu obserwowanego przez głowicę

Bardziej szczegółowo

Przedmiot: Urządzenia techniki komputerowej Nauczyciel: Mirosław Ruciński

Przedmiot: Urządzenia techniki komputerowej Nauczyciel: Mirosław Ruciński Przedmiot: Urządzenia techniki komputerowej Nauczyciel: Mirosław Ruciński Temat: Systemy zapisu liczb. Cele kształcenia: Zapoznanie z systemami zapisu liczb: dziesiętny, dwójkowy, ósemkowy, szesnastkowy.

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI 11 MAJA 2018 POZIOM PODSTAWOWY. Godzina rozpoczęcia: 14:00 CZĘŚĆ I WYBRANE: Czas pracy: 75 minut

EGZAMIN MATURALNY Z INFORMATYKI 11 MAJA 2018 POZIOM PODSTAWOWY. Godzina rozpoczęcia: 14:00 CZĘŚĆ I WYBRANE: Czas pracy: 75 minut Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 KOD UZUPEŁNIA ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY Z INFORMATYKI POZIOM PODSTAWOWY

Bardziej szczegółowo

O systemach liczbowych

O systemach liczbowych O systemach liczbowych 1. Systemy liczbowe Literatura:Turski,Propedeutyka...;Skomorowski,... 1.1. Dwójkowy system pozycyjny W dziesiętnym systemie pozycyjnym ciąg cyfr 321.23 oznacza liczbę 3 10 2 +2 10

Bardziej szczegółowo

Dane, informacja, programy. Kodowanie danych, kompresja stratna i bezstratna

Dane, informacja, programy. Kodowanie danych, kompresja stratna i bezstratna Dane, informacja, programy Kodowanie danych, kompresja stratna i bezstratna DANE Uporządkowane, zorganizowane fakty. Główne grupy danych: tekstowe (znaki alfanumeryczne, znaki specjalne) graficzne (ilustracje,

Bardziej szczegółowo

Pracownia Komputerowa wyk ad IV

Pracownia Komputerowa wyk ad IV Pracownia Komputerowa wykad IV dr Magdalena Posiadaa-Zezula Magdalena.Posiadala@fuw.edu.pl http://www.fuw.edu.pl/~mposiada Magdalena.Posiadala@fuw.edu.pl 1 Reprezentacje liczb i znaków Liczby: Reprezentacja

Bardziej szczegółowo

BŁĘDY OBLICZEŃ NUMERYCZNYCH

BŁĘDY OBLICZEŃ NUMERYCZNYCH BŁĘDY OBLICZEŃ NUMERYCZNYCH błędy zaokrągleń skończona liczba cyfr (bitów) w reprezentacji numerycznej błędy obcięcia rozwinięcia w szeregi i procesy iteracyjne - w praktyce muszą być skończone błędy metody

Bardziej szczegółowo

Informacja w perspektywie obliczeniowej. Informacje, liczby i obliczenia

Informacja w perspektywie obliczeniowej. Informacje, liczby i obliczenia Informacja w perspektywie obliczeniowej Informacje, liczby i obliczenia Cztery punkty odniesienia (dla pojęcia informacji) ŚWIAT ontologia fizyka UMYSŁ psychologia epistemologia JĘZYK lingwistyka nauki

Bardziej szczegółowo

SCENARIUSZ LEKCJI. Autorzy scenariusza: Krzysztof Sauter (informatyka), Marzena Wierzchowska (matematyka)

SCENARIUSZ LEKCJI. Autorzy scenariusza: Krzysztof Sauter (informatyka), Marzena Wierzchowska (matematyka) SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Autorzy scenariusza:

Bardziej szczegółowo

Dla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego

Dla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego Arytmetyka cyfrowa Dla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego (binarnego). Zapis binarny - to system liczenia

Bardziej szczegółowo

Podstawy Informatyki. Metalurgia, I rok. Wykład 3 Liczby w komputerze

Podstawy Informatyki. Metalurgia, I rok. Wykład 3 Liczby w komputerze Podstawy Informatyki Metalurgia, I rok Wykład 3 Liczby w komputerze Jednostki informacji Bit (ang. bit) (Shannon, 1948) Najmniejsza ilość informacji potrzebna do określenia, który z dwóch równie prawdopodobnych

Bardziej szczegółowo

Architektura systemów komputerowych

Architektura systemów komputerowych Architektura systemów komputerowych Grzegorz Mazur Zak lad Metod Obliczeniowych Chemii Uniwersytet Jagielloński 12 kwietnia 2011 Grzegorz Mazur (ZMOCh UJ) Architektura systemów komputerowych 12 kwietnia

Bardziej szczegółowo

Mikrooperacje. Mikrooperacje arytmetyczne

Mikrooperacje. Mikrooperacje arytmetyczne Przygotowanie: Przemysław Sołtan e-mail: kerk@moskit.ie.tu.koszalin.pl Mikrooperacje Mikrooperacja to elementarna operacja wykonywana podczas jednego taktu zegara mikroprocesora na informacji przechowywanej

Bardziej szczegółowo

ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH

ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH reprezentacja danych ASK.RD.01 c Dr inż. Ignacy Pardyka UNIWERSYTET JANA KOCHANOWSKIEGO w Kielcach Rok akad. 2011/2012 c Dr inż. Ignacy Pardyka (Inf.UJK) ASK.RD.01 Rok

Bardziej szczegółowo

Informatyka. Michał Rad

Informatyka. Michał Rad Informatyka Michał Rad 13.10.2016 Co i po co będziemy robić Plan wykładów: Wstęp, historia Systemy liczbowe Co to jest system operacyjny i po co to jest Sprawy związane z tworzeniem i własnością oprogramowania

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Wykład jest przygotowany dla IV semestru kierunku Elektronika i Telekomunikacja. Studia I stopnia Dr inż. Małgorzata Langer Architektura komputerów Prezentacja multimedialna współfinansowana przez Unię

Bardziej szczegółowo

PODSTAWY INFORMATYKI. Informatyka? - definicja

PODSTAWY INFORMATYKI. Informatyka? - definicja PODSTAWY INFORMATYKI Informatyka? - definicja Definicja opracowana przez ACM (Association for Computing Machinery) w 1989 roku: Informatyka to systematyczne badanie procesów algorytmicznych, które charakteryzują

Bardziej szczegółowo

Wstęp do informatyki- wykład 1 Systemy liczbowe

Wstęp do informatyki- wykład 1 Systemy liczbowe 1 Wstęp do informatyki- wykład 1 Systemy liczbowe Treści prezentowane w wykładzie zostały oparte o: S. Prata, Język C++. Szkoła programowania. Wydanie VI, Helion, 2012 www.cplusplus.com Jerzy Grębosz,

Bardziej szczegółowo

KOŁO MATEMATYCZNE LUB INFORMATYCZNE - klasa III gimnazjum, I LO

KOŁO MATEMATYCZNE LUB INFORMATYCZNE - klasa III gimnazjum, I LO Aleksandra Nogała nauczycielka matematyki w Gimnazjum im. Macieja Rataja w Żmigrodzie olanog@poczta.onet.pl KONSPEKT ZAJĘĆ ( 2 godziny) KOŁO MATEMATYCZNE LUB INFORMATYCZNE - klasa III gimnazjum, I LO TEMAT

Bardziej szczegółowo

Wykład 2. Informatyka Stosowana. 8 października 2018, M. A-B. Informatyka Stosowana Wykład 2 8 października 2018, M. A-B 1 / 41

Wykład 2. Informatyka Stosowana. 8 października 2018, M. A-B. Informatyka Stosowana Wykład 2 8 października 2018, M. A-B 1 / 41 Wykład 2 Informatyka Stosowana 8 października 2018, M. A-B Informatyka Stosowana Wykład 2 8 października 2018, M. A-B 1 / 41 Elementy logiki matematycznej Informatyka Stosowana Wykład 2 8 października

Bardziej szczegółowo