Wyk lad 4. Grafy skierowane
|
|
- Eleonora Nawrocka
- 8 lat temu
- Przeglądów:
Transkrypt
1 Wyk lad 4 Grafy skierowane Definicja Graf skierowany G sk lada si e z dwóch zbiorów, niepustego zbioru V (G) grafu G i zbioru E(G) kraw edzi grafu G oraz z funkcji γ (gamma) ze zbioru E(G) w zbiór V (G) V (G) Jeśli e jest krawedzi a grafu G i γ(e) = (p, q), to p nazywamy poczatkiem kraw edzi e, zaś q końcem kraw edzi e i mówimy, że e biegnie od p do q Definicja ta ma sens również, jeśli zbiory V (G) lub E(G) sa nieskończone, ale ponieważ w naszych rozważaniach mamy do czynienia ze zbiorami skończonymi, przyjmujemy na tym wyk ladzie, że zbiory V (G) i E(G) sa skończone Rysunkiem grafu skierowanego G jest wykres sk ladajacy sie z punktów, odpowiadajacych elementom zbioru V (G) oraz strza lek, odpowiadajacych elementom zbioru E(G), takich, że jeśli γ(e) = (p, q), to strza lka odpowiadajaca e biegnie od punktu oznaczonego przez p do punktu oznaczonego przez q Przyk lad 1 Weźmy graf skierowany G, w którym dane sa dwa zbiory: V (G) = {w, x, y, z} oraz E(G) = {a, b, c, d, e, f, g, h}, a funkcja γ jest zadana tabelka: e a b c d e f g h γ(e) (w, z) (w, x) (x, z) (z, z) (z, x) (z, y) (y, w) (y, x) Wtedy rysunek tego grafu jest przedstawiony w dodatku (Rys 1), zaś jego uproszczenie podano na Rys 2 Uproszczony zapis rysunku tego grafu nie prowadzi do nieporozumień, ponieważ w tym przypadku nie ma kraw edzi wielokrotnych, tzn jest co najwyżej jedna kraw edź o danym poczatku i końcu Innymi s lowy funkcja γ jest różnowartościowa Jeśli funkcja γ : E(G) V (G) V (G) jest różnowartościowa, to możemy utożsamiać kraw edzie e z ich obrazami γ(e) w zbiorze V (G) V (G) i traktować zbiór E(G) jako podzbiór zbioru V (G) V (G) Niektórzy definiuja grafy skierowane jako grafy, w których E(G) V (G) V (G), a bardziej ogólne grafy skierowane, które my tutaj rozważamy, nazywaja multigrafami skierowanymi Majac dany rysunek grafu G, możemy odtworzyć sam graf skierowany G, ponieważ strza lki mówia nam wszystko o γ Bedziemy zazwyczaj opisywać grafy skierowane za pomoca rysunku a nie tabeli funkcji γ, choć ten sposób opisu zosta l wybrany ze wzgledu na nasza wygode Komputer zapamietuje grafy skierowane, zapamietuj ac w jakiś sposób funkcje γ Droga w grafie skierowanym G nazywamy ciag krawedzi taki, że koniec jednej krawedzi jest poczatkiem nastepnej Zatem, jeśli e 1,, e n należa do zbioru E(G), to e 1 e 2 e n jest droga, 1
2 o ile istnieja wierzcho lki x 1, x 2,, x n, x n+1 takie, że γ(e i ) = (x i, x i+1 ) dla i = 1, 2,, n Mówimy wówczas, że e 1 e n jest droga (ścieżka) d lugości n od wierzcho lka x 1 do wierzcho lka x n+1 Droga jest zamkni eta, jeśli x 1 = x n+1 Przyk lad 2 W grafie skierowanym G z Przyk ladu 1 fgae jest droga d lugości 4 od wierzcho lka z do wierzcho lka x Ciagi cecec, fgafhc również sa drogami, ale fa nie jest droga, ponieważ γ(f) = (z, y), γ(a) = (w, z) i y w Drogi fgafhc, cece, d sa zamkniete, drogi fhce, df nie sa zamkniete Droga e 1 e n, gdzie γ(e i ) = (x i, x i+1 ) dla i = 1,, n, l aczy ciag x 1, x 2,, x n, x n+1 Jeśli każda krawedź e i jest jedyna krawedzi a od x i do x i+1, to ten ciag jednoznacznie określa droge i możemy opisać te droge, wypisujac po prostu po kolei te wierzcho lki Przyk lad 3 Dla grafu G z Przyk ladu 1 droga fgae wyznacza ciag zywzx Zauważmy, że ten ciag sam określa droge Droga może być odtworzona z rysunku grafu G lub z tabeli funkcji γ Ponieważ ten graf nie ma kraw edzi wielokrotnych, wi ec wszystkie jego drogi sa określone przez ich ciagi Przyk lad 4 Rozważmy graf skierowany przedstawiony na Rys 3 Ciag yzzz odpowiada tylko drodze fgg, a ciag yvwz należy zarówno do drogi cae, jak i drogi cbe Droge zamkniet a d lugości co najmniej 1 z ciagiem x 1 x 2 x n x 1 nazywamy cyklem, jeśli wszystkie wierzcho lki x 1, x 2,, x n sa różne Graf skierowany nie majacy cykli nazywamy grafem acyklicznym Droga jest acykliczna, jeśli graf skierowany zawierajacy jej wierzcho lki i kraw edzie (tzn podgraf grafu G) jest acykliczny Przyk lad 5 Dla grafu G z Przyk ladu 1 droga afg jest cyklem, ponieważ jej ciagiem jest wzyw Podobnie, drogi cfh, cfgb o ciagach xzyx i xzywx sa cyklami Podobnie, drogi cfh, cfgb o ciagach xzyx i xzywx sa cyklami Krótka droga ce i petla d również sa cyklami, ponieważ ich ciagami sa odpowiednio xzx oraz zz Droga cfgae nie jest cyklem, ponieważ jej ciagiem jest xzywzx i wierzcho lek z si e powtarza Relacja w zbiorze X nazywamy dowolny podzbiór R iloczynu kartezjańskiego X X Jeżeli R jest relacja w zbiorze niepustym X, to biorac V (G) = X, E(G) = R otrzymamy graf skierowany Jeżeli np X = {1, 2, 3, 4, 6} i (a, b) R a b, to otrzymamy graf, który zosta l przedstawiony na Rys 4 Dla danego grafu skierowanego G i v i w w zbiorze V (G) mówimy, że wierzcho lek v jest sasiedni w stosunku do wierzcho lka w, jeśli istnieje krawedź w E(G) od v do w Relacja 2
3 sasiedztwa A w zbiorze V (G) jest określona nastepuj aco: Przyk lad 6 (v, w) A wierzcho lek v jest sasiedni z wierzcho lkiem w Dla grafu skierowanego z Przyk ladu 1 relacja sasiedztwa sk lada sie z par uporzadkowanych: (w, z), (w, x), (x, z), (z, z), (z, x), (z, y), (y, w) i (y, x) Innymi s lowy, relacja A zawiera wartości funkcji γ wypisane w jej tabelce Ogólnie, A = γ(e(g)) V (G) V (G) Przyk lad 7 Relacja sasiedztwa A dla grafu z Przyk ladu 4 zawiera pary uporzadkowane: (v, w), (w, x), (w, z), (z, z), (y, z) i (y, v) Nie możemy odtworzyć grafu skierowanego z A, ponieważ A nie podaje informacji o kraw edziach wielokrotnych Poniewaź (v, w) A, wiemy, że graf skierowany ma co najmniej jedna krawedź z wierzcho lka v do wierzcho lka w, ale nie możemy powiedzieć, że ma on dok ladnie dwie kraw edzie Przyk lad 8 Graf skierowany z Przyk ladu 4 przez usuniecie krawedzi a ma te sama relacje sasiedztwa co poczatkowy graf skierowany i jest już wyznaczony jednoznacznie przez relacje sasiedztwa A Przyk lady 7 i 8 pokazuja, że różne grafy skierowane moga mieć te sama relacje sasiedztwa Jednakże, jeśli ograniczymy nasze zainteresowania do grafów skierowanych bez kraw edzi wielokrotnych, to istnieje wzajemnie jednoznaczna odpowiedniość mi edzy grafami skierowanymi i relacjami Macierz sasiedztwa grafu skierowanego Niech G b edzie grafem skierowanym skończonym o zbiorze V (G) = {v 1,, v n } Macierza sasiedztwa grafu G dla ciagu v 1,, v n nazywamy n n-macierz, której każdy wyraz m ij jest nieujemna liczba ca lkowita oraz m ij = liczba kraw edzi od wierzcho lka v i do wierzcho lka v j Zatem m ij = 0, jeśli nie istnieje krawedź od v i do v j, w przeciwnym przypadku m ij jest liczba naturalna Przyk lad 9 Macierza sasiedztwa grafu z Przyk ladu 1 dla ciagu w, x, y, z jest macierz:
4 Przyk lad 10 Macierza sasiedztwa grafu skierowanego z Rys 5 dla ciagu v 1, v 2, v 3, v 4 jest macierz: Przyk lad 11 Niech macierza sasiedztwa pewnego grafu skierowanego bedzie macierz Popatrzmy, czego możemy dowiedzieć si e o tym grafie tylko z tej macierzy Graf ma cztery wierzcho lki, gdyż macierz jest wymiaru 4 4 Ma on osiem kraw edzi, gdyż suma wyrazów macierzy wynosi 8 Ponieważ wszystkie wyrazy macierzy sa zerami lub jedynkami, graf nie ma krawedzi wielokrotnych Ma on jedna petl e, gdyż jest tylko jedna jedynka na g lównej przekatnej Rysunek tego grafu zosta l przedstawiony na Rys 6 Przyk lad 12 Weźmy graf skierowany przedstawiony na Rys 8 Jego macierza sasiedztwa dla ciagu v 1, v 2, v 3, v 4 jest macierz Zauważmy, że wyraz m ij jest liczba dróg d lugości 1 z wierzcho lka v i do wierzcho lka v j Spróbujmy policzyć liczb e dróg d lugości 2 w tym grafie skierowanym Latwo zauważyć, że drogami d lugości 2 z wierzcho lka v 1 do wierzcho lka v 2 sa: ab, ac, bd, be, cd, ce, hj Jest wiec 7 takich dróg W podobny sposób można znaleźć liczb e dróg d lugości 2 z dowolnego wierzcho lka v i do dowolnego wierzcho lka v j Musi istnieć lepsza metoda wyznaczania liczby wszystkich dróg niż ich bezpośrednie zliczanie, a zw laszcza wtedy, gdy mamy do czynienia z dużymi grafami skierowanymi Policzmy jeszcze raz drogi d lugości 2 od wierzcho lka v 1 do wierzcho lka v 2 Każda taka droga przechodzi w mi edzyczasie przez jeden z : v 1, v 2, v 3 lub v 4, tak wi ec możemy policzyć drogi z v 1 do v 2 przechodzace przez v 1, drogi przechodzace przez v 2, przez v 3 i przez v 4, a nast epnie otrzymane liczby dodać do siebie Jeśli chcemy np policzyć drogi 4
5 majace ciag v 1 v 1 v 2, zliczamy krawedzie z v 1 do v 1 (tzn petle) i krawedzie z v 1 do v 2 i otrzymane liczby mnożymy przez siebie: 1 2 = 2 Tymi drogami sa: ab i ac Liczb, które mnożymy, tzn m 11 i m 12 sa wziete z macierzy M Policzmy teraz drogi majace ciag v 1 v 2 v 2 W tym celu zliczamy kraw edzie od v 1 do v 2 oraz z v 2 do v 2 i te liczby mnożymy przez siebie: m 12 m 22 = 2 2 = 4 Tymi drogami sa: bd, be, cd, ce Wszystkie możliwe przypadki potrzebne do zliczania dróg z v 1 do v 2 pokazane sa w tablicy: v i lkraw edzi z v 1 do v i lkraw edzi z v i do v 2 l dróg postaci v 1 v i v 2 v 1 m 11 = 1 m 12 = 2 m 11 m 12 = 1 2 = 2 v 2 m 12 = 2 m 22 = 2 m 12 m 22 = 2 2 = 4 v 3 m 13 = 1 m 32 = 0 m 13 m 32 = 1 0 = 0 v 4 m 14 = 1 m 42 = 1 m 14 m 42 = 1 1 = 1 Zatem liczba wszystkich dróg d lugości 2 z v 1 do v 2 jest równa: m 11 m 12 + m 12 m 22 + m 13 m 32 + m 14 m 42 = = 7 Rozumujac podobnie w przypadku ogólnym uzyskamy nastepuj ace Twierdzenie 1 Niech M bedzie macierza sasiedztwa grafu skierowanego G dla ciagu v 1,, v n Wówczas liczba wszystkich dróg d lugości 2 z wierzcho lka v i do wierzcho lka v j jest równa elementowi stojacemu w i-tym wierszu oraz j-tej kolumnie macierzy M 2 = M M W Przyk ladzie 12 mamy, że M = St ad odczytujemy, że np liczba dróg d lugości 2 z v 2 do v 2 jest równa 4, liczba dróg d lugości 2 z v 3 do v 2 wynosi 3, itd Twierdzenie 1 można uogólnić do nastepuj acego twierdzenia: Twierdzenie 2 Niech k 2 bedzie ustalona liczba naturalna Niech M bedzie macierza sasiedztwa grafu skierowanego dla ciagu v 1,, v n Wówczas liczba wszystkich dróg d lugości k z wierzcho lka v i do wierzcho lka v j jest równa elementowi stojacemu w i-tym wierszu oraz j-tej kolumnie macierzy M k Niech G b edzie grafem skierowanym o wierzcho lkach v 1,, v n Latwo zauważyć, że jeśli istnieje droga z v i do v j, to istnieje droga z v i do v j d lugości n Jeśli M jest macierza sasiedztwa tego grafu dla podanego ciagu, to istnienie takiej drogi jest równoważne istnieniu liczby naturalnej k n takiej, że w i-tym wierszu i w j-tej kolumnie macierzy M k stoi pewna liczba naturalna 5
Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera
Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera Określenie podpierścienia Definicja 9.. Podpierścieniem pierścienia (P, +,, 0, ) nazywamy taki podzbiór A P, który jest pierścieniem ze wzgledu
Wyk lad 3 Wyznaczniki
1 Określenie wyznacznika Wyk lad 3 Wyznaczniki Niech A bedzie macierza kwadratowa stopnia n > 1 i niech i, j bed a liczbami naturalnymi n Symbolem A ij oznaczać bedziemy macierz kwadratowa stopnia n 1
Wyk lad 5 W lasności wyznaczników. Macierz odwrotna
Wyk lad 5 W lasności wyznaczników Macierz odwrotna 1 Operacje elementarne na macierzach Bardzo ważne znaczenie w algebrze liniowej odgrywaja tzw operacje elementarne na wierszach lub kolumnach macierzy
Wyk lad 4 Macierz odwrotna i twierdzenie Cramera
Wyk lad 4 Macierz odwrotna i twierdzenie Cramera 1 Odwracanie macierzy I n jest elementem neutralnym mnożenia macierzy w zbiorze M n (R) tzn A I n I n A A dla dowolnej macierzy A M n (R) Ponadto z twierdzenia
Matematyczne Podstawy Informatyki
Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Informacje podstawowe 1. Konsultacje: pokój
MATEMATYKA DYSKRETNA - MATERIAŁY DO WYKŁADU GRAFY
ERIAŁY DO WYKŁADU GRAFY Graf nieskierowany Grafem nieskierowanym nazywamy parę G = (V, E), gdzie V jest pewnym zbiorem skończonym (zwanym zbiorem wierzchołków grafu G), natomiast E jest zbiorem nieuporządkowanych
Wyk lad 2 Podgrupa grupy
Wyk lad 2 Podgrupa grupy Definicja 2.1. Pod grupy (G,, e) nazywamy taki podzbiór H G, że e H, h 1 H dla każdego h H oraz h 1 h 2 H dla dowolnych h 1, h 2 H. Jeśli H jest grupy G, to bedziemy pisali H G.
Digraf. 13 maja 2017
Digraf 13 maja 2017 Graf skierowany, digraf, digraf prosty Definicja 1 Digraf prosty G to (V, E), gdzie V jest zbiorem wierzchołków, E jest rodziną zorientowanych krawędzi, między różnymi wierzchołkami,
Ścieżki w grafach. Grafy acykliczne i spójne
TEORIA GRAFÓW I SIECI - ROZDZIAL II Ścieżki w grafach. Grafy acykliczne i spójne Ścieżka lub droga w grafie [digrafie] G nazywamy dowolny ciag d = (a 0, k 1, a 1,..., k n, a n ), gdzie n N {0}, a i V G,
Elementy teorii grafów Elementy teorii grafów
Spis tresci 1 Spis tresci 1 Często w zagadnieniach praktycznych rozważa się pewien zbiór obiektów wraz z zależnościami jakie łączą te obiekty. Dla przykładu można badać pewną grupę ludzi oraz strukturę
Wyk lad 4 Dzia lania na macierzach. Określenie wyznacznika
Wyk lad 4 Dzia lania na macierzach Określenie wyznacznika 1 Określenie macierzy Niech K bedzie dowolnym cia lem oraz niech n i m bed a dowolnymi liczbami naturalnymi Prostokatn a tablice a 11 a 12 a 1n
Wyk lad 9 Przekszta lcenia liniowe i ich zastosowania
Wyk lad 9 Przekszta lcenia liniowe i ich zastosowania 1 Przekszta lcenia liniowe i ich w lasności Definicja 9.1. Niech V i W bed przestrzeniami liniowymi. Przekszta lcenie f : V W spe lniajace warunki:
Wyk lad 7 Baza i wymiar przestrzeni liniowej
Wyk lad 7 Baza i wymiar przestrzeni liniowej 1 Baza przestrzeni liniowej Niech V bedzie przestrzenia liniowa. Powiemy, że podzbiór X V jest maksymalnym zbiorem liniowo niezależnym, jeśli X jest zbiorem
Wyk lad 12. (ii) najstarszy wspó lczynnik wielomianu f jest elementem odwracalnym w P. Dowód. Niech st(f) = n i niech a bedzie
1 Dzielenie wielomianów Wyk lad 12 Ważne pierścienie Definicja 12.1. Niech P bedzie pierścieniem, który może nie być dziedzina ca lkowitości. Powiemy, że w pierścieniu P [x] jest wykonalne dzielenie z
Wyk lad 7 Metoda eliminacji Gaussa. Wzory Cramera
Wyk lad 7 Metoda eliminacji Gaussa Wzory Cramera Metoda eliminacji Gaussa Metoda eliminacji Gaussa polega na znalezieniu dla danego uk ladu a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x n =
0. ELEMENTY LOGIKI. ALGEBRA BOOLE A
WYKŁAD 5() ELEMENTY LOGIKI ALGEBRA BOOLE A Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek zdań Matematyka zbudowana jest z pierwotnych twierdzeń (nazywamy
Sortowanie topologiczne skierowanych grafów acyklicznych
Sortowanie topologiczne skierowanych grafów acyklicznych Metody boolowskie w informatyce Robert Sulkowski http://robert.brainusers.net 23 stycznia 2010 1 Definicja 1 (Cykl skierowany). Niech C = (V, A)
Algorytmiczna teoria grafów
Podstawowe pojęcia i klasy grafów Wykład 1 Grafy nieskierowane Definicja Graf nieskierowany (graf) G = (V,E) jest to uporządkowana para składająca się z niepustego skończonego zbioru wierzchołków V oraz
Spacery losowe generowanie realizacji procesu losowego
Spacery losowe generowanie realizacji procesu losowego Michał Krzemiński Streszczenie Omówimy metodę generowania trajektorii spacerów losowych (błądzenia losowego), tj. szczególnych procesów Markowa z
Wyk lad 10 Przestrzeń przekszta lceń liniowych
Wyk lad 10 Przestrzeń przekszta lceń liniowych 1 Określenie przestrzeni przekszta lceń liniowych Niech V i W bed a przestrzeniami liniowymi Oznaczmy przez L(V ; W ) zbór wszystkich przekszta lceń liniowych
Graf. Definicja marca / 1
Graf 25 marca 2018 Graf Definicja 1 Graf ogólny to para G = (V, E), gdzie V jest zbiorem wierzchołków (węzłów, punktów grafu), E jest rodziną krawędzi, które mogą być wielokrotne, dokładniej jednoelementowych
Wyk lad 14 Cia la i ich w lasności
Wyk lad 4 Cia la i ich w lasności Charakterystyka cia la Określenie cia la i w lasności dzia lań w ciele y ly omówione na algerze liniowej. Stosujac terminologie z teorii pierścieni możemy powiedzieć,
Wyk lad 4 Warstwy, dzielniki normalne
Wyk lad 4 Warstwy, dzielniki normalne 1 Warstwy grupy wzgl edem podgrupy Niech H bedzie podgrupa grupy (G,, e). W zbiorze G wprowadzamy relacje l oraz r przyjmujac, że dla dowolnych a, b G: a l b a 1 b
Wyk lad 6 Podprzestrzenie przestrzeni liniowych
Wyk lad 6 Podprzestrzenie przestrzeni liniowych 1 Określenie podprzestrzeni Definicja 6.1. Niepusty podzbiór V 1 V nazywamy podprzestrzeni przestrzeni liniowej V, jeśli ma on nastepuj ace w lasności: (I)
Reprezentacje grafów nieskierowanych Reprezentacje grafów skierowanych. Wykład 2. Reprezentacja komputerowa grafów
Wykład 2. Reprezentacja komputerowa grafów 1 / 69 Macierz incydencji Niech graf G będzie grafem nieskierowanym bez pętli o n wierzchołkach (x 1, x 2,..., x n) i m krawędziach (e 1, e 2,..., e m). 2 / 69
Wyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm
Wyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm 1 Grupa ilorazowa Niech H b edzie dzielnikiem normalnym grupy G. Oznaczmy przez G/H zbiór wszystkich warstw lewostronnych grupy G wzgl edem podgrupy
Matematyka dyskretna
Matematyka dyskretna Wykład 13: Teoria Grafów Gniewomir Sarbicki Literatura R.J. Wilson Wprowadzenie do teorii grafów Definicja: Grafem (skończonym, nieskierowanym) G nazywamy parę zbiorów (V (G), E(G)),
Wyk lad 1 Podstawowe struktury algebraiczne
Wyk lad 1 Podstawowe struktury algebraiczne 1 Dzia lanie w zbiorze Majac dane dowolne dwa przedmioty a b możemy z nich utworzyć pare uporzadkowan a (a b) o poprzedniku a i nastepniku b. Warunek na równość
WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA
DROGI i CYKLE w grafach Dla grafu (nieskierowanego) G = ( V, E ) drogą z wierzchołka v 0 V do v t V nazywamy ciąg (naprzemienny) wierzchołków i krawędzi grafu: ( v 0, e, v, e,..., v t, e t, v t ), spełniający
Wyk lad 9 Baza i wymiar przestrzeni liniowej
Wyk lad 9 Baza i wymiar przestrzeni liniowej 1 Operacje elementarne na uk ladach wektorów Niech α 1,..., α n bed dowolnymi wektorami przestrzeni liniowej V nad cia lem K. Wyróżniamy nastepuj ace operacje
WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA
TYPY GRAFÓW c.d. Graf nazywamy dwudzielnym, jeśli zbiór jego wierzchołków można podzielić na dwa rozłączne podzbiory, tak że żadne dwa wierzchołki należące do tego samego podzbioru nie są sąsiednie. G
Wyk lad 3 Wielomiany i u lamki proste
Wyk lad 3 Wielomiany i u lamki proste 1 Konstrukcja pierścienia wielomianów Niech P bedzie dowolnym pierścieniem, w którym 0 1. Oznaczmy przez P [x] zbiór wszystkich nieskończonych ciagów o wszystkich
Wyk lad 11 1 Wektory i wartości w lasne
Wyk lad 11 Wektory i wartości w lasne 1 Wektory i wartości w lasne Niech V bedzie przestrzenia liniowa nad cia lem K Każde przekszta lcenie liniowe f : V V nazywamy endomorfizmem liniowym przestrzeni V
Matematyka dyskretna. Andrzej Łachwa, UJ, /14
Matematyka dyskretna Andrzej Łachwa, UJ, 2016 andrzej.lachwa@uj.edu.pl 13/14 Grafy podstawowe definicje Graf to para G=(V, E), gdzie V to niepusty i skończony zbiór, którego elementy nazywamy wierzchołkami
Wyk lad 8 macierzy i twierdzenie Kroneckera-Capellego
Wyk lad 8 Rzad macierzy i twierdzenie Kroneckera-Capellego 1 Określenie rz edu macierzy Niech A bedzie m n - macierza Wówczas wiersze macierzy A możemy w naturalny sposób traktować jako wektory przestrzeni
FUNKCJE LICZBOWE. x 1
FUNKCJE LICZBOWE Zbiory postaci {x R: x a}, {x R: x a}, {x R: x < a}, {x R: x > a} oznaczane sa symbolami (,a], [a, ), (,a) i (a, ). Nazywamy pó lprostymi domknie tymi lub otwartymi o końcu a. Symbol odczytujemy
Wyk lad 14 Formy kwadratowe I
Wyk lad 14 Formy kwadratowe I Wielomian n-zmiennych x 1,, x n postaci n a ij x i x j, (1) gdzie a ij R oraz a ij = a ji dla wszystkich i, j = 1,, n nazywamy forma kwadratowa n-zmiennych Forme (1) można
G. Wybrane elementy teorii grafów
Dorota Miszczyńska, Marek Miszczyński KBO UŁ Wybrane elementy teorii grafów 1 G. Wybrane elementy teorii grafów Grafy są stosowane współcześnie w różnych działach nauki i techniki. Za pomocą grafów znakomicie
WYK LAD 2: PODSTAWOWE STRUKTURY ALGEBRAICZNE, PIERWIASTKI WIELOMIANÓW, ROZK LAD FUNKCJI WYMIERNEJ NA U LAMKI PROSTE
WYK LAD 2: PODSTAWOWE STRUKTURY ALGEBRAICZNE, PIERWIASTKI WIELOMIANÓW, ROZK LAD FUNKCJI WYMIERNEJ NA U LAMKI PROSTE Definicja 1 Algebra abstrakcyjna nazywamy teorie, której przedmiotem sa dzia lania na
Niezmienniki i pó lniezmienniki w zadaniach
Niezmienniki i pó lniezmienniki w zadaniach Krzysztof Che lmiński Wydzia l Matematyki i Nauk Informacyjnych Politechnika Warszawska MiNI-Akademia Matematyki Warszawa, 2 marca, 2013 Na czym polega metoda
Macierze. Rozdział Działania na macierzach
Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i, j) (i 1,..., n; j 1,..., m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F R lub F C, nazywamy macierzą (rzeczywistą, gdy
Algorytmiczna teoria grafów
Przedmiot fakultatywny 20h wykładu + 20h ćwiczeń 21 lutego 2014 Zasady zaliczenia 1 ćwiczenia (ocena): kolokwium, zadania programistyczne (implementacje algorytmów), praca na ćwiczeniach. 2 Wykład (egzamin)
Wykład 8. Informatyka Stosowana. 26 listopada 2018 Magdalena Alama-Bućko. Informatyka Stosowana Wykład , M.A-B 1 / 31
Wykład 8 Informatyka Stosowana 26 listopada 208 Magdalena Alama-Bućko Informatyka Stosowana Wykład 8 26..208, M.A-B / 3 Definicja Ciagiem liczbowym {a n }, n N nazywamy funkcję odwzorowujac a zbiór liczb
(x j x)(y j ȳ) r xy =
KORELACJA. WSPÓŁCZYNNIKI KORELACJI Gdy w badaniu mamy kilka cech, często interesujemy się stopniem powiązania tych cech między sobą. Pod słowem korelacja rozumiemy współzależność. Mówimy np. o korelacji
celu przyjmijmy: min x 0 = n t Zadanie transportowe nazywamy zbilansowanym gdy podaż = popyt, czyli n
123456789 wyk lad 9 Zagadnienie transportowe Mamy n punktów wysy lajacych towar i t punktów odbierajacych. Istnieje droga od każdego dostawcy do każdego odbiorcy i znany jest koszt transportu jednostki
Matematyka dyskretna. Andrzej Łachwa, UJ, /14
Matematyka dyskretna Andrzej Łachwa, UJ, 2012 andrzej.lachwa@uj.edu.pl 13/14 Grafy podstawowe definicje Graf to para G=(V, E), gdzie V to niepusty i skończony zbiór, którego elementy nazywamy wierzchołkami
Chcąc wyróżnić jedno z działań, piszemy np. (, ) i mówimy, że działanie wprowadza w STRUKTURĘ ALGEBRAICZNĄ lub, że (, ) jest SYSTEMEM ALGEBRAICZNYM.
DEF. DZIAŁANIE DWUARGUMENTOWE Działaniem dwuargumentowym w niepsutym zbiorze nazywamy każde odwzorowanie iloczynu kartezjańskiego :. Inaczej mówiąc, w zbiorze jest określone działanie dwuargumentowe, jeśli:
Wyk lad 9 Baza i wymiar przestrzeni liniowej
Wyk lad 9 Baza i wymiar liniowej Baza liniowej Niech V bedzie nad cia lem K Powiemy, że zbiór wektorów {α,, α n } jest baza V, jeżeli wektory α,, α n sa liniowo niezależne oraz generuja V tzn V = L(α,,
TEORIA GRAFÓW. MATERIA LY VI. semestr letni 2013/2014. Jerzy Jaworski. Typeset by AMS-TEX
TEORIA GRAFÓW. MATERIA LY VI. semestr letni 2013/2014. Jerzy Jaworski 20 Typeset by AMS-TEX 8. GRAFY PLANARNE. 8.1. Grafy p laskie i planarne. TEORIA GRAFÓW. MATERIA LY VI. 21 Mówimy, że graf jest uk ladalny
Teoria miary WPPT IIr. semestr zimowy 2009 Wyk lady 6 i 7. Mierzalność w sensie Carathéodory ego Miara Lebesgue a na prostej
Teoria miary WPPT IIr. semestr zimowy 2009 Wyk lady 6 i 7. Mierzalność w sensie Carathéodory ego Miara Lebesgue a na prostej 27-28/10/09 ZBIORY MIERZALNE WZGLȨDEM MIARY ZEWNȨTRZNEJ Niech µ bȩdzie miar
Wyk lad 11 Przekszta lcenia liniowe a macierze
Wyk lad 11 Przekszta lcenia liniowe a macierze 1 Izomorfizm przestrzeni L(V ; W ) i M m n (R) Twierdzenie 111 Niech V i W bed a przestrzeniami liniowymi o bazach uporzadkowanych (α 1,, α n ) i (β 1,, β
Matematyka Dyskretna. Andrzej Szepietowski. 25 czerwca 2002 roku
Matematyka Dyskretna Andrzej Szepietowski 25 czerwca 2002 roku ( Rozdział 1 Grafy skierowane W tym rozdziale zajmiemy siȩ algorytmami wyszukiwania najkrótszej drogi w grafach skierowanych Każdej krawȩdzi
Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm
Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i,j) (i = 1,,n;j = 1,,m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F = R lub F = C, nazywamy macierzą (rzeczywistą, gdy F
Normy wektorów i macierzy
Rozdzia l 3 Normy wektorów i macierzy W tym rozdziale zak ladamy, że K C. 3.1 Ogólna definicja normy Niech ψ : K m,n [0, + ) b edzie przekszta lceniem spe lniaj acym warunki: (i) A K m,n ψ(a) = 0 A = 0,
Matematyka dyskretna. Andrzej Łachwa, UJ, /15
Matematyka dyskretna Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl 14/15 Grafy podstawowe definicje Graf to para G=(V, E), gdzie V to niepusty i skończony zbiór, którego elementy nazywamy wierzchołkami
Niech X bȩdzie dowolnym zbiorem. Dobry porz adek to relacja P X X (bȩdziemy pisać x y zamiast x, y P ) o w lasnościach:
Teoria miary WPPT IIr semestr zimowy 2009 Wyk lad 4 Liczby kardynalne, indukcja pozaskończona DOBRY PORZA DEK 14/10/09 Niech X bȩdzie dowolnym zbiorem Dobry porz adek to relacja P X X (bȩdziemy pisać x
Czy istnieje zamknięta droga spaceru przechodząca przez wszystkie mosty w Królewcu dokładnie jeden raz?
DROGI i CYKLE EULERA w grafach Czy istnieje zamknięta droga spaceru przechodząca przez wszystkie mosty w Królewcu dokładnie jeden raz? Czy można narysować podaną figurę nie odrywając ołówka od papieru
Statystyka w analizie i planowaniu eksperymentu
23 kwietnia 2014 Korelacja - wspó lczynnik korelacji 1 Gdy badamy różnego rodzaju rodzaju zjawiska (np. przyrodnicze) możemy stwierdzić, że na każde z nich ma wp lyw dzia lanie innych czynników; Korelacja
Układy równań liniowych
Układy równań liniowych Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 1. wykład z algebry liniowej Warszawa, październik 2015 Mirosław Sobolewski (UW) Warszawa, wrzesień 2015 1 / 1
Algebra liniowa z geometrią
Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........
Matematyka dyskretna
Matematyka dyskretna Wykład 9: Grupy skończone Gniewomir Sarbicki Grupy cykliczne Definicja: Jeżeli każdy element grupy G jest postaci a n dla pewnego a G, to mówimy, że grupa G jest grupą cykliczną o
Grupy. Permutacje 1. (G2) istnieje element jednostkowy (lub neutralny), tzn. taki element e G, że dla dowolnego a G zachodzi.
Grupy. Permutacje 1 1 Definicja grupy Niech G będzie zbiorem. Działaniem na zbiorze G nazywamy odwzorowanie (oznaczane, jak mnożenie, przez ) przyporządkowujące każdej parze uporządkowanej (a, b) G G element
4. Granica i ciągłość funkcji
4. Granica i ciągłość funkcji W niniejszym rozdziale wprowadzamy pojęcie granicy funkcji, definiujemy funkcje ciągłe i omawiamy ich podstawowe własności. Niech f będzie funkcją określoną na przedziale
Przykłady grafów. Graf prosty, to graf bez pętli i bez krawędzi wielokrotnych.
Grafy Graf Graf (ang. graph) to zbiór wierzchołków (ang. vertices), które mogą być połączone krawędziami (ang. edges) w taki sposób, że każda krawędź kończy się i zaczyna w którymś z wierzchołków. Graf
WYK LAD 5: GEOMETRIA ANALITYCZNA W R 3, PROSTA I P LASZCZYZNA W PRZESTRZENI R 3
WYK LAD 5: GEOMETRIA ANALITYCZNA W R 3, PROSTA I P LASZCZYZNA W PRZESTRZENI R 3 Definicja 1 Przestrzenia R 3 nazywamy zbiór uporzadkowanych trójek (x, y, z), czyli R 3 = {(x, y, z) : x, y, z R} Przestrzeń
Algebrą nazywamy strukturę A = (A, {F i : i I }), gdzie A jest zbiorem zwanym uniwersum algebry, zaś F i : A F i
Algebrą nazywamy strukturę A = (A, {F i : i I }), gdzie A jest zbiorem zwanym uniwersum algebry, zaś F i : A F i A (symbol F i oznacza ilość argumentów funkcji F i ). W rozważanych przez nas algebrach
KOMBINATORYKA 1 WYK LAD 9 Zasada szufladkowa i jej uogólnienia
KOMBINATORYKA 1 WYK LAD 9 Zasada szufladkowa i jej uogólnienia 18 grudnia 2006 Zasada szufladkowa, zwana też zasada Dirichleta, a w jez. ang.,,pigeonhole Principle może być sformu lowana naste puja co.
1 Automaty niedeterministyczne
Szymon Toruńczyk 1 Automaty niedeterministyczne Automat niedeterministyczny A jest wyznaczony przez następujące składniki: Alfabet skończony A Zbiór stanów Q Zbiór stanów początkowych Q I Zbiór stanów
Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova
Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova M. Czoków, J. Piersa 2010-12-21 1 Definicja Własności Losowanie z rozkładu dyskretnego 2 3 Łańcuch Markova Definicja Własności Losowanie z rozkładu
Wykład 4. Informatyka Stosowana. Magdalena Alama-Bućko. 25 marca Magdalena Alama-Bućko Wykład 4 25 marca / 25
Wykład 4 Informatyka Stosowana Magdalena Alama-Bućko 25 marca 2019 Magdalena Alama-Bućko Wykład 4 25 marca 2019 1 / 25 Macierze Magdalena Alama-Bućko Wykład 4 25 marca 2019 2 / 25 Macierza wymiaru m n
PROGRAMOWANIE SIECIOWE. METODA ŚCIEŻKI KRYTYCZNEJ
PROGRAMOWANIE SIECIOWE. METODA ŚCIEŻKI KRYTYCZNEJ Maciej Patan Uniwersytet Zielonogórski WPROWADZENIE Metody programowania sieciowego wprowadzono pod koniec lat pięćdziesiatych Ze względu na strukturę
Szymon G l ab. Struktury losowe II Graf losowy. Instytut Matematyki, Politechnika Lódzka
Instytut Matematyki, Politechnika Lódzka Graf losowy jako granica Fraisse Przez K graf oznaczmy rodzinȩ wszystkich skończonych grafów (np. na N). Niech G bȩdzie granic a Fraisse rodziny K graf. Strukturȩ
6. Wstępne pojęcia teorii grafów
6. Wstępne pojęcia teorii grafów Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2016/2017 rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 6. Wstępne pojęcia teorii grafów zima 2016/2017
Indeks odwzorowania zmiennej zespolonej wzgl. krzywej zamknietej
Indeks odwzorowania zmiennej zespolonej wzgl edem krzywej zamkni etej 1. Liczby zespolone - konstrukcja Hamiltona 2. Homotopia odwzorowań na okr egu 3. Indeks odwzorowania ciag lego wzgledem krzywej zamknietej
Rozdzia l 11. Przestrzenie Euklidesowe Definicja, iloczyn skalarny i norma. iloczynem skalarnym.
Rozdzia l 11 Przestrzenie Euklidesowe 11.1 Definicja, iloczyn skalarny i norma Definicja 11.1 Przestrzenia Euklidesowa nazywamy par e { X K,ϕ }, gdzie X K jest przestrzenia liniowa nad K, a ϕ forma dwuliniowa
Wykład 3. Miara zewnętrzna. Definicja 3.1 (miary zewnętrznej) Funkcję µ przyporządkowującą każdemu podzbiorowi
Wykład 3 Miara zewnętrzna Definicja 3.1 (miary zewnętrznej Funkcję przyporządkowującą każdemu podzbiorowi A danej przestrzeni X liczbę (A [0, + ] (a więc określoną na rodzinie wszystkich podzbiorów przestrzeni
(α + β) a = α a + β a α (a + b) = α a + α b (α β) a = α (β a). Definicja 4.1 Zbiór X z dzia laniami o wyżej wymienionych w lasnościach
Rozdzia l 4 Przestrzenie liniowe 4.1 Przestrzenie i podprzestrzenie 4.1.1 Definicja i podstawowe w lasności Niech X z dzia laniem dodawania + b edzie grupa przemienna (abelowa). Oznaczmy przez 0 element
Matematyka dyskretna Oznaczenia
Matematyka dyskretna Oznaczenia Andrzej Szepietowski W tym rozdziale przedstawimy podstawowe oznacznia. oznacza kwantyfikator ogólny dla każdego. oznacza kwantyfikator szczegó lowy istnieje. 1 Sumy i iloczyny
Algorytmy grafowe. Wykład 1 Podstawy teorii grafów Reprezentacje grafów. Tomasz Tyksiński CDV
Algorytmy grafowe Wykład 1 Podstawy teorii grafów Reprezentacje grafów Tomasz Tyksiński CDV Rozkład materiału 1. Podstawowe pojęcia teorii grafów, reprezentacje komputerowe grafów 2. Przeszukiwanie grafów
Wykład 4. Określimy teraz pewną ważną klasę pierścieni.
Wykład 4 Określimy teraz pewną ważną klasę pierścieni. Twierdzenie 1 Niech m, n Z. Jeśli n > 0 to istnieje dokładnie jedna para licz q, r, że: m = qn + r, 0 r < n. Liczbę r nazywamy resztą z dzielenia
Ekonomia matematyczna i dynamiczna optymalizacja
Ekonomia matematyczna i dynamiczna optymalizacja Ramy wyk ladu i podstawowe narz edzia matematyczne SGH Semestr letni 2012-13 Uk lady dynamiczne Rozwiazanie modelu dynamicznego bardzo czesto można zapisać
Dyskretne modele populacji
Dyskretne modele populacji Micha l Machtel Adam Soboczyński 19 stycznia 2007 Typeset by FoilTEX Dyskretne modele populacji [1] Wst ep Dyskretny opis modelu matematycznego jest dobry dla populacji w których
Kolorowanie wierzchołków Kolorowanie krawędzi Kolorowanie regionów i map. Wykład 8. Kolorowanie
Wykład 8. Kolorowanie 1 / 62 Kolorowanie wierzchołków - definicja Zbiory niezależne Niech G będzie grafem bez pętli. Definicja Mówimy, że G jest grafem k kolorowalnym, jeśli każdemu wierzchołkowi możemy
Podstawowe własności grafów. Wykład 3. Własności grafów
Wykład 3. Własności grafów 1 / 87 Suma grafów Niech będą dane grafy proste G 1 = (V 1, E 1) oraz G 2 = (V 2, E 2). 2 / 87 Suma grafów Niech będą dane grafy proste G 1 = (V 1, E 1) oraz G 2 = (V 2, E 2).
7. Teoria drzew - spinanie i przeszukiwanie
7. Teoria drzew - spinanie i przeszukiwanie Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2016/2017 rzegorz Kosiorowski (Uniwersytet Ekonomiczny 7. wteoria Krakowie) drzew - spinanie i przeszukiwanie
Matematyka dyskretna. Andrzej Łachwa, UJ, /10
Matematyka dyskretna Andrzej Łachwa, UJ, 2018 andrzej.lachwa@uj.edu.pl 10/10 Podziały i liczby Stirlinga Liczba Stirlinga dla cykli (często nazywana liczbą Stirlinga pierwszego rodzaju) to liczba permutacji
Marek Miszczyński KBO UŁ. Wybrane elementy teorii grafów 1
Marek Miszczyński KBO UŁ. Wybrane elementy teorii grafów 1 G. Wybrane elementy teorii grafów W matematyce teorię grafów klasyfikuje się jako gałąź topologii. Jest ona jednak ściśle związana z algebrą i
Literatura: Oznaczenia:
Literatura: 1. R.R.Andruszkiewicz,,,Wyk lady z algebry ogólnej I, Wydawnictwo UwB, Bia lystok 2005. 2. Cz. Bagiński,,,Wst ep do teorii grup, Wydawnictwo Script, Warszawa 2002. 3. M. Bryński i J. Jurkiewicz,,,Zbiór
1 Działania na zbiorach
M. Beśka, Wstęp do teorii miary, rozdz. 1 1 1 Działania na zbiorach W rozdziale tym przypomnimy podstawowe działania na zbiorach koncentrując się na własnościach tych działań, które będą przydatne w dalszej
Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA?
/9/ Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład --9 Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów
Algebra i jej zastosowania konspekt wyk ladu, czȩść druga
Algebra i jej zastosowania konspekt wyk ladu, czȩść druga Anna Romanowska January 29, 2016 4 Kraty i algebry Boole a 41 Kraty zupe lne Definicja 411 Zbiór uporza dkowany (P, ) nazywamy krata zupe lna,
(4) x (y z) = (x y) (x z), x (y z) = (x y) (x z), (3) x (x y) = x, x (x y) = x, (2) x 0 = x, x 1 = x
2. Wykład 2: algebry Boole a, kraty i drzewa. 2.1. Algebra Boole a. 1 Ważnym dla nas przykładem algebr są algebry Boole a, czyli algebry B = (B,,,, 0, 1) typu (2, 2, 1, 0, 0) spełniające własności: (1)
0 + 0 = 0, = 1, = 1, = 0.
5 Kody liniowe Jak już wiemy, w celu przesłania zakodowanego tekstu dzielimy go na bloki i do każdego z bloków dodajemy tak zwane bity sprawdzające. Bity te są w ścisłej zależności z bitami informacyjnymi,
TEORETYCZNE PODSTAWY INFORMATYKI
1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 14c 2 Definicje indukcyjne Twierdzenia dowodzone przez indukcje Definicje indukcyjne Definicja drzewa
Teoria grafów podstawy. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak
Teoria grafów podstawy Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak Grafy zorientowane i niezorientowane Przykład 1 Dwa pociągi i jeden most problem wzajemnego wykluczania się Dwa
Wyk lad 6 Przyk lady homomorfizmów
Wyk lad 6 Przyk lady hooorfizów Przyk lad 6.1. Dla dowolnych grup (G 1, 1, e 1 ), (G 2, 2, e 2 ) przekszta lcenie f: G 1 G 2 dane wzore f(x) = e 2 dla x G 1 jest hooorfize grup, bo f(a) 2 f(b) = e 2 2
Dyskretne modele populacji
Dyskretne modele populacji Micha l Machtel Adam Soboczyński 17 stycznia 2007 Typeset by FoilTEX Dyskretne modele populacji [1] Wst ep Dyskretny opis modelu matematycznego jest dobry dla populacji w których
złożony ze słów zerojedynkowych o długości co najmniej 3, w których druga i trzecia litera od końca sa
Zadanie 1. Rozważmy jezyk złożony ze słów zerojedynkowych o długości co najmniej 3, w których druga i trzecia litera od końca sa równe. Narysować diagram minimalnego automatu deterministycznego akceptujacego
Optymalizacja Rozpoczniemy od przedstawienia kilku charakterystycznych przyk ladów zadań optymalizacji liniowej.
Optymalizacja Rozpoczniemy od przedstawienia kilku charakterystycznych przyk ladów zadań optymalizacji liniowej. Zagadnienie diety. Jak wymieszać wymieszać pszenice, soje i maczk e rybna by uzyskać najtańsza
1 Macierz odwrotna metoda operacji elementarnych
W tej części skupimy się na macierzach kwadratowych. Zakładać będziemy, że A M(n, n) dla pewnego n N. Definicja 1. Niech A M(n, n). Wtedy macierzą odwrotną macierzy A (ozn. A 1 ) nazywamy taką macierz