Podstawowe własności grafów. Wykład 3. Własności grafów

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Podstawowe własności grafów. Wykład 3. Własności grafów"

Transkrypt

1 Wykład 3. Własności grafów 1 / 87

2 Suma grafów Niech będą dane grafy proste G 1 = (V 1, E 1) oraz G 2 = (V 2, E 2). 2 / 87

3 Suma grafów Niech będą dane grafy proste G 1 = (V 1, E 1) oraz G 2 = (V 2, E 2). Wówczas Graf G = (V, E) nazywamy sumą grafów G 1 i G 2 i oznaczamy G = G 1 G 2, gdy V = V 1 V 2 oraz E = E 1 E 2 3 / 87

4 Suma grafów Niech będą dane grafy proste G 1 = (V 1, E 1) oraz G 2 = (V 2, E 2). Wówczas Graf G = (V, E) nazywamy sumą grafów G 1 i G 2 i oznaczamy G = G 1 G 2, gdy V = V 1 V 2 oraz E = E 1 E 2 G G 1 2 a c d b e 4 / 87

5 Zespolenie grafów Graf G = (V, E) nazywamy zespoleniem grafów G 1 i oznaczmy G 2 G = G 1 + G 2, gdy V = V 1 V 2 oraz E = E 1 E 2 {{v 1, v 2} : v 1 V 1, v 2 V 2} 5 / 87

6 Zespolenie grafów Graf G = (V, E) nazywamy zespoleniem grafów G 1 i oznaczmy G 2 G = G 1 + G 2, gdy V = V 1 V 2 oraz E = E 1 E 2 {{v 1, v 2} : v 1 V 1, v 2 V 2} a G+ 1 G 2 c d b e 6 / 87

7 Zespolenie grafów Graf G = (V, E) nazywamy zespoleniem grafów G 1 i oznaczmy G 2 G = G 1 + G 2, gdy V = V 1 V 2 oraz E = E 1 E 2 {{v 1, v 2} : v 1 V 1, v 2 V 2} a G+ 1 G 2 c d b e Twierdzenie Jeśli G = G 1 + G 2, to V = V 1 + V 2 oraz E = E 1 + E 2 + V 1 V 2. 7 / 87

8 Graf regularny Graf prosty, w którym wszystkie wierzchołki mają ten sam stopień nazywamy grafem regularnym. 8 / 87

9 Graf regularny Graf prosty, w którym wszystkie wierzchołki mają ten sam stopień nazywamy grafem regularnym. Jeżeli każdy wierzchołek grafu ma stopień r, to graf ten nazywamy grafem regularnym stopnia r lub grafem r-regularnym. Graf regularny stopnia 3 nazywamy grafem kubicznym. 9 / 87

10 Graf regularny Graf prosty, w którym wszystkie wierzchołki mają ten sam stopień nazywamy grafem regularnym. Jeżeli każdy wierzchołek grafu ma stopień r, to graf ten nazywamy grafem regularnym stopnia r lub grafem r-regularnym. Graf regularny stopnia 3 nazywamy grafem kubicznym. a) b) c) d) e) Własność Graf r-regularny o n wierzchołkach posiada nr 2 krawędzi. 10 / 87

11 Graf silnie regularny (ang. strongly regular graph) k-regularny graf G nazywamy grafem k-silnie regularnym, jeżeli istnieją nieujemne liczby λ i µ takie, że 11 / 87

12 Graf silnie regularny (ang. strongly regular graph) k-regularny graf G nazywamy grafem k-silnie regularnym, jeżeli istnieją nieujemne liczby λ i µ takie, że 1 dla każdej pary wierzchołków u i v połączonych krawędzią istnieje dokładnie λ wierzchołków połączonych jednocześnie z u i v, 12 / 87

13 Graf silnie regularny (ang. strongly regular graph) k-regularny graf G nazywamy grafem k-silnie regularnym, jeżeli istnieją nieujemne liczby λ i µ takie, że 1 dla każdej pary wierzchołków u i v połączonych krawędzią istnieje dokładnie λ wierzchołków połączonych jednocześnie z u i v, 2 dla każdej pary wierzchołków u i v nie połączonych krawędzią istnieje dokładnie µ wierzchołków połączonych jednocześnie z u i v 13 / 87

14 Graf silnie regularny (ang. strongly regular graph) k-regularny graf G nazywamy grafem k-silnie regularnym, jeżeli istnieją nieujemne liczby λ i µ takie, że 1 dla każdej pary wierzchołków u i v połączonych krawędzią istnieje dokładnie λ wierzchołków połączonych jednocześnie z u i v, 2 dla każdej pary wierzchołków u i v nie połączonych krawędzią istnieje dokładnie µ wierzchołków połączonych jednocześnie z u i v Grafy k-silnie regularne charakteryzuje ciąg (n, k, λ, µ) 14 / 87

15 Graf silnie regularny (ang. strongly regular graph) k-regularny graf G nazywamy grafem k-silnie regularnym, jeżeli istnieją nieujemne liczby λ i µ takie, że 1 dla każdej pary wierzchołków u i v połączonych krawędzią istnieje dokładnie λ wierzchołków połączonych jednocześnie z u i v, 2 dla każdej pary wierzchołków u i v nie połączonych krawędzią istnieje dokładnie µ wierzchołków połączonych jednocześnie z u i v Grafy k-silnie regularne charakteryzuje ciąg (n, k, λ, µ) (8, 4, 0, 4) 15 / 87

16 Grafy trójkątne Grafem trójkątnym T n nazywamy graf prosty, którego wierzchołki odpowiadają wzajemnie jednoznacznie dwuelementowym podzbiorom zbioru n elementowego oraz każde dwa wierzchołki połączone są krawędzią wtedy i tylko wtedy gdy przecięcie odpowiadających im zbiorów jest niepuste. 16 / 87

17 Grafy trójkątne Grafem trójkątnym T n nazywamy graf prosty, którego wierzchołki odpowiadają wzajemnie jednoznacznie dwuelementowym podzbiorom zbioru n elementowego oraz każde dwa wierzchołki połączone są krawędzią wtedy i tylko wtedy gdy przecięcie odpowiadających im zbiorów jest niepuste. {1,3} {1,2} {2,3} T 2 T 3 17 / 87

18 Graf T 4 Dla zbioru czteroelementowego mamy 6 podzbiorów dwuelementowych {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4} 18 / 87

19 Graf T 4 Dla zbioru czteroelementowego mamy 6 podzbiorów dwuelementowych {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4} {1,3} {1,4} {3,4} {1,2} {2,4} {2,3} 19 / 87

20 Grafy trójkątne Własności grafu T n 1 Graf T n ma V = ( ) n 2 = n(n 1) wierzchołków / 87

21 Grafy trójkątne Własności grafu T n 1 Graf T n ma V = ( ) n 2 = n(n 1) wierzchołków. 2 2 Stopień dowolnego wierzchołka wynosi 2n / 87

22 Grafy trójkątne Własności grafu T n 1 Graf T n ma V = ( ) n 2 = n(n 1) wierzchołków. 2 2 Stopień dowolnego wierzchołka wynosi 2n 4. 3 n 2 jest liczbą wierzchołków sąsiednich jednocześnie do u i v, jeżeli u i v są sąsiednie. 22 / 87

23 Grafy trójkątne Własności grafu T n 1 Graf T n ma V = ( ) n 2 = n(n 1) wierzchołków. 2 2 Stopień dowolnego wierzchołka wynosi 2n 4. 3 n 2 jest liczbą wierzchołków sąsiednich jednocześnie do u i v, jeżeli u i v są sąsiednie. 4 4 jest to liczbą wierzchołków sąsiednich do u i v, jeżeli u i v nie są sąsiednie. 23 / 87

24 Grafy trójkątne Własności grafu T n 1 Graf T n ma V = ( ) n 2 = n(n 1) wierzchołków. 2 2 Stopień dowolnego wierzchołka wynosi 2n 4. 3 n 2 jest liczbą wierzchołków sąsiednich jednocześnie do u i v, jeżeli u i v są sąsiednie. 4 4 jest to liczbą wierzchołków sąsiednich do u i v, jeżeli u i v nie są sąsiednie. Wniosek Grafy trójkątne są grafami silnie regularnymi, które charakteryzuje ciąg (( ) ) n, 2n 4, n 2, / 87

25 Graf pełny Graf prosty, w którym każda para wierzchołków jest połączona krawędzią nazywamy grafem pełnym. Graf pełny o n wierzchołkach oznaczmy symbolem K n. 25 / 87

26 Graf pełny Graf prosty, w którym każda para wierzchołków jest połączona krawędzią nazywamy grafem pełnym. Graf pełny o n wierzchołkach oznaczmy symbolem K n. K 1 K 2 K 3 K 4 K 5 26 / 87

27 Graf pełny Własność Stopień każdego wierzchołka w grafie pełnym K n wynosi n / 87

28 Graf pełny Własność Stopień każdego wierzchołka w grafie pełnym K n wynosi n 1. Twierdzenie Graf pełny K n ma krawędzi. E Kn = n (n 1) 2 28 / 87

29 Graf pusty Grafem pustym nazywamy graf, którego zbiór krawędzi jest pusty (nie jest pusty zbiór wierzchołków, czyli V > 0 oraz E = 0). Graf pusty mający n wierzchołków oznaczamy symbolem N n. 29 / 87

30 Graf pusty Grafem pustym nazywamy graf, którego zbiór krawędzi jest pusty (nie jest pusty zbiór wierzchołków, czyli V > 0 oraz E = 0). Graf pusty mający n wierzchołków oznaczamy symbolem N n. N 8 30 / 87

31 Graf pusty Grafem pustym nazywamy graf, którego zbiór krawędzi jest pusty (nie jest pusty zbiór wierzchołków, czyli V > 0 oraz E = 0). Graf pusty mający n wierzchołków oznaczamy symbolem N n. Własność 1 Graf N n składa się z n wierzchołków izolowanych. N 8 31 / 87

32 Graf pusty Grafem pustym nazywamy graf, którego zbiór krawędzi jest pusty (nie jest pusty zbiór wierzchołków, czyli V > 0 oraz E = 0). Graf pusty mający n wierzchołków oznaczamy symbolem N n. Własność 1 Graf N n składa się z n wierzchołków izolowanych. 2 Graf N n jest grafem regularnym stopnia 0. N 8 32 / 87

33 Graf cykliczny Graf spójny regularny stopnia 2 nazywamy grafem cyklicznym. Graf cykliczny mający n wierzchołków oznaczamy symbolem C n. 33 / 87

34 Graf cykliczny Graf spójny regularny stopnia 2 nazywamy grafem cyklicznym. Graf cykliczny mający n wierzchołków oznaczamy symbolem C n. C 5 34 / 87

35 Graf cykliczny Graf spójny regularny stopnia 2 nazywamy grafem cyklicznym. Graf cykliczny mający n wierzchołków oznaczamy symbolem C n. Własność 1 W grafie cyklicznym każde dwie sąsiednie krawędzie są połączone szeregowo. C 5 35 / 87

36 Graf cykliczny Graf spójny regularny stopnia 2 nazywamy grafem cyklicznym. Graf cykliczny mający n wierzchołków oznaczamy symbolem C n. Własność 1 W grafie cyklicznym każde dwie sąsiednie krawędzie są połączone szeregowo. 2 Graf cykliczny C n posiada n krawędzi. C 5 36 / 87

37 Graf liniowy Jeżeli z grafu C n usuniemy dokładnie jedną krawędź, to otrzymany graf nazywamy grafem liniowym o n wierzchołkach i oznaczamy symbolem P n. 37 / 87

38 Graf liniowy Jeżeli z grafu C n usuniemy dokładnie jedną krawędź, to otrzymany graf nazywamy grafem liniowym o n wierzchołkach i oznaczamy symbolem P n. P 6 38 / 87

39 Graf liniowy Jeżeli z grafu C n usuniemy dokładnie jedną krawędź, to otrzymany graf nazywamy grafem liniowym o n wierzchołkach i oznaczamy symbolem P n. Własność 1 Graf P n nie jest grafem regularnym. P 6 39 / 87

40 Graf liniowy Jeżeli z grafu C n usuniemy dokładnie jedną krawędź, to otrzymany graf nazywamy grafem liniowym o n wierzchołkach i oznaczamy symbolem P n. P 6 Własność 1 Graf P n nie jest grafem regularnym. 2 Graf P n posiada zawsze 2 wierzchołki stopnia pierwszego, a pozostałe n 2 wierzchołki są stopnia drugiego. 40 / 87

41 Koło Kołem W n nazywamy graf W n = C n 1 + N / 87

42 Koło Kołem W n nazywamy graf W n = C n 1 + N 1. N 1 C 5 W 6 W 6 = C 5 + N 1 42 / 87

43 Graf dwudzielny Niech G = (V, E) będzie grafem prostym. Graf G jest grafem dwudzielnym, jeśli zbiór wierzchołków V jest sumą dwóch niepustych zbiorów rozłącznych V 1 i V 2, takich, że każda krawędź tego grafu łączy wierzchołek ze zbioru V 1 z wierzchołkiem ze zbioru V / 87

44 Graf dwudzielny Niech G = (V, E) będzie grafem prostym. Graf G jest grafem dwudzielnym, jeśli zbiór wierzchołków V jest sumą dwóch niepustych zbiorów rozłącznych V 1 i V 2, takich, że każda krawędź tego grafu łączy wierzchołek ze zbioru V 1 z wierzchołkiem ze zbioru V 2. x 1 x 2 x 3 x3 y 2 y 3 x 2 x 1 y 1 y 1 y 2 44 / 87

45 Graf dwudzielny Twierdzenie Jeżeli graf G jest grafem dwudzielnym, to każdy cykl w G ma długość parzystą. 45 / 87

46 Graf dwudzielny Twierdzenie Jeżeli graf G jest grafem dwudzielnym, to każdy cykl w G ma długość parzystą. Dowód. Niech V = V 1 V 2 oraz niech v 0v 1v 2... v mv 0 będzie cyklem w G. Załóżmy, bez straty ogólności, że v 0 V 1, wtedy v 1 V 2, v 2 V 1, itd. (Wierzchołki o indeksach parzystych należą do zbioru V 1, a o indeksach nieparzystych do zbioru V 2). Ponieważ cykl jest długości m oraz v m V 2, więc cykl ma długość parzystą. 46 / 87

47 Graf pełny dwudzielny Graf dwudzielny jest pełnym grafem dwudzielnym, jeśli każdy wierzchołek zbioru V 1 jest połączony z każdym wierzchołkiem zbioru V 2 dokładnie jedną krawędzią. Graf pełny dwudzielny, w którym V 1 = r i V 2 = s oznaczamy symbolem K r,s. 47 / 87

48 Graf pełny dwudzielny Graf dwudzielny jest pełnym grafem dwudzielnym, jeśli każdy wierzchołek zbioru V 1 jest połączony z każdym wierzchołkiem zbioru V 2 dokładnie jedną krawędzią. Graf pełny dwudzielny, w którym V 1 = r i V 2 = s oznaczamy symbolem K r,s. x 3 x 2 x 1 x 2 y 2 x 1 x 2 x 3 x 3 Własność y 1 x 2 x x 1 1 y2 K 1,3 K 2,2 K 2,3 y 1 y 1 y 1 K 2,3 y 2 1 K r,s = N r + N s x 3 y 2 x 1 x 2 x 3 y 3 x 2 x 1 y 1 y K 3,3 y 2 1 K y3 3,3 48 / 87

49 Graf pełny dwudzielny Graf dwudzielny jest pełnym grafem dwudzielnym, jeśli każdy wierzchołek zbioru V 1 jest połączony z każdym wierzchołkiem zbioru V 2 dokładnie jedną krawędzią. Graf pełny dwudzielny, w którym V 1 = r i V 2 = s oznaczamy symbolem K r,s. x 3 x 2 x 1 x 2 y 2 x 1 x 2 x 3 x 3 Własność y 1 x 2 x x 1 1 y2 K 1,3 K 2,2 K 2,3 y 1 y 1 y 1 y 2 K 2,3 x 3 y 2 x 1 x 2 x 3 1 K r,s = N r + N s 2 Każdy graf K r,s ma r + s wierzchołków. y 3 x 2 x 1 y 1 y K 3,3 y 2 1 K y3 3,3 49 / 87

50 Graf pełny dwudzielny Graf dwudzielny jest pełnym grafem dwudzielnym, jeśli każdy wierzchołek zbioru V 1 jest połączony z każdym wierzchołkiem zbioru V 2 dokładnie jedną krawędzią. Graf pełny dwudzielny, w którym V 1 = r i V 2 = s oznaczamy symbolem K r,s. x 3 x 2 x 1 x 2 y 2 x 1 x 2 x 3 x 3 Własność y 1 x 2 x x 1 1 y2 K 1,3 K 2,2 K 2,3 y 1 y 1 y 1 y 2 K 2,3 x 3 y 2 x 1 x 2 x 3 1 K r,s = N r + N s 2 Każdy graf K r,s ma r + s wierzchołków. y 3 x 2 3 Każdy graf K r,s ma r s krawędzi. x 1 y 1 y K 3,3 y 2 1 K y3 3,3 50 / 87

51 Algorytm testowania dwudzielności grafu BIPART(G, s; S, T, bip) Algorytm 1 Q 0, bip true, S Dane: G spójny graf, dowolny 2 for każdy v V wierzchołek s grafu G 3 do Wynik: jeżeli graf jest dwudzielny, 4 d(v) wówczas bip ma wartość true oraz 5 d(s) 0, s Q generowane są zbiory S i T, takie, 6 while Q and bip = true że S T = V i S T = 7 do 8 u head[q] 9 for każdy v Adj[u] 10 do 11 if d(v) = then d(v) d(u) + 1; v Q 12 else if d(u) = d(v) then bip false 13 if bip = true 14 then 15 for v V 16 do 17 if d(v) = 0(mod2) then S S {v} 18 T V \ S 51 / 87

52 Kostki Graf, którego wierzchołki odpowiadają ciągom binarnym (a 1, a 2,..., a n), oraz którego krawędzie łączą ciągi różniące się dokładnie jednym wyrazem nazywamy n kostką Q n. 52 / 87

53 Kostki Graf, którego wierzchołki odpowiadają ciągom binarnym (a 1, a 2,..., a n), oraz którego krawędzie łączą ciągi różniące się dokładnie jednym wyrazem nazywamy n kostką Q n / 87

54 W trakcie przyjęcia pan Szaradek udał się do toalety. W tym czasie goście rozłożyli na stole w jednym rzędzie (w losowy sposób) n > 1 monet i podali liczbę ze zbioru {1,..., n}. Pani Szaradkowa odwróciła do góry nogami dokładnie jedną monetę. Czy patrząc na układ monet na stole Pan Szaradek, który wrócił z toalety już po odwróceniu monet, jest w stanie odpowiedzieć na pytanie jaką liczbę podali goście? Wskazówka: Rozstrzygnąć, dla jakich n jest to możliwe. 54 / 87

55 Graf krawędziowy Grafem krawędziowym L(G) grafu G, nazywamy graf, którego wierzchołki odpowiadają wzajemnie jednoznacznie krawędziom G oraz dowolne dwa wierzchołki w grafie L(G) są sąsiednie wtedy i tylko wtedy, gdy odpowiadające im krawędzie są sąsiednie w G. 55 / 87

56 Graf krawędziowy Grafem krawędziowym L(G) grafu G, nazywamy graf, którego wierzchołki odpowiadają wzajemnie jednoznacznie krawędziom G oraz dowolne dwa wierzchołki w grafie L(G) są sąsiednie wtedy i tylko wtedy, gdy odpowiadające im krawędzie są sąsiednie w G. 56 / 87

57 Dopełnienie grafu Dopełnieniem grafu G = (V, E) nazywamy graf G, którego zbiór wierzchołków jest taki sam, jak grafu G oraz w którym dwa wierzchołki są sąsiednie wtedy i tylko wtedy, gdy nie są sąsiednie w grafie G. 57 / 87

58 Dopełnienie grafu Dopełnieniem grafu G = (V, E) nazywamy graf G, którego zbiór wierzchołków jest taki sam, jak grafu G oraz w którym dwa wierzchołki są sąsiednie wtedy i tylko wtedy, gdy nie są sąsiednie w grafie G. u u y v y v x w x w Własność 1 Dopełnieniem grafu pełnego K n jest graf pusty N n. 58 / 87

59 Dopełnienie grafu Dopełnieniem grafu G = (V, E) nazywamy graf G, którego zbiór wierzchołków jest taki sam, jak grafu G oraz w którym dwa wierzchołki są sąsiednie wtedy i tylko wtedy, gdy nie są sąsiednie w grafie G. u u y v y v x w x w Własność 1 Dopełnieniem grafu pełnego K n jest graf pusty N n. 2 Dopełnieniem grafu pełnego dwudzielnego K r,s są dwa grafy pełne K r i K s. 59 / 87

60 Podgraf grafu Graf H = V H, E H, γ H jest podgrafem grafu G = V G, E G, γ G wtedy i tylko wtedy, gdy spełnione są warunki: V H V G E H E G γ H = γ G EH x 5 x 5 g e x 3 x 4 f x 3 x 4 b g e d a f x 5 x 1 x 1 c x 2 G G G 2 1 x 3 a b c d x 4 60 / 87

61 Własności podgrafów Własność 1 Każdy graf jest swoim własnym podgrafem. 61 / 87

62 Własności podgrafów Własność 1 Każdy graf jest swoim własnym podgrafem. 2 Podgraf G podgrafu G grafu G jest podgrafem grafu G tzn ( G G G G ) G G. 62 / 87

63 Własności podgrafów Własność 1 Każdy graf jest swoim własnym podgrafem. 2 Podgraf G podgrafu G grafu G jest podgrafem grafu G tzn ( G G G G ) G G. 3 Pojedynczy wierzchołek grafu G jest podgrafem grafu G. 63 / 87

64 Własności podgrafów Własność 1 Każdy graf jest swoim własnym podgrafem. 2 Podgraf G podgrafu G grafu G jest podgrafem grafu G tzn ( G G G G ) G G. 3 Pojedynczy wierzchołek grafu G jest podgrafem grafu G. 4 Pojedyncza krawędź grafu G łącznie z jej końcami jest podgrafem grafu G. 64 / 87

65 Własności podgrafów Własność 1 Każdy graf jest swoim własnym podgrafem. 2 Podgraf G podgrafu G grafu G jest podgrafem grafu G tzn ( G G G G ) G G. 3 Pojedynczy wierzchołek grafu G jest podgrafem grafu G. 4 Pojedyncza krawędź grafu G łącznie z jej końcami jest podgrafem grafu G. 5 Każdy graf prosty G o n-wierzchołkach jest podgrafem grafu pełnego K n. 65 / 87

66 Własności podgrafów Własność 1 Każdy graf jest swoim własnym podgrafem. 2 Podgraf G podgrafu G grafu G jest podgrafem grafu G tzn ( G G G G ) G G. 3 Pojedynczy wierzchołek grafu G jest podgrafem grafu G. 4 Pojedyncza krawędź grafu G łącznie z jej końcami jest podgrafem grafu G. 5 Każdy graf prosty G o n-wierzchołkach jest podgrafem grafu pełnego K n. 6 Liczba wszystkich różnych grafów prostych zawierających n wierzchołków jest równa 2 n(n 1) 2 66 / 87

67 grafu Niech dany będzie graf G = V, E, γ i krawędź e E. G e oznacza podgraf otrzymany z grafu G przez usunięcie krawędzi e. Niech F będzie dowolnym podzbiorem zbioru krawędzi grafu G (F E), wówczas G F oznacza podgraf grafu G powstały przez usunięcie wszystkich krawędzi należących do zbioru F. v u f e g x z z d z u d u f f c v e v e b c g g c y a y x a y x a G G - b G - {d,b} 67 / 87

68 grafu Niech dany będzie graf G = V, E, γ i niech wierzchołek v V. G v oznacza podgraf grafu G otrzymany z G przez usunięcie wierzchołka v i wszystkich krawędzi do niego incydentnych. Jeżeli S jest dowolnym podzbiorem zbioru wierzchołków V grafu G (S V S V ), to G S oznacza graf, który otrzymamy z grafu G przez usunięcie wszystkich wierzchołków należących do zbioru S i wszystkich krawędzi incydentnych do dowolnego wierzchołka ze zbioru S. u u f v e v g g a a v y y y x x G - z G - {z,u} G - {z,x} 68 / 87

69 Graf częściowy Graf H nazywamy grafem częściowym lub grafem spinającym grafu G jeżeli jest podgrafem G i V H = V G. x 5 x 5 x 4 x 3 x 4 x 3 x 1 x G 2 x 1 x H 2 69 / 87

70 Klika Kliką nazywamy podgraf, w którym każde dwa wierzchołki są połączone krawędzią. 70 / 87

71 Klika Kliką nazywamy podgraf, w którym każde dwa wierzchołki są połączone krawędzią. 71 / 87

72 Klika Klikę nazywamy maksymalną, jeśli nie da się dodać do niej wierzchołka tak, aby razem z nią również tworzył klikę. 72 / 87

73 Klika Klikę nazywamy maksymalną, jeśli nie da się dodać do niej wierzchołka tak, aby razem z nią również tworzył klikę. Klikę nazywamy największą (najliczniejszą), jeśli nie ma w grafie kliki o większej liczbie wierzchołków. 73 / 87

74 Klika Klikę nazywamy maksymalną, jeśli nie da się dodać do niej wierzchołka tak, aby razem z nią również tworzył klikę. Klikę nazywamy największą (najliczniejszą), jeśli nie ma w grafie kliki o większej liczbie wierzchołków. Ilość wierzchołków największej kliki oznaczamy przez ω(g). 74 / 87

75 Klika Klikę nazywamy maksymalną, jeśli nie da się dodać do niej wierzchołka tak, aby razem z nią również tworzył klikę. Klikę nazywamy największą (najliczniejszą), jeśli nie ma w grafie kliki o większej liczbie wierzchołków. Ilość wierzchołków największej kliki oznaczamy przez ω(g). 75 / 87

76 Klika Klikę nazywamy maksymalną, jeśli nie da się dodać do niej wierzchołka tak, aby razem z nią również tworzył klikę. Klikę nazywamy największą (najliczniejszą), jeśli nie ma w grafie kliki o większej liczbie wierzchołków. Ilość wierzchołków największej kliki oznaczamy przez ω(g). 76 / 87

77 Podgraf indukowany Podgrafem indukowanym H = (V H, E H ) grafu G = (V, E), nazywamy graf, w którym V H V oraz E H = {{u, v} : u, v V H oraz {u, v} E} podgraf indukowany G[1, 2, 3, 5, 7, 10] 77 / 87

78 Składowe spójne grafu Każdy spójny podgraf G 1 grafu G (G 1 G), który nie jest zawarty w większym (w sensie relacji zawierania zbioru wierzchołków oraz zawierania zbioru krawędzi) spójnym podgrafie grafu G nazywamy składową spójną grafu G. 78 / 87

79 Składowe spójne grafu Każdy spójny podgraf G 1 grafu G (G 1 G), który nie jest zawarty w większym (w sensie relacji zawierania zbioru wierzchołków oraz zawierania zbioru krawędzi) spójnym podgrafie grafu G nazywamy składową spójną grafu G. a x y b c w z d x 6 x x 3 79 / 87

80 Składowe spójne grafu Każdy spójny podgraf G 1 grafu G (G 1 G), który nie jest zawarty w większym (w sensie relacji zawierania zbioru wierzchołków oraz zawierania zbioru krawędzi) spójnym podgrafie grafu G nazywamy składową spójną grafu G. a x y b c w z d Oczywiście każdy wierzchołek izolowany danego grafu jest jego spójna składową. x 6 x x 3 80 / 87

81 Twierdzenie Spójny graf o n wierzchołkach, posiada co najmniej n 1 krawędzi. 81 / 87

82 Twierdzenie Spójny graf o n wierzchołkach, posiada co najmniej n 1 krawędzi. Twierdzenie Ilość krawędzi m w grafie prostym i spójnym o n wierzchołkach, spełnia zależność n(n 1) n 1 m 2 82 / 87

83 Twierdzenie Spójny graf o n wierzchołkach, posiada co najmniej n 1 krawędzi. Twierdzenie Ilość krawędzi m w grafie prostym i spójnym o n wierzchołkach, spełnia zależność n(n 1) n 1 m 2 Twierdzenie Niech G będzie grafem prostym o n wierzchołkach. Jeżeli graf G ma k składowych, to liczba m jego krawędzi spełnia nierówność n k m 1 (n k) (n k + 1) 2 Każdy graf prosty, który ma n wierzchołków i więcej niż (n 1)(n 2) 2 krawędzi jest spójny. 83 / 87

84 Lemat Acykliczny graf o n wierzchołkach posiada co najwyżej n 1 krawędzi. 84 / 87

85 Lemat Acykliczny graf o n wierzchołkach posiada co najwyżej n 1 krawędzi. Twierdzenie Niech G będzie grafem o n wierzchołkach. Wówczas dowolne dwa warunki implikują trzeci. 1 G jest spójny 2 G jest acykliczny 3 G posiada dokładnie n 1 krawędzi 85 / 87

86 Algorytm sprawdzający spójność grafu Dane: graf G = (V, E) Spojny(G) 1 for wszystkie v V 2 do 3 odwiedzony[v] = false 4 v - dowolny wierzchołek grafu 5 S v 6 while istnieje wierzchołek w S dla którego odwiedzony[v] = false 7 do 8 N zbiór wszystkich sąsiadów wierzchołka v 9 S S N 10 odwiedzony[v] = true 11 if S = V 12 then graf spójny 13 else graf niespójny 86 / 87

87 Dziękuję za uwagę!!! 87 / 87

Kolorowanie wierzchołków Kolorowanie krawędzi Kolorowanie regionów i map. Wykład 8. Kolorowanie

Kolorowanie wierzchołków Kolorowanie krawędzi Kolorowanie regionów i map. Wykład 8. Kolorowanie Wykład 8. Kolorowanie 1 / 62 Kolorowanie wierzchołków - definicja Zbiory niezależne Niech G będzie grafem bez pętli. Definicja Mówimy, że G jest grafem k kolorowalnym, jeśli każdemu wierzchołkowi możemy

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /15

Matematyka dyskretna. Andrzej Łachwa, UJ, /15 Matematyka dyskretna Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl 14/15 Grafy podstawowe definicje Graf to para G=(V, E), gdzie V to niepusty i skończony zbiór, którego elementy nazywamy wierzchołkami

Bardziej szczegółowo

MATEMATYKA DYSKRETNA - MATERIAŁY DO WYKŁADU GRAFY

MATEMATYKA DYSKRETNA - MATERIAŁY DO WYKŁADU GRAFY ERIAŁY DO WYKŁADU GRAFY Graf nieskierowany Grafem nieskierowanym nazywamy parę G = (V, E), gdzie V jest pewnym zbiorem skończonym (zwanym zbiorem wierzchołków grafu G), natomiast E jest zbiorem nieuporządkowanych

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA DROGI i CYKLE w grafach Dla grafu (nieskierowanego) G = ( V, E ) drogą z wierzchołka v 0 V do v t V nazywamy ciąg (naprzemienny) wierzchołków i krawędzi grafu: ( v 0, e, v, e,..., v t, e t, v t ), spełniający

Bardziej szczegółowo

SPÓJNOŚĆ. ,...v k. }, E={v 1. v k. i v k. ,...,v k-1. }. Wierzchołki v 1. v 2. to końce ścieżki.

SPÓJNOŚĆ. ,...v k. }, E={v 1. v k. i v k. ,...,v k-1. }. Wierzchołki v 1. v 2. to końce ścieżki. SPÓJNOŚĆ Graf jest spójny, gdy dla każdego podziału V na dwa rozłączne podzbiory A i B istnieje krawędź z A do B. Definicja równoważna: Graf jest spójny, gdy każde dwa wierzchołki są połączone ścieżką

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /14

Matematyka dyskretna. Andrzej Łachwa, UJ, /14 Matematyka dyskretna Andrzej Łachwa, UJ, 2012 andrzej.lachwa@uj.edu.pl 13/14 Grafy podstawowe definicje Graf to para G=(V, E), gdzie V to niepusty i skończony zbiór, którego elementy nazywamy wierzchołkami

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Twierdzenie 2.1 Niech G będzie grafem prostym

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Informacje podstawowe 1. Konsultacje: pokój

Bardziej szczegółowo

Suma dwóch grafów. Zespolenie dwóch grafów

Suma dwóch grafów. Zespolenie dwóch grafów Suma dwóch grafów G 1 = ((G 1 ), E(G 1 )) G 2 = ((G 2 ), E(G 2 )) (G 1 ) i (G 2 ) rozłączne Suma G 1 G 2 graf ze zbiorem wierzchołków (G 1 ) (G 2 ) i rodziną krawędzi E(G 1 ) E(G 2 ) G 1 G 2 G 1 G 2 Zespolenie

Bardziej szczegółowo

Kolorowanie wierzchołków grafu

Kolorowanie wierzchołków grafu Kolorowanie wierzchołków grafu Niech G będzie grafem prostym. Przez k-kolorowanie właściwe wierzchołków grafu G rozumiemy takie przyporządkowanie wierzchołkom grafu liczb naturalnych ze zbioru {1,...,

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA DRZEWA i LASY Drzewem nazywamy graf spójny nie zawierający cykli elementarnych. Lasem nazywamy graf nie zawierający cykli elementarnych. Przykłady drzew i lasów takie krawędzie są wykluczone drzewo las

Bardziej szczegółowo

Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA

Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA Zad. 1 (12p.)Niech n 3k > 0. Zbadać jaka jest najmniejsza możliwa liczba krawędzi w grafie, który ma dokładnie n wierzchołków oraz dokładnie k składowych, z których

Bardziej szczegółowo

SKOJARZENIA i ZBIORY WEWN. STABILNE WIERZCH. Skojarzeniem w grafie G nazywamy dowolny podzbiór krawędzi parami niezależnych.

SKOJARZENIA i ZBIORY WEWN. STABILNE WIERZCH. Skojarzeniem w grafie G nazywamy dowolny podzbiór krawędzi parami niezależnych. SKOJARZENIA i ZBIORY WEWN. STABILNE WIERZCH. Rozważamy graf G = (V, E) Dwie krawędzie e, e E nazywamy niezależnymi, jeśli nie są incydentne ze wspólnym wierzchołkiem. Skojarzeniem w grafie G nazywamy dowolny

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 13: Teoria Grafów Gniewomir Sarbicki Literatura R.J. Wilson Wprowadzenie do teorii grafów Definicja: Grafem (skończonym, nieskierowanym) G nazywamy parę zbiorów (V (G), E(G)),

Bardziej szczegółowo

Kolorowanie wierzchołków

Kolorowanie wierzchołków Kolorowanie wierzchołków Mając dany graf, pokolorować jego wierzchołki w taki sposób, aby każde dwa wierzchołki sąsiednie miały inny kolor. Każda krawędź łączy wierzchołki różnych kolorów. Takie pokolorowanie

Bardziej szczegółowo

E ' E G nazywamy krawędziowym zbiorem

E ' E G nazywamy krawędziowym zbiorem Niech G będzie grafem spójnym. Wierzchołek x nazywamy rozcinającym, jeśli G\{x} jest niespójny. Niech G będzie grafem spójnym. V ' V G nazywamy zbiorem rozcinającym jeśli G\V' jest niespójny Niech G będzie

Bardziej szczegółowo

Czy istnieje zamknięta droga spaceru przechodząca przez wszystkie mosty w Królewcu dokładnie jeden raz?

Czy istnieje zamknięta droga spaceru przechodząca przez wszystkie mosty w Królewcu dokładnie jeden raz? DROGI i CYKLE EULERA w grafach Czy istnieje zamknięta droga spaceru przechodząca przez wszystkie mosty w Królewcu dokładnie jeden raz? Czy można narysować podaną figurę nie odrywając ołówka od papieru

Bardziej szczegółowo

6. Wstępne pojęcia teorii grafów

6. Wstępne pojęcia teorii grafów 6. Wstępne pojęcia teorii grafów Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2016/2017 rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 6. Wstępne pojęcia teorii grafów zima 2016/2017

Bardziej szczegółowo

(4) x (y z) = (x y) (x z), x (y z) = (x y) (x z), (3) x (x y) = x, x (x y) = x, (2) x 0 = x, x 1 = x

(4) x (y z) = (x y) (x z), x (y z) = (x y) (x z), (3) x (x y) = x, x (x y) = x, (2) x 0 = x, x 1 = x 2. Wykład 2: algebry Boole a, kraty i drzewa. 2.1. Algebra Boole a. 1 Ważnym dla nas przykładem algebr są algebry Boole a, czyli algebry B = (B,,,, 0, 1) typu (2, 2, 1, 0, 0) spełniające własności: (1)

Bardziej szczegółowo

Spis treści Podstawowe definicje Wielomian charakterystyczny grafu Grafy silnie regularne

Spis treści Podstawowe definicje Wielomian charakterystyczny grafu Grafy silnie regularne Spis treści 1 Podstawowe definicje 4 1.1 Grafy................................ 4 1.2 Przykłady grafów......................... 12 1.2.1 Grafy puste i pełne.................... 12 1.2.2 Grafy dwudzielne.....................

Bardziej szczegółowo

Sortowanie topologiczne skierowanych grafów acyklicznych

Sortowanie topologiczne skierowanych grafów acyklicznych Sortowanie topologiczne skierowanych grafów acyklicznych Metody boolowskie w informatyce Robert Sulkowski http://robert.brainusers.net 23 stycznia 2010 1 Definicja 1 (Cykl skierowany). Niech C = (V, A)

Bardziej szczegółowo

Algorytmiczna teoria grafów

Algorytmiczna teoria grafów Przedmiot fakultatywny 20h wykładu + 20h ćwiczeń 21 lutego 2014 Zasady zaliczenia 1 ćwiczenia (ocena): kolokwium, zadania programistyczne (implementacje algorytmów), praca na ćwiczeniach. 2 Wykład (egzamin)

Bardziej szczegółowo

Grafy. Graf ( graf ogólny) to para G( V, E), gdzie:

Grafy. Graf ( graf ogólny) to para G( V, E), gdzie: Graf ( graf ogólny) to para G( V, E), gdzie: V jest zbiorem wierzchołków, ( czasami zwanymi węzłami lub punktami grafu) E jest rodziną ( być może powtarzających się) krawędzi, czyli jedno- i dwu- elementowych

Bardziej szczegółowo

6d. Grafy dwudzielne i kolorowania

6d. Grafy dwudzielne i kolorowania 6d. Grafy dwudzielne i kolorowania Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2016/2017 rzegorz Kosiorowski (Uniwersytet Ekonomiczny w6d. Krakowie) Grafy dwudzielne i kolorowania zima

Bardziej szczegółowo

Reprezentacje grafów nieskierowanych Reprezentacje grafów skierowanych. Wykład 2. Reprezentacja komputerowa grafów

Reprezentacje grafów nieskierowanych Reprezentacje grafów skierowanych. Wykład 2. Reprezentacja komputerowa grafów Wykład 2. Reprezentacja komputerowa grafów 1 / 69 Macierz incydencji Niech graf G będzie grafem nieskierowanym bez pętli o n wierzchołkach (x 1, x 2,..., x n) i m krawędziach (e 1, e 2,..., e m). 2 / 69

Bardziej szczegółowo

Ilustracja S1 S2. S3 ściana zewnętrzna

Ilustracja S1 S2. S3 ściana zewnętrzna Grafy płaskie G=(V,E) nazywamy grafem płaskim, gdy V jest skończonym podzbiorem punktów płaszczyzny euklidesowej, a E to zbiór krzywych Jordana (łamanych) o końcach w V i takich, że: 1) rożne krzywe mają

Bardziej szczegółowo

Wykład 8. Drzewo rozpinające (minimum spanning tree)

Wykład 8. Drzewo rozpinające (minimum spanning tree) Wykład 8 Drzewo rozpinające (minimum spanning tree) 1 Minimalne drzewo rozpinające - przegląd Definicja problemu Własności minimalnych drzew rozpinających Algorytm Kruskala Algorytm Prima Literatura Cormen,

Bardziej szczegółowo

MATEMATYKA DYSKRETNA - KOLOKWIUM 2

MATEMATYKA DYSKRETNA - KOLOKWIUM 2 1 MATEMATYKA DYSKRETNA - KOLOKWIUM 2 GRUPA A RACHUNKI+KRÓTKIE WYJAŚNIENIA! NA TEJ KARTCE! KAŻDA DODATKOWA KARTKA TO MINUS 1 PUNKT! Imię i nazwisko...... Nr indeksu... 1. (3p.) Znajdź drzewo o kodzie Prufera

Bardziej szczegółowo

Droga i cykl Eulera Przykłady zastosowania drogi i cyku Eulera Droga i cykl Hamiltona. Wykład 4. Droga i cykl Eulera i Hamiltona

Droga i cykl Eulera Przykłady zastosowania drogi i cyku Eulera Droga i cykl Hamiltona. Wykład 4. Droga i cykl Eulera i Hamiltona Wykład 4. Droga i cykl Eulera i Hamiltona 1 / 92 Grafy Eulera Droga i cykl Eulera Niech G będzie grafem spójnym. Definicja Jeżeli w grafie G istnieje zamknięta droga prosta zawierająca wszystkie krawędzie

Bardziej szczegółowo

10. Kolorowanie wierzchołków grafu

10. Kolorowanie wierzchołków grafu p. 10. Kolorowanie wierzchołków grafu 10.1 Definicje i twierdzenia Przez k-kolorowanie wierzchołków grafu G rozumiemy przyporzadkowanie każdemu wierzchołkowi grafu G jednego z k kolorów 1, 2,...,k. p.

Bardziej szczegółowo

Wprowadzenie Podstawy Fundamentalne twierdzenie Kolorowanie. Grafy planarne. Przemysław Gordinowicz. Instytut Matematyki, Politechnika Łódzka

Wprowadzenie Podstawy Fundamentalne twierdzenie Kolorowanie. Grafy planarne. Przemysław Gordinowicz. Instytut Matematyki, Politechnika Łódzka Grafy planarne Przemysław Gordinowicz Instytut Matematyki, Politechnika Łódzka Grafy i ich zastosowania Wykład 12 Plan prezentacji 1 Wprowadzenie 2 Podstawy 3 Fundamentalne twierdzenie 4 Kolorowanie grafów

Bardziej szczegółowo

Gramatyki grafowe. Dla v V, ϕ(v) etykieta v. Klasa grafów nad Σ - G Σ.

Gramatyki grafowe. Dla v V, ϕ(v) etykieta v. Klasa grafów nad Σ - G Σ. Gramatyki grafowe Def. Nieskierowany NL-graf (etykietowane wierzchołki) jest czwórką g = (V, E, Σ, ϕ), gdzie: V niepusty zbiór wierzchołków, E V V zbiór krawędzi, Σ - skończony, niepusty alfabet etykiet

Bardziej szczegółowo

Matematyka dyskretna - 5.Grafy.

Matematyka dyskretna - 5.Grafy. Matematyka dyskretna - 5.Grafy. W tym rozdziale zajmiemy się grafami. Są to wykresy zawierające rozmaite informacje, przedstawiające połączenia pomiędzy różnymi swoimi elementami. Algorytmy na nich oparte

Bardziej szczegółowo

G. Wybrane elementy teorii grafów

G. Wybrane elementy teorii grafów Dorota Miszczyńska, Marek Miszczyński KBO UŁ Wybrane elementy teorii grafów 1 G. Wybrane elementy teorii grafów Grafy są stosowane współcześnie w różnych działach nauki i techniki. Za pomocą grafów znakomicie

Bardziej szczegółowo

Złożoność obliczeniowa klasycznych problemów grafowych

Złożoność obliczeniowa klasycznych problemów grafowych Złożoność obliczeniowa klasycznych problemów grafowych Oznaczenia: G graf, V liczba wierzchołków, E liczba krawędzi 1. Spójność grafu Graf jest spójny jeżeli istnieje ścieżka łącząca każdą parę jego wierzchołków.

Bardziej szczegółowo

Elementy teorii grafów Elementy teorii grafów

Elementy teorii grafów Elementy teorii grafów Spis tresci 1 Spis tresci 1 Często w zagadnieniach praktycznych rozważa się pewien zbiór obiektów wraz z zależnościami jakie łączą te obiekty. Dla przykładu można badać pewną grupę ludzi oraz strukturę

Bardziej szczegółowo

Wojciech Guzicki. Gdynia, 23 września 2016 r.

Wojciech Guzicki. Gdynia, 23 września 2016 r. 1 O KRÓTKICH CYKLACH W GRAFACH Wojciech Guzicki W. Guzicki: O krótkich cyklach w grafach 2 5zadań Zadanie 1.(XXXVII OM, zawody III stopnia, zadanie 5) W turnieju szachowym uczestniczy 2n zawodników(zakładamy,

Bardziej szczegółowo

Teoria grafów dla małolatów. Andrzej Przemysław Urbański Instytut Informatyki Politechnika Poznańska

Teoria grafów dla małolatów. Andrzej Przemysław Urbański Instytut Informatyki Politechnika Poznańska Teoria grafów dla małolatów Andrzej Przemysław Urbański Instytut Informatyki Politechnika Poznańska Wstęp Matematyka to wiele różnych dyscyplin Bowiem świat jest bardzo skomplikowany wymaga rozważenia

Bardziej szczegółowo

Egzaminy i inne zadania. Semestr II.

Egzaminy i inne zadania. Semestr II. Egzaminy i inne zadania. Semestr II. Poniższe zadania są wyborem zadań ze Wstępu do Informatyki z egzaminów jakie przeprowadziłem w ciągu ostatnich lat. Ponadto dołączyłem szereg zadań, które pojawiały

Bardziej szczegółowo

Siedem cudów informatyki czyli o algorytmach zdumiewajacych

Siedem cudów informatyki czyli o algorytmach zdumiewajacych Siedem cudów informatyki czyli o algorytmach zdumiewajacych Łukasz Kowalik kowalik@mimuw.edu.pl Instytut Informatyki Uniwersytet Warszawski Łukasz Kowalik, Siedem cudów informatyki p. 1/25 Problem 1: mnożenie

Bardziej szczegółowo

Rozważmy funkcję f : X Y. Dla dowolnego zbioru A X określamy. Dla dowolnego zbioru B Y określamy jego przeciwobraz:

Rozważmy funkcję f : X Y. Dla dowolnego zbioru A X określamy. Dla dowolnego zbioru B Y określamy jego przeciwobraz: Rozważmy funkcję f : X Y. Dla dowolnego zbioru A X określamy jego obraz: f(a) = {f(x); x A} = {y Y : x A f(x) = y}. Dla dowolnego zbioru B Y określamy jego przeciwobraz: f 1 (B) = {x X; f(x) B}. 1 Zadanie.

Bardziej szczegółowo

Matematyka dyskretna - 6.Grafy

Matematyka dyskretna - 6.Grafy Matematyka dyskretna - 6.Grafy W tym rozdziale zajmiemy się grafami. Są to wykresy zawierające rozmaite informacje, przedstawiające połączenia pomiędzy różnymi swoimi elementami. Algorytmy na nich oparte

Bardziej szczegółowo

LI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 3 kwietnia 2000 r. (pierwszy dzień zawodów)

LI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 3 kwietnia 2000 r. (pierwszy dzień zawodów) LI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 3 kwietnia 2000 r. (pierwszy dzień zawodów) Zadanie 1. Dana jest liczba całkowita n 2. Wyznaczyć liczbę rozwiązań (x 1,x

Bardziej szczegółowo

Rachunek podziałów i elementy teorii grafów będą stosowane w procedurach redukcji argumentów i dekompozycji funkcji boolowskich.

Rachunek podziałów i elementy teorii grafów będą stosowane w procedurach redukcji argumentów i dekompozycji funkcji boolowskich. Pojęcia podstawowe c.d. Rachunek podziałów Elementy teorii grafów Klasy zgodności Rachunek podziałów i elementy teorii grafów będą stosowane w procedurach redukcji argumentów i dekompozycji funkcji boolowskich.

Bardziej szczegółowo

Marek Miszczyński KBO UŁ. Wybrane elementy teorii grafów 1

Marek Miszczyński KBO UŁ. Wybrane elementy teorii grafów 1 Marek Miszczyński KBO UŁ. Wybrane elementy teorii grafów 1 G. Wybrane elementy teorii grafów W matematyce teorię grafów klasyfikuje się jako gałąź topologii. Jest ona jednak ściśle związana z algebrą i

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /15

Matematyka dyskretna. Andrzej Łachwa, UJ, /15 Matematyka dyskretna Andrzej Łachwa, UJ, 2014 andrzej.lachwa@uj.edu.pl 15/15 TWIERDZENIE HALLA Twierdzenie o kojarzeniu małżeństw rozważa dwie grupy dziewcząt i chłopców, oraz podgrupy dziewczyn i podgrupy

Bardziej szczegółowo

Wstęp do programowania. Drzewa. Piotr Chrząstowski-Wachtel

Wstęp do programowania. Drzewa. Piotr Chrząstowski-Wachtel Wstęp do programowania Drzewa Piotr Chrząstowski-Wachtel Drzewa Drzewa definiują matematycy, jako spójne nieskierowane grafy bez cykli. Równoważne określenia: Spójne grafy o n wierzchołkach i n-1 krawędziach

Bardziej szczegółowo

Algebry skończonego typu i formy kwadratowe

Algebry skończonego typu i formy kwadratowe Algebry skończonego typu i formy kwadratowe na podstawie referatu Justyny Kosakowskiej 26 kwietnia oraz 10 i 17 maja 2001 Referat został opracowany w oparciu o prace Klausa Bongartza Criterion for finite

Bardziej szczegółowo

Matematyka dyskretna - 7.Drzewa

Matematyka dyskretna - 7.Drzewa Matematyka dyskretna - 7.Drzewa W tym rozdziale zajmiemy się drzewami: specjalnym przypadkiem grafów. Są one szczególnie przydatne do przechowywania informacji, umożliwiającego szybki dostęp do nich. Definicja

Bardziej szczegółowo

Minimalne drzewa rozpinające

Minimalne drzewa rozpinające KNM UŚ 26-28 listopada 2010 Ostrzeżenie Wprowadzenie Motywacja Definicje Niektóre pojęcia pojawiające się podczas tego referatu są naszymi autorskimi tłumaczeniami z języka angielskiego. Nie udało nam

Bardziej szczegółowo

Temperatura w atmosferze (czy innym ośrodku) jako funkcja dł. i szer. geogr. oraz wysokości.

Temperatura w atmosferze (czy innym ośrodku) jako funkcja dł. i szer. geogr. oraz wysokości. Własności Odległości i normy w Będziemy się teraz zajmować funkcjami od zmiennych, tzn. określonymi na (iloczyn kartezja/nski egzemplarzy ). Punkt należący do będziemy oznaczać jako Przykł. Wysokość terenu

Bardziej szczegółowo

Algorytmy równoległe. Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka 2010

Algorytmy równoległe. Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka 2010 Algorytmy równoległe Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka Znajdowanie maksimum w zbiorze n liczb węzły - maksimum liczb głębokość = 3 praca = 4++ = 7 (operacji) n - liczność

Bardziej szczegółowo

Praca dyplomowa magisterska

Praca dyplomowa magisterska Politechnika Gdańska WYDZIAŁ ELEKTRONIKI TELEKOMUNIKACJI I INFORMATYKI Katedra: Katedra Algorytmów i Modelowania Systemów Forma i poziom studiów: stacjonarne, jednolite magisterskie Kierunek studiów: Informatyka

Bardziej szczegółowo

1) Grafy eulerowskie własnoci algorytmy. 2) Problem chiskiego listonosza

1) Grafy eulerowskie własnoci algorytmy. 2) Problem chiskiego listonosza 165 1) Grafy eulerowskie własnoci algorytmy 2) Problem chiskiego listonosza 166 Grafy eulerowskie Def. Graf (multigraf, niekoniecznie spójny) jest grafem eulerowskim, jeli zawiera cykl zawierajcy wszystkie

Bardziej szczegółowo

TEORIA GRAFÓW I SIECI - ROZDZIAŁIV. Drzewa. Drzewa

TEORIA GRAFÓW I SIECI - ROZDZIAŁIV. Drzewa. Drzewa TEORIA GRAFÓW I SIECI - ROZDZIAŁIV Drzewa Drzewem lub drzewem wolnym nazywamy dowolny graf spójny i acykliczny. Drzewa Ćwiczenie 1. Narysować wszystkie, z dokłado sci a do izomorfizmu, drzewa o 1, 2, 3,

Bardziej szczegółowo

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA?

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA? /9/ Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład --9 Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów

Bardziej szczegółowo

Zadania z egzaminów z Algorytmiki

Zadania z egzaminów z Algorytmiki Zadania z egzaminów z Algorytmiki 1 Geometria obliczeniowa Zadanie 1 Zaprojektuj efektywny algorytm dla następującego problemu. Dany jest zbior n prostokątów na płaszczyźnie (o bokach niekoniecznie równoległych

Bardziej szczegółowo

Relacje. opracował Maciej Grzesiak. 17 października 2011

Relacje. opracował Maciej Grzesiak. 17 października 2011 Relacje opracował Maciej Grzesiak 17 października 2011 1 Podstawowe definicje Niech dany będzie zbiór X. X n oznacza n-tą potęgę kartezjańską zbioru X, tzn zbiór X X X = {(x 1, x 2,..., x n ) : x k X dla

Bardziej szczegółowo

Algorytmy grafowe. Wykład 1 Podstawy teorii grafów Reprezentacje grafów. Tomasz Tyksiński CDV

Algorytmy grafowe. Wykład 1 Podstawy teorii grafów Reprezentacje grafów. Tomasz Tyksiński CDV Algorytmy grafowe Wykład 1 Podstawy teorii grafów Reprezentacje grafów Tomasz Tyksiński CDV Rozkład materiału 1. Podstawowe pojęcia teorii grafów, reprezentacje komputerowe grafów 2. Przeszukiwanie grafów

Bardziej szczegółowo

LOGIKA I TEORIA ZBIORÓW

LOGIKA I TEORIA ZBIORÓW LOGIKA I TEORIA ZBIORÓW Logika Logika jest nauką zajmującą się zdaniami Z punktu widzenia logiki istotne jest, czy dane zdanie jest prawdziwe, czy nie Nie jest natomiast istotne o czym to zdanie mówi Definicja

Bardziej szczegółowo

Podejście zachłanne, a programowanie dynamiczne

Podejście zachłanne, a programowanie dynamiczne Podejście zachłanne, a programowanie dynamiczne Algorytm zachłanny pobiera po kolei elementy danych, za każdym razem wybierając taki, który wydaje się najlepszy w zakresie spełniania pewnych kryteriów

Bardziej szczegółowo

Algorytmy multikolorowania grafów w modelu rozproszonym

Algorytmy multikolorowania grafów w modelu rozproszonym Uniwersytet im. Adama Mickiewicza Wydział Matematyki i Informatyki Rafał Witkowski Algorytmy multikolorowania grafów w modelu rozproszonym rozprawa doktorska Promotor: prof. dr hab. Michał Karoński Poznań,

Bardziej szczegółowo

Zagadnienie najkrótszej drogi w sieci

Zagadnienie najkrótszej drogi w sieci L L Zagadnienie najkrótszej drogi w sieci 1 Rozważmy sieć, gdzie graf jest grafem skierowanym (digrafem) a jest funkcją określoną na zbiorze łuków. Wartość tej funkcji na łuku!"$#%'&, którą oznaczać będziemy

Bardziej szczegółowo

Kody blokowe Wykład 5a;

Kody blokowe Wykład 5a; Kody blokowe Wykład 5a; 31.03.2011 1 1 Kolorowanie hiperkostki Definicja. W teorii grafów symbol Q n oznacza kostkę n-wymiarową, czyli graf o zbiorze wierzchołków V (Q n ) = {0, 1} n i zbiorze krawędzi

Bardziej szczegółowo

Wybrane zagadnienia teorii grafów ćwiczenia 1

Wybrane zagadnienia teorii grafów ćwiczenia 1 Wybrane zagadnienia teorii grafów ćwiczenia 1 WQO, minory well quasi orderings Przypomnijmy: porządek częściowy (X, ) jest WQO, jeśli w każdym nieskończonym ciągu x 1, x 2,... istnieje para indeksów i

Bardziej szczegółowo

Grzegorz Bobiński. Wykład monograficzny Programowanie Liniowe i Całkowitoliczbowe

Grzegorz Bobiński. Wykład monograficzny Programowanie Liniowe i Całkowitoliczbowe Grzegorz Bobiński Wykład monograficzny Programowanie Liniowe i Całkowitoliczbowe Wydział Matematyki i Informatyki Uniwersytet Mikołaja Kopernika w Toruniu 2012 Spis treści Notacja 1 1 Podstawowe pojęcia

Bardziej szczegółowo

Analiza algorytmów zadania podstawowe

Analiza algorytmów zadania podstawowe Analiza algorytmów zadania podstawowe Zadanie 1 Zliczanie Zliczaj(n) 1 r 0 2 for i 1 to n 1 3 do for j i + 1 to n 4 do for k 1 to j 5 do r r + 1 6 return r 0 Jaka wartość zostanie zwrócona przez powyższą

Bardziej szczegółowo

Indukowane Reguły Decyzyjne I. Wykład 3

Indukowane Reguły Decyzyjne I. Wykład 3 Indukowane Reguły Decyzyjne I Wykład 3 IRD Wykład 3 Plan Powtórka Grafy Drzewa klasyfikacyjne Testy wstęp Klasyfikacja obiektów z wykorzystaniem drzewa Reguły decyzyjne generowane przez drzewo 2 Powtórzenie

Bardziej szczegółowo

Grafy co o ich rysowaniu wiedzą przedszkolaki i co z tego wynika dla matematyków

Grafy co o ich rysowaniu wiedzą przedszkolaki i co z tego wynika dla matematyków Wykłady popularne z matematyki Grafy co o ich rysowaniu wiedzą przedszkolaki i co z tego wynika dla matematyków Joanna Jaszuńska Politechnika Warszawska, 6 maja 2010 Grafy Wykłady popularne z matematyki,

Bardziej szczegółowo

Algorytmy i Struktury Danych.

Algorytmy i Struktury Danych. Algorytmy i Struktury Danych. Grafy Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 8 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych. Wykład 8 1 / 39 Plan wykładu

Bardziej szczegółowo

Diagnozowanie sieci komputerowej metodą dialogu diagnostycznego

Diagnozowanie sieci komputerowej metodą dialogu diagnostycznego Diagnozowanie sieci komputerowej metodą dialogu diagnostycznego Metoda dialogu diagnostycznego między komputerami sieci komputerowej, zalicza się do, tak zwanych, rozproszonych metod samodiagnozowania

Bardziej szczegółowo

Teoria grafów - Teoria rewersali - Teoria śladów

Teoria grafów - Teoria rewersali - Teoria śladów 17 maja 2012 1 Planarność Wzór Eulera Kryterium Kuratowskiego Algorytmy testujące planarność 2 Genom i jego przekształcenia Grafy złamań Sortowanie przez odwrócenia Inne rodzaje sortowania Algorytmy sortujące

Bardziej szczegółowo

Wstęp do programowania

Wstęp do programowania Wstęp do programowania Algorytmy zachłanne, algoritme Dijkstry Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk(Wydział Fizyki) WP w. XI Jesień 2013 1 / 25 Algorytmy zachłanne Strategia polegająca na

Bardziej szczegółowo

POISSONOWSKA APROKSYMACJA W SYSTEMACH NIEZAWODNOŚCIOWYCH

POISSONOWSKA APROKSYMACJA W SYSTEMACH NIEZAWODNOŚCIOWYCH POISSONOWSKA APROKSYMACJA W SYSTEMACH NIEZAWODNOŚCIOWYCH Barbara Popowska bpopowsk@math.put.poznan.pl Politechnika Poznańska http://www.put.poznan.pl/ PROGRAM REFERATU 1. WPROWADZENIE 2. GRAF JAKO MODEL

Bardziej szczegółowo

1 Działania na zbiorach

1 Działania na zbiorach M. Beśka, Wstęp do teorii miary, rozdz. 1 1 1 Działania na zbiorach W rozdziale tym przypomnimy podstawowe działania na zbiorach koncentrując się na własnościach tych działań, które będą przydatne w dalszej

Bardziej szczegółowo

Zagadnienie transportowe

Zagadnienie transportowe 9//9 Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów

Bardziej szczegółowo

Zadanie 1 Przygotuj algorytm programu - sortowanie przez wstawianie.

Zadanie 1 Przygotuj algorytm programu - sortowanie przez wstawianie. Sortowanie Dane wejściowe: ciąg n-liczb (kluczy) (a 1, a 2, a 3,..., a n 1, a n ) Dane wyjściowe: permutacja ciągu wejściowego (a 1, a 2, a 3,..., a n 1, a n) taka, że a 1 a 2 a 3... a n 1 a n. Będziemy

Bardziej szczegółowo

Algorytmy Równoległe i Rozproszone Część III - Układy kombinacyjne i P-zupełność

Algorytmy Równoległe i Rozproszone Część III - Układy kombinacyjne i P-zupełność Algorytmy Równoległe i Rozproszone Część III - Układy kombinacyjne i P-zupełność Łukasz Kuszner pokój 209, WETI http://www.kaims.pl/ kuszner/ kuszner@eti.pg.gda.pl Oficjalna strona wykładu http://www.kaims.pl/

Bardziej szczegółowo

2 Rodziny zbiorów. 2.1 Algebry i σ - algebry zbiorów. M. Beśka, Wstęp do teorii miary, rozdz. 2 11

2 Rodziny zbiorów. 2.1 Algebry i σ - algebry zbiorów. M. Beśka, Wstęp do teorii miary, rozdz. 2 11 M. Beśka, Wstęp do teorii miary, rozdz. 2 11 2 Rodziny zbiorów 2.1 Algebry i σ - algebry zbiorów Niech X będzie niepustym zbiorem. Rodzinę indeksowaną zbiorów {A i } i I 2 X nazywamy rozbiciem zbioru X

Bardziej szczegółowo

1 Automaty niedeterministyczne

1 Automaty niedeterministyczne Szymon Toruńczyk 1 Automaty niedeterministyczne Automat niedeterministyczny A jest wyznaczony przez następujące składniki: Alfabet skończony A Zbiór stanów Q Zbiór stanów początkowych Q I Zbiór stanów

Bardziej szczegółowo

Algorytmy z powracaniem

Algorytmy z powracaniem Algorytmy z powracaniem Materiały Grafem nazywamy zbiór G = (V, E), gdzie: V jest zbiorem wierzchołków (ang. vertex) E jest zbiorem krawędzi (E można też określić jako podzbiór zbioru nieuporządkowanych

Bardziej szczegółowo

Liga zadaniowa Seria I, 2014/2015, Piotr Nayar, Marta Strzelecka

Liga zadaniowa Seria I, 2014/2015, Piotr Nayar, Marta Strzelecka Seria I, 04/05, Piotr Nayar, Marta Strzelecka Pytania dotyczące zadań prosimy kierować do Piotra Nayara na adres: nayar@mimuw.edu.pl. Rozwiązania można przesyłać Marcie Strzeleckiej na adres martast@mimuw.edu.pl,

Bardziej szczegółowo

0 + 0 = 0, = 1, = 1, = 0.

0 + 0 = 0, = 1, = 1, = 0. 5 Kody liniowe Jak już wiemy, w celu przesłania zakodowanego tekstu dzielimy go na bloki i do każdego z bloków dodajemy tak zwane bity sprawdzające. Bity te są w ścisłej zależności z bitami informacyjnymi,

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa

Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa M. Czoków, J. Piersa 2012-01-10 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego 3 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego

Bardziej szczegółowo

Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 1

Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 1 Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 1 Przygotowując wykład korzystam głównie z książki Jakubowski, Sztencel Wstęp do teorii prawdopodobieństwa. Jakubowski, Sztencel:

Bardziej szczegółowo

Przykładowe zadania z teorii liczb

Przykładowe zadania z teorii liczb Przykładowe zadania z teorii liczb I. Podzielność liczb całkowitych. Liczba a = 346 przy dzieleniu przez pewną liczbę dodatnią całkowitą b daje iloraz k = 85 i resztę r. Znaleźć dzielnik b oraz resztę

Bardziej szczegółowo

Algorytmy grafowe. Wykład 2 Przeszukiwanie grafów. Tomasz Tyksiński CDV

Algorytmy grafowe. Wykład 2 Przeszukiwanie grafów. Tomasz Tyksiński CDV Algorytmy grafowe Wykład 2 Przeszukiwanie grafów Tomasz Tyksiński CDV Rozkład materiału 1. Podstawowe pojęcia teorii grafów, reprezentacje komputerowe grafów 2. Przeszukiwanie grafów 3. Spójność grafu,

Bardziej szczegółowo

Algorytmika Problemów Trudnych

Algorytmika Problemów Trudnych Algorytmika Problemów Trudnych Wykład 9 Tomasz Krawczyk krawczyk@tcs.uj.edu.pl Kraków, semestr letni 2016/17 plan wykładu Algorytmy aproksymacyjne: Pojęcie algorytmu aproksymacyjnego i współczynnika aproksymowalności.

Bardziej szczegółowo

Matematyka dyskretna. 1. Relacje

Matematyka dyskretna. 1. Relacje Matematyka dyskretna 1. Relacje Definicja 1.1 Relacją dwuargumentową nazywamy podzbiór produktu kartezjańskiego X Y, którego elementami są pary uporządkowane (x, y), takie, że x X i y Y. Uwaga 1.1 Jeśli

Bardziej szczegółowo

Szukanie najkrótszych dróg z jednym ródłem

Szukanie najkrótszych dróg z jednym ródłem Szukanie najkrótszych dróg z jednym ródłem Algorytm Dijkstry Załoenia: dany jest spójny graf prosty G z wagami na krawdziach waga w(e) dla kadej krawdzi e jest nieujemna dany jest wyróniony wierzchołek

Bardziej szczegółowo

Twierdzenie Halla o małżeństwach

Twierdzenie Halla o małżeństwach Twierdzenie Halla o małżeństwach Tomasz Tkocz Streszczenie. Notatki te, przygotowane do referatu wygłoszonego na kółku w II LO w Rybniku, pokazują jak można rozwiązywać życiowe problemy oraz te bardziej

Bardziej szczegółowo

Segmentacja obrazów cyfrowych z zastosowaniem teorii grafów - wstęp. autor: Łukasz Chlebda

Segmentacja obrazów cyfrowych z zastosowaniem teorii grafów - wstęp. autor: Łukasz Chlebda Segmentacja obrazów cyfrowych Segmentacja obrazów cyfrowych z zastosowaniem teorii grafów - wstęp autor: Łukasz Chlebda 1 Segmentacja obrazów cyfrowych - temat pracy Temat pracy: Aplikacja do segmentacji

Bardziej szczegółowo

Skojarzenia. Najliczniejsze skojarzenia: Dokładne skojarzenia o maksymalnej sumie wag w obcionych pełnych grafach dwudzielnych.

Skojarzenia. Najliczniejsze skojarzenia: Dokładne skojarzenia o maksymalnej sumie wag w obcionych pełnych grafach dwudzielnych. 206 Skojarzenia Najliczniejsze skojarzenia: grafy proste dwudzielne, dowolne grafy proste. Dokładne skojarzenia o maksymalnej sumie wag w obcionych pełnych grafach dwudzielnych. 207 Definicje Def Zbiór

Bardziej szczegółowo

7. Teoria drzew - spinanie i przeszukiwanie

7. Teoria drzew - spinanie i przeszukiwanie 7. Teoria drzew - spinanie i przeszukiwanie Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2016/2017 rzegorz Kosiorowski (Uniwersytet Ekonomiczny 7. wteoria Krakowie) drzew - spinanie i przeszukiwanie

Bardziej szczegółowo

Matematyka dyskretna - wykład - część Podstawowe algorytmy kombinatoryczne

Matematyka dyskretna - wykład - część Podstawowe algorytmy kombinatoryczne A. Permutacja losowa Matematyka dyskretna - wykład - część 2 9. Podstawowe algorytmy kombinatoryczne Załóżmy, że mamy tablice p złożoną z n liczb (ponumerowanych od 0 do n 1). Aby wygenerować losową permutację

Bardziej szczegółowo

Krzywa uniwersalna Sierpińskiego

Krzywa uniwersalna Sierpińskiego Krzywa uniwersalna Sierpińskiego Małgorzata Blaszke Karol Grzyb Streszczenie W niniejszej pracy omówimy krzywą uniwersalną Sierpińskiego, zwaną również dywanem Sierpińskiego. Pokażemy klasyczną metodę

Bardziej szczegółowo

Podstawowe pojęcia dotyczące drzew Podstawowe pojęcia dotyczące grafów Przykłady drzew i grafów

Podstawowe pojęcia dotyczące drzew Podstawowe pojęcia dotyczące grafów Przykłady drzew i grafów Podstawowe pojęcia dotyczące drzew Podstawowe pojęcia dotyczące grafów Przykłady drzew i grafów Drzewa: Drzewo (ang. tree) jest strukturą danych zbudowaną z elementów, które nazywamy węzłami (ang. node).

Bardziej szczegółowo

Zbiory wypukłe i stożki

Zbiory wypukłe i stożki Katedra Matematyki i Ekonomii Matematycznej 28 kwietnia 2016 Hiperpłaszczyzna i półprzestrzeń Definicja Niech a R n, a 0, b R. Zbiór H(a, b) = {x R n : (a x) = b} nazywamy hiperpłaszczyzną, zbiory {x R

Bardziej szczegółowo

6a. Grafy eulerowskie i hamiltonowskie

6a. Grafy eulerowskie i hamiltonowskie 6a. Grafy eulerowskie i hamiltonowskie Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2016/2017 rzegorz Kosiorowski (Uniwersytet Ekonomiczny6a. w Krakowie) Grafy eulerowskie i hamiltonowskie

Bardziej szczegółowo

UWAGI O WŁAŚCIWOŚCIACH LICZBY ZNIEWOLENIA DLA GRAFÓW

UWAGI O WŁAŚCIWOŚCIACH LICZBY ZNIEWOLENIA DLA GRAFÓW PRACE WYDZIAŁU NAWIGACYJNEGO nr 19 AKADEMII MORSKIEJ W GDYNI 2006 SAMBOR GUZE Akademia Morska w Gdyni Katedra Matematyki UWAGI O WŁAŚCIWOŚCIACH LICZBY ZNIEWOLENIA DLA GRAFÓW W pracy zdefiniowano liczbę

Bardziej szczegółowo