MATEMATYKA DYSKRETNA - MATERIAŁY DO WYKŁADU GRAFY

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "MATEMATYKA DYSKRETNA - MATERIAŁY DO WYKŁADU GRAFY"

Transkrypt

1 ERIAŁY DO WYKŁADU GRAFY

2 Graf nieskierowany Grafem nieskierowanym nazywamy parę G = (V, E), gdzie V jest pewnym zbiorem skończonym (zwanym zbiorem wierzchołków grafu G), natomiast E jest zbiorem nieuporządkowanych par {u, v}, gdzie u, v V i u v. Zbiór E nazywamy zbiorem krawędzi grafu G.

3 Graf nieskierowany

4 Graf nieskierowany PRZYKŁAD (GRAF I) Zilustrować graf G = (V, E), gdzie V = {1, 2, 3, 4, 5, 6, 7} oraz E = {{1, 2}, {1, 5}, {2, 5}, {3, 6}, {6, 7}}.

5 Graf nieskierowany PRZYKŁAD (GRAF I) Zilustrować graf G = (V, E), gdzie V = {1, 2, 3, 4, 5, 6, 7} oraz E = {{1, 2}, {1, 5}, {2, 5}, {3, 6}, {6, 7}}. PRZYKŁAD (GRAF II) Podać zbiory E i V poniższego grafu:

6 Graf nieskierowany Jeżeli {u, v} jest krawędzią grafu nieskierowanego G, to mówimy, że {u, v} jest incydentna z wierzchołkami u i v.

7 Graf nieskierowany Jeżeli {u, v} jest krawędzią grafu nieskierowanego G, to mówimy, że {u, v} jest incydentna z wierzchołkami u i v. Stopniem wierzchołka w grafie nieskierowanym nazywamy liczbę incydentnych z nim krawędzi.

8 Graf nieskierowany Jeżeli {u, v} jest krawędzią grafu nieskierowanego G, to mówimy, że {u, v} jest incydentna z wierzchołkami u i v. Stopniem wierzchołka w grafie nieskierowanym nazywamy liczbę incydentnych z nim krawędzi. ĆWICZENIE Podać stopień wierzchołka u = 6 grafu nr I.

9 Graf skierowany Grafem skierowanym nazywamy parę G = (V, E), gdzie V jest pewnym zbiorem skończonym (zwanym zbiorem wierzchołków grafu G), natomiast E - zbiór krawędzi grafu G - jest zbiorem uporządkowanych par {u, v} oznaczanych (u, v), gdzie u, v V.

10 Graf skierowany PRZYKŁAD (GRAF III) Zilustrować graficznie graf G = (V, E), gdzie V = {1, 2, 3, 4, 5, 6} oraz E = {(1, 2), (2, 2), (2, 4), (2, 5), (4, 1), (4, 5), (5, 4), (6, 3)}.

11 Graf skierowany PRZYKŁAD (GRAF III) Zilustrować graficznie graf G = (V, E), gdzie V = {1, 2, 3, 4, 5, 6} oraz E = {(1, 2), (2, 2), (2, 4), (2, 5), (4, 1), (4, 5), (5, 4), (6, 3)}. PRZYKŁAD (GRAF IV) Podać zbiory E i V poniższego grafu: a b c d e

12 Graf skierowany Stopniem wierzchołka w grafie skierowanym nazywamy sumę liczby krawędzi wchodzących do wierzchołka i wychodzących z tego wierzchołka.

13 Graf skierowany Stopniem wierzchołka w grafie skierowanym nazywamy sumę liczby krawędzi wchodzących do wierzchołka i wychodzących z tego wierzchołka. PRZYKŁAD Podać stopień wierzchołka u = 2 w grafie III.

14 Ścieżką (drogą) długości k z wierzchołka u do v w grafie G nazywamy ciąg wierzchołków < v 0, v 1,..., v k > takich, że u = v 0, v = v k,i (v i 1, v i ) E dla i = 1,..., k. Ścieżkę nazywamy prostą, gdy jej wszystkie wierzchołki są różne.

15 Ścieżką (drogą) długości k z wierzchołka u do v w grafie G nazywamy ciąg wierzchołków < v 0, v 1,..., v k > takich, że u = v 0, v = v k,i (v i 1, v i ) E dla i = 1,..., k. Ścieżkę nazywamy prostą, gdy jej wszystkie wierzchołki są różne. PRZYKŁAD Podać przykłady dróg

16 Ścieżką (drogą) długości k z wierzchołka u do v w grafie G nazywamy ciąg wierzchołków < v 0, v 1,..., v k > takich, że u = v 0, v = v k,i (v i 1, v i ) E dla i = 1,..., k. Ścieżkę nazywamy prostą, gdy jej wszystkie wierzchołki są różne. PRZYKŁAD Podać przykłady dróg 1 z wierzchołka u = 2 do wierzchołka v = 1 w grafie I;

17 Ścieżką (drogą) długości k z wierzchołka u do v w grafie G nazywamy ciąg wierzchołków < v 0, v 1,..., v k > takich, że u = v 0, v = v k,i (v i 1, v i ) E dla i = 1,..., k. Ścieżkę nazywamy prostą, gdy jej wszystkie wierzchołki są różne. PRZYKŁAD Podać przykłady dróg 1 z wierzchołka u = 2 do wierzchołka v = 1 w grafie I; 2 z wierzchołka u = 1 do wierzchołka v = 3 w grafie I;

18 Ścieżką (drogą) długości k z wierzchołka u do v w grafie G nazywamy ciąg wierzchołków < v 0, v 1,..., v k > takich, że u = v 0, v = v k,i (v i 1, v i ) E dla i = 1,..., k. Ścieżkę nazywamy prostą, gdy jej wszystkie wierzchołki są różne. PRZYKŁAD Podać przykłady dróg 1 z wierzchołka u = 2 do wierzchołka v = 1 w grafie I; 2 z wierzchołka u = 1 do wierzchołka v = 3 w grafie I; 3 z wierzchołka u = 1 do wierzchołka v = 4 w grafie III;

19 Ścieżką (drogą) długości k z wierzchołka u do v w grafie G nazywamy ciąg wierzchołków < v 0, v 1,..., v k > takich, że u = v 0, v = v k,i (v i 1, v i ) E dla i = 1,..., k. Ścieżkę nazywamy prostą, gdy jej wszystkie wierzchołki są różne. PRZYKŁAD Podać przykłady dróg 1 z wierzchołka u = 2 do wierzchołka v = 1 w grafie I; 2 z wierzchołka u = 1 do wierzchołka v = 3 w grafie I; 3 z wierzchołka u = 1 do wierzchołka v = 4 w grafie III; 4 z wierzchołka u = 3 do wierzchołka v = 6 w grafie III.

20 Mówimy, że v jest osiągalny z u, gdy istnieje ścieżka z u do v.

21 Mówimy, że v jest osiągalny z u, gdy istnieje ścieżka z u do v. PRZYKŁAD Rozważmy graf III. Stwierdzić czy

22 Mówimy, że v jest osiągalny z u, gdy istnieje ścieżka z u do v. PRZYKŁAD Rozważmy graf III. Stwierdzić czy 1 wierzchołek u = 5 jest osiągalny z wierzchołka v = 4;

23 Mówimy, że v jest osiągalny z u, gdy istnieje ścieżka z u do v. PRZYKŁAD Rozważmy graf III. Stwierdzić czy 1 wierzchołek u = 5 jest osiągalny z wierzchołka v = 4; 2 wierzchołek u = 3 jest osiągalny z wierzchołka v = 1;

24 Mówimy, że v jest osiągalny z u, gdy istnieje ścieżka z u do v. PRZYKŁAD Rozważmy graf III. Stwierdzić czy 1 wierzchołek u = 5 jest osiągalny z wierzchołka v = 4; 2 wierzchołek u = 3 jest osiągalny z wierzchołka v = 1; 3 wierzchołek u = 2 jest osiągalny z wierzchołka v = 5.

25 Cykle Mówimy, że w grafie skierowanym ścieżka < v 0, v 1,..., v k > tworzy cykl, jeśli v 0 = v k Cykl nazywamy prostym, gdy v 1,..., v k są różne.

26 Cykle Mówimy, że w grafie skierowanym ścieżka < v 0, v 1,..., v k > tworzy cykl, jeśli v 0 = v k Cykl nazywamy prostym, gdy v 1,..., v k są różne. Pętlą nazywamy cykl o długosci 1.

27 Cykle Mówimy, że ścieżka < v 0, v 1,..., v k > tworzy cykl w grafie nieskierownym, gdy v 0 = v k, v 1,..., v k są różne i k > 2.

28 Cykle Mówimy, że ścieżka < v 0, v 1,..., v k > tworzy cykl w grafie nieskierownym, gdy v 0 = v k, v 1,..., v k są różne i k > 2. Graf nie zawierający cykli nazywamy acyklicznym.

29 Cykle Mówimy, że ścieżka < v 0, v 1,..., v k > tworzy cykl w grafie nieskierownym, gdy v 0 = v k, v 1,..., v k są różne i k > 2. Graf nie zawierający cykli nazywamy acyklicznym. Acykliczny graf nieskierowany nazywamy lasem.

30 PRZYKŁAD Podać przykład

31 PRZYKŁAD Podać przykład 1 sciezki prostej w grafie III;

32 PRZYKŁAD Podać przykład 1 sciezki prostej w grafie III; 2 cyklu w grafie III;

33 PRZYKŁAD Podać przykład 1 sciezki prostej w grafie III; 2 cyklu w grafie III; 3 cyklu prostego w grafie III;

34 PRZYKŁAD Podać przykład 1 sciezki prostej w grafie III; 2 cyklu w grafie III; 3 cyklu prostego w grafie III; 4 sciezki prostej w grafie I;

35 PRZYKŁAD Podać przykład 1 sciezki prostej w grafie III; 2 cyklu w grafie III; 3 cyklu prostego w grafie III; 4 sciezki prostej w grafie I; 5 sciezki prostej w grafie II.

36 PRZYKŁAD Podać przykład 1 sciezki prostej w grafie III; 2 cyklu w grafie III; 3 cyklu prostego w grafie III; 4 sciezki prostej w grafie I; 5 sciezki prostej w grafie II. 6 grafu zawierajcego petle.

37 Macierz sąsiedztwa Niech dany będzie graf G = (V, E) o wierzchołkach ponumerowanych od 1 do k, gdzie k = V. Macierzą sąsiedztwa grafu G nazywamy macierz A = [a ij ] k k zdefiniowana następująco a ij := { 1, gdy (i, j) E 0, gdy (i, j) / E.

38 Macierz sąsiedztwa Niech dany będzie graf G = (V, E) o wierzchołkach ponumerowanych od 1 do k, gdzie k = V. Macierzą sąsiedztwa grafu G nazywamy macierz A = [a ij ] k k zdefiniowana następująco a ij := { 1, gdy (i, j) E 0, gdy (i, j) / E. PRZYKŁAD Wyznaczyć macierz sąsiedztwa dla grafów I i III.

39 PRZYKŁAD Narysować graf nieskierowany, którego macierz sąsiedztwa jest następująca

40 PRZYKŁAD Narysować graf nieskierowany, którego macierz sąsiedztwa jest następująca PRZYKŁAD Narysować graf skierowany, którego macierz sąsiedztwa jest następująca

41 Podgraf Mówimy,że graf G = (V, E ) jest podgrafem grafu G = (V, E), jeśli V V oraz E E.

42 Podgraf Mówimy,że graf G = (V, E ) jest podgrafem grafu G = (V, E), jeśli V V oraz E E.

43 Grafy specjalne Grafem pełnym nazywamy graf nieskierowany, w którym każda para wierzchołków połączona jest krawędzią.

44 Grafy specjalne Grafem pełnym nazywamy graf nieskierowany, w którym każda para wierzchołków połączona jest krawędzią. Grafem dwudzielnym nazywamy taki graf nieskierowany G = (V, E), w którym V = V 1 V 2, przy czym zbiory V 1, V 2 są rozłączne oraz (u, v) E u V 1, v V 2 lub u V 2, v V 1.

45 Graf spójny, składowa grafu Graf jest spójny, jeśli każda para różnych wierzchołków jest połączona drogą w tym grafie.

46 Graf spójny, składowa grafu Graf jest spójny, jeśli każda para różnych wierzchołków jest połączona drogą w tym grafie. Spójny podgraf grafu G, który nie jest zawarty w żadnym większym spójnym podgrafie tego grafu, nazywamy składową grafu G.

47 Graf spójny, składowa grafu Graf jest spójny, jeśli każda para różnych wierzchołków jest połączona drogą w tym grafie. Spójny podgraf grafu G, który nie jest zawarty w żadnym większym spójnym podgrafie tego grafu, nazywamy składową grafu G. Spójny, acykliczny graf nieskierowany nazywamy drzewem (wolnym).

48 Lemat o podawaniu rąk LEMAT Niech G = (V, E) będzie grafem nieskierowanym. Oznaczmy przez D i (G), i = 1,..., V 1 ilość wierzchołków stopnia i w grafie G. Wówczas: suma stopni wierzchołków grafie jest dwa razy większa od liczby krawędzi - to znaczy: oraz deg(v) = 2 E v V D 1 (G) + 2D 2 (G) + 3D 3 (G) ( V 1)D V 1 = 2 E

49 Problem mostów królewieckich Przez Królewiec przepływa rzeka Pregoła, w któ rej rozwidleniach znajdują się 2 wyspy. Fragmenty lądu łączy układ 7 mostów, jak na rysunku:

50 Problem mostów królewieckich Problem: Czy można przejść przez każdy most dokładnie 1 raz i wrócić do punktu wyjścia? W 1736 roku szwajcarski matematyk, Leonard Euler rozwiązał powyższy dylemat.

51 Problem mostów królewieckich Problem: Czy można przejść przez każdy most dokładnie 1 raz i wrócić do punktu wyjścia? W 1736 roku szwajcarski matematyk, Leonard Euler rozwiązał powyższy dylemat. Sytuację opisał za pomocą multigrafu, zastępując obszary lądu wierzchołkami, a mosty - łączącymi je krawędziami:

52 Cykl Eulera, droga Eulera Cykl Eulera - droga zamknięta przechodząca przez każdą krawędź grafu dokładnie raz.

53 Cykl Eulera, droga Eulera Cykl Eulera - droga zamknięta przechodząca przez każdą krawędź grafu dokładnie raz. Droga Eulera - droga przechodząca przez każdą krawędź grafu dokładnie raz.

54 Rozwiązanie problemu STWIERDZENIE Graf, który posiada cykl Eulera musi mieć wszystkie wierzchołki stopnia parzystego.

55 Rozwiązanie problemu STWIERDZENIE Graf, który posiada cykl Eulera musi mieć wszystkie wierzchołki stopnia parzystego. WNIOSEK Graf, który posiada drogę Eulera ma albo dokładnie 2 wierzchołki stopnia nieparzystego, albo nie ma w ogóle takich wierzchołków.

56 Twierdzenie Eulera TWIERDZENIE Graf spójny, w którym każdy wierzchołek ma stopień parzysty, posiada cykl Eulera.

57 Twierdzenie Eulera TWIERDZENIE Graf spójny, w którym każdy wierzchołek ma stopień parzysty, posiada cykl Eulera. WNIOSEK Graf spójny, mający dokładnie 2 wierzchołki stopnia nieparzystego, posiada drogę Eulera.

58 Ross K.A., Wright C.R., Matematyka dyskretna, PWN, Warszawa, Cormen T.H., Leiserson C.E., Rivest R.L. Wprowadzenie do algorytmów, Wydawnictwa Naukowo-Techniczne, Warszawa, 1990 (str , )

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 13: Teoria Grafów Gniewomir Sarbicki Literatura R.J. Wilson Wprowadzenie do teorii grafów Definicja: Grafem (skończonym, nieskierowanym) G nazywamy parę zbiorów (V (G), E(G)),

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA DROGI i CYKLE w grafach Dla grafu (nieskierowanego) G = ( V, E ) drogą z wierzchołka v 0 V do v t V nazywamy ciąg (naprzemienny) wierzchołków i krawędzi grafu: ( v 0, e, v, e,..., v t, e t, v t ), spełniający

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Twierdzenie 2.1 Niech G będzie grafem prostym

Bardziej szczegółowo

Elementy teorii grafów Elementy teorii grafów

Elementy teorii grafów Elementy teorii grafów Spis tresci 1 Spis tresci 1 Często w zagadnieniach praktycznych rozważa się pewien zbiór obiektów wraz z zależnościami jakie łączą te obiekty. Dla przykładu można badać pewną grupę ludzi oraz strukturę

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /15

Matematyka dyskretna. Andrzej Łachwa, UJ, /15 Matematyka dyskretna Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl 14/15 Grafy podstawowe definicje Graf to para G=(V, E), gdzie V to niepusty i skończony zbiór, którego elementy nazywamy wierzchołkami

Bardziej szczegółowo

Podstawowe własności grafów. Wykład 3. Własności grafów

Podstawowe własności grafów. Wykład 3. Własności grafów Wykład 3. Własności grafów 1 / 87 Suma grafów Niech będą dane grafy proste G 1 = (V 1, E 1) oraz G 2 = (V 2, E 2). 2 / 87 Suma grafów Niech będą dane grafy proste G 1 = (V 1, E 1) oraz G 2 = (V 2, E 2).

Bardziej szczegółowo

Suma dwóch grafów. Zespolenie dwóch grafów

Suma dwóch grafów. Zespolenie dwóch grafów Suma dwóch grafów G 1 = ((G 1 ), E(G 1 )) G 2 = ((G 2 ), E(G 2 )) (G 1 ) i (G 2 ) rozłączne Suma G 1 G 2 graf ze zbiorem wierzchołków (G 1 ) (G 2 ) i rodziną krawędzi E(G 1 ) E(G 2 ) G 1 G 2 G 1 G 2 Zespolenie

Bardziej szczegółowo

Reprezentacje grafów nieskierowanych Reprezentacje grafów skierowanych. Wykład 2. Reprezentacja komputerowa grafów

Reprezentacje grafów nieskierowanych Reprezentacje grafów skierowanych. Wykład 2. Reprezentacja komputerowa grafów Wykład 2. Reprezentacja komputerowa grafów 1 / 69 Macierz incydencji Niech graf G będzie grafem nieskierowanym bez pętli o n wierzchołkach (x 1, x 2,..., x n) i m krawędziach (e 1, e 2,..., e m). 2 / 69

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /14

Matematyka dyskretna. Andrzej Łachwa, UJ, /14 Matematyka dyskretna Andrzej Łachwa, UJ, 2012 andrzej.lachwa@uj.edu.pl 13/14 Grafy podstawowe definicje Graf to para G=(V, E), gdzie V to niepusty i skończony zbiór, którego elementy nazywamy wierzchołkami

Bardziej szczegółowo

G. Wybrane elementy teorii grafów

G. Wybrane elementy teorii grafów Dorota Miszczyńska, Marek Miszczyński KBO UŁ Wybrane elementy teorii grafów 1 G. Wybrane elementy teorii grafów Grafy są stosowane współcześnie w różnych działach nauki i techniki. Za pomocą grafów znakomicie

Bardziej szczegółowo

Czy istnieje zamknięta droga spaceru przechodząca przez wszystkie mosty w Królewcu dokładnie jeden raz?

Czy istnieje zamknięta droga spaceru przechodząca przez wszystkie mosty w Królewcu dokładnie jeden raz? DROGI i CYKLE EULERA w grafach Czy istnieje zamknięta droga spaceru przechodząca przez wszystkie mosty w Królewcu dokładnie jeden raz? Czy można narysować podaną figurę nie odrywając ołówka od papieru

Bardziej szczegółowo

Algorytmy grafowe. Wykład 1 Podstawy teorii grafów Reprezentacje grafów. Tomasz Tyksiński CDV

Algorytmy grafowe. Wykład 1 Podstawy teorii grafów Reprezentacje grafów. Tomasz Tyksiński CDV Algorytmy grafowe Wykład 1 Podstawy teorii grafów Reprezentacje grafów Tomasz Tyksiński CDV Rozkład materiału 1. Podstawowe pojęcia teorii grafów, reprezentacje komputerowe grafów 2. Przeszukiwanie grafów

Bardziej szczegółowo

Algorytmiczna teoria grafów

Algorytmiczna teoria grafów Przedmiot fakultatywny 20h wykładu + 20h ćwiczeń 21 lutego 2014 Zasady zaliczenia 1 ćwiczenia (ocena): kolokwium, zadania programistyczne (implementacje algorytmów), praca na ćwiczeniach. 2 Wykład (egzamin)

Bardziej szczegółowo

Marek Miszczyński KBO UŁ. Wybrane elementy teorii grafów 1

Marek Miszczyński KBO UŁ. Wybrane elementy teorii grafów 1 Marek Miszczyński KBO UŁ. Wybrane elementy teorii grafów 1 G. Wybrane elementy teorii grafów W matematyce teorię grafów klasyfikuje się jako gałąź topologii. Jest ona jednak ściśle związana z algebrą i

Bardziej szczegółowo

Kolorowanie wierzchołków Kolorowanie krawędzi Kolorowanie regionów i map. Wykład 8. Kolorowanie

Kolorowanie wierzchołków Kolorowanie krawędzi Kolorowanie regionów i map. Wykład 8. Kolorowanie Wykład 8. Kolorowanie 1 / 62 Kolorowanie wierzchołków - definicja Zbiory niezależne Niech G będzie grafem bez pętli. Definicja Mówimy, że G jest grafem k kolorowalnym, jeśli każdemu wierzchołkowi możemy

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Informacje podstawowe 1. Konsultacje: pokój

Bardziej szczegółowo

Ilustracja S1 S2. S3 ściana zewnętrzna

Ilustracja S1 S2. S3 ściana zewnętrzna Grafy płaskie G=(V,E) nazywamy grafem płaskim, gdy V jest skończonym podzbiorem punktów płaszczyzny euklidesowej, a E to zbiór krzywych Jordana (łamanych) o końcach w V i takich, że: 1) rożne krzywe mają

Bardziej szczegółowo

Grafy co o ich rysowaniu wiedzą przedszkolaki i co z tego wynika dla matematyków

Grafy co o ich rysowaniu wiedzą przedszkolaki i co z tego wynika dla matematyków Wykłady popularne z matematyki Grafy co o ich rysowaniu wiedzą przedszkolaki i co z tego wynika dla matematyków Joanna Jaszuńska Politechnika Warszawska, 6 maja 2010 Grafy Wykłady popularne z matematyki,

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA DRZEWA i LASY Drzewem nazywamy graf spójny nie zawierający cykli elementarnych. Lasem nazywamy graf nie zawierający cykli elementarnych. Przykłady drzew i lasów takie krawędzie są wykluczone drzewo las

Bardziej szczegółowo

SPÓJNOŚĆ. ,...v k. }, E={v 1. v k. i v k. ,...,v k-1. }. Wierzchołki v 1. v 2. to końce ścieżki.

SPÓJNOŚĆ. ,...v k. }, E={v 1. v k. i v k. ,...,v k-1. }. Wierzchołki v 1. v 2. to końce ścieżki. SPÓJNOŚĆ Graf jest spójny, gdy dla każdego podziału V na dwa rozłączne podzbiory A i B istnieje krawędź z A do B. Definicja równoważna: Graf jest spójny, gdy każde dwa wierzchołki są połączone ścieżką

Bardziej szczegółowo

Złożoność obliczeniowa klasycznych problemów grafowych

Złożoność obliczeniowa klasycznych problemów grafowych Złożoność obliczeniowa klasycznych problemów grafowych Oznaczenia: G graf, V liczba wierzchołków, E liczba krawędzi 1. Spójność grafu Graf jest spójny jeżeli istnieje ścieżka łącząca każdą parę jego wierzchołków.

Bardziej szczegółowo

Sortowanie topologiczne skierowanych grafów acyklicznych

Sortowanie topologiczne skierowanych grafów acyklicznych Sortowanie topologiczne skierowanych grafów acyklicznych Metody boolowskie w informatyce Robert Sulkowski http://robert.brainusers.net 23 stycznia 2010 1 Definicja 1 (Cykl skierowany). Niech C = (V, A)

Bardziej szczegółowo

Algorytmy z powracaniem

Algorytmy z powracaniem Algorytmy z powracaniem Materiały Grafem nazywamy zbiór G = (V, E), gdzie: V jest zbiorem wierzchołków (ang. vertex) E jest zbiorem krawędzi (E można też określić jako podzbiór zbioru nieuporządkowanych

Bardziej szczegółowo

Wykład 8. Drzewo rozpinające (minimum spanning tree)

Wykład 8. Drzewo rozpinające (minimum spanning tree) Wykład 8 Drzewo rozpinające (minimum spanning tree) 1 Minimalne drzewo rozpinające - przegląd Definicja problemu Własności minimalnych drzew rozpinających Algorytm Kruskala Algorytm Prima Literatura Cormen,

Bardziej szczegółowo

Graf to nie tylko tytuł szlachecki

Graf to nie tylko tytuł szlachecki Kàcik olimpijski Grafy Graf to nie tylko tytuł szlachecki karta pracy Graf to nie tylko tytuł szlachecki Graf co to takiego? Pojęcie grafu wprowadził szwajcarski matematyk Leonhard Euler (707 783). Grafem

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA ELEMENTY TEORII GRAFÓW Literatura: N.Deo Teoria grafów i e zastosowania... PWN (1980) Ross, Wright Matematyka yskretna PWN (199) R.Wilson Wprowazenie o teorii grafów PWN (1999) J.Kulikowski Zarys teorii

Bardziej szczegółowo

E ' E G nazywamy krawędziowym zbiorem

E ' E G nazywamy krawędziowym zbiorem Niech G będzie grafem spójnym. Wierzchołek x nazywamy rozcinającym, jeśli G\{x} jest niespójny. Niech G będzie grafem spójnym. V ' V G nazywamy zbiorem rozcinającym jeśli G\V' jest niespójny Niech G będzie

Bardziej szczegółowo

Matematyka dyskretna - 5.Grafy.

Matematyka dyskretna - 5.Grafy. Matematyka dyskretna - 5.Grafy. W tym rozdziale zajmiemy się grafami. Są to wykresy zawierające rozmaite informacje, przedstawiające połączenia pomiędzy różnymi swoimi elementami. Algorytmy na nich oparte

Bardziej szczegółowo

Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA

Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA Zad. 1 (12p.)Niech n 3k > 0. Zbadać jaka jest najmniejsza możliwa liczba krawędzi w grafie, który ma dokładnie n wierzchołków oraz dokładnie k składowych, z których

Bardziej szczegółowo

Droga i cykl Eulera Przykłady zastosowania drogi i cyku Eulera Droga i cykl Hamiltona. Wykład 4. Droga i cykl Eulera i Hamiltona

Droga i cykl Eulera Przykłady zastosowania drogi i cyku Eulera Droga i cykl Hamiltona. Wykład 4. Droga i cykl Eulera i Hamiltona Wykład 4. Droga i cykl Eulera i Hamiltona 1 / 92 Grafy Eulera Droga i cykl Eulera Niech G będzie grafem spójnym. Definicja Jeżeli w grafie G istnieje zamknięta droga prosta zawierająca wszystkie krawędzie

Bardziej szczegółowo

6. Wstępne pojęcia teorii grafów

6. Wstępne pojęcia teorii grafów 6. Wstępne pojęcia teorii grafów Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2016/2017 rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 6. Wstępne pojęcia teorii grafów zima 2016/2017

Bardziej szczegółowo

Wykład 7. Algorytmy grafowe

Wykład 7. Algorytmy grafowe Wykład Algorytmy grafowe Algorytmy grafowe i podstawowe algorytmy przeszukiwania Problem Definicje i własności Reprezentacja Przeszukiwanie wszerz (Breadthirst Search) Przeszukiwanie w głąb (Depthirst

Bardziej szczegółowo

Teoria grafów dla małolatów. Andrzej Przemysław Urbański Instytut Informatyki Politechnika Poznańska

Teoria grafów dla małolatów. Andrzej Przemysław Urbański Instytut Informatyki Politechnika Poznańska Teoria grafów dla małolatów Andrzej Przemysław Urbański Instytut Informatyki Politechnika Poznańska Wstęp Matematyka to wiele różnych dyscyplin Bowiem świat jest bardzo skomplikowany wymaga rozważenia

Bardziej szczegółowo

Minimalne drzewa rozpinające

Minimalne drzewa rozpinające KNM UŚ 26-28 listopada 2010 Ostrzeżenie Wprowadzenie Motywacja Definicje Niektóre pojęcia pojawiające się podczas tego referatu są naszymi autorskimi tłumaczeniami z języka angielskiego. Nie udało nam

Bardziej szczegółowo

Kolorowanie wierzchołków

Kolorowanie wierzchołków Kolorowanie wierzchołków Mając dany graf, pokolorować jego wierzchołki w taki sposób, aby każde dwa wierzchołki sąsiednie miały inny kolor. Każda krawędź łączy wierzchołki różnych kolorów. Takie pokolorowanie

Bardziej szczegółowo

MATEMATYKA DYSKRETNA - KOLOKWIUM 2

MATEMATYKA DYSKRETNA - KOLOKWIUM 2 1 MATEMATYKA DYSKRETNA - KOLOKWIUM 2 GRUPA A RACHUNKI+KRÓTKIE WYJAŚNIENIA! NA TEJ KARTCE! KAŻDA DODATKOWA KARTKA TO MINUS 1 PUNKT! Imię i nazwisko...... Nr indeksu... 1. (3p.) Znajdź drzewo o kodzie Prufera

Bardziej szczegółowo

SKOJARZENIA i ZBIORY WEWN. STABILNE WIERZCH. Skojarzeniem w grafie G nazywamy dowolny podzbiór krawędzi parami niezależnych.

SKOJARZENIA i ZBIORY WEWN. STABILNE WIERZCH. Skojarzeniem w grafie G nazywamy dowolny podzbiór krawędzi parami niezależnych. SKOJARZENIA i ZBIORY WEWN. STABILNE WIERZCH. Rozważamy graf G = (V, E) Dwie krawędzie e, e E nazywamy niezależnymi, jeśli nie są incydentne ze wspólnym wierzchołkiem. Skojarzeniem w grafie G nazywamy dowolny

Bardziej szczegółowo

Matematyka Dyskretna. Andrzej Szepietowski. 25 czerwca 2002 roku

Matematyka Dyskretna. Andrzej Szepietowski. 25 czerwca 2002 roku Matematyka Dyskretna Andrzej Szepietowski 25 czerwca 2002 roku ( Rozdział 1 Grafy skierowane W tym rozdziale zajmiemy siȩ algorytmami wyszukiwania najkrótszej drogi w grafach skierowanych Każdej krawȩdzi

Bardziej szczegółowo

ĆWICZENIE NR 1 WPROWADZENIE DO INFORMATYKI

ĆWICZENIE NR 1 WPROWADZENIE DO INFORMATYKI J.NAWROCKI, M. ANTCZAK, H. ĆWIEK, W. FROHMBERG, A. HOFFA, M. KIERZYNKA, S.WĄSIK ĆWICZENIE NR 1 WPROWADZENIE DO INFORMATYKI ZAD. 1. Narysowad graf nieskierowany. Zmodyfikowad go w taki sposób, aby stał

Bardziej szczegółowo

Matematyka dyskretna - 7.Drzewa

Matematyka dyskretna - 7.Drzewa Matematyka dyskretna - 7.Drzewa W tym rozdziale zajmiemy się drzewami: specjalnym przypadkiem grafów. Są one szczególnie przydatne do przechowywania informacji, umożliwiającego szybki dostęp do nich. Definicja

Bardziej szczegółowo

1) Grafy eulerowskie własnoci algorytmy. 2) Problem chiskiego listonosza

1) Grafy eulerowskie własnoci algorytmy. 2) Problem chiskiego listonosza 165 1) Grafy eulerowskie własnoci algorytmy 2) Problem chiskiego listonosza 166 Grafy eulerowskie Def. Graf (multigraf, niekoniecznie spójny) jest grafem eulerowskim, jeli zawiera cykl zawierajcy wszystkie

Bardziej szczegółowo

Spis treści Podstawowe definicje Wielomian charakterystyczny grafu Grafy silnie regularne

Spis treści Podstawowe definicje Wielomian charakterystyczny grafu Grafy silnie regularne Spis treści 1 Podstawowe definicje 4 1.1 Grafy................................ 4 1.2 Przykłady grafów......................... 12 1.2.1 Grafy puste i pełne.................... 12 1.2.2 Grafy dwudzielne.....................

Bardziej szczegółowo

Grafy. Graf ( graf ogólny) to para G( V, E), gdzie:

Grafy. Graf ( graf ogólny) to para G( V, E), gdzie: Graf ( graf ogólny) to para G( V, E), gdzie: V jest zbiorem wierzchołków, ( czasami zwanymi węzłami lub punktami grafu) E jest rodziną ( być może powtarzających się) krawędzi, czyli jedno- i dwu- elementowych

Bardziej szczegółowo

Matematyka dyskretna - 6.Grafy

Matematyka dyskretna - 6.Grafy Matematyka dyskretna - 6.Grafy W tym rozdziale zajmiemy się grafami. Są to wykresy zawierające rozmaite informacje, przedstawiające połączenia pomiędzy różnymi swoimi elementami. Algorytmy na nich oparte

Bardziej szczegółowo

Indukowane Reguły Decyzyjne I. Wykład 3

Indukowane Reguły Decyzyjne I. Wykład 3 Indukowane Reguły Decyzyjne I Wykład 3 IRD Wykład 3 Plan Powtórka Grafy Drzewa klasyfikacyjne Testy wstęp Klasyfikacja obiektów z wykorzystaniem drzewa Reguły decyzyjne generowane przez drzewo 2 Powtórzenie

Bardziej szczegółowo

Podstawowe pojęcia dotyczące drzew Podstawowe pojęcia dotyczące grafów Przykłady drzew i grafów

Podstawowe pojęcia dotyczące drzew Podstawowe pojęcia dotyczące grafów Przykłady drzew i grafów Podstawowe pojęcia dotyczące drzew Podstawowe pojęcia dotyczące grafów Przykłady drzew i grafów Drzewa: Drzewo (ang. tree) jest strukturą danych zbudowaną z elementów, które nazywamy węzłami (ang. node).

Bardziej szczegółowo

Podejście zachłanne, a programowanie dynamiczne

Podejście zachłanne, a programowanie dynamiczne Podejście zachłanne, a programowanie dynamiczne Algorytm zachłanny pobiera po kolei elementy danych, za każdym razem wybierając taki, który wydaje się najlepszy w zakresie spełniania pewnych kryteriów

Bardziej szczegółowo

Algorytmika Problemów Trudnych

Algorytmika Problemów Trudnych Algorytmika Problemów Trudnych Wykład 9 Tomasz Krawczyk krawczyk@tcs.uj.edu.pl Kraków, semestr letni 2016/17 plan wykładu Algorytmy aproksymacyjne: Pojęcie algorytmu aproksymacyjnego i współczynnika aproksymowalności.

Bardziej szczegółowo

(4) x (y z) = (x y) (x z), x (y z) = (x y) (x z), (3) x (x y) = x, x (x y) = x, (2) x 0 = x, x 1 = x

(4) x (y z) = (x y) (x z), x (y z) = (x y) (x z), (3) x (x y) = x, x (x y) = x, (2) x 0 = x, x 1 = x 2. Wykład 2: algebry Boole a, kraty i drzewa. 2.1. Algebra Boole a. 1 Ważnym dla nas przykładem algebr są algebry Boole a, czyli algebry B = (B,,,, 0, 1) typu (2, 2, 1, 0, 0) spełniające własności: (1)

Bardziej szczegółowo

Kolorowanie wierzchołków grafu

Kolorowanie wierzchołków grafu Kolorowanie wierzchołków grafu Niech G będzie grafem prostym. Przez k-kolorowanie właściwe wierzchołków grafu G rozumiemy takie przyporządkowanie wierzchołkom grafu liczb naturalnych ze zbioru {1,...,

Bardziej szczegółowo

Gramatyki grafowe. Dla v V, ϕ(v) etykieta v. Klasa grafów nad Σ - G Σ.

Gramatyki grafowe. Dla v V, ϕ(v) etykieta v. Klasa grafów nad Σ - G Σ. Gramatyki grafowe Def. Nieskierowany NL-graf (etykietowane wierzchołki) jest czwórką g = (V, E, Σ, ϕ), gdzie: V niepusty zbiór wierzchołków, E V V zbiór krawędzi, Σ - skończony, niepusty alfabet etykiet

Bardziej szczegółowo

Algorytm Dijkstry znajdowania najkrótszej ścieżki w grafie

Algorytm Dijkstry znajdowania najkrótszej ścieżki w grafie Algorytm Dijkstry znajdowania najkrótszej ścieżki w grafie Używane struktury danych: V - zbiór wierzchołków grafu, V = {1,2,3...,n} E - zbiór krawędzi grafu, E = {(i,j),...}, gdzie i, j Î V i istnieje

Bardziej szczegółowo

Grafy i grafy skierowane. Izomorfizmy grafów

Grafy i grafy skierowane. Izomorfizmy grafów TEORIA GRAFÓW I SIECI - ROZDZIAL I Grafy i grafy skierowane. Izomorfizmy grafów Rozważmy rysunki 1. Schemat mostów na rzece Pregole w Królewcu 2. Drzewo prawdopodobieństwa przy rzucie moneta 3. Schemat

Bardziej szczegółowo

Egzaminy i inne zadania. Semestr II.

Egzaminy i inne zadania. Semestr II. Egzaminy i inne zadania. Semestr II. Poniższe zadania są wyborem zadań ze Wstępu do Informatyki z egzaminów jakie przeprowadziłem w ciągu ostatnich lat. Ponadto dołączyłem szereg zadań, które pojawiały

Bardziej szczegółowo

WSTĘP DO INFORMATYKI. Grafy i struktury grafowe

WSTĘP DO INFORMATYKI. Grafy i struktury grafowe Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej WTĘP DO INFORMATYKI Adrian Horzyk Grafy i struktury grafowe www.agh.edu.pl DEFINICJA GRAFU Graf to

Bardziej szczegółowo

6a. Grafy eulerowskie i hamiltonowskie

6a. Grafy eulerowskie i hamiltonowskie 6a. Grafy eulerowskie i hamiltonowskie Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2016/2017 rzegorz Kosiorowski (Uniwersytet Ekonomiczny6a. w Krakowie) Grafy eulerowskie i hamiltonowskie

Bardziej szczegółowo

Algorytmy i Struktury Danych.

Algorytmy i Struktury Danych. Algorytmy i Struktury Danych. Grafy Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 7 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych. Wykład 7 1 / 43 Grafy -

Bardziej szczegółowo

Sieć (graf skierowany)

Sieć (graf skierowany) Sieci Sieć (graf skierowany) Siecia (grafem skierowanym) G = (V, A) nazywamy zbiór wierzchołków V oraz zbiór łuków A V V. V = {A, B, C, D, E, F}, A = {(A, B), (A, D), (A, C), (B, C),..., } Ścieżki i cykle

Bardziej szczegółowo

Grafy. Jeżeli, to elementy p i q nazywamy końcami krawędzi e. f a b c d e γ f {1} {1,2} {2,3} {2,3} {1,3}

Grafy. Jeżeli, to elementy p i q nazywamy końcami krawędzi e. f a b c d e γ f {1} {1,2} {2,3} {2,3} {1,3} Grafy Definicja grafu nieskierowanego. Grafem nieskierowanym nazywamy uporządkowaną trójkę: gdzie: V- niepusty zbiór wierzchołków grafu G E- zbiór wszystkich krawędzi grafu G - funkcja ze zbioru E w zbiór

Bardziej szczegółowo

Algorytmy i Struktury Danych.

Algorytmy i Struktury Danych. Algorytmy i Struktury Danych. Grafy Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 8 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych. Wykład 8 1 / 39 Plan wykładu

Bardziej szczegółowo

Wykład 1. Wprowadzenie do teorii grafów

Wykład 1. Wprowadzenie do teorii grafów Wykła 1. Wprowazenie o teorii grafów 1 / 111 Literatura 1 W. Lipski; Kombinatoryka la programistów. 2 T. Cormen, Ch. E. Leiserson, R. L. Rivest; Wprowazenie o algorytmów. 3 K. A. Ross, Ch. R. B. Wright;

Bardziej szczegółowo

Siedem cudów informatyki czyli o algorytmach zdumiewajacych

Siedem cudów informatyki czyli o algorytmach zdumiewajacych Siedem cudów informatyki czyli o algorytmach zdumiewajacych Łukasz Kowalik kowalik@mimuw.edu.pl Instytut Informatyki Uniwersytet Warszawski Łukasz Kowalik, Siedem cudów informatyki p. 1/25 Problem 1: mnożenie

Bardziej szczegółowo

Wprowadzenie do teorii grafów. Dr inż. Krzysztof Lisiecki

Wprowadzenie do teorii grafów. Dr inż. Krzysztof Lisiecki 1 Reguły gry (1): Uczymy się systematycznie Nie używamy telefonów Zaliczamy w terminie 2 Kontakt: konsultacje poniedziałek 8.45 10.15 (pokój wykładowców) e-mail : krzysztof.lisiecki@p.lodz.pl lub krzysztof@lisiecki.org.pl

Bardziej szczegółowo

Programowanie dynamiczne i algorytmy zachłanne

Programowanie dynamiczne i algorytmy zachłanne Programowanie dynamiczne i algorytmy zachłanne Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii

Bardziej szczegółowo

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA?

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA? /9/ Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład --9 Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów

Bardziej szczegółowo

Wstęp do programowania. Drzewa. Piotr Chrząstowski-Wachtel

Wstęp do programowania. Drzewa. Piotr Chrząstowski-Wachtel Wstęp do programowania Drzewa Piotr Chrząstowski-Wachtel Drzewa Drzewa definiują matematycy, jako spójne nieskierowane grafy bez cykli. Równoważne określenia: Spójne grafy o n wierzchołkach i n-1 krawędziach

Bardziej szczegółowo

7. Teoria drzew - spinanie i przeszukiwanie

7. Teoria drzew - spinanie i przeszukiwanie 7. Teoria drzew - spinanie i przeszukiwanie Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2016/2017 rzegorz Kosiorowski (Uniwersytet Ekonomiczny 7. wteoria Krakowie) drzew - spinanie i przeszukiwanie

Bardziej szczegółowo

Szkoła Podstawowa nr 151 w Krakowie. Barbara Doncer

Szkoła Podstawowa nr 151 w Krakowie. Barbara Doncer Szkoła Podstawowa nr 151 w Krakowie Barbara Doncer opiekun: mgr Wiesława Kałużny Kraków, 2014r. Wstęp Jak rozstrzygnąć, kto ma większe szanse na zwycięstwo w grach losowych, jak zaplanować spacer po rynku,

Bardziej szczegółowo

Segmentacja obrazów cyfrowych z zastosowaniem teorii grafów - wstęp. autor: Łukasz Chlebda

Segmentacja obrazów cyfrowych z zastosowaniem teorii grafów - wstęp. autor: Łukasz Chlebda Segmentacja obrazów cyfrowych Segmentacja obrazów cyfrowych z zastosowaniem teorii grafów - wstęp autor: Łukasz Chlebda 1 Segmentacja obrazów cyfrowych - temat pracy Temat pracy: Aplikacja do segmentacji

Bardziej szczegółowo

TEORIA GRAFÓW I SIECI - ROZDZIAŁIV. Drzewa. Drzewa

TEORIA GRAFÓW I SIECI - ROZDZIAŁIV. Drzewa. Drzewa TEORIA GRAFÓW I SIECI - ROZDZIAŁIV Drzewa Drzewem lub drzewem wolnym nazywamy dowolny graf spójny i acykliczny. Drzewa Ćwiczenie 1. Narysować wszystkie, z dokłado sci a do izomorfizmu, drzewa o 1, 2, 3,

Bardziej szczegółowo

6d. Grafy dwudzielne i kolorowania

6d. Grafy dwudzielne i kolorowania 6d. Grafy dwudzielne i kolorowania Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2016/2017 rzegorz Kosiorowski (Uniwersytet Ekonomiczny w6d. Krakowie) Grafy dwudzielne i kolorowania zima

Bardziej szczegółowo

Wprowadzenie Podstawy Fundamentalne twierdzenie Kolorowanie. Grafy planarne. Przemysław Gordinowicz. Instytut Matematyki, Politechnika Łódzka

Wprowadzenie Podstawy Fundamentalne twierdzenie Kolorowanie. Grafy planarne. Przemysław Gordinowicz. Instytut Matematyki, Politechnika Łódzka Grafy planarne Przemysław Gordinowicz Instytut Matematyki, Politechnika Łódzka Grafy i ich zastosowania Wykład 12 Plan prezentacji 1 Wprowadzenie 2 Podstawy 3 Fundamentalne twierdzenie 4 Kolorowanie grafów

Bardziej szczegółowo

EDUKACYJNE I EKONOMICZNE ASPEKTY ZASTOSOWANIA CYKLU HAMILTONA W PROJEKTOWANIU I TESTOWANIU OPROGRAMOWANIA

EDUKACYJNE I EKONOMICZNE ASPEKTY ZASTOSOWANIA CYKLU HAMILTONA W PROJEKTOWANIU I TESTOWANIU OPROGRAMOWANIA Marek Żukowicz General and Professional Education 4/2014 pp. 95-102 ISSN 2084-1469 EDUKACYJNE I EKONOMICZNE ASPEKTY ZASTOSOWANIA CYKLU HAMILTONA W PROJEKTOWANIU I TESTOWANIU OPROGRAMOWANIA EDUCATIONAL

Bardziej szczegółowo

Wyk lad 4. Grafy skierowane

Wyk lad 4. Grafy skierowane Wyk lad 4 Grafy skierowane Definicja Graf skierowany G sk lada si e z dwóch zbiorów, niepustego zbioru V (G) grafu G i zbioru E(G) kraw edzi grafu G oraz z funkcji γ (gamma) ze zbioru E(G) w zbiór V (G)

Bardziej szczegółowo

Zadania z egzaminów z Algorytmiki

Zadania z egzaminów z Algorytmiki Zadania z egzaminów z Algorytmiki 1 Geometria obliczeniowa Zadanie 1 Zaprojektuj efektywny algorytm dla następującego problemu. Dany jest zbior n prostokątów na płaszczyźnie (o bokach niekoniecznie równoległych

Bardziej szczegółowo

Matematyczne podstawy informatyki Mathematical Foundations of Computational Sciences. Matematyka Poziom kwalifikacji: II stopnia

Matematyczne podstawy informatyki Mathematical Foundations of Computational Sciences. Matematyka Poziom kwalifikacji: II stopnia Nazwa przedmiotu: Kierunek: Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Matematyczne podstawy informatyki Mathematical Foundations of Computational Sciences

Bardziej szczegółowo

Porównanie algorytmów wyszukiwania najkrótszych ścieżek międz. grafu. Daniel Golubiewski. 22 listopada Instytut Informatyki

Porównanie algorytmów wyszukiwania najkrótszych ścieżek międz. grafu. Daniel Golubiewski. 22 listopada Instytut Informatyki Porównanie algorytmów wyszukiwania najkrótszych ścieżek między wierzchołkami grafu. Instytut Informatyki 22 listopada 2015 Algorytm DFS w głąb Algorytm przejścia/przeszukiwania w głąb (ang. Depth First

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA Pod auspicjami Polskiej Akademii Nauk Warszawa, ul. Newelska 6, tel.

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA Pod auspicjami Polskiej Akademii Nauk Warszawa, ul. Newelska 6, tel. WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA Pod auspicjami Polskiej Akademii Nauk 01-447 Warszawa, ul. Newelska 6, tel. 22 3486544 Wydział Informatyki Kierunek studiów Profil Stopień studiów Forma

Bardziej szczegółowo

1 Ćwiczenia: Funkcje całkowitoliczbowe

1 Ćwiczenia: Funkcje całkowitoliczbowe 1 Ćwiczenia: Funkcje całkowitoliczbowe 1.1 Funkcje podłoga i sufit (Floor and ceiling functions) podłoga (część całkowita) x = największa liczba całkowita mniejsza lub równa x sufit x = najmniejsza liczba

Bardziej szczegółowo

51. Wykorzystywanie sumy, iloczynu i różnicy zdarzeń do obliczania prawdopodobieństw zdarzeń.

51. Wykorzystywanie sumy, iloczynu i różnicy zdarzeń do obliczania prawdopodobieństw zdarzeń. Matematyka lekcja 5 5. Wykorzystywanie sumy, iloczynu i różnicy zdarzeń do obliczania prawdopodobieństw zdarzeń. I. rzypomnij sobie:. Jak rysujemy drzewo stochastyczne i przy jego pomocy obliczamy prawdopodobieństwo

Bardziej szczegółowo

Grupy. Permutacje 1. (G2) istnieje element jednostkowy (lub neutralny), tzn. taki element e G, że dla dowolnego a G zachodzi.

Grupy. Permutacje 1. (G2) istnieje element jednostkowy (lub neutralny), tzn. taki element e G, że dla dowolnego a G zachodzi. Grupy. Permutacje 1 1 Definicja grupy Niech G będzie zbiorem. Działaniem na zbiorze G nazywamy odwzorowanie (oznaczane, jak mnożenie, przez ) przyporządkowujące każdej parze uporządkowanej (a, b) G G element

Bardziej szczegółowo

Matematyka Dyskretna Discrete Mathematics. Informatyka I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Matematyka Dyskretna Discrete Mathematics. Informatyka I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Matematyka Dyskretna Discrete Mathematics A. USYTUOWANIE MODUŁU W SYSTEMIE

Bardziej szczegółowo

Algorytm chińskiego listonosza Katarzyna Ignaszewska SPI51. Temat: Problem chińskiego listonosza, czyli jak obejść miasto najmniejszym nakładem sił.

Algorytm chińskiego listonosza Katarzyna Ignaszewska SPI51. Temat: Problem chińskiego listonosza, czyli jak obejść miasto najmniejszym nakładem sił. Scenariusz lekcji Temat: Problem chińskiego listonosza, czyli jak obejść miasto najmniejszym nakładem sił. W roku 1962 chioski matematyk Mei-Ko Kwan zaproponował następujący problem: Listonosz roznosząc

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /15

Matematyka dyskretna. Andrzej Łachwa, UJ, /15 Matematyka dyskretna Andrzej Łachwa, UJ, 2014 andrzej.lachwa@uj.edu.pl 15/15 TWIERDZENIE HALLA Twierdzenie o kojarzeniu małżeństw rozważa dwie grupy dziewcząt i chłopców, oraz podgrupy dziewczyn i podgrupy

Bardziej szczegółowo

Egzamin, AISDI, I termin, 18 czerwca 2015 r.

Egzamin, AISDI, I termin, 18 czerwca 2015 r. Egzamin, AISDI, I termin, 18 czerwca 2015 r. 1 W czasie niezależnym do danych wejściowych działają algorytmy A. sortowanie bąbelkowego i Shella B. sortowanie szybkiego i przez prosty wybór C. przez podział

Bardziej szczegółowo

Algorytmy grafowe. Wykład 2 Przeszukiwanie grafów. Tomasz Tyksiński CDV

Algorytmy grafowe. Wykład 2 Przeszukiwanie grafów. Tomasz Tyksiński CDV Algorytmy grafowe Wykład 2 Przeszukiwanie grafów Tomasz Tyksiński CDV Rozkład materiału 1. Podstawowe pojęcia teorii grafów, reprezentacje komputerowe grafów 2. Przeszukiwanie grafów 3. Spójność grafu,

Bardziej szczegółowo

Rachunek podziałów i elementy teorii grafów będą stosowane w procedurach redukcji argumentów i dekompozycji funkcji boolowskich.

Rachunek podziałów i elementy teorii grafów będą stosowane w procedurach redukcji argumentów i dekompozycji funkcji boolowskich. Pojęcia podstawowe c.d. Rachunek podziałów Elementy teorii grafów Klasy zgodności Rachunek podziałów i elementy teorii grafów będą stosowane w procedurach redukcji argumentów i dekompozycji funkcji boolowskich.

Bardziej szczegółowo

Zagadnienie transportowe

Zagadnienie transportowe 9//9 Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów

Bardziej szczegółowo

Algorytmy Równoległe i Rozproszone Część III - Układy kombinacyjne i P-zupełność

Algorytmy Równoległe i Rozproszone Część III - Układy kombinacyjne i P-zupełność Algorytmy Równoległe i Rozproszone Część III - Układy kombinacyjne i P-zupełność Łukasz Kuszner pokój 209, WETI http://www.kaims.pl/ kuszner/ kuszner@eti.pg.gda.pl Oficjalna strona wykładu http://www.kaims.pl/

Bardziej szczegółowo

Schemat sprawdzianu. 25 maja 2010

Schemat sprawdzianu. 25 maja 2010 Schemat sprawdzianu 25 maja 2010 5 definicji i twierdzeń z listy 12(po 10 punktów) np. 1. Proszę sformułować twierdzenie Brouwera o punkcie stałym. 2. Niech X będzie przestrzenią topologiczną. Proszę określić,

Bardziej szczegółowo

Konspekt zajęć z informatyki Wojciech Furgała ZPR-S Oława

Konspekt zajęć z informatyki Wojciech Furgała ZPR-S Oława Konspekt zajęć z informatyki Wojciech Furgała ZPR-S Oława 1. Temat: Planowanie optymalnej wycieczki szlakami górskimi (problem Eulera) 2. Czas trwania lekcji: 2 godziny lekcyjne 3. Przygotowanie uczniów:

Bardziej szczegółowo

Metody uporządkowania

Metody uporządkowania Metody uporządkowania W trakcie faktoryzacji macierzy rzadkiej ilość zapełnień istotnie zależy od sposobu numeracji równań. Powstaje problem odnalezienia takiej numeracji, przy której ilość zapełnień będzie

Bardziej szczegółowo

Algorytmiczne aspekty teorii gier: Wykład 5

Algorytmiczne aspekty teorii gier: Wykład 5 Algorytmiczne aspekty teorii gier: Wykład 5 Wykład prowadził dr hab. Igor Walukiewicz Notatki przygotował Dymitr Pszenicyn 02-04-2003 1 Spis treści 1 Przypomnienie 3 1.1

Bardziej szczegółowo

Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle

Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle Paweł Szołtysek 12 czerwca 2008 Streszczenie Planowanie produkcji jest jednym z problemów optymalizacji dyskretnej,

Bardziej szczegółowo

Sprawozdanie do zadania numer 2

Sprawozdanie do zadania numer 2 Sprawozdanie do zadania numer 2 Michał Pawlik 29836 Temat: Badanie efektywności algorytmów grafowych w zależności od rozmiaru instancji oraz sposobu reprezentacji grafu w pamięci komputera 1 WSTĘP W ramach

Bardziej szczegółowo

Matematyka dyskretna. 1. Relacje

Matematyka dyskretna. 1. Relacje Matematyka dyskretna 1. Relacje Definicja 1.1 Relacją dwuargumentową nazywamy podzbiór produktu kartezjańskiego X Y, którego elementami są pary uporządkowane (x, y), takie, że x X i y Y. Uwaga 1.1 Jeśli

Bardziej szczegółowo

Temat: Struktury danych do reprezentacji grafów. Wybrane algorytmy grafowe.

Temat: Struktury danych do reprezentacji grafów. Wybrane algorytmy grafowe. Temat: Struktury danych do reprezentacji grafów. Wybrane algorytmy grafowe. Oznaczenia G = V, E - graf bez wag, gdzie V - zbiór wierzchołków, E- zbiór krawdzi V = n - liczba wierzchołków grafu G E = m

Bardziej szczegółowo

Teoria obliczeń i złożoność obliczeniowa

Teoria obliczeń i złożoność obliczeniowa Teoria obliczeń i złożoność obliczeniowa Kontakt: dr hab. inż. Adam Kasperski, prof. PWr. pokój 509 B4 adam.kasperski@pwr.wroc.pl materiały + informacje na stronie www. Zaliczenie: Egzamin Literatura Problemy

Bardziej szczegółowo

TEORETYCZNE PODSTAWY INFORMATYKI

TEORETYCZNE PODSTAWY INFORMATYKI 1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 8 2 Modele danych: grafy Podstawowe pojęcia Grafy wywołań Grafy skierowane i nieskierowane Grafy planarne,

Bardziej szczegółowo

Teoria grafów - Teoria rewersali - Teoria śladów

Teoria grafów - Teoria rewersali - Teoria śladów 17 maja 2012 1 Planarność Wzór Eulera Kryterium Kuratowskiego Algorytmy testujące planarność 2 Genom i jego przekształcenia Grafy złamań Sortowanie przez odwrócenia Inne rodzaje sortowania Algorytmy sortujące

Bardziej szczegółowo