METODY NUMERYCZNE. Wykład 3. Plan. Aproksymacja Interpolacja wielomianowa Przykłady. dr hab.inż. Katarzyna Zakrzewska, prof.agh. Met.Numer.

Wielkość: px
Rozpocząć pokaz od strony:

Download "METODY NUMERYCZNE. Wykład 3. Plan. Aproksymacja Interpolacja wielomianowa Przykłady. dr hab.inż. Katarzyna Zakrzewska, prof.agh. Met.Numer."

Transkrypt

1 METODY NUMERYCZNE Wykład 3. dr hab.inż. Katarzyna Zakrzewska, prof.agh Met.Numer. wykład 3 1 Plan Aproksymacja Interpolacja wielomianowa Przykłady Met.Numer. wykład 3 2 1

2 Aproksymacja Metody numeryczne zajmują się rozwiązywaniem zadań matematycznych za pomocą działań arytmetycznych. Zachodzi zatem potrzeba przybliżania wielkości nie arytmetycznych wielkościami arytmetycznymi i badania błędów wywołanych takimi przybliżeniami. Wybór przybliżenia zależy od tego, którym z możliwych kryteriów posłużymy się w ocenie skuteczności danego przybliżenia. Jaki jest dopuszczalny błąd wyniku? Jak szybko można otrzymać rozwiązanie jaka jest szybkość zbieżności danej metody, np. procesu iteracyjnego? Met.Numer. wykład 3 3 Co to jest interpolacja? Dane są punkty (x 0,y 0 ), (x 1,y 1 ),.(x n,y n ). Znaleźć nieznaną wartość y dla dowolnego x. Met.Numer. wykład 3 4 2

3 Różnica pomiędzy aproksymacją i interpolacją interpolacja aproksymacja Met.Numer. wykład 3 5 Aproksymacja Chcemy przybliżyć funkcję f(x) kombinacją (najczęściej liniową) funkcji należących do pewnej szczególnej klasy. Klasy funkcji: dla N pierwszych wyrazów szeregu Taylora ogólniej: p n (x) jest wielomianem stopnia n wielomiany trygonometryczne Największe znaczenie posiada aproksymacja wielomianowa Met.Numer. wykład 3 6 3

4 Aproksymacja liniowa funkcji f(x) Aproksymacja klasy funkcji: współczynniki stałe: Przybliżenia liniowe stosuje się ponieważ badanie aproksymacji kombinacjami nieliniowymi funkcji przybliżających jest bardzo trudne jak analiza większości zagadnień nieliniowych. Czasami stosuje się przybliżenia wymierne: Met.Numer. wykład 3 7 Aproksymacja Kryteria wyboru stałych współczynników Trzy typy przybliżeń o dużym znaczeniu przybliżenie interpolacyjne współczynniki są tak dobrane, aby w punktach funkcja przybliżająca wraz z jej pierwszymi r i pochodnymi (r i jest liczbą całkowitą nieujemną) była zgodna z f(x) i jej pochodnymi (z dokładnością do błędów zaokrągleń) Met.Numer. wykład 3 8 4

5 Aproksymacja Kryteria wyboru stałych współczynników przybliżenie średniokwadratowe szukamy minimum wyrażenia będącego całką z kwadratu różnicy pomiędzy f(x) i jej przybliżeniem w przedziale <x 1,x 2 > lub sumą ważoną kwadratów błędów rozciągniętą na zbiór dyskretny punktów z przedziału <x 1,x 2 > przybliżenie jednostajne znalezienie najmniejszego maksimum różnicy między f(x) i jej przybliżeniem w przedziale <x 1,x 2 > Met.Numer. wykład 3 9 Metoda najmniejszych kwadratów Regresja liniowa Met.Numer. wykład

6 Warunek minimum funkcji dwu zmiennych: Otrzymujemy układ równań liniowych dla niewiadomych a i b Rozwiązując ten układ równań uzyskuje się wyrażenia na a i b Met.Numer. wykład 3 11 gdzie: wyznacznik główny W wyraża się wzorem Z praw statystyki można wyprowadzić wyrażenia na odchylenia standardowe u(a) i u(b) obu parametrów prostej a,b: Met.Numer. wykład

7 Aproksymacja wielomianowa Zastosowanie w obliczeniach wielomianów jako funkcji przybliżających wiąże się z faktem, że maszyna cyfrowa wykonuje w praktyce działania arytmetyczne. Wspólną właściwością potęg zmiennej i wielomianów trygonometrycznych (a także funkcji wykładniczych) jest to, że w przybliżeniach korzystających z każdej z tych klas przesunięcie układu współrzędnych zmienia współczynniki, ale nie zmienia postaci przybliżenia. Jeżeli P(x) jest wielomianem lub funkcją wymierną to P(x+α) jest również tej postaci, a jeśli T(x) jest liniowym lub wymiernym przybliżeniem zbudowanym z sinusów lub cosinusów, to takie jest również T(x+α). Met.Numer. wykład 3 13 Aproksymacja wielomianowa Przybliżenia funkcjami mają taką zaletę, że przy zmianie skali zmiennej zmieniają się tylko współczynniki, a nie zmienia się kształt przybliżenia. Przykład: wielomian P(kx) jest również wielomianem zmiennej x. Tej własności nie mają przybliżenia trygonometryczne, gdyż dla niecałkowitego k na ogół sin(nkx) nie jest elementem klasy Met.Numer. wykład

8 Aproksymacja wielomianowa Najczęściej wybiera się wielomiany gdyż można łatwo: obliczać ich wartości różniczkować całkować Met.Numer. wykład 3 15 Aproksymacja wielomianowa Z przybliżeń wielomianowych wywodzą się metody: interpolacji ekstrapolacji różniczkowania numerycznego kwadratur rozwiązywania numerycznego równań różniczkowych zwyczajnych Powiązania pomiędzy tymi metodami są łatwo dostrzegalne, gdyż metody interpolacyjne są podstawą wzorów różniczkowania numerycznego, kwadratur i rozwiązywania numerycznego równań różniczkowych. Met.Numer. wykład

9 INTERPOLACJA WIELOMIANOWA Założenie: W przedziale [a,b] danych jest (n+1) różnych punktów x 0, x 1,, x n, które nazywamy węzłami interpolacji, oraz wartości pewnej funkcji y = f(x) w tych punktach: f(x i ) = y i dla i = 0, 1,..., n. interpolacja Met.Numer. wykład 3 17 INTERPOLACJA WIELOMIANOWA Zadanie interpolacji: Wyznaczenie przybliżonych wartości funkcji w punktach nie będących węzłami oraz oszacowanie błędu tych przybliżonych wartości. 1. W tym celu należy znaleźć funkcję F(x), zwaną funkcją interpolującą, która będzie przybliżać funkcję f(x) w przedziale [a,b]. 2. Funkcja F(x) w węzłach interpolacji przyjmuje takie same wartości co funkcja y = f(x). 3. W zagadnieniu interpolacji wielomianowej funkcja F(x) jest wielomianem stopnia co najwyżej n. Twierdzenie Istnieje dokładnie jeden wielomian interpolacyjny stopnia co najwyżej n (n 0), który w punktach x 0, x 1,, x n przyjmuje wartości y 0, y 1,, y n. Met.Numer. wykład

10 Interpolacja - metoda bezpośrednia Przez n+1 punktów (x 0,y 0 ), (x 1,y 1 ),.(x n,y n ) przechodzi dokładnie jeden wielomian stopnia n gdzie a 0, a 1,. a n są stałymi współczynnikami (R) Ułożyć n+1 równań aby znaleźć n+1 stałych Podstawić wartość x do wielomianu, aby znaleźć y Met.Numer. wykład 3 19 Przykład Tabela 1 Prędkość v jako funkcja czasu t t(s) v(m/s) Znaleźć prędkość w chwili t=16 s stosując metodę bezpośrednią dla dwóch punktów Met.Numer. wykład

11 Nie można obecnie wyświetlić tego obrazu. Interpolacja liniowa Rozwiązanie układu równań A zatem Met.Numer. wykład 3 21 Interpolacja kwadratowa Rozwiązanie układu równań Met.Numer. wykład

12 Interpolacja kwadratowa Błąd względny Met.Numer. wykład 3 23 Interpolacja sześcienna Met.Numer. wykład

13 Interpolacja sześcienna Rozwiązać układ równań: Zadanie domowe Podać i narysować v(t) Met.Numer. wykład 3 25 Interpolacja sześcienna -rozwiązanie Błąd względny Met.Numer. wykład

14 Porównanie Met.Numer. wykład 3 27 Obliczenia przemieszczenia od t=11s do t=16s Met.Numer. wykład

15 Obliczenia przyspieszenia Met.Numer. wykład 3 29 Wzór interpolacyjny Newtona Interpolacja liniowa: dane są punkty szukamy Met.Numer. wykład

16 Przykład Tabela 1 Prędkość v jako funkcja czasu t t(s) v(m/s) Znaleźć prędkość w chwili t=16 s stosując metodę Newtona Met.Numer. wykład 3 31 Interpolacja liniowa Wiadomo, że: Znajdujemy: A zatem: Jako zadanie domowe, proszę sprawdzić czy wynik uzyskany jest zgodny z wynikiem interpolacji bezpośredniej Met.Numer. wykład

17 Interpolacja liniowa Szukana prędkość w chwili t=16 s wynosi: Met.Numer. wykład 3 33 Dane są punkty szukamy Interpolacja kwadratowa Met.Numer. wykład

18 Interpolacja kwadratowa Wiadomo, że: Znajdujemy: Met.Numer. wykład 3 35 Interpolacja kwadratowa A zatem: dla t=16s: Jako zadanie domowe, proszę sprawdzić czy wynik uzyskany jest zgodny z wynikiem interpolacji bezpośredniej Met.Numer. wykład

19 Interpolacja kwadratowa Błąd względny w odniesieniu do poprzedniej interpolacji Met.Numer. wykład 3 37 Ogólna formuła gdzie iloraz różnicowy pierwszego rzędu A zatem iloraz różnicowy drugiego rzędu Met.Numer. wykład

20 Ogólna formuła Mając (n+1) punktów Met.Numer. wykład 3 39 Interpolacja sześcienna Met.Numer. wykład

21 Interpolacja sześcienna Zadanie domowe Znaleźć równanie na prędkość i obliczyć v(16s) na podstawie interpolacji sześciennej Newtona : Dane Znaleźć współczynniki b i Znaleźć drogę przebytą w czasie od 11s do 16 s. Znaleźć przyspieszenie w chwili t=16 s. Met.Numer. wykład 3 41 Rozwiązanie Met.Numer. wykład

22 Porównanie Met.Numer. wykład 3 43 Interpolacja z równo-odległymi węzłami Dane są wartości funkcji f(x i )=y i dla i=0,1, n w punktach rozmieszczonych w jednakowych odstępach: Pierwszy wielomian interpolacyjny Newtona ma postać: gdzie k f(x 0 ) jest różnica progresywna k-tego rzędu Met.Numer. wykład

23 Interpolacja z równo-odległymi węzłami Wielomian interpolacyjny Newtona jest korzystny w pobliżu początku tablicy. W pobliżu końca tablicy stosujemy drugi wielomian interpolacyjny Newtona z różnicami wstecznymi Met.Numer. wykład 3 45 Różnice progresywne Różnice wsteczne Met.Numer. wykład

24 Wzór interpolacyjny Lagrange a Inaczej: Ogólnie: gdzie: ω n (x j ) jest wartością pochodnej wielomianu ω n (x) punkcie x j będącym zerem tego wielomianu Met.Numer. wykład 3 47 Przykład Tabela 1 Prędkość v jako funkcja czasu t t(s) v(m/s) Znaleźć prędkość w chwili t=16 s stosując metodę interpolacji wielomianem Lagrange a dla dwóch punktów Met.Numer. wykład

25 Interpolacja liniowa wielomianem Lagrange a Wiadomo, że: Znajdujemy: A zatem: Jako zadanie domowe, proszę sprawdzić czy wynik uzyskany jest zgodny z wynikiem interpolacji bezpośredniej Met.Numer. wykład 3 49 Interpolacja liniowa wielomianem Lagrange a Met.Numer. wykład

26 Interpolacja kwadratowa Dane są punkty szukamy Met.Numer. wykład 3 51 Interpolacja kwadratowa Wiadomo, że: Znajdujemy: A zatem: Met.Numer. wykład

27 Interpolacja kwadratowa dla t=16s: Jako zadanie domowe, proszę sprawdzić czy wynik uzyskany jest zgodny z wynikiem interpolacji bezpośredniej i metodą Newtona. Met.Numer. wykład 3 53 Interpolacja kwadratowa Błąd względny w odniesieniu do poprzedniej interpolacji Met.Numer. wykład

28 Interpolacja sześcienna Zadanie domowe Znaleźć równanie na prędkość i obliczyć v(16s) na podstawie interpolacji sześciennej Lagrange a Dane Znaleźć drogę przebytą w czasie od 11s do 16 s. Znaleźć przyspieszenie w chwili t=16 s. Porównać wyniki z uzyskanymi na podstawie interpolacji metodą bezpośredniej i Newtona. Met.Numer. wykład 3 55 Porównanie Met.Numer. wykład

29 Wzór interpolacyjny Lagrange a - przykład Niech dane będą punkty:0,1,3,6.znaleźć wielomian interpolacyjny Lagrange a, który będzie przybliżać funkcję Rozwiązanie: Wartości funkcji f(x) w węzłach interpolacji są następujące: Można pokazać, że wielomian interpolacyjny Lagrange a przyjmuje postać: Met.Numer. wykład 3 57 Wzór interpolacyjny Lagrange a - przykład funkcja f(x) wielomian interpolacyjny W 3 (x) Wielomian interpolacyjny przybliża funkcję f(x) tylko pomiędzy skrajnymi węzłami, tzn. w przedziale [0,6]. Im mniejsze odległości między węzłami, tym lepsze przybliżenie uzyskujemy Met.Numer. wykład

30 Oszacowanie błędu wzoru interpolacyjnego Z jaką dokładnością wielomian interpolacyjny W n (x) przybliża funkcję f(x) w pozostałych punktach leżących wewnątrz przedziału <a, b>? Zakładamy, że funkcja f(x) w rozpatrywanym przedziale <a, b> ma pochodne do rzędu (n+1) włącznie. zależy od wyboru węzłów interpolacji Met.Numer. wykład 3 59 Interpolacja za pomocą funkcji sklejanych-spline Wady interpolacji wielomianowej: Motywacja Pogorszenie wyników interpolacji przy zwiększaniu liczby węzłów. Przykład: Zjawisko Rungego (przykład źle uwarunkowanego zadania): Interpolacja wielomianami wysokich stopni przy stałych odległościach węzłów prowadzi do poważnych odchyleń od interpolowanej funkcji zwłaszcza na końcach przedziału. Interpolacja na środkowych częściach przedziału jest natomiast bardzo dobra i użyteczna Przykład: Met.Numer. wykład

31 Interpolacja wielomianowa szczególnych funkcji Met.Numer. wykład 3 61 Zjawisko Rungego Met.Numer. wykład

32 Mając dane punkty: Interpolacja za pomocą liniowych funkcji sklejanych prowadzimy linie proste pomiędzy punktami. Met.Numer. wykład 3 63 Interpolacja za pomocą liniowych funkcji sklejanych... nachylenie prostej pomiędzy węzłami Met.Numer. wykład

33 Mając dane punkty: Interpolacja kwadratowa za pomocą funkcji sklejanych zapisujemy różne funkcje kwadratowe pomiędzy każdą parą punktów. Met.Numer. wykład 3 65 Interpolacja kwadratowa za pomocą funkcji sklejanych... Znaleźć współczynniki Mamy 3n niewiadomych czyli potrzebujemy 3n równań Met.Numer. wykład

34 Interpolacja kwadratowa za pomocą funkcji sklejanych Każda parabola przechodzi przez dwa sąsiednie punkty, czyli mamy 2n równań.. Met.Numer. wykład 3 67 Interpolacja kwadratowa za pomocą funkcji sklejanych Dodatkowe warunki otrzymujemy żądając ciągłości pierwszych pochodnych w n-1 wewnętrznych punktach węzłowych: dla a zatem. Met.Numer. wykład

35 Interpolacja kwadratowa za pomocą funkcji sklejanych Prowadzi to do n-1 równań postaci:.. Całkowita liczba równań wynosi 2n+(n-1)=3n-1 Potrzebne jedno równanie może przyjąć postać np. Pierwsza funkcja sklejana jest liniowa. Met.Numer. wykład 3 69 Przykład Tabela 1 Prędkość v jako funkcja czasu t t(s) v(m/s) Znaleźć prędkość w chwili t=16 s stosując metodę interpolacji za pomocą kwadratowych funkcji sklejanych Met.Numer. wykład

36 Rozwiązanie Met.Numer. wykład 3 71 Każda funkcja sklejana przechodzi przez dwa sąsiednie punkty Met.Numer. wykład

37 Dalsze równania t(s) v(m/s) Jest 10 równań, 15 poszukiwanych współczynników Met.Numer. wykład 3 73 Żądanie ciągłości pochodnych Met.Numer. wykład

38 Żądanie ciągłości pochodnych - cd dla t=10s dla t=15s dla t=20s dla t=22.5s 4 dodatkowe równania ostatnie równanie Met.Numer. wykład 3 75 Ostateczny układ 15 równań na 15 niewiadomych Met.Numer. wykład

39 Wartości współczynników i a i b i c i Proszę sprawdzić czy podane wartości są prawidłowe Met.Numer. wykład 3 77 Ostateczne rozwiązanie Met.Numer. wykład

40 a) Prędkość w chwili t=16s Prędkość w określonym punkcie Jako zadanie domowe, proszę porównać obliczoną wartość prędkości z wartością otrzymaną za pomocą interpolacji wielomianowej Met.Numer. wykład 3 79 b) Acceleration at t=16 Przyspieszenie w określonym punkcie Met.Numer. wykład

41 Przyspieszenie w określonym punkcie, Funkcja kwadratowa sklejana prawdziwa w punkcie t=16s jest dana jako Jako zadanie domowe, proszę porównać obliczoną wartość przyspieszenia z wartością otrzymaną za pomocą interpolacji wielomianowej Met.Numer. wykład 3 81 Droga z profilu prędkości c) Znaleźć drogę przebytą przez rakietę od t=11s do t=16s. Met.Numer. wykład

42 Droga z profilu prędkości Jako zadanie domowe, proszę porównać obliczoną wartość przebytej odległości z wartością otrzymaną za pomocą interpolacji wielomianowej Met.Numer. wykład 3 83 Błąd wzoru interpolacyjnego Przyjmujemy oznaczenia: Kres górny modułu (n+1)-szej pochodnej funkcji f(x) na przedziale <a,b> Met.Numer. Wykład

43 Błąd wzoru interpolacyjnego Przykład: Ocenić, z jaką dokładnością można obliczyć wartość ln 100,5 przy użyciu wzoru interpolacyjnego Lagrange a, jeżeli dane są wartości: ln 100, ln 101, ln 102, ln 103 Met.Numer. Wykład 4 85 Optymalny dobór węzłów interpolacji Wielkość błędu zależy od wyboru węzłów interpolacji poprzez ω n. Na M n+1 nie mamy wpływu. Jak wybrać węzły interpolacji x i, aby: miało jak najmniejszą wartość Zagadnienie zostało sformułowane przez rosyjskiego matematyka P.L. Czebyszewa jako zagadnienie znajdowania wielomianu algebraicznego najlepiej przybliżającego zero na zadanym przedziale. Met.Numer. Wykład

44 Wielomiany Czebyszewa Wielomiany Czebyszewa (pierwszego rodzaju): Można pokazać, że wielomian T n (x) jest identyczny z pewnym wielomianem algebraicznym zawężonym do przedziału <-1,1>. wzór rekurencyjny Met.Numer. Wykład 4 87 Wielomiany Czebyszewa Wielomiany Czebyszewa pierwszego rodzaju są rozwiązaniem równania różniczkowego: Definiuje się je poprzez wzór Rodriguesa: Wielomiany Czebyszewa pierwszego rodzaju są ortogonalne w przedziale <-1,1> z wagą: Met.Numer. Wykład

45 Optymalny dobór węzłów interpolacji Każdy wielomian Czebyszewa stopnia n ma n różnych pierwiastków w punktach: zawartych między -1 i +1 Współczynnik przy najwyższej potędze w T n (x) jest równy 2 n-1. Szukamy wielomianu, który przy najwyższej potędze ma współczynnik równy jedności gdzie x m (m=0, 1, 2,, n) są pierwiastkami wielomianu T n+1 Met.Numer. Wykład 4 89 Optymalny dobór węzłów interpolacji Wyrażenie: w przedziale <-1,1> ma najmniejszą wartość dla wielomianu: wówczas: Jeżeli w przedziale <-1,1> za węzły interpolacji przyjmiemy zera wielomianu Czebyszewa, to Met.Numer. Wykład

46 Optymalny dobór węzłów interpolacji W dowolnym przedziale <a,b> oszacowanie błędu wynosi: przy wyborze węzłów Nowe węzły x m nie są rozmieszczone w równych odstępach lecz są zagęszczone przy końcach przedziału. Proste transformacje liniowe sprowadzają x z przedziału <a,b> do z należącego do <-1,1> Met.Numer. Wykład 4 91 Podsumowanie interpolacji Przeczytać i przeanalizować rozdział Uwagi końcowe, Z.Fortuna, B.Macukow, J.Wąsowski, Metody numeryczne Wnioski: 1. Przy obliczaniu wartości wielomianu interpolacyjnego w jednym lub kilku punktach problem wyboru postaci wzoru interpolacyjnego nie jest istotny. 2. Rodzaj wybranego wzoru i rozmieszczenie węzłów ma wpływ jedynie na błąd obliczeń. 3. O czasochłonności obliczeń decyduje liczba mnożeń i dzieleń. dla wielomianu Lagrange a stanowi to n 2 +4n+2 dla wielomianu Newtona 1/2 n 2 +3/2 n 2 Met.Numer. Wykład

Metody numeryczne. Sformułowanie zagadnienia interpolacji

Metody numeryczne. Sformułowanie zagadnienia interpolacji Ćwiczenia nr 4. Sformułowanie zagadnienia interpolacji Niech będą dane punkty x 0,..., x n i wartości y 0,..., y n, takie że i=0,...,n y i = f (x i )). Szukamy funkcji F (funkcji interpolującej), takiej

Bardziej szczegółowo

Interpolacja. Marcin Orchel. Drugi przypadek szczególny to interpolacja trygonometryczna

Interpolacja. Marcin Orchel. Drugi przypadek szczególny to interpolacja trygonometryczna Interpolacja Marcin Orchel 1 Wstęp Mamy daną funkcję φ (x; a 0,..., a n ) zależną od n + 1 parametrów a 0,..., a n. Zadanie interpolacji funkcji φ polega na określeniu parametrów a i tak aby dla n + 1

Bardziej szczegółowo

3. Interpolacja. Interpolacja w sensie Lagrange'a (3.1) Dana jest funkcja y= f x określona i ciągła w przedziale [a ;b], która

3. Interpolacja. Interpolacja w sensie Lagrange'a (3.1) Dana jest funkcja y= f x określona i ciągła w przedziale [a ;b], która 3. Interpolacja Interpolacja w sensie Lagrange'a (3.1) Dana jest funkcja y= f x określona i ciągła w przedziale [a ;b], która przyjmuje wartości y 1, y 2,, y n, dla skończonego zbioru argumentów x 1, x

Bardziej szczegółowo

Całkowanie numeryczne przy użyciu kwadratur

Całkowanie numeryczne przy użyciu kwadratur Całkowanie numeryczne przy użyciu kwadratur Plan wykładu: 1. Kwadratury Newtona-Cotesa a) wzory: trapezów, parabol etc. b) kwadratury złożone 2. Ekstrapolacja a) ekstrapolacja Richardsona b) metoda Romberga

Bardziej szczegółowo

METODY NUMERYCZNE. Wykład 4. Numeryczne rozwiązywanie równań nieliniowych z jedną niewiadomą. prof. dr hab.inż. Katarzyna Zakrzewska

METODY NUMERYCZNE. Wykład 4. Numeryczne rozwiązywanie równań nieliniowych z jedną niewiadomą. prof. dr hab.inż. Katarzyna Zakrzewska METODY NUMERYCZNE Wykład 4. Numeryczne rozwiązywanie równań nieliniowych z jedną niewiadomą prof. dr hab.inż. Katarzyna Zakrzewska Met.Numer. Wykład 4 1 Rozwiązywanie równań nieliniowych z jedną niewiadomą

Bardziej szczegółowo

Metody numeryczne I Równania nieliniowe

Metody numeryczne I Równania nieliniowe Metody numeryczne I Równania nieliniowe Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/66 Równania nieliniowe 1. Równania nieliniowe z pojedynczym pierwiastkiem

Bardziej szczegółowo

INFORMATYKA ELEMENTY METOD NUMERYCZNYCH.

INFORMATYKA ELEMENTY METOD NUMERYCZNYCH. INFORMATYKA ELEMENTY METOD NUMERYCZNYCH http://www.infoceram.agh.edu.pl METODY NUMERYCZNE Metody numeryczne zbiór metod rozwiązywania problemów matematycznych za pomocą operacji na liczbach. Otrzymywane

Bardziej szczegółowo

Metody numeryczne. Sformułowanie zagadnienia interpolacji

Metody numeryczne. Sformułowanie zagadnienia interpolacji Wykład nr 2 Sformułowanie zagadnienia interpolacji Niech będą dane punkty x 0,..., x n (nazywane węzłami interpolacji) i wartości w węzłach y 0,..., y n. Od węzłów żądamy spełnienia warunku x i x j dla

Bardziej szczegółowo

Aproksymacja. funkcji: ,a 2. ,...,a m. - są funkcjami bazowymi m+1 wymiarowej podprzestrzeni liniowej X m+1

Aproksymacja. funkcji: ,a 2. ,...,a m. - są funkcjami bazowymi m+1 wymiarowej podprzestrzeni liniowej X m+1 Założenie: f(x) funkcja którą aproksymujemy X jest przestrzenią liniową Aproksymacja liniowa funkcji f(x) polega na wyznaczeniu współczynników a 0,a 1,a 2,...,a m funkcji: Gdzie: - są funkcjami bazowymi

Bardziej szczegółowo

Analiza numeryczna Kurs INP002009W. Wykład 8 Interpolacja wielomianowa. Karol Tarnowski A-1 p.223

Analiza numeryczna Kurs INP002009W. Wykład 8 Interpolacja wielomianowa. Karol Tarnowski A-1 p.223 Analiza numeryczna Kurs INP002009W Wykład 8 Interpolacja wielomianowa Karol Tarnowski karol.tarnowski@pwr.wroc.pl A-1 p.223 Plan wykładu Wielomian interpolujący Wzór interpolacyjny Newtona Wzór interpolacyjny

Bardziej szczegółowo

INTERPOLACJA I APROKSYMACJA FUNKCJI

INTERPOLACJA I APROKSYMACJA FUNKCJI Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Wprowadzenie Na czym polega interpolacja? Interpolacja polega

Bardziej szczegółowo

METODY NUMERYCZNE. Wykład 4. Numeryczne rozwiązywanie równań nieliniowych z jedną niewiadomą. Rozwiązywanie równań nieliniowych z jedną niewiadomą

METODY NUMERYCZNE. Wykład 4. Numeryczne rozwiązywanie równań nieliniowych z jedną niewiadomą. Rozwiązywanie równań nieliniowych z jedną niewiadomą METODY NUMERYCZNE Wykład 4. Numeryczne rozwiązywanie równań nieliniowych z jedną niewiadomą dr hab.inż. Katarzyna Zakrzewska, prof.agh Met.Numer. Wykład 4 1 Rozwiązywanie równań nieliniowych z jedną niewiadomą

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Technologie informatyczne

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Technologie informatyczne Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Technologie informatyczne Interpolacja metoda funkcji sklejanych Materiały pomocnicze do ćwiczeń laboratoryjnych

Bardziej szczegółowo

Bardzo łatwa lista powtórkowa

Bardzo łatwa lista powtórkowa Analiza numeryczna, II rok inf., WPPT- 12 stycznia 2008 Terminy egzaminów Przypominam, że egzaminy odbędą się w następujących terminach: egzamin podstawowy: 30 stycznia, godz. 13 15, C-13/1.31 egzamin

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.

ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. LICZBA TEMAT GODZIN LEKCYJNYCH Potęgi, pierwiastki i logarytmy (8 h) Potęgi 3 Pierwiastki 3 Potęgi o wykładnikach

Bardziej szczegółowo

DOPASOWYWANIE KRZYWYCH

DOPASOWYWANIE KRZYWYCH DOPASOWYWANIE KRZYWYCH Maciej Patan Uniwersytet Zielonogórski Motywacje Przykład 1. Dane o przyroście światowej populacji są aktualizowane co każde 10 lat, celem szacowania średniego przyrostu rocznego.

Bardziej szczegółowo

Interpolacja, aproksymacja całkowanie. Interpolacja Krzywa przechodzi przez punkty kontrolne

Interpolacja, aproksymacja całkowanie. Interpolacja Krzywa przechodzi przez punkty kontrolne Interpolacja, aproksymacja całkowanie Interpolacja Krzywa przechodzi przez punkty kontrolne Aproksymacja Punkty kontrolne jedynie sterują kształtem krzywej INTERPOLACJA Zagadnienie interpolacji można sformułować

Bardziej szczegółowo

Interpolacja funkcji

Interpolacja funkcji Interpolacja funkcji Interpolacja funkcji Interpolacja funkcji Wielomianowa Splajny Lagrange a Trygonometryczna Interpolacja Newtona (wzór I ) Czebyszewa Newtona (wzór II ) ( Wielomiany Czebyszewa ) Załóżmy,

Bardziej szczegółowo

Aproksymacja funkcji a regresja symboliczna

Aproksymacja funkcji a regresja symboliczna Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(x), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(x), zwaną funkcją aproksymującą

Bardziej szczegółowo

1 Równania nieliniowe

1 Równania nieliniowe 1 Równania nieliniowe 1.1 Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym jest numeryczne poszukiwanie rozwiązań równań nieliniowych, np. algebraicznych (wielomiany),

Bardziej szczegółowo

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne Metody numeryczne materiały do wykładu dla studentów 7. Całkowanie numeryczne 7.1. Całkowanie numeryczne 7.2. Metoda trapezów 7.3. Metoda Simpsona 7.4. Metoda 3/8 Newtona 7.5. Ogólna postać wzorów kwadratur

Bardziej szczegółowo

Zał nr 4 do ZW. Dla grupy kursów zaznaczyć kurs końcowy. Liczba punktów ECTS charakterze praktycznym (P)

Zał nr 4 do ZW. Dla grupy kursów zaznaczyć kurs końcowy. Liczba punktów ECTS charakterze praktycznym (P) Zał nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim : Obliczenia Naukowe Nazwa w języku angielskim : Scientific Computing. Kierunek studiów : Informatyka Specjalność

Bardziej szczegółowo

MATeMAtyka klasa II poziom rozszerzony

MATeMAtyka klasa II poziom rozszerzony MATeMAtyka klasa II poziom rozszerzony W klasie drugiej na poziomie rozszerzonym realizujemy materiał z klasy pierwszej tylko z poziomu rozszerzonego (na czerwono) oraz cały materiał z klasy drugiej. Rozkład

Bardziej szczegółowo

2) R stosuje w obliczeniach wzór na logarytm potęgi oraz wzór na zamianę podstawy logarytmu.

2) R stosuje w obliczeniach wzór na logarytm potęgi oraz wzór na zamianę podstawy logarytmu. ZAKRES ROZSZERZONY 1. Liczby rzeczywiste. Uczeń: 1) przedstawia liczby rzeczywiste w różnych postaciach (np. ułamka zwykłego, ułamka dziesiętnego okresowego, z użyciem symboli pierwiastków, potęg); 2)

Bardziej szczegółowo

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h)

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h) Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony (według podręczników z serii MATeMAtyka) Klasa I (90 h) Temat Liczba godzin 1. Liczby rzeczywiste 15

Bardziej szczegółowo

Wprowadzenie Metoda bisekcji Metoda regula falsi Metoda siecznych Metoda stycznych RÓWNANIA NIELINIOWE

Wprowadzenie Metoda bisekcji Metoda regula falsi Metoda siecznych Metoda stycznych RÓWNANIA NIELINIOWE Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać ogólna równania nieliniowego Zazwyczaj nie można znaleźć

Bardziej szczegółowo

ELEMENTY ANALIZY NUMERYCZNEJ ELEMENTY ANALIZY NUMERYCZNEJ. Egzamin pisemny zestaw 1 26 czerwca 2017 roku

ELEMENTY ANALIZY NUMERYCZNEJ ELEMENTY ANALIZY NUMERYCZNEJ. Egzamin pisemny zestaw 1 26 czerwca 2017 roku Egzamin pisemny zestaw czerwca 0 roku Imię i nazwisko:.... ( pkt.) Udowodnić, że jeśli funkcja g interpoluje funkcję f w węzłach x 0, x, K, x n, a funk- cja h interpoluje funkcję f w węzłach x, x, K, x

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA STOSOWANA - KLASA II I. POWTÓRZENIE I UTRWALENIE WIADOMOŚCI Z ZAKRESU KLASY PIERWSZEJ

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA STOSOWANA - KLASA II I. POWTÓRZENIE I UTRWALENIE WIADOMOŚCI Z ZAKRESU KLASY PIERWSZEJ WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA STOSOWANA - KLASA II I. POWTÓRZENIE I UTRWALENIE WIADOMOŚCI Z ZAKRESU KLASY PIERWSZEJ zna i potrafi stosować przekształcenia wykresów funkcji zna i

Bardziej szczegółowo

ELEMENTY ANALIZY NUMERYCZNEJ ELEMENTY ANALIZY NUMERYCZNEJ. Egzamin pisemny zestaw 1 24 czerwca 2019 roku

ELEMENTY ANALIZY NUMERYCZNEJ ELEMENTY ANALIZY NUMERYCZNEJ. Egzamin pisemny zestaw 1 24 czerwca 2019 roku Egzamin pisemny zestaw. ( pkt.) Udowodnić, że jeśli funkcja g interpoluje funkcję f w węzłach x 0, x, K, x n, a funk- cja h interpoluje funkcję f w węzłach x, x, K, x n, to funkcja x0 x gx ( ) + [ gx (

Bardziej szczegółowo

Metody Obliczeniowe w Nauce i Technice

Metody Obliczeniowe w Nauce i Technice 5. Aproksymacja Marian Bubak Department of Computer Science AGH University of Science and Technology Krakow, Poland bubak@agh.edu.pl dice.cyfronet.pl Contributors Paweł Urban Jakub Ptak Łukasz Janeczko

Bardziej szczegółowo

Metody numeryczne. Ilorazy różnicowe. dr Artur Woike. Wzory interpolacyjne Newtona i metoda Aitkena.

Metody numeryczne. Ilorazy różnicowe. dr Artur Woike. Wzory interpolacyjne Newtona i metoda Aitkena. Ćwiczenia nr 3. Ilorazy różnicowe Niech będą dane punkty x 0,..., x n i wartości f (x 0 ),..., f (x n ). Definiujemy rekurencyjnie ilorazy różnicowe: f (x i, x i+1 ) = f (x i+1) f (x i ) x i+1 x i, i =

Bardziej szczegółowo

Interpolacja i modelowanie krzywych 2D i 3D

Interpolacja i modelowanie krzywych 2D i 3D Interpolacja i modelowanie krzywych 2D i 3D Dariusz Jacek Jakóbczak Politechnika Koszalińska Wydział Elektroniki i Informatyki Zakład Podstaw Informatyki i Zarządzania e-mail: Dariusz.Jakobczak@tu.koszalin.pl

Bardziej szczegółowo

Rozwiązywanie równań nieliniowych

Rozwiązywanie równań nieliniowych Rozwiązywanie równań nieliniowych Marcin Orchel 1 Wstęp Przykłady wyznaczania miejsc zerowych funkcji f : f(ξ) = 0. Wyszukiwanie miejsc zerowych wielomianu n-tego stopnia. Wymiar tej przestrzeni wektorowej

Bardziej szczegółowo

dr inż. Damian Słota Gliwice r. Instytut Matematyki Politechnika Śląska

dr inż. Damian Słota Gliwice r. Instytut Matematyki Politechnika Śląska Program wykładów z metod numerycznych na semestrze V stacjonarnych studiów stopnia I Podstawowe pojęcia metod numerycznych: zadanie numeryczne, algorytm. Analiza błędów: błąd bezwzględny i względny, przenoszenie

Bardziej szczegółowo

Analiza numeryczna kolokwium2a-15grudnia2005

Analiza numeryczna kolokwium2a-15grudnia2005 kolokwium2a-15grudnia2005 1.Niechf(x)=a n x n +a n 1 x n 1 +...+a 0.Jakąwartośćprzyjmujeilorazróżnicowy f[x 0,...,x n ]dladowolnychn+1paramiróżnychwęzłówx j?odpowiedźuzasadnić. 2. Pokazać, że zamiana zmiennych

Bardziej szczegółowo

w analizie wyników badań eksperymentalnych, w problemach modelowania zjawisk fizycznych, w analizie obserwacji statystycznych.

w analizie wyników badań eksperymentalnych, w problemach modelowania zjawisk fizycznych, w analizie obserwacji statystycznych. Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(), zwaną funkcją aproksymującą

Bardziej szczegółowo

x y

x y Przykłady pytań na egzamin końcowy: (Uwaga! Skreślone pytania nie obowiązują w tym roku.). Oblicz wartość interpolacji funkcjami sklejanymi (przypadek (case) a), dla danych i =[- 4 5], y i =[0 4 -]. Jaka

Bardziej szczegółowo

Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe.

Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe. Z5: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania zagadnienie brzegowe Dyskretne operatory różniczkowania Numeryczne obliczanie pochodnych oraz rozwiązywanie

Bardziej szczegółowo

II. RÓŻNICZKOWANIE I CAŁKOWANIE NUMERYCZNE Janusz Adamowski

II. RÓŻNICZKOWANIE I CAŁKOWANIE NUMERYCZNE Janusz Adamowski II. RÓŻNICZKOWANIE I CAŁKOWANIE NUMERYCZNE Janusz Adamowski 1 1 Różniczkowanie numeryczne Rozważmy funkcję f(x) określoną na sieci równoodległyc węzłów. Funkcja f(x) może być dana za pomocą wzoru analitycznego

Bardziej szczegółowo

Metody przybliżonego rozwiązywania równań różniczkowych zwyczajnych

Metody przybliżonego rozwiązywania równań różniczkowych zwyczajnych Metody przybliżonego rozwiązywania równań różniczkowych zwyczajnych Rozwiązywanie równań różniczkowych zwyczajnych za pomocą szeregów metody dyskretne Metoda współczynników nieoznaczonych Metoda kolejnego

Bardziej szczegółowo

( ) Arkusz I Zadanie 1. Wartość bezwzględna Rozwiąż równanie. Naszkicujmy wykresy funkcji f ( x) = x + 3 oraz g ( x) 2x

( ) Arkusz I Zadanie 1. Wartość bezwzględna Rozwiąż równanie. Naszkicujmy wykresy funkcji f ( x) = x + 3 oraz g ( x) 2x Arkusz I Zadanie. Wartość bezwzględna Rozwiąż równanie x + 3 x 4 x 7. Naszkicujmy wykresy funkcji f ( x) x + 3 oraz g ( x) x 4 uwzględniając tylko ich miejsca zerowe i monotoniczność w ten sposób znajdziemy

Bardziej szczegółowo

Zagadnienia na egzamin poprawkowy z matematyki - klasa I 1. Liczby rzeczywiste

Zagadnienia na egzamin poprawkowy z matematyki - klasa I 1. Liczby rzeczywiste Zagadnienia na egzamin poprawkowy z matematyki - klasa I 1. Liczby rzeczywiste Liczby naturalne Liczby całkowite. Liczby wymierne Liczby niewymierne Rozwinięcie dziesiętne liczby rzeczywistej Pierwiastek

Bardziej szczegółowo

Matematyka stosowana i metody numeryczne

Matematyka stosowana i metody numeryczne Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładu 8 Interpolacja Interpolacja polega na budowaniu tzw. funkcji interpolujących ϕ(x) na podstawie zadanych

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY matematyka stosowana kl.2 rok szkolny 2018-19 Zbiór liczb rzeczywistych. Wyrażenia algebraiczne. potrafi sprawnie działać na wyrażeniach zawierających potęgi

Bardziej szczegółowo

Egzamin z Metod Numerycznych ZSI, Egzamin, Gr. A

Egzamin z Metod Numerycznych ZSI, Egzamin, Gr. A Egzamin z Metod Numerycznych ZSI, 06.2007. Egzamin, Gr. A Imię i nazwisko: Nr indeksu: Section 1. Test wyboru, max 33 pkt Zaznacz prawidziwe odpowiedzi literą T, a fałszywe N. Każda prawidłowa odpowiedź

Bardziej szczegółowo

Rozkład materiału: matematyka na poziomie rozszerzonym

Rozkład materiału: matematyka na poziomie rozszerzonym Rozkład materiału: matematyka na poziomie rozszerzonym KLASA I 105h Liczby (30h) 1. Zapis dziesiętny liczby rzeczywistej 2. Wzory skróconego mnoŝenia 3. Nierówności pierwszego stopnia 4. Przedziały liczbowe

Bardziej szczegółowo

Metody numeryczne rozwiązywania równań różniczkowych

Metody numeryczne rozwiązywania równań różniczkowych Metody numeryczne rozwiązywania równań różniczkowych Marcin Orchel Spis treści Wstęp. Metody przybliżone dla równań pierwszego rzędu................ Metoda kolejnych przybliżeń Picarda...................2

Bardziej szczegółowo

Optymalizacja ciągła

Optymalizacja ciągła Optymalizacja ciągła 1. Optymalizacja funkcji jednej zmiennej Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 28.02.2019 1 / 54 Plan wykładu Optymalizacja funkcji jednej

Bardziej szczegółowo

Zwięzły kurs analizy numerycznej

Zwięzły kurs analizy numerycznej Spis treści Przedmowa... 7 1. Cyfry, liczby i błędy podstawy analizy numerycznej... 11 1.1. Systemy liczbowe... 11 1.2. Binarna reprezentacja zmiennoprzecinkowa... 16 1.3. Arytmetyka zmiennopozycyjna...

Bardziej szczegółowo

ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH

ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH Transport, studia I stopnia Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym

Bardziej szczegółowo

Metody numeryczne Wykład 6

Metody numeryczne Wykład 6 Metody numeryczne Wykład 6 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Interpolacja o Interpolacja

Bardziej szczegółowo

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu 1 Metody rozwiązywania równań nieliniowych. Postawienie problemu Dla danej funkcji ciągłej f znaleźć wartości x, dla których f(x) = 0. (1) 2 Przedział izolacji pierwiastka Będziemy zakładać, że równanie

Bardziej szczegółowo

Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony

Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Uczeń realizujący zakres rozszerzony powinien również spełniać wszystkie wymagania w zakresie poziomu podstawowego. Zakres

Bardziej szczegółowo

83 Przekształcanie wykresów funkcji (cd.) 3

83 Przekształcanie wykresów funkcji (cd.) 3 Zakres podstawowy Zakres rozszerzony dział temat godz. dział temat godz,. KLASA 1 (3 godziny tygodniowo) - 90 godzin KLASA 1 (5 godzin tygodniowo) - 150 godzin I Zbiory Zbiory i działania na zbiorach 2

Bardziej szczegółowo

Kubatury Gaussa (całka podwójna po trójkącie)

Kubatury Gaussa (całka podwójna po trójkącie) Kubatury Gaussa (całka podwójna po trójkącie) Całka podwójna po trójkącie Dana jest funkcja dwóch zmiennych f (x, y) ciągła i ograniczona w obszarze trójkątnym D. Wierzchołki trójkąta wyznaczają punkty

Bardziej szczegółowo

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy. Klasa I (60 h)

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy. Klasa I (60 h) Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy (według podręczników z serii MATeMAtyka) Temat Klasa I (60 h) Liczba godzin 1. Liczby rzeczywiste 15 1. Liczby naturalne

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY 1. FUNKCJA KWADRATOWA rysuje wykres funkcji i podaje jej własności sprawdza algebraicznie, czy dany punkt należy

Bardziej szczegółowo

V. WYMAGANIA EGZAMINACYJNE

V. WYMAGANIA EGZAMINACYJNE V. WYMAGANIA EGZAMINACYJNE Standardy wymagań egzaminacyjnych Zdający posiada umiejętności w zakresie: POZIOM PODSTAWOWY POZIOM ROZSZERZONY 1. wykorzystania i tworzenia informacji: interpretuje tekst matematyczny

Bardziej szczegółowo

Program zajęć pozalekcyjnych z matematyki poziom rozszerzony- realizowanych w ramach projektu Przez naukę i praktykę na Politechnikę

Program zajęć pozalekcyjnych z matematyki poziom rozszerzony- realizowanych w ramach projektu Przez naukę i praktykę na Politechnikę Program zajęć pozalekcyjnych z matematyki poziom rozszerzony- realizowanych w ramach projektu Przez naukę i praktykę na Politechnikę 1. Omówienie programu. Zaznajomienie uczniów ze źródłami finansowania

Bardziej szczegółowo

Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych

Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych ZESPÓŁ SZKÓŁ HANDLOWO-EKONOMICZNYCH IM. MIKOŁAJA KOPERNIKA W BIAŁYMSTOKU Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych Mój przedmiot matematyka spis scenariuszy

Bardziej szczegółowo

Metody numeryczne w przykładach

Metody numeryczne w przykładach Metody numeryczne w przykładach Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK, Toruń Regionalne Koło Matematyczne 8 kwietnia 2010 r. Bartosz Ziemkiewicz (WMiI UMK) Metody numeryczne w przykładach

Bardziej szczegółowo

RÓWNANIA NIELINIOWE Maciej Patan

RÓWNANIA NIELINIOWE Maciej Patan RÓWNANIA NIELINIOWE Maciej Patan Uniwersytet Zielonogórski Przykład 1 Prędkość v spadającego spadochroniarza wyraża się zależnością v = mg ( 1 e c t) m c gdzie g = 9.81 m/s 2. Dla współczynnika oporu c

Bardziej szczegółowo

Przedmiotowe Ocenianie Z Matematyki - Technikum. obowiązuje w roku szkolnym 2016 / 2017

Przedmiotowe Ocenianie Z Matematyki - Technikum. obowiązuje w roku szkolnym 2016 / 2017 Przedmiotowe Ocenianie Z Matematyki - Technikum obowiązuje w roku szkolnym 2016 / 2017 1. Rok szkolny dzieli się na dwa semestry. Każdy semestr kończy się klasyfikacją. 2. Na początku roku szkolnego informuję

Bardziej szczegółowo

Wymagania edukacyjne z matematyki klasa II technikum

Wymagania edukacyjne z matematyki klasa II technikum Wymagania edukacyjne z matematyki klasa II technikum Poziom rozszerzony Obowiązują wymagania z zakresu podstawowego oraz dodatkowo: 1. JĘZYK MATEMATYKI I FUNKCJE LICZBOWE Uczeń otrzymuje ocenę dopuszczającą

Bardziej szczegółowo

ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II

ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II POZIOM ROZSZERZONY Równania i nierówności z wartością bezwzględną. rozwiązuje równania i nierówności

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. TEMAT Równania i nierówności (30h) LICZBA GODZIN LEKCYJNYCH Liczby wymierne 3 Liczby niewymierne 1 Zapisywanie

Bardziej szczegółowo

Całkowanie numeryczne

Całkowanie numeryczne Całkowanie numeryczne Poniżej omówione zostanie kilka metod przybliżania operacji całkowania i różniczkowania w szczególności uzależnieniu pochodnej od jej różnic skończonych gdy równanie różniczkowe mamy

Bardziej szczegółowo

ZAKRES PODSTAWOWY. Proponowany rozkład materiału kl. I (100 h)

ZAKRES PODSTAWOWY. Proponowany rozkład materiału kl. I (100 h) ZAKRES PODSTAWOWY Proponowany rozkład materiału kl. I (00 h). Liczby rzeczywiste. Liczby naturalne. Liczby całkowite. Liczby wymierne. Liczby niewymierne 4. Rozwinięcie dziesiętne liczby rzeczywistej 5.

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga.

Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga. Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga. Funkcja liniowa. Uczeń otrzymuje ocenę dopuszczającą, jeśli: - rozpoznaje funkcję liniową

Bardziej szczegółowo

MATeMAtyka zakres rozszerzony

MATeMAtyka zakres rozszerzony MATeMAtyka zakres rozszerzony Proponowany rozkład materiału kl. I (160 h) (Na czerwono zaznaczono treści z zakresu rozszerzonego) Temat lekcji Liczba godzin 1. Liczby rzeczywiste 15 1. Liczby naturalne

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax, a R \ {0}.

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES PODSTAWOWY

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES PODSTAWOWY WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES PODSTAWOWY I. Funkcja liniowa dopuszczającą jeżeli: wie, jaką zależność między dwiema wielkościami zmiennymi nazywamy

Bardziej szczegółowo

Metody numeryczne Wykład 7

Metody numeryczne Wykład 7 Metody numeryczne Wykład 7 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Plan wykładu Rozwiązywanie równań algebraicznych

Bardziej szczegółowo

Obliczenia naukowe Wykład nr 6

Obliczenia naukowe Wykład nr 6 Obliczenia naukowe Wykład nr 6 Paweł Zieliński Katedra Informatyki, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Literatura Literatura podstawowa [1] D. Kincaid, W. Cheney, Analiza

Bardziej szczegółowo

Rzut oka na współczesną matematykę spotkanie 3: jak liczy kalkulator i o źródłach chaosu

Rzut oka na współczesną matematykę spotkanie 3: jak liczy kalkulator i o źródłach chaosu Rzut oka na współczesną matematykę spotkanie 3: jak liczy kalkulator i o źródłach chaosu P. Strzelecki pawelst@mimuw.edu.pl Instytut Matematyki, Uniwersytet Warszawski MISH UW, semestr zimowy 2011-12 P.

Bardziej szczegółowo

Wymagania z wiedzy i umiejętności na poszczególne stopnie szkolne z matematyki w Zasadniczej Szkole Zawodowej nr 14

Wymagania z wiedzy i umiejętności na poszczególne stopnie szkolne z matematyki w Zasadniczej Szkole Zawodowej nr 14 z wiedzy i umiejętności na poszczególne stopnie szkolne z matematyki w Zasadniczej Szkole Zawodowej nr 14 Liczby rzeczywiste Wiadomości i umiejętności rozpoznać liczby naturalne w tym pierwsze i złożone,

Bardziej szczegółowo

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem

Bardziej szczegółowo

Kształcenie w zakresie podstawowym. Klasa 1

Kształcenie w zakresie podstawowym. Klasa 1 Kształcenie w zakresie podstawowym. Klasa 1 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować

Bardziej szczegółowo

2. ZASTOSOWANIA POCHODNYCH. (a) f(x) = ln 3 x ln x, (b) f(x) = e2x x 2 2.

2. ZASTOSOWANIA POCHODNYCH. (a) f(x) = ln 3 x ln x, (b) f(x) = e2x x 2 2. 2. ZASTOSOWANIA POCHODNYCH. Koniecznie trzeba znać: twierdzenia o ekstremach (z wykorzystaniem pierwszej i drugiej pochodnej), Twierdzenie Lagrange a, Twierdzenie Taylora (z resztą w postaci Peano, Lagrange

Bardziej szczegółowo

MATEMATYKA. kurs uzupełniający dla studentów 1. roku PWSZ. w ramach»europejskiego Funduszu Socjalnego« Adam Kolany.

MATEMATYKA. kurs uzupełniający dla studentów 1. roku PWSZ. w ramach»europejskiego Funduszu Socjalnego« Adam Kolany. MATEMATYKA kurs uzupełniający dla studentów 1. roku PWSZ w ramach»europejskiego Funduszu Socjalnego«Adam Kolany rozkład materiału Projekt finansowany przez Unię Europejską w ramach Europejskiego Funduszu

Bardziej szczegółowo

automatyka i robotyka II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

automatyka i robotyka II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c,

Funkcja kwadratowa. f(x) = ax 2 + bx + c, Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \

Bardziej szczegółowo

Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015

Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 1 Metody numeryczne Dział matematyki Metody rozwiązywania problemów matematycznych za pomocą operacji na liczbach. Otrzymywane

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA PRZEZ UCZNIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA PRZEZ UCZNIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA PRZEZ UCZNIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI (zakres podstawowy) Rok szkolny 2017/2018 - klasa 2a, 2b, 2c 1. Funkcja

Bardziej szczegółowo

Egzamin z Metod Numerycznych ZSI, Grupa: A

Egzamin z Metod Numerycznych ZSI, Grupa: A Egzamin z Metod Numerycznych ZSI, 06.2005. Grupa: A Nazwisko: Imię: Numer indeksu: Ćwiczenia z: Data: Część 1. Test wyboru, max 36 pkt Zaznacz prawidziwe odpowiedzi literą T, a fałszywe N. Każda prawidłowa

Bardziej szczegółowo

Zakres materiału obowiązujący do próbnej matury z matematyki

Zakres materiału obowiązujący do próbnej matury z matematyki ZAKRES PODSTAWOWY Zakres materiału obowiązujący do próbnej matury z matematyki 1) przedstawia liczby rzeczywiste w różnych postaciach (np. ułamka zwykłego, ułamka dziesiętnego okresowego, z użyciem symboli

Bardziej szczegółowo

Standardy wymagań maturalnych z matematyki - matura

Standardy wymagań maturalnych z matematyki - matura Standardy wymagań maturalnych z matematyki - matura 2011-2014 STANDARDY WYMAGAŃ BĘDĄCE PODSTAWĄ PRZEPROWADZANIA EGZAMINU MATURALNEGO Zdający posiada umiejętności w zakresie: POZIOM PODSTAWOWY 1. wykorzystania

Bardziej szczegółowo

Wykaz treści i umiejętności zawartych w podstawie programowej z matematyki dla IV etapu edukacyjnego

Wykaz treści i umiejętności zawartych w podstawie programowej z matematyki dla IV etapu edukacyjnego Wykaz treści i umiejętności zawartych w podstawie programowej z matematyki dla IV etapu edukacyjnego 1. Liczby rzeczywiste P1.1. Przedstawianie liczb rzeczywistych w różnych postaciach (np. ułamka zwykłego,

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE OCENY MATEMATYKA KL.VII

WYMAGANIA NA POSZCZEGÓLNE OCENY MATEMATYKA KL.VII WYMAGANIA NA POSZCZEGÓLNE OCENY MATEMATYKA KL.VII ROZDZIAŁ I LICZBY 1. rozpoznaje cyfry używane do zapisu liczb w systemie rzymskim w zakresie do 3000 2. odczytuje liczby naturalne dodatnie zapisane w

Bardziej szczegółowo

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI SPIS TREŚCI WSTĘP.................................................................. 8 1. LICZBY RZECZYWISTE Teoria............................................................ 11 Rozgrzewka 1.....................................................

Bardziej szczegółowo

Newton vs. Lagrange - kto lepszy?

Newton vs. Lagrange - kto lepszy? Uniwersytet Mikołaja Kopernika Wydział Matematyki i Informatyki Katedra Analizy Matematycznej Agnieszka Rydzyńska nr albumu: 254231 Praca Zaliczeniowa z Seminarium Newton vs. Lagrange - kto lepszy? Opiekun

Bardziej szczegółowo

Zdający posiada umiejętności w zakresie: 1. wykorzystania i tworzenia informacji: interpretuje tekst matematyczny i formułuje uzyskane wyniki

Zdający posiada umiejętności w zakresie: 1. wykorzystania i tworzenia informacji: interpretuje tekst matematyczny i formułuje uzyskane wyniki Standardy wymagań na egzaminie maturalnym z matematyki mają dwie części. Pierwsza część opisuje pięć podstawowych obszarów umiejętności matematycznych. Druga część podaje listę szczegółowych umiejętności.

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymagania edukacyjne z matematyki Liceum Ogólnokształcące Klasa I Poniżej przedstawiony został podział wymagań edukacyjnych na poszczególne oceny. Wiedza i umiejętności konieczne do opanowania (K) to zagadnienia,

Bardziej szczegółowo

Obliczenia Naukowe. Wykład 12: Zagadnienia na egzamin. Bartek Wilczyński

Obliczenia Naukowe. Wykład 12: Zagadnienia na egzamin. Bartek Wilczyński Obliczenia Naukowe Wykład 12: Zagadnienia na egzamin Bartek Wilczyński 6.6.2016 Tematy do powtórki Arytmetyka komputerów Jak wygląda reprezentacja liczb w arytmetyce komputerowej w zapisie cecha+mantysa

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY matematyka stosowana kl.2 rok szkolny 2018-19 Zbiór liczb rzeczywistych. Wyrażenia algebraiczne. potrafi sprawnie działać na wyrażeniach zawierających potęgi

Bardziej szczegółowo

Rozwiązywanie równań nieliniowych i ich układów. Wyznaczanie zer wielomianów.

Rozwiązywanie równań nieliniowych i ich układów. Wyznaczanie zer wielomianów. Rozwiązywanie równań nieliniowych i ich układów. Wyznaczanie zer wielomianów. Plan wykładu: 1. Wyznaczanie pojedynczych pierwiastków rzeczywistych równań nieliniowych metodami a) połowienia (bisekcji)

Bardziej szczegółowo

MATEMATYKA ZP Ramowy rozkład materiału na cały cykl kształcenia

MATEMATYKA ZP Ramowy rozkład materiału na cały cykl kształcenia MATEMATYKA ZP Ramowy rozkład materiału na cały cykl kształcenia KLASA I (3 h w tygodniu x 32 tyg. = 96 h; reszta godzin do dyspozycji nauczyciela) 1. Liczby rzeczywiste Zbiory Liczby naturalne Liczby wymierne

Bardziej szczegółowo

ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ

ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ Maciej Patan Uniwersytet Zielonogórski WSTEP Zadanie minimalizacji bez ograniczeń f(ˆx) = min x R nf(x) f : R n R funkcja ograniczona z dołu Algorytm rozwiazywania Rekurencyjny

Bardziej szczegółowo

Standardy wymagań maturalnych z matematyki - matura 2010

Standardy wymagań maturalnych z matematyki - matura 2010 Standardy wymagań maturalnych z matematyki - matura 2010 STANDARDY WYMAGAŃ BĘDĄCE PODSTAWĄ PRZEPROWADZANIA EGZAMINU MATURALNEGO Standardy można pobrać (plik pdf) wybierając ten link: STANDARDY 2010 lub

Bardziej szczegółowo