Temat: Funkcje. Własności ogólne. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1

Wielkość: px
Rozpocząć pokaz od strony:

Download "Temat: Funkcje. Własności ogólne. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1"

Transkrypt

1 Temat: Funkcje. Własności ogólne A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1

2 Kody kolorów: pojęcie zwraca uwagę * materiał nieobowiązkowy A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 2

3 Wprowadzenie Wyobraźmy sobie szklankę świeŝo zaparzonej herbaty postawioną w duŝym pomieszczeniu o temperaturze 20 o C. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 3

4 Wprowadzenie cd. Dalej temperatura w pomieszczeniu będzie nazywana temperaturą otoczenia. W początkowej chwili pomiary temperatury dają wyniki: temperatura otoczenia = 20 o C temperatura napoju = 100 o C A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 4

5 Wprowadzenie cd. Wraz z upływem czasu herbata stygnie oddaje ciepło; z drugiej strony pomieszczenie jest tak duŝe, Ŝe nie obserwujemy zmiany jego temperatury. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 5

6 Wprowadzenie cd. Pomiary temperatury herbaty wykonywane po upływie 10 minut dają wyniki: temperatura otoczenia = 20 o C temperatura napoju = 60 o C A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 6

7 Wprowadzenie cd. Po upływie 20 minut: temperatura otoczenia = 20 o C temperatura napoju = 40 o C Po upływie 30 minut: temperatura otoczenia = 20 o C temperatura napoju = 30 o C A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 7

8 Zestawienie wyników temperatura otoczenia = 20 o C czas (min.) temp. napoju ( o C) A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 8

9 Wykres wyników Otrzymane wyniki moŝna przedstawić w postaci graficznej na wykresie. temp. napoju (st. C) czas (min.) A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 9

10 Wprowadzenie cd. czas temperatura napoju wybieramy dowolnie odczytujemy dla wybranego czasu Taki zapis oznacza, Ŝe liczbie wyraŝającej czas przyporządkowana jest liczba wyraŝająca temperaturę. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 10

11 Inne przykłady student grupa językowa wybieramy dowolnie odczytujemy dla wybranego studenta komitet wyborczy wybieramy dowolnie liczba głosów uzyskanych w wyborach odczytujemy dla wybranego komitetu A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 11

12 Uogólnienie x y wybieramy dowolnie odczytujemy dla wybranego x A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 12

13 Oznaczenia i terminologia Zapis: x y czytamy: wielkości oznaczonej symbolem x przyporządkowana jest wielkość oznaczona symbolem y. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 13

14 Uwaga W ogólności symbole x, y mogą przyjmować wartości liczbowe (np.: czas, temperatura, liczba uzyskanych głosów) lub nieliczbowe (np.: nazwisko studenta, grupa językowa, komitet wyborczy), jednak w tym kursie x, y zawsze będą liczbami rzeczywistymi. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 14

15 Terminologia cd. W zapisie: x y Liczby x, y nazywane są teŝ zmiennymi: x zmienna niezaleŝna y zmienna zaleŝna A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 15

16 Oznaczenia i terminologia cd. Zapis: f : x y lub: x f y oznacza: przyporządkowanie nazwane literą f A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 16

17 Przykład X { 1, 2, 3 } = { 5, 6, 7 } = Y Między elementami zbiorów X, Y określamy przyporządkowanie oznaczone literą g: liczbie x ze zbioru X przyporządkowana jest liczba y ze zbioru Y o 4 większa od x A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 17

18 Przykład cd. Sposób wyznaczania liczby y dla wybranej liczby x moŝna zapisać wzorem: g : x y = x + 4 A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 18

19 Uogólnienie Gdy sposób wyznaczania liczby y dla wybranej liczby x określa przyporządkowanie nazwane literą g, to moŝna zapisać g : x y = g( x) Oznaczenie g(x) czytamy: g od x. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 19

20 Przykład cd. Przyporządkowanie g w przykładzie określone było wzorem g : x y = x + 4 Zatem y = g( x) = x + 4 A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 20

21 Terminologia cd. Zapis: g : X Y oznacza: g przyporządkowuje elementom zbioru X elementy zbioru Y A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 21

22 Przedstawienie przyporządkowania Przyporządkowanie moŝna przedstawić na wiele sposobów: opis słowny wzór tabela wykres graf A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 22

23 Przedstawienie g - słowne X { 1, 2, 3 } = { 5, 6, 7 } = Y g : X Y g: liczbie x ze zbioru X przyporządkowuje liczbę y ze zbioru Y o 4 większą od x A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 23

24 Przedstawienie g - wzór X { 1, 2, 3 } = { 5, 6, 7 } = Y g : X Y Wzór: y = x + 4 lub g( x) = x + 4 A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 24

25 Przedstawienie g - tabela X { 1, 2, 3 } = { 5, 6, 7 } = Y g : X Y Tabela: x y = g(x) W górnym wierszu tabeli zapisujemy elementy zbioru X, a w dolnym zbioru Y. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 25

26 Przedstawienie g - wykres X { 1, 2, 3} = { 5, 6, 7 } = Y g : X Y Wykres: Punkty na wykresie mają takie współrzędne (x, y), Ŝe x jest liczbą ze zbioru X, a y jest wyznaczone ze wzoru y = g(x). y y = g (x) x A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 26

27 Przedstawienie g - graf X g : { 1, 2, 3} = { 5, 6, 7 } = Y X Y g Graf: X 3 7 Y Graf to rysunek, na którym przyporządkowanie ilustrowane jest za pomocą strzałek. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 27

28 Funkcja wprowadzenie Przyporządkowanie, które spełnia pewne warunki określone w definicji nazywamy funkcją. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 28

29 Funkcja definicja Funkcją f określoną na zbiorze X o wartościach ze zbioru Y nazywamy przyporządkowanie kaŝdemu x X dokładnie jednego y Y. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 29

30 Funkcja terminologia Sformułowanie: funkcja f określona na zbiorze X o wartościach ze zbioru Y... oznaczamy: f : X Y A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 30

31 Ustalenie W tym kursie X, Y oznaczają zbiory liczbowe, podzbiory zbioru liczb rzeczywistych. X R, Y R A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 31

32 Funkcja terminologia cd. Gdy funkcja f : X Y to do zbiorów X, Y stosujemy nazwy: X dziedzina funkcji f D, D f inne oznaczenia dziedziny funkcji f Y przeciwdziedzina funkcji f A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 32

33 Funkcja terminologia cd. Gdy funkcja f f : X Y x y = f ( x) to do elementów zbiorów X, Y stosujemy nazwy: x argument funkcji f, x X, y = f (x) wartość funkcji f A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 33

34 Funkcja terminologia cd. Gdy funkcja f f : X Y x y = f ( x) to zbiór wszystkich wartości y = f (x) moŝe być podzbiorem właściwym zbioru Y: { y Y : istnieje x X takie, Ŝe y = f ( x) } = Y W Y W zbiór wartości funkcji, Y W Y A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 34

35 Zapis: Funkcja terminologia cd. f : x y czytamy: funkcja f przyporządkowuje argumentowi x wartość y lub: funkcja f przyjmuje wartość y dla argumentu x A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 35

36 Przykład 1 X { 1, 2, 3} = { 5, 6, 7 } = Y g : X Y, g( x) = x + 4 g X 3 7 Y { } dziedzina funkcji g: X = 1, 2, 3 argumenty funkcji g: 1, 2, 3 A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 36

37 Przykład 1 cd. g 1 5 X Y { } przeciwdziedzina funkcji g: Y = 5, 6, 7 wartości funkcji g: 5, 6, 7 zbiór wartości funkcji g: Y { } W = 5, 6, 7 = Y A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 37

38 Przykład 2 X { 1, 2, 3} = { 5, 6, 7, 8, 9 } = Y h : X Y, h( x) = x + 4 h X Y { } dziedzina h: X = 1, 2, 3 argumenty h: 1, 2, 3 A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 38

39 Przykład 2 cd. h X Y { } przeciwdziedzina h: Y = 5, 6, 7, 8, 9 A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 39

40 Przykład 2 cd. h X Y wartości h: 5, 6, 7 { } zbiór wartości h: = 5, 6, 7 Y W A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 40

41 Przykład 2 cd. h X Y Y W Y zbiór wartości przeciwdziedzina A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 41

42 Pytania... Czy ten graf przedstawia funkcję f : X Y? Przypomnienie definicji: Funkcją f określoną na zbiorze X o wartościach ze zbioru Y nazywamy przyporządkowanie kaŝdemu x X dokładnie jednego y Y. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 42

43 Pytanie 1. Czy ten graf przedstawia funkcję f : X Y? f X Y A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 43

44 Odpowiedź 1. Nie jest to funkcja f : X Y. Bo nie kaŝdemu x X... f X Y A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 44

45 Pytanie 2. Czy ten graf przedstawia funkcję f : X Y? f X Y A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 45

46 Odpowiedź 2. Tak, to jest funkcja f : X Y. f X Y A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 46

47 Pytanie 3. Czy ten graf przedstawia funkcję f : X Y? f X Y A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 47

48 Odpowiedź 3. Nie jest to funkcja f : X Y. Bo nie kaŝdemu x X, dokładnie jeden y Y. f X Y A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 48

49 Pytanie 4. Czy ten graf przedstawia funkcję f : X Y? f X Y A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 49

50 Odpowiedź 4. Tak, to jest funkcja f : X Y. f X Y A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 50

51 Przykład 3 X = Y = { 1, 2, 3} { 5, 6, 7 } g : X Y y = g( x) = x + 4 wartości argumenty y y = g (x) x A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 51

52 Wykres funkcji tworzenie wykresu czytanie z wykresu A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 52

53 Tworzenie wykresu Wykres funkcji rysujemy w układzie współrzędnych kartezjańskich XOY. Układ to osie liczbowe - pozioma OX i pionowa OY. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 53

54 Układ współrzędnych Y 1 O 1 X Mówimy: kartezjański układ współrzędnych lub prostokątny układ współrzędnych A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 54

55 Nazwy osi układu Y y A (x, y) 1 O 1 x X OX OY - oś odciętych - oś rzędnych A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 55

56 Punkt w układzie współrzędnych Y y A (x, y) 1 O 1 x X x współrzędna punktu A - odcięta y współrzędna punktu A - rzędna A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 56

57 Definicja wykresu funkcji Jeśli funkcja f : X Y dana jest wzorem y = f (x), to wykresem funkcji w układzie XOY jest zbiór wszystkich punktów o współrzędnych (x, y) takich, Ŝe x jest argumentem funkcji, a y jest wartością funkcji dla argumentu x (y = f(x)). A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 57

58 Wykres funkcji Y wartości y = f (x) O X argumenty A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 58

59 Wykres funkcji przykład Jeśli punkt (2, 1) naleŝy do wykresu funkcji y = f (x), to znaczy, Ŝe 2 jest argumentem funkcji (naleŝy do dziedziny), a 1 jest wartością funkcji (naleŝy do zbioru wartości) i funkcja f przyporządkowuje 2 1, czyli f (2) = 1. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 59

60 Wykres funkcji interpretacja y = f (x) Y (2, 1) 1 O 2 X f 2 1 f (2) = 1 A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 60

61 Wykres funkcji zadanie 1. Posługując się wykresem funkcji y=f(x), zaznacz wartość dla argumentu x = -1. Lub krócej: zaznacz f (-1). A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 61

62 Wykres funkcji zadanie 1. y = f (x) Y -1 O X A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 62

63 Wykres funkcji zadanie 1. y = f (x) Y -1 O X A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 63

64 Wykres funkcji zadanie 1. y = f (x) Y -1 O X A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 64

65 Wykres funkcji zadanie 1. y = f (x) Y f (-1) -1 O X A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 65

66 Wykres funkcji zadanie 2. Posługując się wykresem funkcji y=f(x), zaznacz argumenty, dla których funkcja przyjmuje wartość y = 1. Lub krócej: Zaznacz x takie, Ŝe f (x) = 1. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 66

67 Wykres funkcji zadanie 2. y = f (x) Y 1 O X A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 67

68 Wykres funkcji zadanie 2. y = f (x) Y 1 O X A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 68

69 Wykres funkcji zadanie 2. y = f (x) Y 1 O X A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 69

70 Wykres funkcji zadanie 2. y = f (x) Y 1 O X A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 70

71 Wykres funkcji zadanie 2. y = f (x) Y 1 x O 1 x 2 x 3 X A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 71

72 Wykres funkcji zadanie 2. y = f (x) Y 1 x O 1 x 2 x 3 f (x 1 ) = f (x 2 ) = f (x 3 ) = 1 X A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 72

73 Wykres funkcji umowa Na wykresie funkcji: punkt zaznaczony kropką naleŝy do wykresu, punkt zaznaczony pustym kółkiem nie naleŝy do wykresu. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 73

74 Wykres funkcji umowa y = f (x) Y O X A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 74

75 Wykres funkcji umowa cd. Gdy na rysunku wykres nie jest zakończony ani kropką, ani pustym kółkiem, to oznacza, Ŝe biegnie dalej. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 75

76 Wykres funkcji umowa cd. y = f (x) Y biegnie dalej O X biegnie dalej A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 76

77 Wykres funkcji - pytania Czy dana krzywa jest wykresem funkcji f : X Y? A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 77

78 Pytanie 1. Czy ta krzywa jest wykresem funkcji? parabola Y O X A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 78

79 Odpowiedź 1. Nie jest to wykres funkcji, bo moŝna znaleźć taki argument x... Y O x X A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 79

80 Odpowiedź 1. Y A O x X B A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 80

81 Odpowiedź któremu przyporządkowane są dwie róŝne wartości y 1, y 2... Y y 1 A O y 2 x X B A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 81

82 Odpowiedź co jest sprzeczne z definicją funkcji. Y y 1 A( x, y 1 ) O y 2 x B( x, y 2 ) X A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 82

83 Pytanie 2. Czy ta krzywa jest wykresem funkcji? parabola Y O X A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 83

84 Odpowiedź 2. Tak, bo... parabola Y O X A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 84

85 Odpowiedź 2. Tak, bo nie istnieje prosta prostopadła do osi OX, która przecina krzywą w więcej niŝ jednym punkcie. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 85

86 Dziedzina funkcji - uwaga Jeśli funkcja dana jest wzorem, to do jej dziedziny naleŝą wszystkie liczby, dla których wzór funkcyjny ma sens. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 86

87 Wyznaczanie dziedziny funkcji Wyznacz dziedzinę funkcji danej wzorem f ( x) x + 1 = x 1 A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 87

88 Rozwiązanie f ( x) x + 1 = x 1 D: x x A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 88

89 Rozwiązanie cd. f ( x) x + 1 = x 1 D: x x x x 1 1 A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 89

90 Rozwiązanie cd. x x x x 1 1 x 1 i x 1 A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 90

91 Rozwiązanie cd. x 1 1 X A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 91

92 Rozwiązanie cd. x 1-1 X A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 92

93 Rozwiązanie cd. x 1 i x X A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 93

94 Rozwiązanie cd. x 1 i x X x ) ( + ) 1;1 1; A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 94

95 Rozwiązanie cd. f ( x) x + 1 = x 1 D: x x 1 1 x 1;1 ) ( 1; + ) A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 95

96 Rozwiązanie cd. f ( x) x + 1 = x 1 D: x x 1 1 x 1;1 ) ( 1; + ) ) ( ) Odp.: D = 1;1 1; + A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 96

97 Odczytaj dziedzinę funkcji Posługując się wykresem funkcji y = f (x) zaznacz dziedzinę. Zapisz dziedzinę. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 97

98 Wykres funkcji zadanie y = f (x) Y O X Dla kaŝdego punktu wykresu funkcji... A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 98

99 Wykres funkcji zadanie y = f (x) Y O X... do dziedziny funkcji naleŝy współrzędna x punktu. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 99

100 Wykres funkcji zadanie y = f (x) Y O X dziedzina A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 100

101 Wykres funkcji zadanie y = f (x) Y a O b X D = ( a ; b A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 101

102 Wykres funkcji zadanie Posługując się wykresem funkcji y = f (x), zaznacz zbiór wartości. Zapisz zbiór wartości. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 102

103 Wykres funkcji zadanie y = f (x) Y O X Dla kaŝdego punktu wykresu funkcji... A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 103

104 Wykres funkcji zadanie y = f (x) Y O X... do zbioru wartości naleŝy współrzędna y punktu. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 104

105 Wykres funkcji zadanie y = f (x) Y O X zbiór wartości A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 105

106 Wykres funkcji zadanie y = f (x) Y d O c X Y = ( c ; d W A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 106

107 Wykres funkcji zadanie Odczytaj z wykresu funkcji y = f (x) dziedzinę i zbiór wartości. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 107

108 Wykres funkcji zadanie y = f (x) Y O X A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 108

109 Wykres funkcji zadanie y = f (x) Y O X D = ( + ), = ( ; + ) ; YW A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 109

110 Funkcja róŝnowartościowa Funkcja f : X Y jest róŝnowartościowa, jeśli róŝnym argumentom przyporządkowuje róŝne wartości. Zapis: x x X 1, 2 [ x x f ( x ) f ( x )] A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 110

111 Funkcja róŝnowartościowa Lub równowaŝnie: Funkcja f : X Y jest róŝnowartościowa, jeśli równe wartości przyporządkowuje tylko równym argumentom. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 111

112 Funkcja róŝnowartościowa Funkcja f : X Y jest róŝnowartościowa, jeśli równe wartości przyporządkowuje tylko równym argumentom. Zapis: x x X 1, 2 [ f ( x ) = f ( x ) x = x ] A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 112

113 Pytania A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 113

114 Pytanie 1. Który graf przedstawia funkcję róŝnowartościową? A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 114

115 Pytanie 1. Graf f f Graf g g A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 115

116 Odpowiedź 1. f g jest róŝnowartościowa nie jest róŝnowartościowa A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 116

117 Pytanie 2. Czy ten wykres przedstawia funkcję róŝnowartościową? A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 117

118 Pytanie 2. Czy ten wykres przedstawia funkcję róŝnowartościową? Y O X A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 118

119 Odpowiedź 2. Nie, bo moŝna znaleźć wartość y... Y O X A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 119

120 Odpowiedź 2. Y O X A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 120

121 Odpowiedź 2. Y O X A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 121

122 Odpowiedź przyporządkowaną róŝnym argumentom x 1, x 2. A(x 2, y) Y B(x 1, y) y x 2 O x 1 X A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 122

123 Zadanie 1. Zbadaj, czy funkcja f (x) = -2x + 1 jest róŝnowartościowa. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 123

124 Rozwiązanie 1. cd. f (x) = -2x + 1 Dziedziną funkcji f jest zbiór liczb rzeczywistych D = R. Niech x x R,. MoŜna zapisać: 1 2 f (x 1 ) = -2x 1 + 1, f (x 2 ) = -2x A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 124

125 Rozwiązanie 1. cd. Przypuśćmy, Ŝe f (x 1 ) = f (x 2 ) f (x 1 ) = -2x 1 + 1, f (x 2 ) = -2x x = -2x x 1 = -2x 2 :(-2) x 1 = x 2 A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 125

126 Rozwiązanie 1. cd. Dostaliśmy: f ( x = f x x = x ) ( ) dla dowolnej pary liczb x x R,. 1 2 Zatem f (x) = -2x + 1 jest róŝnowartościowa. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 126

127 Wykres funkcji f (x) = -2x f - róŝnowartościowa A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 127

128 Zadanie 2. Zbadaj, czy funkcja f (x) = x 2 jest róŝnowartościowa. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 128

129 Rozwiązanie 2. f (x) = x 2 Dziedziną funkcji f jest zbiór liczb rzeczywistych D = R. Niech x x R,. 1 2 MoŜna zapisać: f (x 1 ) = x 1 2, f (x 2 ) = x 2 2 A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 129

130 Rozwiązanie 2. Przypuśćmy, Ŝe f (x 1 ) = f (x 2 ) x 2 1 = x 2 2 x x 2 2 = 0 (x 1 - x 2 ) (x 1 + x 2 ) = 0 x 1 - x 2 = 0 lub x 1 + x 2 = 0 A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 130

131 Rozwiązanie 2. x 1 - x 2 = 0 lub x 1 + x 2 = 0 x 1 = x 2 lub x 1 = - x 2 Np. dla x 1 = 1, x 2 = -1 mamy: f (1) = 1 2 =1 oraz f (-1) = (-1) 2 = 1 RóŜnym argumentom przyporządkowane zostały równe wartości, zatem f (x) = x 2 nie jest róŝnowartościowa. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 131

132 Wykres funkcji f (x) = x 2 A(-1, 1) Y B(1, 1) 1-1 O 1 X A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 132

133 Zadanie 3 zastosowanie * RozwiąŜ równanie 7 x 4 2 3x = 7 A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 133

134 Zadanie 3 zastosowanie * RozwiąŜ równanie 7 x 4 2 3x = ( ) 7 2 x x 3 = ( 2 ) x 3x = 7 A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 134

135 Zadanie 3 zastosowanie * ( 2 ) x 3x = 7 ( * ) x 4 1 x 2 7 Funkcja wykładnicza f (x) =7 x jest róŝnowartościowa, zatem rówanie ( * ) zachodzi wiw, gdy x 4 = 1 1,5x = 7 3 A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 135

136 Zadanie 3 zastosowanie * x 4 = x x + 3 x = x = 5 : 2 x = Odp.: Rozwiązaniem równania jest x = 2. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 136

137 Funkcja rosnąca Funkcja f : X Y jest rosnąca w przedziale ( a ; b ) X, jeśli większemu ( ) argumentowi z przedziału a ; b przyporządkowuje większą wartość. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 137

138 Funkcja rosnąca - definicja Funkcja f : X Y jest rosnąca w przedziale ( a ; b ) X, jeśli x 1, 2 x ( a ; b) [ x < x f ( x ) < f ( x ) ] A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 138

139 Funkcja rosnąca x 1, 2 x ( a ; b) [ x < x f ( x ) < f ( x ) ] RównowaŜny zapis: x 1, 2 x ( a ; b) [ x x < f ( x ) f ( x ) < 0 ] A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 139

140 Funkcja malejąca Funkcja f : X Y jest malejąca w przedziale ( a ; b ) X, jeśli większemu ( ) argumentowi z przedziału a ; b przyporządkowuje mniejszą wartość. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 140

141 Funkcja malejąca - definicja Funkcja f : X Y jest malejąca w przedziale ( a ; b ) X, jeśli x 1, 2 x ( a ; b) [ x < x f ( x ) > f ( x ) ] A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 141

142 Funkcja malejąca x 1, 2 x ( a ; b) [ x < x f ( x ) > f ( x ) ] RównowaŜny zapis: x 1, 2 x ( a ; b) [ x x < f ( x ) f ( x ) > 0 ] A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 142

143 Funkcja stała Funkcja f : X Y jest stała w przedziale ( a ; b ) X, jeśli w tym przedziale jej wartości nie zmieniają się. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 143

144 Monotoniczność funkcji Badanie monotoniczności funkcji polega na ustaleniu, w jakich przedziałach dziedziny funkcja rośnie, w jakich maleje, w jakich jest stała. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 144

145 Monotoniczność zadanie 1. Opisz monotoniczność funkcji y = g(x) na podstawie wykresu. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 145

146 Monotoniczność zadanie 1. y = g (x) Y a 1 X Przesuwamy się po wykresie w kierunku rosnących argumentów x... A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 146

147 Monotoniczność zadanie 1. y = g (x) Y X... dopóki wykres wznosi się do góry. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 147

148 Monotoniczność zadanie 1. y = g (x) Y a 1 X Oznacza to, Ŝe dla x ( ; a funkcja 1 jest rosnąca. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 148

149 Monotoniczność zadanie 1. y = g (x) Y a 1 X Zapis: f ( x) dla x ( ; a1 A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 149

150 Monotoniczność zadanie 1. y = g (x) Y a 1 X Teraz przesuwamy się po wykresie w kierunku rosnących argumentów x, dopóki wykres opada. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 150

151 Monotoniczność zadanie 1. y = g (x) Y a 1 a 2 X f ( x) dla x a a 1 ; 2 A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 151

152 Monotoniczność zadanie 1. y = g (x) Y a 1 a 2 X f ( x) dla x a ; 2 + ) A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 152

153 Monotoniczność zadanie 1. Odp.: f ( ;, ; + ) ( x) dla x a x a 1 2 f ( x) dla x a a 1 ; 2 A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 153

154 Monotoniczność zadanie 2. Zbadaj monotoniczność funkcji f(x) = - 2x+1. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 154

155 Monotoniczność zadanie 2. Dziedzina: f(x) = - 2x+1 D = R Niech x x R, i x < x 2. MoŜna zapisać: f (x 1 ) = -2x 1 + 1, f (x 2 ) = -2x A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 155

156 Monotoniczność zadanie 2. f (x 1 ) = -2x 1 + 1, f (x 2 ) = -2x Badamy znak róŝnicy: f (x 1 ) - f (x 2 ) f (x 1 ) - f (x 2 ) = (-2x 1 + 1) (-2x 2 + 1) = = -2x x 2-1 = -2x 1 + 2x 2 = = -2(x 1 - x 2 ) A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 156

157 Monotoniczność zadanie 2. f (x 1 ) - f (x 2 ) = (-2x 1 + 1) (-2x 2 + 1) = = -2x x 2-1 = -2x 1 + 2x 2 = = -2(x 1 - x 2 ) PoniewaŜ x 1 < x 2, to x 1 - x 2 < 0, zatem -2(x 1 - x 2 ) > 0, czyli f (x 1 ) - f (x 2 ) > 0 A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 157

158 Monotoniczność zadanie 2. Mamy: f (x 1 ) > f (x 2 ) dla x 1 < x 2 co dowodzi, Ŝe funkcja jest malejąca. f (x) = - 2x+1 A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 158

159 Monotoniczność zadanie 2. f (x) = - 2x A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 159

160 Globalne ekstrema funkcji minimum globalne (wartość najmniejsza) maksimum globalne (wartość największa) A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 160

161 Minimum globalne Funkcja f : X Y ma minimum globalne w punkcie x X, jeśli 0 wartość f (x 0 ) jest najmniejsza ze wszystkich wartości funkcji. x X f ( x) f ( x ) 0 A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 161

162 Przykład minimum globalnego Y O X W punkcie x 0 = 0 funkcja ma wartość najmniejszą minimum globalne. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 162

163 Maksimum globalne Funkcja f : X Y ma maksimum globalne w punkcie x X, jeśli 0 wartość f (x 0 ) jest największa ze wszystkich wartości funkcji. x X f ( x) f ( x ) 0 A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 163

164 Przykład maksimum globalnego Y O X W punkcie x 0 = 0 funkcja przyjmuje wartość największą maksimum globalne. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 164

165 Lokalne ekstrema funkcji minimum lokalne (wartość najmniejsza w pewnym przedziale) maksimum lokalne (wartość największa w pewnym przedziale) A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 165

166 Przykład minimum lokalnego Y 1 X W punkcie x 0 = 1 funkcja przyjmuje wartość najmniejszą w zaznaczonym przedziale minimum lokalne. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 166

167 Przykład maksimum lokalnego Y -1 X W punkcie x 0 = -1 funkcja przyjmuje wartość największą w zaznaczonym przedziale maksimum lokalne. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 167

168 Definicja otoczenia punktu Niech x R, r R. 0 Przedział (x 0 - r; x 0 + r) nazywamy otoczeniem punktu x 0 o promieniu r. Oznaczenie: (x 0 - r; x 0 + r) = U(x 0, r) A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 168

169 Przykład 1. Otoczeniem punktu x 0 = 4 o promieniu r = 2 jest przedział U (4; 2) = (4-2, 4+2) = (2, 6) A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 169

170 Przykład 2. Przedział (- 4, 10) jest otoczeniem punktu x 0 = 3 o promieniu r = 7. (-4, 10) = U (3; 7) A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 170

171 Definicja minimum lokalnego Funkcja f : ( a ; b) R ma minimum lokalne w punkcie (, ), x a b gdy 0 istnieje takie otoczenie U(x 0, r) (a, b), Ŝe x U { } ( ) ( ) ( x, r) x f x f x A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 171

172 Definicja maksimum lokalnego Funkcja f : ( a ; b) R ma maksimum lokalne w punkcie (, ), x a b gdy 0 istnieje takie otoczenie U(x 0, r) (a, b), Ŝe x U { } ( ) ( ) ( x, r) x f x f x A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 172

173 Miejsce zerowe funkcji KaŜdy argument, dla którego funkcja y = f (x) przyjmuje wartość 0, nazywamy miejscem zerowym funkcji. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 173

174 Miejsca zerowe zadanie 1. Odczytaj z wykresu funkcji y = g (x) miejsca zerowe. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 174

175 Miejsca zerowe zadanie 1. y = g (x) Y x 1 x 2 x 3 X Odp.: Miejsca zerowe funkcji g (x), to x 1, x 2, x 3. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 175

176 Miejsca zerowe zadanie 2. Wyznacz dziedzinę i miejsca zerowe funkcji y = h (x). A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 176

177 Zadanie 2. 2 x h( x) = x Dziedzina: x A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 177

178 Zadanie 2. x x 2 9 = 0 A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 178

179 Zadanie 2. x 2 9 = 0 Wzór skróconego mnoŝenia 2 - róŝnica kwadratów ( a b)( a b) a b = + 2 x 2 9 = ( x 3)( x + 3) A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 179

180 Zadanie 2. ( x 3 )( x + 3) = 0 a b = 0 a = 0 lub b = 0 x = 3 lub x = 3 Dziedzina: D = R { 3, 3 } A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 180

181 Zadanie 2. Miejsca zerowe: h( x) = 0 x 2 4 x 2 9 = 0 a b = 0 a = 0 A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 181

182 Zadanie 2. x 2 4 x 2 9 = 0 x 2 4 = 0 ( x 2 )( x + 2) = 0 A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 182

183 Zadanie 2. ( x 2 )( x + 2) = 0 x = 2 lub x = 2 Miejsca zerowe: x { 2, 2 } 0 A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 183

184 Wykres funkcji zadanie Odczytaj z wykresu funkcji y = g (x) i zapisz zbiór argumentów, dla których funkcja przyjmuje wartości a) dodatnie, b) ujemne. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 184

185 Wartości dodatnie zadanie y = g (x) Y x 1 x 2 x 3 X A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 185

186 Wartości dodatnie zadanie y = g (x) Y x 1 x 2 x 3 X Odp.: f ( ; ) ( ; + ) ( x) > 0 x x x x A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 186

187 Wartości ujemne zadanie y = g (x) Y x 1 x 2 x 3 X Odp.: f ( ; ) ( ) ( x) < 0 x x x x ; A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 187

MATEMATYKA 4 INSTYTUT MEDICUS FUNKCJA KWADRATOWA. Kurs przygotowawczy na studia medyczne. Rok szkolny 2010/2011. tel. 0501 38 39 55 www.medicus.edu.

MATEMATYKA 4 INSTYTUT MEDICUS FUNKCJA KWADRATOWA. Kurs przygotowawczy na studia medyczne. Rok szkolny 2010/2011. tel. 0501 38 39 55 www.medicus.edu. INSTYTUT MEDICUS Kurs przygotowawczy na studia medyczne Rok szkolny 00/0 tel. 050 38 39 55 www.medicus.edu.pl MATEMATYKA 4 FUNKCJA KWADRATOWA Funkcją kwadratową lub trójmianem kwadratowym nazywamy funkcję

Bardziej szczegółowo

Kurs wyrównawczy dla kandydatów i studentów UTP

Kurs wyrównawczy dla kandydatów i studentów UTP Kurs wyrównawczy dla kandydatów i studentów UTP Część III Funkcja wymierna, potęgowa, logarytmiczna i wykładnicza Magdalena Alama-Bućko Ewa Fabińska Alfred Witkowski Grażyna Zachwieja Uniwersytet Technologiczno

Bardziej szczegółowo

Arkusz maturalny treningowy nr 7. W zadaniach 1. do 20. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.

Arkusz maturalny treningowy nr 7. W zadaniach 1. do 20. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź. Czas pracy: 170 minut Liczba punktów do uzyskania: 50 Arkusz maturalny treningowy nr 7 W zadaniach 1. do 20. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź. Zadanie 1. (0-1) Wyrażenie (-8x 3

Bardziej szczegółowo

Matematyka dla liceum/funkcja liniowa

Matematyka dla liceum/funkcja liniowa Matematyka dla liceum/funkcja liniowa 1 Matematyka dla liceum/funkcja liniowa Funkcja liniowa Wstęp Co zawiera dział Czytelnik pozna następujące informacje: co to jest i jakie ma własności funkcja liniowa

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 016 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY DATA: 9

Bardziej szczegółowo

Próbna Nowa Matura z WSiP Październik 2014 Egzamin maturalny z matematyki dla klasy 3 Poziom podstawowy

Próbna Nowa Matura z WSiP Październik 2014 Egzamin maturalny z matematyki dla klasy 3 Poziom podstawowy Wypełnia uczeń Numer PESEL Kod ucznia Próbna Nowa Matura z WSiP Październik 0 Egzamin maturalny z matematyki dla klasy Poziom podstawowy Informacje dla ucznia. Sprawdź, czy zestaw egzaminacyjny zawiera

Bardziej szczegółowo

Kurs z matematyki - zadania

Kurs z matematyki - zadania Kurs z matematyki - zadania Miara łukowa kąta Zadanie Miary kątów wyrażone w stopniach zapisać w radianach: a) 0, b) 80, c) 90, d), e) 0, f) 0, g) 0, h), i) 0, j) 70, k), l) 80, m) 080, n), o) 0 Zadanie

Bardziej szczegółowo

SPRAWDZIANY Z MATEMATYKI

SPRAWDZIANY Z MATEMATYKI SPRAWDZIANY Z MATEMATYKI dla klasy III gimnazjum dostosowane do programu Matematyka z Plusem opracowała mgr Marzena Mazur LICZBY I WYRAŻENIA ALGEBRAICZNE Grupa I Zad.1. Zapisz w jak najprostszej postaci

Bardziej szczegółowo

1. Rozwiązać układ równań { x 2 = 2y 1

1. Rozwiązać układ równań { x 2 = 2y 1 Dzień Dziecka z Matematyką Tomasz Szymczyk Piotrków Trybunalski, 4 czerwca 013 r. Układy równań szkice rozwiązań 1. Rozwiązać układ równań { x = y 1 y = x 1. Wyznaczając z pierwszego równania zmienną y,

Bardziej szczegółowo

PAKIET MathCad - Część III

PAKIET MathCad - Część III Opracowanie: Anna Kluźniak / Jadwiga Matla Ćw3.mcd 1/12 Katedra Informatyki Stosowanej - Studium Podstaw Informatyki PAKIET MathCad - Część III RÓWNANIA I UKŁADY RÓWNAŃ 1. Równania z jedną niewiadomą MathCad

Bardziej szczegółowo

Matematyka z plusemdla szkoły ponadgimnazjalnej WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ LICEUM. KATEGORIA B Uczeń rozumie:

Matematyka z plusemdla szkoły ponadgimnazjalnej WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ LICEUM. KATEGORIA B Uczeń rozumie: WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ LICEUM POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca P - podstawowy ocena dostateczna (dst.) R - rozszerzający ocena dobra (db.) D

Bardziej szczegółowo

K P K P R K P R D K P R D W

K P K P R K P R D K P R D W KLASA III TECHNIKUM POZIOM PODSTAWOWY I ROZSZERZONY PROPOZYCJA POZIOMÓW WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i

Bardziej szczegółowo

MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI

MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI LUTY 01 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz zawiera strony (zadania 1 ).. Arkusz zawiera 4 zadania zamknięte i 9

Bardziej szczegółowo

Temat: Co to jest optymalizacja? Maksymalizacja objętości naczynia prostopadłościennego za pomocą arkusza kalkulacyjngo.

Temat: Co to jest optymalizacja? Maksymalizacja objętości naczynia prostopadłościennego za pomocą arkusza kalkulacyjngo. Konspekt lekcji Przedmiot: Informatyka Typ szkoły: Gimnazjum Klasa: II Nr programu nauczania: DKW-4014-87/99 Czas trwania zajęć: 90min Temat: Co to jest optymalizacja? Maksymalizacja objętości naczynia

Bardziej szczegółowo

Zagadnienia do egzaminu ustnego z matematyki dla Uzupełniającego Liceum Ogólnokształcącego dla Dorosłych - III semestr

Zagadnienia do egzaminu ustnego z matematyki dla Uzupełniającego Liceum Ogólnokształcącego dla Dorosłych - III semestr Zagadnienia do egzaminu ustnego z matematyki dla Uzupełniającego Liceum Ogólnokształcącego dla Dorosłych - III semestr I. Wyrażenia wymierne: funkcja wymierna - Dziedzina wyrażenia wymiernego. - Skarcenie

Bardziej szczegółowo

2.Prawo zachowania masy

2.Prawo zachowania masy 2.Prawo zachowania masy Zdefiniujmy najpierw pewne podstawowe pojęcia: Układ - obszar przestrzeni o określonych granicach Ośrodek ciągły - obszar przestrzeni którego rozmiary charakterystyczne są wystarczająco

Bardziej szczegółowo

Harmonogramowanie projektów Zarządzanie czasem

Harmonogramowanie projektów Zarządzanie czasem Harmonogramowanie projektów Zarządzanie czasem Zarządzanie czasem TOMASZ ŁUKASZEWSKI INSTYTUT INFORMATYKI W ZARZĄDZANIU Zarządzanie czasem w projekcie /49 Czas w zarządzaniu projektami 1. Pojęcie zarządzania

Bardziej szczegółowo

Podstawowe pojęcia: Populacja. Populacja skończona zawiera skończoną liczbę jednostek statystycznych

Podstawowe pojęcia: Populacja. Populacja skończona zawiera skończoną liczbę jednostek statystycznych Podstawowe pojęcia: Badanie statystyczne - zespół czynności zmierzających do uzyskania za pomocą metod statystycznych informacji charakteryzujących interesującą nas zbiorowość (populację generalną) Populacja

Bardziej szczegółowo

ROZWIĄZANIA ZADAŃ Zestaw P3 Odpowiedzi do zadań zamkniętych

ROZWIĄZANIA ZADAŃ Zestaw P3 Odpowiedzi do zadań zamkniętych PRZYKŁADOWY ARKUSZ EGZAMINACYJNY POZIOM PODSTAWOWY ROZWIĄZANIA ZADAŃ Zestaw P3 Odpowiedzi do zadań zamkniętych Numer zadania 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 0 Odpowiedź A B B C C D C B B C

Bardziej szczegółowo

Podstawowe działania w rachunku macierzowym

Podstawowe działania w rachunku macierzowym Podstawowe działania w rachunku macierzowym Marcin Detka Katedra Informatyki Stosowanej Kielce, Wrzesień 2004 1 MACIERZE 1 1 Macierze Macierz prostokątną A o wymiarach m n (m wierszy w n kolumnach) definiujemy:

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 016 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dyskalkulia dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY

Bardziej szczegółowo

7. REZONANS W OBWODACH ELEKTRYCZNYCH

7. REZONANS W OBWODACH ELEKTRYCZNYCH OBWODY SYGNAŁY 7. EZONANS W OBWODAH EEKTYZNYH 7.. ZJAWSKO EZONANS Obwody elektryczne, w których występuje zjawisko rezonansu nazywane są obwodami rezonansowymi lub drgającymi. ozpatrując bezźródłowy obwód

Bardziej szczegółowo

Rok 2010 wyznaczył datę powrotu do obowiązkowego egzaminu maturalnego z matematyki. Umiejętności, które są sprawdzane na maturze z matematyki,

Rok 2010 wyznaczył datę powrotu do obowiązkowego egzaminu maturalnego z matematyki. Umiejętności, które są sprawdzane na maturze z matematyki, Skrypt bezpłatny. Opracowany i wydrukowany w ramach projektu W drodze do kariery z Politechniką Świętokrzyską szanse na lepszą przyszłość uczniów szkół ponadgimnazjalnych, współfinansowanego ze środków

Bardziej szczegółowo

14.Rozwiązywanie zadań tekstowych wykorzystujących równania i nierówności kwadratowe.

14.Rozwiązywanie zadań tekstowych wykorzystujących równania i nierówności kwadratowe. Matematyka 4/ 4.Rozwiązywanie zadań tekstowych wykorzystujących równania i nierówności kwadratowe. I. Przypomnij sobie:. Wiadomości z poprzedniej lekcji... Że przy rozwiązywaniu zadań tekstowych wykorzystujących

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 014 Czas pracy: 170 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 1

Bardziej szczegółowo

NUMER IDENTYFIKATORA:

NUMER IDENTYFIKATORA: Społeczne Liceum Ogólnokształcące z Maturą Międzynarodową im. Ingmara Bergmana IB WORLD SCHOOL 53 ul. Raszyńska, 0-06 Warszawa, tel./fax 668 54 5 www.ib.bednarska.edu.pl / e-mail: liceum.ib@rasz.edu.pl

Bardziej szczegółowo

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2013/2014

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2013/2014 Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2013/2014 KOD UCZNIA Etap: Data: Czas pracy: rejonowy 8 stycznia 2014 r. 120 minut Informacje dla

Bardziej szczegółowo

Matematyka wykaz umiejętności wymaganych na poszczególne oceny zakres rozszerzony KLASA II

Matematyka wykaz umiejętności wymaganych na poszczególne oceny zakres rozszerzony KLASA II Matematyka wykaz umiejętności wymaganych na poszczególne oceny zakres rozszerzony KLASA II 1.Uzupełnienie treści ujętych w działach klasy I. 1.Rozwiązywanie prostych równań i nierówności z wartością bezwzględną

Bardziej szczegółowo

Jan Olek. Uniwersytet Stefana Kardynała Wyszyńskiego. Procesy z Opóźnieniem. J. Olek. Równanie logistyczne. Założenia

Jan Olek. Uniwersytet Stefana Kardynała Wyszyńskiego. Procesy z Opóźnieniem. J. Olek. Równanie logistyczne. Założenia Procesy z Procesy z Jan Olek Uniwersytet Stefana ardynała Wyszyńskiego 2013 Wzór równania logistycznego: Ṅ(t)=rN(t)(1- N ), gdzie Ṅ(t) - przyrost populacji w czasie t r - rozrodczość netto, (r > 0) N -

Bardziej szczegółowo

PRAWA ZACHOWANIA. Podstawowe terminy. Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc

PRAWA ZACHOWANIA. Podstawowe terminy. Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc PRAWA ZACHOWANIA Podstawowe terminy Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc a) si wewn trznych - si dzia aj cych na dane cia o ze strony innych

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY ZESTAW ĆWICZENIOWY Z MATEMATYKI

ARKUSZ PRÓBNEJ MATURY ZESTAW ĆWICZENIOWY Z MATEMATYKI ARKUSZ PRÓBNEJ MATURY ZESTAW ĆWICZENIOWY Z MATEMATYKI Styczeń 2013 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron. 2. W zadaniach od 1. do 25. są

Bardziej szczegółowo

Statystyczna analiza danych w programie STATISTICA. Dariusz Gozdowski. Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW

Statystyczna analiza danych w programie STATISTICA. Dariusz Gozdowski. Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Statystyczna analiza danych w programie STATISTICA ( 4 (wykład Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Regresja prosta liniowa Regresja prosta jest

Bardziej szczegółowo

Warszawska Giełda Towarowa S.A.

Warszawska Giełda Towarowa S.A. KONTRAKT FUTURES Poprzez kontrakt futures rozumiemy umowę zawartą pomiędzy dwoma stronami transakcji. Jedna z nich zobowiązuje się do kupna, a przeciwna do sprzedaży, w ściśle określonym terminie w przyszłości

Bardziej szczegółowo

7. OPRACOWYWANIE DANYCH I PROWADZENIE OBLICZEŃ powtórka

7. OPRACOWYWANIE DANYCH I PROWADZENIE OBLICZEŃ powtórka 7. OPRACOWYWANIE DANYCH I PROWADZENIE OBLICZEŃ powtórka Oczekiwane przygotowanie informatyczne absolwenta gimnazjum Zbieranie i opracowywanie danych za pomocą arkusza kalkulacyjnego Uczeń: wypełnia komórki

Bardziej szczegółowo

Wiedza niepewna i wnioskowanie (c.d.)

Wiedza niepewna i wnioskowanie (c.d.) Wiedza niepewna i wnioskowanie (c.d.) Dariusz Banasiak Katedra Informatyki Technicznej Wydział Elektroniki Wnioskowanie przybliżone Wnioskowanie w logice tradycyjnej (dwuwartościowej) polega na stwierdzeniu

Bardziej szczegółowo

OGÓLNODOSTĘPNE IFORMACJE O WYNIKACH EGZAMINÓW I EFEKTYWNOŚCI NAUCZANIA W GIMNAZJACH przykłady ich wykorzystania i interpretowania

OGÓLNODOSTĘPNE IFORMACJE O WYNIKACH EGZAMINÓW I EFEKTYWNOŚCI NAUCZANIA W GIMNAZJACH przykłady ich wykorzystania i interpretowania Teresa Kutajczyk, WBiA OKE w Gdańsku Okręgowa Komisja Egzaminacyjna w Gdańsku OGÓLNODOSTĘPNE IFORMACJE O WYNIKACH EGZAMINÓW I EFEKTYWNOŚCI NAUCZANIA W GIMNAZJACH przykłady ich wykorzystania i interpretowania

Bardziej szczegółowo

'()(*+,-./01(23/*4*567/8/23/*98:)2(!."/+)012+3$%-4#"4"$5012#-4#"4-6017%*,4.!"#$!"#%&"!!!"#$%&"#'()%*+,-+

'()(*+,-./01(23/*4*567/8/23/*98:)2(!./+)012+3$%-4#4$5012#-4#4-6017%*,4.!#$!#%&!!!#$%&#'()%*+,-+ '()(*+,-./01(23/*4*567/8/23/*98:)2(!."/+)012+3$%-4#"4"$5012#-4#"4-6017%*,4.!"#$!"#%&"!!!"#$%&"#'()%*+,-+ Ucze interpretuje i tworzy teksty o charakterze matematycznym, u ywa j zyka matematycznego do opisu

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejk z kodem szko y dysleksja MMA-R1_1P-07 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY MAJ ROK 007 Czas pracy 180 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny

Bardziej szczegółowo

2010 W. W. Norton & Company, Inc. Nadwyżka Konsumenta

2010 W. W. Norton & Company, Inc. Nadwyżka Konsumenta 2010 W. W. Norton & Company, Inc. Nadwyżka Konsumenta Pieniężny Pomiar Korzyści z Handlu Możesz kupić tyle benzyny ile chcesz, po cenie 2zł za litr. Jaka jest najwyższa cena, jaką zapłacisz za 1 litr benzyny?

Bardziej szczegółowo

tel/fax 018 443 82 13 lub 018 443 74 19 NIP 7343246017 Regon 120493751

tel/fax 018 443 82 13 lub 018 443 74 19 NIP 7343246017 Regon 120493751 Zespół Placówek Kształcenia Zawodowego 33-300 Nowy Sącz ul. Zamenhoffa 1 tel/fax 018 443 82 13 lub 018 443 74 19 http://zpkz.nowysacz.pl e-mail biuro@ckp-ns.edu.pl NIP 7343246017 Regon 120493751 Wskazówki

Bardziej szczegółowo

WYKŁAD 8. Postacie obrazów na różnych etapach procesu przetwarzania

WYKŁAD 8. Postacie obrazów na różnych etapach procesu przetwarzania WYKŁAD 8 Reprezentacja obrazu Elementy edycji (tworzenia) obrazu Postacie obrazów na różnych etapach procesu przetwarzania Klasy obrazów Klasa 1: Obrazy o pełnej skali stopni jasności, typowe parametry:

Bardziej szczegółowo

Zadania z parametrem

Zadania z parametrem Zadania z paramerem Zadania z paramerem są bardzo nielubiane przez maurzysów Nie jes ławo odpowiedzieć na pyanie: dlaczego? Nie są o zadania o dużej skali rudności Myślę, że głównym powodem akiego sanu

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN

Bardziej szczegółowo

PLAN WYNIKOWY Z MATEMATYKI DLA LICEUM OGÓLNOKSZTAŁCĄCEGO, LICEUM PROFILOWANEGO I TECHNIKUM 4 LETNIEGO (Kształcenie ogólne w zakresie podstawowym)

PLAN WYNIKOWY Z MATEMATYKI DLA LICEUM OGÓLNOKSZTAŁCĄCEGO, LICEUM PROFILOWANEGO I TECHNIKUM 4 LETNIEGO (Kształcenie ogólne w zakresie podstawowym) PLAN WYNIKOWY Z MATEMATYKI DLA LICEUM OGÓLNOKSZTAŁCĄCEGO, LICEUM PROFILOWANEGO I TECHNIKUM 4 LETNIEGO (Kształcenie ogólne w zakresie podstawowym) I. LICZBY Temat Ilość godzin Cele Zbiory 1 Określenia zbioru

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI 17 MAJA 2016

EGZAMIN MATURALNY Z INFORMATYKI 17 MAJA 2016 Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z INFORMATYKI 17 MAJA 2016 POZIOM

Bardziej szczegółowo

KLASA 3 GIMNAZJUM. 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) 1. Lekcja organizacyjna 1. 2. System dziesiątkowy 2-4. 3. System rzymski 5-6

KLASA 3 GIMNAZJUM. 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) 1. Lekcja organizacyjna 1. 2. System dziesiątkowy 2-4. 3. System rzymski 5-6 KLASA 3 GIMNAZJUM TEMAT LICZBA GODZIN LEKCYJNYCH 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) 1. Lekcja organizacyjna 1 2. System dziesiątkowy 2-4 WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z XII 2008 R.

Bardziej szczegółowo

Komentarz technik ochrony fizycznej osób i mienia 515[01]-01 Czerwiec 2009

Komentarz technik ochrony fizycznej osób i mienia 515[01]-01 Czerwiec 2009 Strona 1 z 19 Strona 2 z 19 Strona 3 z 19 Strona 4 z 19 Strona 5 z 19 Strona 6 z 19 Strona 7 z 19 W pracy egzaminacyjnej oceniane były elementy: I. Tytuł pracy egzaminacyjnej II. Założenia do projektu

Bardziej szczegółowo

BADANIE UMIEJĘTNOŚCI UCZNIÓW W TRZECIEJ KLASIE GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA

BADANIE UMIEJĘTNOŚCI UCZNIÓW W TRZECIEJ KLASIE GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA BADANIE UMIEJĘTNOŚCI UCZNIÓW W TRZECIEJ KLASIE GIMNAZJUM CZĘŚĆ MATEMATYCZNO-RZYRODNICZA MATEMATYKA TEST 4 Zadanie 1 Dane są punkty A = ( 1, 1) oraz B = (3, 2). Jaką długość ma odcinek AB? Wybierz odpowiedź

Bardziej szczegółowo

Zadania. SiOD Cwiczenie 1 ;

Zadania. SiOD Cwiczenie 1 ; 1. Niech A będzie zbiorem liczb naturalnych podzielnych przez 6 B zbiorem liczb naturalnych podzielnych przez 2 C będzie zbiorem liczb naturalnych podzielnych przez 5 Wyznaczyć zbiory A B, A C, C B, A

Bardziej szczegółowo

WYKRESY FUNKCJI NA CO DZIEŃ

WYKRESY FUNKCJI NA CO DZIEŃ TEMAT NUMERU 13 Adam Wojaczek WYKRESY FUNKCJI NA CO DZIEŃ W zreformowanych szkołach ponadgimnazjalnych kładziemy szczególny nacisk na praktyczne zastosowania matematyki. I bardzo dobrze! (Szkoda tylko,

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejk z kodem dysleksja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Czas pracy 10 minut Instrukcja dla zdaj cego 1. Prosz sprawdzi, czy arkusz egzaminacyjny zawiera 9 stron. Ewentualny brak nale

Bardziej szczegółowo

PODSTAWY METROLOGII ĆWICZENIE 4 PRZETWORNIKI AC/CA Międzywydziałowa Szkoła Inżynierii Biomedycznej 2009/2010 SEMESTR 3

PODSTAWY METROLOGII ĆWICZENIE 4 PRZETWORNIKI AC/CA Międzywydziałowa Szkoła Inżynierii Biomedycznej 2009/2010 SEMESTR 3 PODSTAWY METROLOGII ĆWICZENIE 4 PRZETWORNIKI AC/CA Międzywydziałowa Szkoła Inżynierii Biomedycznej 29/2 SEMESTR 3 Rozwiązania zadań nie były w żaden sposób konsultowane z żadnym wiarygodnym źródłem informacji!!!

Bardziej szczegółowo

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2012/2013

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2012/2013 Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2012/2013 KOD UCZNIA Etap: Data: Czas pracy: wojewódzki 4 marca 2013 r. 120 minut Informacje dla

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejk z kodem szko y dysleksja EGZAMIN MATURALNY Z MATEMATYKI MMA-P1A1P-061 POZIOM PODSTAWOWY Czas pracy 10 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny zawiera 1 stron.

Bardziej szczegółowo

Regulamin szkolnego konkursu matematycznego dla uczniów klasy II i III: Mały Matematyk

Regulamin szkolnego konkursu matematycznego dla uczniów klasy II i III: Mały Matematyk Marzena Kococik Olga Kuśmierczyk Szkoła Podstawowa im. Marii Konopnickiej w Krzemieniewicach Regulamin szkolnego konkursu matematycznego dla uczniów klasy II i III: Mały Matematyk Konkursy wyzwalają aktywność

Bardziej szczegółowo

Analiza wyników egzaminu gimnazjalnego. Test matematyczno-przyrodniczy matematyka. Test GM-M1-122,

Analiza wyników egzaminu gimnazjalnego. Test matematyczno-przyrodniczy matematyka. Test GM-M1-122, Analiza wyników egzaminu gimnazjalnego Test matematyczno-przyrodniczy Test GM-M1-122, Zestaw zadań z zakresu matematyki posłużył w dniu 25 kwietnia 2012 r. do sprawdzenia, u uczniów kończących trzecią

Bardziej szczegółowo

MATEMATYKA POZIOM PODSTAWOWY PRZYK ADOWY ZESTAW ZADA NR 1. Miejsce na naklejk z kodem szko y OKE ÓD CKE MARZEC ROK Czas pracy 120 minut

MATEMATYKA POZIOM PODSTAWOWY PRZYK ADOWY ZESTAW ZADA NR 1. Miejsce na naklejk z kodem szko y OKE ÓD CKE MARZEC ROK Czas pracy 120 minut Miejsce na naklejk z kodem szko y OKE ÓD CKE MATEMATYKA POZIOM PODSTAWOWY MARZEC ROK 2008 PRZYK ADOWY ZESTAW ZADA NR 1 Czas pracy 120 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny

Bardziej szczegółowo

Czas pracy 170 minut

Czas pracy 170 minut ORGANIZATOR WSPÓŁORGANIZATOR PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI DLA UCZNIÓW LICEUM MARZEC ROK 015 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron..

Bardziej szczegółowo

Ogólna charakterystyka kontraktów terminowych

Ogólna charakterystyka kontraktów terminowych Jesteś tu: Bossa.pl Kurs giełdowy - Część 10 Ogólna charakterystyka kontraktów terminowych Kontrakt terminowy jest umową pomiędzy dwiema stronami, z których jedna zobowiązuje się do nabycia a druga do

Bardziej szczegółowo

Konspekt lekcji otwartej

Konspekt lekcji otwartej Konspekt lekcji otwartej Przedmiot: Temat lekcji: informatyka Modelowanie i symulacja komputerowa prawidłowości w świecie liczb losowych Klasa: 2 g Data zajęć: 21.12.2004. Nauczyciel: Roman Wyrwas Czas

Bardziej szczegółowo

MATEMATYKA. 1 Podstawowe informacje dotyczące zadań. 2 Zasady poprawnego zapisu odpowiedzi TEST DYDAKTYCZNY

MATEMATYKA. 1 Podstawowe informacje dotyczące zadań. 2 Zasady poprawnego zapisu odpowiedzi TEST DYDAKTYCZNY MATEMATYKA Poziom wyższy TEST DYDAKTYCZNY Maksymalna ilość punktów: 50 Próg zaliczenia: 33 % 1 Podstawowe informacje dotyczące zadań Test dydaktyczny zawiera 23 zadania. Czas pracy oznaczono w kartach

Bardziej szczegółowo

Matematyka A, kolokwium, 15 maja 2013 rozwia. ciem rozwia

Matematyka A, kolokwium, 15 maja 2013 rozwia. ciem rozwia Maemayka A kolokwium maja rozwia zania Należy przeczyać CA LE zadanie PRZED rozpocze ciem rozwia zywania go!. Niech M. p. Dowieść że dla każdej pary liczb ca lkowiych a b isnieje aka para liczb wymiernych

Bardziej szczegółowo

KOŃCOWOROCZNE KRYTERIA OCENIANIA Z MATEMATYKI W ROKU SZKOLNYM 2014/2015 DLA KLAS III przygotowały mgr Magdalena Murawska i mgr Agnieszka Łukaszyk

KOŃCOWOROCZNE KRYTERIA OCENIANIA Z MATEMATYKI W ROKU SZKOLNYM 2014/2015 DLA KLAS III przygotowały mgr Magdalena Murawska i mgr Agnieszka Łukaszyk KOŃCOWOROCZNE KRYTERIA OCENIANIA Z MATEMATYKI W ROKU SZKOLNYM 2014/2015 DLA KLAS III przygotowały mgr Magdalena Murawska i mgr Agnieszka Łukaszyk Ocenę dopuszczającą otrzymuje uczeń, który: definiuje notację

Bardziej szczegółowo

Od redakcji. Symbolem oznaczono zadania wykraczające poza zakres materiału omówionego w podręczniku Fizyka z plusem cz. 2.

Od redakcji. Symbolem oznaczono zadania wykraczające poza zakres materiału omówionego w podręczniku Fizyka z plusem cz. 2. Od redakcji Niniejszy zbiór zadań powstał z myślą o tych wszystkich, dla których rozwiązanie zadania z fizyki nie polega wyłącznie na mechanicznym przekształceniu wzorów i podstawieniu do nich danych.

Bardziej szczegółowo

Bazy danych. Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl www.uj.edu.pl/web/zpgk/materialy 9/15

Bazy danych. Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl www.uj.edu.pl/web/zpgk/materialy 9/15 Bazy danych Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl www.uj.edu.pl/web/zpgk/materialy 9/15 Przechowywanie danych Wykorzystanie systemu plików, dostępu do plików za pośrednictwem systemu operacyjnego

Bardziej szczegółowo

SPECYFIKACJA TECHNICZNA D.01.01.01 GEODEZYJNA OBSŁUGA BUDOWY

SPECYFIKACJA TECHNICZNA D.01.01.01 GEODEZYJNA OBSŁUGA BUDOWY GEODEZYJNA OBSŁUGA BUDOWY 1. Wstęp 1.1. Przedmiot ST. Przedmiotem niniejszej Specyfikacji Technicznej są wymagania dotyczące wykonania i odbioru robót związanych z geodezyjną obsługą w związku z wykonaniem

Bardziej szczegółowo

Temat: Czy świetlówki energooszczędne są oszczędne i sprzyjają ochronie środowiska? Imię i nazwisko

Temat: Czy świetlówki energooszczędne są oszczędne i sprzyjają ochronie środowiska? Imię i nazwisko Temat: Czy świetlówki energooszczędne są oszczędne i sprzyjają ochronie środowiska? Karta pracy III.. Imię i nazwisko klasa Celem nauki jest stawianie hipotez, a następnie ich weryfikacja, która w efekcie

Bardziej szczegółowo

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla pisz cego 1. Sprawd, czy arkusz zawiera 17 stron.. W zadaniach od 1. do 0. s podane 4 odpowiedzi:

Bardziej szczegółowo

Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu.

Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. pobrano z www.sqlmedia.pl Uk ad graficzny CKE 00 KOD Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. WPISUJE ZDAJ CY PESEL Miejsce na naklejk

Bardziej szczegółowo

Spis treści. Dokument pochodzi ze strony www.gwo.pl LICZBY NATURALNE I UŁAMKI

Spis treści. Dokument pochodzi ze strony www.gwo.pl LICZBY NATURALNE I UŁAMKI Spis treści LICZBY NATURALNE I UŁAMKI Działania na liczbach naturalnych i ułamkach dziesiętnych... 3 Potęgowanie liczb.. 8 Przykłady pierwiastków 12 Działania na ułamkach zwykłych... 13 Ułamki zwykłe i

Bardziej szczegółowo

KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów województwa lubuskiego 23 marca 2012 r. zawody III stopnia (finałowe)

KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów województwa lubuskiego 23 marca 2012 r. zawody III stopnia (finałowe) Pieczęć KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów województwa lubuskiego 23 marca 2012 r. zawody III stopnia (finałowe) Witamy Cię na trzecim etapie Konkursu Przedmiotowego z Fizyki i życzymy

Bardziej szczegółowo

Komentarz do prac egzaminacyjnych w zawodzie technik administracji 343[01] ETAP PRAKTYCZNY EGZAMINU POTWIERDZAJĄCEGO KWALIFIKACJE ZAWODOWE

Komentarz do prac egzaminacyjnych w zawodzie technik administracji 343[01] ETAP PRAKTYCZNY EGZAMINU POTWIERDZAJĄCEGO KWALIFIKACJE ZAWODOWE Komentarz do prac egzaminacyjnych w zawodzie technik administracji 343[01] ETAP PRAKTYCZNY EGZAMINU POTWIERDZAJĄCEGO KWALIFIKACJE ZAWODOWE OKE Kraków 2012 Zadanie egzaminacyjne zostało opracowane

Bardziej szczegółowo

ASD - ćwiczenia III. Dowodzenie poprawności programów iteracyjnych. Nieformalnie o poprawności programów:

ASD - ćwiczenia III. Dowodzenie poprawności programów iteracyjnych. Nieformalnie o poprawności programów: ASD - ćwiczenia III Dowodzenie poprawności programów iteracyjnych Nieformalnie o poprawności programów: poprawność częściowa jeżeli program zakończy działanie dla danych wejściowych spełniających założony

Bardziej szczegółowo

PRZYBLI ONE METODY ROZWI ZYWANIA RÓWNA

PRZYBLI ONE METODY ROZWI ZYWANIA RÓWNA PRZYBLI ONE METODY ROZWI ZYWANIA RÓWNA Metody kolejnych przybli e Twierdzenie. (Bolzano Cauchy ego) Metody kolejnych przybli e Je eli funkcja F(x) jest ci g a w przedziale domkni tym [a,b] i F(a) F(b)

Bardziej szczegółowo

Rys. 1. Rysunek do zadania testowego

Rys. 1. Rysunek do zadania testowego Test zaliczeniowy Zadanie testowe. Przeanalizuj rysunek 1., przedstawiający odwzorowanie pewnej sytuacji przestrzennej przy pomocy metody Monge a (rzutów prostokątnych na dwie wzajemnie prostopadłe rzutnie

Bardziej szczegółowo

Praca w grupie. UMIEJĘTNOŚCI: Kompetencje kluczowe w uczeniu się

Praca w grupie. UMIEJĘTNOŚCI: Kompetencje kluczowe w uczeniu się Praca w grupie 131 Praca w grupie jest jednym z założeń kompetencji zdolność uczenia się i zarazem jednym z aktualnych społecznie tematów. Chodzi o wymianę myśli i wzajemne uzupełnianie się w grupie oraz

Bardziej szczegółowo

Rozkład materiału klasa 1BW

Rozkład materiału klasa 1BW Rozkład materiału klasa BW wg podręcznika Matematyka kl. wyd. Nowa Era 2h x 38 tyg. = 76h lekcyjnych LICZBYRZECZYWISTE (7 godz.). Zapoznanie z programem nauczania, wymaganiami edukacyjnymi, zasadami BHP

Bardziej szczegółowo

Problemy optymalizacyjne - zastosowania

Problemy optymalizacyjne - zastosowania Problemy optymalizacyjne - zastosowania www.qed.pl/ai/nai2003 PLAN WYKŁADU Zło ono obliczeniowa - przypomnienie Problemy NP-zupełne klika jest NP-trudna inne problemy NP-trudne Inne zadania optymalizacyjne

Bardziej szczegółowo

Mapa umiejętności czytania, interpretacji i posługiwania się mapą Polski.

Mapa umiejętności czytania, interpretacji i posługiwania się mapą Polski. Mapa umiejętności czytania, interpretacji i posługiwania się mapą Polski. Uczeń: odczytuje z map informacje przedstawione za pomocą różnych metod kartograficznych Mapa i jej przeznaczenie Wybierając się

Bardziej szczegółowo

INFORMATYKA dla gimnazjum Opis założonych osiągnięć ucznia klasy trzeciej

INFORMATYKA dla gimnazjum Opis założonych osiągnięć ucznia klasy trzeciej INFORMATYKA dla gimnazjum Opis założonych osiągnięć ucznia klasy trzeciej W ROKU SZKOLNYM 2015/2016 1. Podstawa prawna do opracowania Przedmiotowego Systemu Oceniania. a) Rozporządzenie Ministra Edukacji

Bardziej szczegółowo

REGULAMIN RADY RODZICÓW SZKOŁY PODSTAWOWEJ NR 6 IM. ROMUALDA TRAUGUTTA W LUBLINIE. Postanowienia ogólne

REGULAMIN RADY RODZICÓW SZKOŁY PODSTAWOWEJ NR 6 IM. ROMUALDA TRAUGUTTA W LUBLINIE. Postanowienia ogólne REGULAMIN RADY RODZICÓW SZKOŁY PODSTAWOWEJ NR 6 IM. ROMUALDA TRAUGUTTA W LUBLINIE Postanowienia ogólne 1 Niniejszy Regulamin określa cele, zadania i organizację Rady Rodziców działającej w Szkole Podstawowej

Bardziej szczegółowo

Programowanie obrabiarek CNC. Nr H8

Programowanie obrabiarek CNC. Nr H8 1 Politechnika Poznańska Instytut Technologii Mechanicznej Laboratorium Programowanie obrabiarek CNC Nr H8 Programowanie obróbki 5-osiowej (3+2) w układzie sterowania itnc530 Opracował: Dr inż. Wojciech

Bardziej szczegółowo

14P2 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - II POZIOM PODSTAWOWY

14P2 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - II POZIOM PODSTAWOWY 14P2 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - II POZIOM PODSTAWOWY Ruch jednostajny po okręgu Pole grawitacyjne Rozwiązania zadań należy zapisać w wyznaczonych miejscach pod treścią zadania

Bardziej szczegółowo

PROGRAM ZAJĘĆ MATEMATYCZNYCH DLA UCZNIÓW Z DYSLEKSJĄ

PROGRAM ZAJĘĆ MATEMATYCZNYCH DLA UCZNIÓW Z DYSLEKSJĄ Nie wystarczy mieć rozum, trzeba jeszcze umieć z niego korzystać Kartezjusz Rozprawa o metodzie PROGRAM ZAJĘĆ MATEMATYCZNYCH DLA UCZNIÓW Z DYSLEKSJĄ II KLASA LICEUM OGÓLNOKSZTAŁCĄCE 1 Opracowała : Dorota

Bardziej szczegółowo

Promocja i identyfikacja wizualna projektów współfinansowanych ze środków Europejskiego Funduszu Społecznego

Promocja i identyfikacja wizualna projektów współfinansowanych ze środków Europejskiego Funduszu Społecznego Promocja i identyfikacja wizualna projektów współfinansowanych ze środków Europejskiego Funduszu Społecznego Białystok, 19 grudzień 2012 r. Seminarium współfinansowane ze środków Unii Europejskiej w ramach

Bardziej szczegółowo

P 0max. P max. = P max = 0; 9 20 = 18 W. U 2 0max. U 0max = q P 0max = p 18 2 = 6 V. D = T = U 0 = D E ; = 6

P 0max. P max. = P max = 0; 9 20 = 18 W. U 2 0max. U 0max = q P 0max = p 18 2 = 6 V. D = T = U 0 = D E ; = 6 XL OLIMPIADA WIEDZY TECHNICZNEJ Zawody II stopnia Rozwi zania zada dla grupy elektryczno-elektronicznej Rozwi zanie zadania 1 Sprawno przekszta tnika jest r wna P 0ma a Maksymaln moc odbiornika mo na zatem

Bardziej szczegółowo

Matematyka z plusem dla szkoły ponadgimnazjalnej ROZKŁAD MATERIAŁU DLA KLASY II

Matematyka z plusem dla szkoły ponadgimnazjalnej ROZKŁAD MATERIAŁU DLA KLASY II 1 ZAŁOśENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE II (zakres podstawowy z rozszerzeniem) Program nauczania: Matematyka z plusem, numer dopuszczenia DKW-4015-37/01. Liczba godzin nauki

Bardziej szczegółowo

KLAUZULE ARBITRAŻOWE

KLAUZULE ARBITRAŻOWE KLAUZULE ARBITRAŻOWE KLAUZULE arbitrażowe ICC Zalecane jest, aby strony chcące w swych kontraktach zawrzeć odniesienie do arbitrażu ICC, skorzystały ze standardowych klauzul, wskazanych poniżej. Standardowa

Bardziej szczegółowo

Podstawy programowania

Podstawy programowania Podstawy programowania Elementy algorytmiki C w środowisku.e (C#) dr inŝ. Grzegorz Zych Copernicanum, pok. 104 lub 206a 1 Minimum programowe reści kształcenia: Pojęcie algorytmu. Podstawowe konstrukcje

Bardziej szczegółowo

Funkcja liniowa -zadania. Funkcja liniowa jest to funkcja postaci y = ax + b dla x R gdzie a, b R oraz

Funkcja liniowa -zadania. Funkcja liniowa jest to funkcja postaci y = ax + b dla x R gdzie a, b R oraz Funkcja liniowa jest to funkcja postaci y = ax + b dla x R gdzie a, b R oraz x argumenty funkcji y wartości funkcji a współczynnik kierunkowy prostej ( a = tg, gdzie osi OX) - kąt nachylenia wykresu funkcji

Bardziej szczegółowo

Rozdział 6. Pakowanie plecaka. 6.1 Postawienie problemu

Rozdział 6. Pakowanie plecaka. 6.1 Postawienie problemu Rozdział 6 Pakowanie plecaka 6.1 Postawienie problemu Jak zauważyliśmy, szyfry oparte na rachunku macierzowym nie są przerażająco trudne do złamania. Zdecydowanie trudniejszy jest kryptosystem oparty na

Bardziej szczegółowo

Przedmiotowe zasady oceniania. zgodne z Wewnątrzszkolnymi Zasadami Oceniania. obowiązującymi w XLIV Liceum Ogólnokształcącym.

Przedmiotowe zasady oceniania. zgodne z Wewnątrzszkolnymi Zasadami Oceniania. obowiązującymi w XLIV Liceum Ogólnokształcącym. Przedmiotowe zasady oceniania zgodne z Wewnątrzszkolnymi Zasadami Oceniania obowiązującymi w XLIV Liceum Ogólnokształcącym. Przedmiot: biologia Nauczyciel przedmiotu: Anna Jasztal, Anna Woch 1. Formy sprawdzania

Bardziej szczegółowo

Matematyka z plusem dla szkoły ponadgimnazjalnej

Matematyka z plusem dla szkoły ponadgimnazjalnej 1 ZAŁOŻENIA DO PLANU REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy) Program nauczania: Matematyka z plusem, numer dopuszczenia DKW-4015-37/01. Liczba godzin nauki w tygodniu:

Bardziej szczegółowo

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla pisz cego 1. Sprawd, czy arkusz zawiera 17 stron.. W zadaniach od 1. do 0. s podane 4 odpowiedzi:

Bardziej szczegółowo

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Przedmiot: Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Nr ćwiczenia: 2 Temat: Problem transportowy Cel ćwiczenia: Nabycie umiejętności formułowania zagadnienia transportowego

Bardziej szczegółowo

Wyznaczanie współczynnika sprężystości sprężyn i ich układów

Wyznaczanie współczynnika sprężystości sprężyn i ich układów Ćwiczenie 63 Wyznaczanie współczynnika sprężystości sprężyn i ich układów 63.1. Zasada ćwiczenia W ćwiczeniu określa się współczynnik sprężystości pojedynczych sprężyn i ich układów, mierząc wydłużenie

Bardziej szczegółowo

Joanna Kisielińska Szkoła Główna Gospodarstwa Wiejskiego w Warszawie

Joanna Kisielińska Szkoła Główna Gospodarstwa Wiejskiego w Warszawie 1 DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 2007 w Toruniu Katedra Ekonometrii i Statystyki, Uniwersytet Mikołaja Kopernika w Toruniu Joanna Kisielińska Szkoła Główna

Bardziej szczegółowo

FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH

FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH PROPORCJONALNOŚĆ PROSTA Proporcjonalnością prostą nazywamy zależność między dwoma wielkościami zmiennymi x i y, określoną wzorem: y = a x Gdzie a jest

Bardziej szczegółowo

Wykªad 4. Funkcje wielu zmiennych.

Wykªad 4. Funkcje wielu zmiennych. Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 4. Funkcje wielu zmiennych. Zbiory na pªaszczy¹nie i w przestrzeni.

Bardziej szczegółowo

W tym elemencie większość zdających nie zapisywała za pomocą równania reakcji procesu zobojętniania tlenku sodu mianowanym roztworem kwasu solnego.

W tym elemencie większość zdających nie zapisywała za pomocą równania reakcji procesu zobojętniania tlenku sodu mianowanym roztworem kwasu solnego. W tym elemencie większość zdających nie zapisywała za pomocą równania reakcji procesu zobojętniania tlenku sodu mianowanym roztworem kwasu solnego. Ad. IV. Wykaz prac według kolejności ich wykonania. Ten

Bardziej szczegółowo