Logika, teoria zbiorów i wartość bezwzględna
|
|
- Sylwia Nowacka
- 5 lat temu
- Przeglądów:
Transkrypt
1 Logika, teoria zbiorów i wartość bezwzględna Zadanie 1 Które z podanych wyrażeń są zdaniami logicznymi? a) Na Księżycu żyją istoty rozumne. b) Janek idzie do szkoły. c)wroku2000wpolscebędzie 50mln.mieszkańców. d) Wieloryb jest rybą. e)proste aibsąrównoległe. f) 2+2 = 5. g) x+3 = 2. h)idźpozakupy. i) Kwadrat dowolnej liczby rzeczywistej jest liczbą nieujemną. j)dlakażdejwartości x Rzachodzi x+2 = 5. Zadanie 2 Oceń wartość logiczną zdań: a) 5 jest liczbą pierwszą. b) sin45 = 2 2. c) π jest liczbą wymierną. d) Każde zdanie logiczne jest prawdziwe. e) Istnieją dwie kolejne liczby naturalne będące liczbami pierwszymi. Zadanie 3 Używajączdań p,q,r,sorazspójników,,zapisz dwa zdania złożone prawdziwe i dwa zdania złożone fałszywe. p : q : = 11 4 r : = 16 s : 81 = 3 Następniewśródzdań p,q,r,swskażteparyzdań, dla których: a) prawdziwa jest zarówno ich koniunkcja, jak i alternatywa; b) prawdziwa jest ich alternatywa, ale nie jest prawdziwa ich koniunkcja; c) prawdziwa jest ich koniunkcja, ale nie jest prawdziwa ich alternatywa. Zadanie 4 Zezdań p,q,r,szzadaniapoprzedniegozapiszzdania: a) (p q) r b) p (q r) i oceń ich wartość logiczną. Zadanie 5 Oceń wartość logiczną koniunkcji: a) 2jestliczbąparzystąi2jestliczbąpierwszą, b) 2jestliczbądodatniąi 2jestliczbąniewymierną, c) 5 > 0i5 < 4, d) prosta jest figurą geometryczną i figurą ograniczoną, e) Warszawa jest stolicą Polski i Kraków jest stolicą Polski. Zadanie 6 Oceń wartość logiczną alternatywy: a)2 > 5lub 2 < 5, b) Romb jest kwadratem lub romb jest czworokątem, c) 3 jest liczbą parzystą lub nieparzystą, d) 3 < 2lubrównoległobokjestokręgiem. Zadanie 7 Oceń prawdziwość poniższych implikacji. Które ze zdań po zastąpieniu symbolu implikacji ( ) symbolem równoważności ( ) jest zdaniem prawdziwym? a) c) b) d) Zadanie 8 Oceń wartość logiczną zdań: a) 3 < 2iWarszawajeststolicąPolski, b) 3 < 2lubWarszawajeststolicąPolski, c)jeżeli 3 < 2,toWarszawajeststolicąPolski, d) 3 < 2wtedyitylkowtedy,gdyZiemiajestplanetą, e)jeżeli 2 < 20,to 3 > 4, f)jeżelijestemchory,to 2 2 = 4, g)jeżeliidę,to 2 2 = 5, h)jeżeli 2 5 = 12,to 2 5 = 10. Zadanie 9
2 wyrażeń są prawami logicznymi: a) p (p q) b) (p q) p c) (p q) q d) [(p q) q] p e) (p q) ( p) ( q) f) (p q) ( p) ( q) Zadanie 10 wyrażeń są tautologiami: a) (q r) (p q) b) (p q) r (p r) c) (p q) (p q) d) [p (q p)] q e) [(p q) (q r)] (p r) Zadanie 11 wyrażeń są prawami logicznymi: a) ( p q) (p q) b) [(p r) (r q)] (p q) c) (p q) ( q p) d) [(p q) (p q)] (q p) e) (p q) ( p) ( q) f) (p q) (p q) g) [p p] q h) p (q r) (p q) (p r) i) (p p) p j) (p q) p q k) p (q r) (p q) (p r) Zadanie 12 Stosując prawa de Morgana napisz zaprzeczenie zdań: a) p (q r) np. [p (q r)] p (q r) ( p) ( q) ( r) b) p (q r) c) (p q) r d) (p q) r e) p (q r) f) (p q) (r s) g) p (q r s) Zadanie 13 Uzupełnij zapisy tak, aby otrzymać zdania prawdziwe: a) a b = 0 a = 0 b = 0 (a b) = 0... b) x = 1... x = 1... c) (x+1)(x 2) > 0... [(x+1)(x 2) > 0]... d) 1 < x < 4... (1 < x < 4)... UWAGA: Przykład c to nierówność kwadratowa. Zadanie 14 Którymi z poniższych funkcji zdaniowych można uzupełnić implikację: x > 2... tak, aby była ona prawdziwa dla wszystkich liczb rzeczywistych? A : x 2 +8 = 0 B : x 2 > 4 C : x = 3 D : x 2 > 0 Zadanie 15 Uzupełnij zapisy tak, aby otrzymać zdania prawdziwe: a) x A B... (x A B)... b) x A\B... (x A\B)... c) x A B... (x A B)... Zadanie 16 A i B oznaczają zbiory niepuste. Jaki jest związek między tymi zbiorami, jeśli: a) (A B) B b) A B = B c) A B = B d) A (A B) e) A (A\B)? Zadanie 17 Udowodnij podane prawa algebry zbiorów: a) A (A B) = A b) (A B) B = B c) B (A\B) = A B d) [A (A B)] B = A B e) A\B = A\(A B) f) A\B = (A B)\B g) (A\B) (B \A) = (A B)\(A B) h) A (B \C) = (A B)\C i) (A B)\C = (A\C) (B \C) j) A (B C) = (A B) (A C)
3 k) A\(B C) = (A\B) (A\C) l) A\(B C) = (A\B) (A\C) m) A (B C) = (A B) (A C) Zadanie 18 Naszkicujdiagramydlazbiorów: (A B), (A B), A B, A B.Naichpodstawiesformułuj odpowiednie prawa rachunku zbiorów. Zadanie 19 Wyznaczizaznacznaosizbiór A = R\A,gdy: a) A = 4,2) d) A = {1,2,3} b) A = (1,2) (3,4) e) A = R\{0} c) A = (,1) {4} f) A = Zadanie 20 Wyznaczzbiory A,B i A B,gdy: a) A = ( 3,0), B = 1 2,3 b) A = 4,4, B = ( 2,2) c) A = (, 3) (3, ), B = 4,4 d) A = (,0) (1,5), B = ( 5, 1) (0, ) Zadanie 21 Zapiszjakosumyprzedziałówzbiory C 2 i C 3. Rysunek przedstawia kolejne etapy konstrukcji zaproponowanej przez Georga Cantora ( ). Zaczynamy od odcinka jednostkowego i na każdym kolejnym etapie usuwamy środkową trzecią część odcinków z poprzedniego etapu. Stąd np. C 0 C 1 C 2 C 3 C 4 C 5 C 1 = Zadanie 22 Wyznacz zbiory: 0, , a) N IW(IW-zbiórliczbniewymiernych) b) C IW c) N W d) N\W e) W\C f) R\{0} g) R + \{0} h) R\W i) W R j) R + R Zadanie 23 Wyznacz wszystkie elementy zbiorów: a) A = {x : x = 2 x C} b) B = {x : x = 3 x N} c) D = {x : x > 2 x < 10 x N} d) E = {x : x < x C} Zadanie 24 Mając dane zbiory: a) A = {x N; x 3} i B = {x C; x < 7} b) A = {x C; x 5} i B = {x N; x < 10} Znajdź A B, A B, B \AiA\B. Zadanie 25 Wyznaczzbiory A B, A Bi A\B,jeżeli: a) A = 3;2 i B = (0;4) b) A = 3;2 i B = (3;6) c) A = 3;2 i B = 1;1 d) A = 3;2 i B = 2;+ ) Zadanie 26 Wyznaczzbiory A B, A B, B\AiA\B,jeżeli: a) A = 1;2) i B = (0;3) b) A = ( 5;3 i B = 0;4) c) A = 1;2 i B = 1 2 ;13 4 d) A = ( 4;1 i B = (0;+ ) Zadanie 27 Przestrzeniąjest R.Danesąprzedziały A = 2;4 i B = 3;5.Wyznaczzbiory: a) (A B) b) A B c) (A\B) d) A B e) A B f) (A B) g) A \B h) A \B Zadanie 28 Rozwiąż równania i nierówności:: a) x = 1 b) x = 2
4 c) x = 0 d) x < 4 d) x < 0 e) x < 1 f) x 9 g) x 7 h) x 0 i) x > 3 j) x > 0 k) x > 2 l) x 8 m) x 5 n) x 0 Zadanie 29 Wyznacz zbiór liczb spełniających obie nierówności jednocześnie: a) x > 1 x 9 b) x 1 7 x < 7 c) x 1 4 x < 1 2 d) x 1 2 x < 1 2 Zadanie 30 Rozwiąż równania: a) x 4 = 8 b) 3 x 2 x 2 = 2 c) x 1 +3 x 1 = 6 d) x+4 = 1 e) x+1 = 2 f) x+3 +6 = 2 g) x 4 = 8 h) x 2 = 2 i) x 1 +3 = 6 Zadanie 31 a) x 1 < 3 b) x+2 4 c) 3 x+1 < 3+2 x+1 d) x x+2 e) x 1 < 3 f) x 3 > 1 g) x+4 5 h) 3 x 2 > 4+2 x 2 i) 2 x x 3 j) x+2 1 > 3 k) x +2 4 l) x 2 3 < 3 Zadanie 32 Dla jakich liczb(par liczb) prawdziwe są równości: a) x +5 = x+5 b) x y = xy c) x y = 0 d) 2x+1 = 1 e) 3 x = 4 f) x + x+1 = 3? Zadanie 33 Uprość wyrażenia: a) x+ 1 x +2 x 2,gdy 1 < x < 2 b) x + x+1 + x 2,gdy x < 1 c) x 1 + x x x+1,gdy x < 2 Zadanie 34 Z definicji pierwiastka arytmetycznego wynika, że: x2 = x. Korzystając z tego wzoru uprość: a) x 2 +x b) (x 5) 2 + x 2 a c) 2 b,gdy b 0 2 d) x 2 6x+9+x Zadanie 35 Zapisz w prostszej postaci: a) 9a 2 b) 0,16a 2 y 2 c) 9a 2 b 2 25x 4 y 2 d) 1,44a 8 b 12 c 4
5 e) a 2 +4b 2 +4ab f) a 2 2ab+b 2 Zadanie 36 Zapisz podane wyrażenia bez znaku wrtości bezwzględnej: a) m 2 b) m n,gdy m < n c) m n,gdy m > n d) m,gdy m < 0 Zadanie 37 Jakiewartościprzyjmujewyrażenie x x? Zadanie 38 Do jakiego przedziału liczbowego należy x, jeśli: a) x 3 = x 3 b) x+2 = x 2 c) 2x 6 = 6 2x d) (x 4) 2 = x 4? Zadanie 39 Wykaż, że dla każdej pary liczb rzeczywistych prawdziwe są związki: a) xy = x y b) x+y x + y c) x y x + y d) y 0 = x x y Zadanie 40 Rozwiąż równania: a) 2x+ x 1 = 2 b) 2x 2 + x = 1 c) x 2 x = x 1 d) x+ x 1 = 1 y e) (2x 1) x 1 = x f) x 1 + x 2 + x+1 + x+2 = 6 g) x 1 + x 2 = x UWAGA:Przykłady: b,c,etorównaniakwadratowe. Zadanie 41 a) x +x < 4 b) 5x > x 5 +1 c) x+3 x 1 d) x+ x+3 1 x e) 2x+7+ x 1 > 3 x f) x 1 + x+2 + x+1 x Zadanie 42 a) 4x 2 3 b) x 2 6x+9 3 c) x+4 + x 2 +8x+16 1 Zadanie 43 Rozwiąż równania i nierówności z wartością bezwzględną: a) x + x+1 + x+2 = 3 b) x + x+2 + 2x+2 = 4 c) 1 x = x+2 d) 2x x 3 = x 2 e) x 1 = 2 f) x 1 2 = 3 g) x = 5 h) x 2 +3x 2 < x 2 +2x 1 i) x 3 x > x 2 1 j) x 2 +4x+4+ x 2 +2x+1 x+3 k) x+2 + 2x+4 + x 2 +4x+4 8 l) x+3 + x+2 x +x+3 m) x+1 + x +2 x 1 9 n) x + x+1 + x+2 = 3 o) x + x+2 + 2x+2 = 4 p) 1 x = x+2 r) 2x x 3 = x 2 s) x 1 = 1 t) x 1 1 = 1 u) x = 1 w) x 2 +3x 2 = x 2 +2x 1 v) x 3 x = x 2 1 x) x+2 + 2x+4 + x 2 +4x+4 8 y) x+3 + x+2 x +x+3 z) x+1 + x +2 x 1 9 UWAGA: Zadanie zawiera przykłady równań i nierówności wielomianowych oraz wymiernych. Zadanie 44 Zaznacz na płaszczyźnie zbiór: a) A = {(x,y) R 2 : x < 4 y 2} b) B = {(x,y) R 2 : x y y < 2}
Elementy logiki. Zdania proste i złożone
Elementy logiki Zdania proste i złożone. Jaka jest wartość logiczna następujących zdań: (a) jest dzielnikiem 7 lub suma kątów wewnętrznych w trójkącie jest równa 80. (b) Jeśli sin 0 =, to 5 < 5. (c) Równanie
Pytania i polecenia podstawowe
Pytania i polecenia podstawowe Liczby zespolone a) 2 i 1 + 2i 1 + 2i 3 + 4i, c) 1 i 2 + i a) 4 + 3i (2 i) 2, c) 1 3i a) i 111 (1 + i) 100, c) ( 3 i) 100 Czy dla dowolnych liczb z 1, z 2 C zachodzi równość:
LOGIKA MATEMATYCZNA. Poziom podstawowy. Zadanie 2 (4 pkt.) Jeśli liczbę 3 wstawisz w miejsce x, to które zdanie będzie prawdziwe:
LOGIKA MATEMATYCZNA Poziom podstawowy Zadanie ( pkt.) Która koniunkcja jest prawdziwa: a) Liczba 6 jest niewymierna i 6 jest liczbą dodatnią. b) Liczba 0 jest wymierna i 0 jest najmniejszą liczbą całkowitą.
Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria
Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć
WSTĘP DO ANALIZY I ALGEBRY, MAT1460
WSTĘP DO ANALIZY I ALGEBRY, MAT460 Listy zadań Literatura polecana. M.Gewert, Z.Skoczylas Wstęp do analizy i algebry. Teoria,przykłady,zadania.,Oficyna Wydawnicza GiS, Wrocław 04.. D.Zakrzewska, M.Zakrzewski,
Teoria. a, jeśli a < 0.
Teoria Definicja 1 Wartością bezwzględną liczby a R nazywamy liczbę a określoną wzorem a, jeśli a 0, a = a, jeśli a < 0 Zgodnie z powyższym określeniem liczba a jest równa odległości liczby a od liczby
1 Logika. 1. Udowodnij prawa logiczne: 3. (p q) (p q) 2. (p q) ( q p) 2. Sprawdź, czy wyrażenie ((p q) r) (p (q r)) jest tautologią.
Logika. Udowodnij prawa logiczne:. (p q) ( p q). (p q) ( q p) 3. (p q) (p q). Sprawdź czy wyrażenie ((p q) r) (p (q r)) jest tautologią. 3. Zad 3. Sprawdź czy zdanie: Jeżeli liczba a dzieli się przez i
Matura 2011 maj. Zadanie 1. (1 pkt) Wskaż nierówność, którą spełnia liczba π A. x + 1 > 5 B. x 1 < 2 C. x D. x 1 3 3
Matura 2011 maj Zadanie 1. (1 pkt) Wskaż nierówność, którą spełnia liczba π A. x + 1 > 5 B. x 1 < 2 C. x + 2 3 4 D. x 1 3 3 Zadanie 2. (1 pkt) Pierwsza rata, która stanowi 9% ceny roweru, jest równa 189
LOGIKA I TEORIA ZBIORÓW
LOGIKA I TEORIA ZBIORÓW Logika Logika jest nauką zajmującą się zdaniami Z punktu widzenia logiki istotne jest, czy dane zdanie jest prawdziwe, czy nie Nie jest natomiast istotne o czym to zdanie mówi Definicja
LI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 3 kwietnia 2000 r. (pierwszy dzień zawodów)
LI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 3 kwietnia 2000 r. (pierwszy dzień zawodów) Zadanie 1. Dana jest liczba całkowita n 2. Wyznaczyć liczbę rozwiązań (x 1,x
KLASA I LO Poziom podstawowy (wrzesień)
(wrzesień) 1. Liczby rzeczywiste. Uczeń: 1) przedstawia liczby rzeczywiste w różnych postaciach (np. ułamka zwykłego, ułamka dziesiętnego okresowego, z użyciem symboli pierwiastków, potęg); 2) oblicza
1. Równania i nierówności liniowe
Równania i nierówności liniowe Wykonać działanie: Rozwiązać równanie: ( +x + ) x a) 5x 5x+ 5 = 50 x 0 b) 6(x + x + ) = (x + ) (x ) c) x 0x (0 x) 56 = 6x 5 5 ( x) Rozwiązać równanie: a) x + x = 4 b) x x
Funkcja kwadratowa. f(x) = ax 2 + bx + c = a
Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax, a R \ {0}.
Uniwersytet Mikołaja Kopernika w Toruniu. Egzamin wstępny z matematyki
Uniwersytet Mikołaja Kopernika w Toruniu Egzamin wstępny z matematyki lipca 2006 roku Zestaw I wariant A Czas trwania egzaminu: 240 minut 1. Dane są zbiory liczbowe A = {x; x R x < 2}, B = {x; x R x +
Elementy rachunku zdań i algebry zbiorów
Rozdział 1. Elementy rachunku zdań i algebry zbiorów 1.1. Zdania Przez α, β będziemy oznaczać zdania. Każdemu zdaniu możemy przyporządkować wartość logiczną 1, gdy jest prawdziwe oraz wartość logiczną
Zestaw VI. Zadanie 1. (1 pkt) Wskaż nierówność, którą spełnia liczba π A. (x + 1) 2 > 18 B. (x 1) 2 < 5 C. (x + 4) 2 < 50 D.
Zestaw VI Zadanie. ( pkt) Wskaż nierówność, którą spełnia liczba π A. (x + ) 2 > 8 B. (x ) 2 < C. (x + 4) 2 < 0 D. (x 2 )2 8 Zadanie 2. ( pkt) Pierwsza rata, która stanowi 8% ceny roweru, jest równa 92
(g) (p q) [(p q) p]; (h) p [( p q) ( p q)]; (i) [p ( p q)]; (j) p [( q q) r]; (k) [(p q) (q p)] (p q); (l) [(p q) (r s)] [(p s) (q r)];
Logika 1. Czy następujące sformułowania są zdaniami: (a) Wszystkie koty w Polsce są czarne. (b) Jak to udowodnić? (c) x + y = 7. (d) Jeśli x 2 = y 2, to x = y. (e) Jeśli x = y, to x 2 = y 2. (f) 2 n +
Jest to zasadniczo powtórka ze szkoły średniej, być może z niektórymi rzeczami nowymi.
Logika Jest to zasadniczo powtórka ze szkoły średniej, być może z niektórymi rzeczami nowymi. Często słowu "logika" nadaje się szersze znaczenie niż temu o czym będzie poniżej: np. mówi się "logiczne myślenie"
Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas II w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze
Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas II w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze I. Funkcja i jej własności POZIOM PODSTAWOWY Pojęcie
Logika i teoria mnogości Ćwiczenia
Logika i teoria mnogości Ćwiczenia Spis treści 1 Zdania logiczne i tautologie 1 2 Algebra zbiorów 3 3 Różnica symetryczna 4 4 Iloczyn kartezjański. Kwantyfikatory. 5 5 Kwantyfikatory. 6 6 Relacje 7 7 Relacje
ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna
Arkusz A04 2 Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Liczba π spełnia nierówność: A. + 1 > 5 B. 1 < 2 C. + 2 3 4
EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015
EGZAMIN MATURALNY W ROKU SZKOLNYM 0/0 FORMUŁA OD 0 ( NOWA MATURA ) MATEMATYKA POZIOM PODSTAWOWY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MMA-P CZERWIEC 0 Egzamin maturalny z matematyki nowa formuła Klucz
1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia.
1. Elementy logiki i algebry zbiorów 1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia. Funkcje zdaniowe. Zdania z kwantyfikatorami oraz ich zaprzeczenia.
Repetytorium z matematyki ćwiczenia
Spis treści 1 Liczby rzeczywiste 1 2 Geometria analityczna. Prosta w układzie kartezjańskim Oxy 4 3 Krzywe drugiego stopnia na płaszczyźnie kartezjańskiej 6 4 Dziedzina i wartości funkcji 8 5 Funkcja liniowa
0.1. Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek zdań.
Wykłady z Analizy rzeczywistej i zespolonej w Matematyce stosowanej Wykład ELEMENTY LOGIKI ALGEBRA BOOLE A Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek
Podstawy logiki i teorii zbiorów Ćwiczenia
Podstawy logiki i teorii zbiorów Ćwiczenia Spis treści 1 Zdania logiczne i tautologie 1 2 Zdania logiczne i tautologie c.d. 2 3 Algebra zbiorów 3 4 Różnica symetryczna 4 5 Kwantyfikatory. 5 6 Relacje 7
Przykłady zdań w matematyce. Jeśli a 2 + b 2 = c 2, to trójkąt o bokach długości a, b, c jest prostokątny (a, b, c oznaczają dane liczby dodatnie),
Elementy logiki 1 Przykłady zdań w matematyce Zdania prawdziwe: 1 3 + 1 6 = 1 2, 3 6, 2 Q, Jeśli x = 1, to x 2 = 1 (x oznacza daną liczbę rzeczywistą), Jeśli a 2 + b 2 = c 2, to trójkąt o bokach długości
I Liceum Ogólnokształcące w Warszawie
I Liceum Ogólnokształcące w Warszawie.. Imię i Nazwisko... Klasa... Liczba uzyskanych punktów PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI... Wynik procentowy... Ocena szkolna POZIOM ROZSZERZONY 1. Sprawdź, czy
Matematyka rozszerzona matura 2017
Matematyka rozszerzona matura 017 Zadanie 1 Liczba ( 3 + 3) jest równa A. B. 4 C. 3 D. 3 ( 3 + 3) = 3 ( 3)( + 3) + + 3 = A. 3 4 3 + + 3 = 4 1 = 4 = Zadanie. Nieskończony ciąg liczbowy jest określony wzorem
Definicja i własności wartości bezwzględnej.
Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności
LOGIKA MATEMATYCZNA, ZBIORY, LICZBY RZECZYWISTE
LOGIKA MATEMATYCZNA, ZBIORY, LICZBY RZECZYWISTE POJĘCIE PIERWOTNE, AKSJOMAT, TWIERDZENIE Pojęcie pierwotne jest to pojęcie, którego nie definiujemy, a mimo to przyjmujemy za oczywiste np.: liczba, punkt,
Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 2015/16) Wykaz zakładanych osiągnięć ucznia klasy I liceum
Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 05/6) Wykaz zakładanych osiągnięć ucznia klasy I liceum (osiągnięcia ucznia w zakresie podstawowym) I. Liczby rzeczywiste. Język
Roger Bacon Def. Def. Def. Funktory zdaniotwórcze
Kto lekceważy osiągnięcia matematyki przynosi szkodę całej nauce, ponieważ ten, kto nie zna matematyki, nie może poznad innych nauk ścisłych i nie może poznad świata." Roger Bacon Def. Zdaniem logicznym
ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna
Arkusz A01 2 Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Liczba log 1 3 3 27 jest równa:
Indukcja matematyczna
Indukcja matematyczna Zadanie. Zapisać, używając symboli i, następujące wyrażenia (a) n!; (b) sin() + sin() sin() +... + sin() sin()... sin(n); (c) ( + )( + /)( + / + /)... ( + / + / +... + /R). Zadanie.
Jarosław Wróblewski Matematyka Elementarna, zima 2012/13
Poniedziałek 12 listopada 2012 - zaczynamy od omówienia zadań z kolokwium nr 1. Wtorek 13 listopada 2012 - odbywają się zajęcia czwartkowe. 79. Uprościć wyrażenia a) 4 2+log 27 b) log 3 2 log 59 c) log
Lista 1 (elementy logiki)
Podstawy nauczania matematyki 1. Zdanie Lista 1 (elementy logiki) EE I rok W logice zdaniem logicznym nazywamy wyrażenie oznajmujące o którym można powiedzieć że jest prawdziwe lub fałszywe. Zdania z reguły
I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych.
I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych. 1. Elementy logiki matematycznej. 1.1. Rachunek zdań. Definicja 1.1. Zdaniem logicznym nazywamy zdanie gramatyczne
Funkcja kwadratowa. f(x) = ax 2 + bx + c,
Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \
ZADANIA DO SAMODZIELNEGO ROZWIĄZNIA. oprac. I. Gorgol
ZADANIA DO SAMODZIELNEGO ROZWIĄZNIA oprac. I. Gorgol Spis treści. Elementy logiki. Elementy rachunku zbiorów 4. Funkcje zdaniowe i kwantyfikatory. 4 4. Funkcja złożona i odwrotna 6 5. Granica ciągu liczbowego
Kryteria oceniania z matematyki zakres podstawowy Klasa I
Kryteria oceniania z matematyki zakres podstawowy Klasa I zakres Dopuszczający Dostateczny Dobry bardzo dobry Zdanie logiczne ( proste i złożone i forma zdaniowa oraz prawa logiczne dotyczące alternatywy,
Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.
ZADANIA ZAMKNIĘTE W zadaniach -5 wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź. Zadanie. ( pkt) Wskaż rysunek, na którym zaznaczony jest zbiór wszystkich liczb rzeczywistych spełniających nierówność
Wstęp do matematyki listy zadań
Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu w dziedzinach matematyczno-przyrodniczych realizowany w ramach Poddziałania 4.1.1 Programu Operacyjnego Kapitał Ludzki Wstęp do matematyki
1. DZIAŁANIA NA UŁAMKACH, POTĘGACH I PIERWIASTKACH Zad.1 Oblicz: d) + e) (0,15+(-1,15)) 3. g) 15 (45,2 : 12 30 : 6 )- 1 7 36.
Zestaw zadań na ocenę dopuszczającą z matematyki po klasie - ZSP w Żelechowie Opracowała A. Lasocka. DZIAŁANIA NA UŁAMKACH, POTĘGACH I PIERWIASTKACH Zad. Oblicz: + - + - + e + 0 Zad. Oblicz: 9 + 0 : 9
Jarosław Wróblewski Matematyka Elementarna, lato 2012/13. Czwartek 28 marca zaczynamy od omówienia zadań z kolokwium nr 1.
Czwartek 28 marca 2013 - zaczynamy od omówienia zadań z kolokwium nr 1. 122. Uprościć wyrażenia a) 4 2+log 27 b) log 3 2 log 59 c) log 6 2+log 36 9 123. Dla ilu trójek liczb rzeczywistych dodatnich a,
Roger Bacon Def. Def. Def Funktory zdaniotwórcze
Kto lekceważy osiągnięcia matematyki przynosi szkodę całej nauce, ponieważ ten, kto nie zna matematyki, nie może poznad innych nauk ścisłych i nie może poznad świata." Roger Bacon Def. Zdaniem logicznym
XVI Warmińsko-Mazurskie Zawody Matematyczne Eliminacje cykl grudniowy Poziom: szkoły ponadgimnazjalne
XVI Warmińsko-Mazurskie Zawody Matematyczne Eliminacje cykl grudniowy Poziom: szkoły ponadgimnazjalne Zadanie. 4 Rozwiąż równanie 07 sin( ). Wiadomo, że: wyrażenie 4 przyjmuje wartości nieujemne dla każdego
Logika i teoria mnogości Ćwiczenia
Logika i teoria mnogości Ćwiczenia Spis treści 1 Zdania logiczne i tautologie 1 2 Zdania logiczne i tautologie c.d. 2 3 Algebra zbiorów 3 4 Różnica symetryczna 4 5 Iloczyn kartezjański 5 6 Kwantyfikatory.
PRZYKŁADOWE ZADANIA Z MATEMATYKI NA POZIOMIE PODSTAWOWYM
PRZYKŁADOWE ZADANIA Z MATEMATYKI NA POZIOMIE PODSTAWOWYM Zad.1. (0-1) Liczba 3 8 3 3 9 2 A. 3 3 Zad.2. (0-1) jest równa: Liczba log24 jest równa: B. 3 32 9 C. 3 4 D. 3 5 A. 2log2 + log20 B. log6 + 2log2
MATEMATYKA WYDZIAŁ MATEMATYKI - TEST 1
Wszelkie prawa zastrzeżone. Rozpowszechnianie, wypożyczanie i powielanie niniejszych testów w jakiejkolwiek formie surowo zabronione. W przypadku złamania zakazu mają zastosowanie przepisy dotyczące naruszenia
EGZAMIN MATURALNY Z MATEMATYKI
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 2015 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY DATA: 8
1 Logika (3h) 1.1 Funkcje logiczne. 1.2 Kwantyfikatory. 1. Udowodnij prawa logiczne: 5. (p q) (p q) 6. ((p q) r) (p (q r)) 3.
Logika (3h). Udowodnij prawa logiczne:. (p q) ( p q). (p q) ( p q) 3. (p q) ( q p) 4. (p q) ( p q) 5. (p q) (p q) 6. ((p q) r) (p (q r)) 7. (p q) r (p r) (q r) 8. (p q) (q r) (p r). Sprawdź, czy wyrażenia:.
Matematyka liczby zespolone. Wykład 1
Matematyka liczby zespolone Wykład 1 Siedlce 5.10.015 Liczby rzeczywiste Zbiór N ={0,1,,3,4,5, } nazywamy zbiorem Liczb naturalnych, a zbiór N + ={1,,3,4, } nazywamy zbiorem liczb naturalnych dodatnich.
Zadania egzaminacyjne
Rozdział 13 Zadania egzaminacyjne Egzamin z algebry liniowej AiR termin I 03022011 Zadanie 1 Wyznacz sumę rozwiązań równania: (8z + 1 i 2 2 7 iz 4 = 0 Zadanie 2 Niech u 0 = (1, 2, 1 Rozważmy odwzorowanie
1. Liczby zespolone i
Zadania podstawowe Liczby zespolone Zadanie Podać część rzeczywistą i urojoną następujących liczb zespolonych: z = ( + 7i)( + i) + ( 5 i)( + 7i), z = + i, z = + i i, z 4 = i + i + i i Zadanie Dla jakich
Zasada indukcji matematycznej
Zasada indukcji matematycznej Twierdzenie 1 (Zasada indukcji matematycznej). Niech ϕ(n) będzie formą zdaniową zmiennej n N 0. Załóżmy, że istnieje n 0 N 0 takie, że 1. ϕ(n 0 ) jest zdaniem prawdziwym,.
EGZAMIN MATURALNY Z MATEMATYKI
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 2015 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY DATA: 8
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 7 KWIETNIA 01 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT.) 1 Odwrotnościa liczby
( ) Arkusz I Zadanie 1. Wartość bezwzględna Rozwiąż równanie. Naszkicujmy wykresy funkcji f ( x) = x + 3 oraz g ( x) 2x
Arkusz I Zadanie. Wartość bezwzględna Rozwiąż równanie x + 3 x 4 x 7. Naszkicujmy wykresy funkcji f ( x) x + 3 oraz g ( x) x 4 uwzględniając tylko ich miejsca zerowe i monotoniczność w ten sposób znajdziemy
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY (TECHNIKUM) 7 MARCA 2015 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) ( 5 Liczba
Jarosław Wróblewski Matematyka Elementarna, zima 2011/12
168. Uporządkować podane liczby w kolejności niemalejącej. sin50, cos80, sin170, cos200, sin250, cos280. 169. Naszkicować wykres funkcji f zdefiniowanej wzorem a) f(x) = sin2x b) f(x) = cos3x c) f(x) =
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 3 KWIETNIA 016 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba 3 7 48 jest równa
ZESTAW PRZYKŁADOWYCH ZADAŃ Z MATEMATYKI ZAKRES ROZSZERZONY
ZESTAW PRZYKŁADOWYCH ZADAŃ Z MATEMATYKI ZAKRES ROZSZERZONY Zadanie Wskaż w zbiorze A = Zadanie Usuń niewymierność z wyrażenia,(0); 0,9; ; 0; 8; 0; 0 liczby wymierne 6 Zadanie Rozwiąż nierówność x + > Rozwiązanie
Podstawy logiki i teorii zbiorów Ćwiczenia
Podstawy logiki i teorii zbiorów Ćwiczenia Spis treści 1 Zdania logiczne i tautologie 1 2 Zdania logiczne i tautologie c.d. 2 3 Algebra zbiorów 3 4 Różnica symetryczna 4 5 Iloczyn kartezjański 5 6 Kwantyfikatory.
LUBELSKA PRÓBA PRZED MATURĄ 2017 klasa 2 (pp)
Kod ucznia Nazwisko i imię ucznia M A T E M A T Y K A klasa -(pp) MAJ 07 Czas pracy: 70 minut Instrukcja dla zdającego. Sprawdź, czy arkusz zawiera 4 stron (zadania -4). Ewentualny brak zgłoś przewodniczącemu
Dorota Pekasiewicz Uniwersytet Łódzki, Wydział Ekonomiczno-Socjologiczny Katedra Metod Statystycznych, Łódź, ul. Rewolucji 1905 r.
Dorota Pekasiewicz Uniwersytet Łódzki, Wydział Ekonomiczno-Socjologiczny Katedra Metod Statystycznych, 90-214 Łódź, ul. Rewolucji 1905 r. nr 41 RECENZENT Stanisław Wanat REDAKTOR INICJUJĄCY Monika Borowczyk
ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ zadania z odpowiedziami
ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ zadania z odpowiedziami Maciej Burnecki opracowanie strona główna Spis treści 1 Wyrażenia algebraiczne indukcja matematyczna 1 Geometria analityczna w R 3 3 Liczby zespolone
GAL 80 zadań z liczb zespolonych
GAL 80 zadań z liczb zespolonych Postać algebraiczna liczby zespolonej 1 Sprowadź wyrażenia do postaci algebraicznej: (a) ( + i)(3 i) + ( + 31)(3 + 41), (b) (4 + 3i)(5 i) ( 6i), (5 + i)(7 6i) (c), 3 +
Elementy logiki (4 godz.)
Elementy logiki (4 godz.) Spójniki zdaniotwórcze, prawa de Morgana. Wyrażenie implikacji za pomocą alternatywy i negacji, zaprzeczenie implikacji. Prawo kontrapozycji. Podstawowe prawa rachunku zdań. Uczestnik
Instrukcja do testu z matematyki zdania logiczne, wyrażenia algebraiczne, równania kwadratowe Zakres materiału
Instrukcja do testu z matematyki zdania logiczne, wyrażenia algebraiczne, równania kwadratowe Zakres materiału Nazwisko i imię... Klasa... Wersja testu... Test zawiera 12 zadań, doktórychsą 3 odpowiedzi
VIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH
VIII. ZIÓR PRZYKŁDOWYCH ZDŃ MTURLNYCH ZDNI ZMKNIĘTE Zadanie. ( pkt) 0 90 Liczba 9 jest równa 0.. 00 C. 0 9 D. 700 7 Zadanie. 8 ( pkt) Liczba 9 jest równa.. 9 C. D. 5 Zadanie. ( pkt) Liczba log jest równa.
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM ROZSZERZONY 23 KWIETNIA 2016 CZAS PRACY: 180 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Na rysunku przedstawiony
Tematy: zadania tematyczne
Tematy: zadania tematyczne 1. Ciągi liczbowe zadania typu udowodnij 1) Udowodnij, Ŝe jeŝeli liczby,, tworzą ciąg arytmetyczny ), to liczby,, takŝe tworzą ciąg arytmetyczny. 2) Ciąg jest ciągiem geometrycznym.
G i m n a z j a l i s t ó w
Ko³o Matematyczne G i m n a z j a l i s t ó w Stowarzyszenie na rzecz Edukacji Matematycznej Zestaw 10 szkice rozwiazań zadań 1. Rozwiąż układ równań: (x+y)(x+y +z) = 72 (y +z)(x+y +z) = 120 (z +x)(x+y
Elementy logiki i teorii mnogości
Elementy logiki i teorii mnogości Zdanie logiczne Zdanie logiczne jest to zdanie oznajmujące, któremu można przypisać określoną wartość logiczną. W logice klasycznej zdania dzielimy na: prawdziwe (przypisujemy
Próbny egzamin maturalny z matematyki Poziom rozszerzony
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA Zadanie 1 (4 pkt) Rozwiąż równanie: w przedziale 1 pkt Przekształcenie równania do postaci: 2 pkt Przekształcenie równania
Bukiety matematyczne dla gimnazjum
Bukiety matematyczne dla gimnazjum http://www.mat.uni.torun.pl/~kolka/ 1 X 2002 Bukiet I Dany jest prostokąt o bokach wymiernych a, b, którego obwód O i pole P są całkowite. 1. Sprawdź, że zachodzi równość
Rozwiązania zadań otwartych i schematy oceniania Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych
Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych Klucz odpowiedzi do zadań zamkniętych 5 6 7 8 9 0 5 6 7 8 9 0 A D B B C D C C D D A B D B B A C B C A Zadanie. (0-) Rozwiąż nierówność
Zad. 1 Liczba jest równa A B C D. Zad. 2 Liczba log16 jest równa A 3log2 + log8 B log4 + 2log3 C 3log4 log4 D log20 log4
Zad. 1 Liczba jest równa A B C D Zad. Liczba log16 jest równa A 3log + log8 B log4 + log3 C 3log4 log4 D log0 log4 Zad. 3 Rozwiązaniem równania jest liczba A B 18 C 1, D 6 Zad. 4 Większą z dwóch liczb
LUBELSKA PRÓBA PRZED MATURĄ 2018 poziom podstawowy M A T E M A T Y K A 14 MARCA Instrukcja dla zdającego Czas pracy: 170 minut
Kod ucznia Nazwisko i imię M A T E M A T Y K A 14 MARCA 2018 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 16 stron (zadania 1-34). Ewentualny brak zgłoś przewodniczącemu
W planie dydaktycznym założono 172 godziny w ciągu roku. Treści podstawy programowej. Propozycje środków dydaktycznych. Temat (rozumiany jako lekcja)
Ramowy plan nauczania (roczny plan dydaktyczny) dla przedmiotu matematyka w zakresie rozszerzonym dla klasy I liceum ogólnokształcącego uwzględniający kształcone i treści podstawy programowej W planie
Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13
35. O zdaniu 1 T (n) udowodniono, że prawdziwe jest T (1), oraz że dla dowolnego n 6 zachodzi implikacja T (n) T (n+2). Czy można stąd wnioskować, że a) prawdziwe jest T (10), b) prawdziwe jest T (11),
Roger Bacon Def. Def. Def Funktory zdaniotwórcze
Kto lekceważy osiągnięcia matematyki przynosi szkodę całej nauce, ponieważ ten, kto nie zna matematyki, nie może poznad innych nauk ścisłych i nie może poznad świata." Roger Bacon Def. Zdaniem logicznym
ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ
ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ Maciej Burnecki opracowanie strona główna Spis treści I Zadania Wyrażenia algebraiczne indukcja matematyczna Geometria analityczna na płaszczyźnie Liczby zespolone 4 Wielomiany
Blok I: Wyrażenia algebraiczne. dla xy = 1. (( 7) x ) 2 ( 7) 11 7 x c) x ( x 2) 4 (x 3 ) 3 dla x 0 d)
Blok I: Wyrażenia algebraiczne I. Obliczyć a) 9 9 9 9 ) 7 y y dla y = z, jeśli = 0 4, y = 0 0.7 i z = y 64 7) ) 7) 7 7 I. Uprościć wyrażenia a) 48 6 4 dla 0 5) 4 dla 0 ) 4 ) dla 0 45 4 y ) dla yz 0 I.
2. LICZBY RZECZYWISTE Własności liczb całkowitych Liczby rzeczywiste Procenty... 24
SPIS TREŚCI WYRAŻENIA ALGEBRAICZNE RÓWNANIA I NIERÓWNOŚCI ALGEBRAICZNE 7 Wyrażenia algebraiczne 0 Równania i nierówności algebraiczne LICZBY RZECZYWISTE 4 Własności liczb całkowitych 8 Liczby rzeczywiste
KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale
Zestaw nr 1 Poziom Rozszerzony Zad.1. (1p) Liczby oraz, są jednocześnie ujemne wtedy i tylko wtedy, gdy A. B. C. D. Zad.2. (1p) Funkcja przyjmuje wartości większe od funkcji dokładnie w przedziale. Wtedy
Jarosław Wróblewski Matematyka Elementarna, zima 2013/14. Czwartek 21 listopada zaczynamy od omówienia zadań z kolokwium nr 2.
Czwartek 21 listopada 2013 - zaczynamy od omówienia zadań z kolokwium nr 2. Uprościć wyrażenia 129. 4 2+log 27 130. log 3 2 log 59 131. log 6 2+log 36 9 log 132. m (mn) log n (mn) dla liczb naturalnych
ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI
Zadanie 51. ( pkt) Rozwiąż równanie 3 x = 1. 1 x Zadanie 5. ( pkt) x+ 3y = 5 Rozwiąż układ równań. x y = 3 Zadanie 53. ( pkt) Rozwiąż nierówność x + 6x 7 0. ZNI OTWRTE KRÓTKIEJ OPOWIEZI Zadanie 54. ( pkt)
Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne.
Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcja homograficzna. Definicja. Funkcja homograficzna jest to funkcja określona wzorem f() = a + b c + d, () gdzie współczynniki
LUBELSKA PRÓBA PRZED MATURĄ 2018 poziom podstawowy
LUELSK PRÓ PRZED MTURĄ 08 poziom podstawowy Schemat oceniania Zadania zamknięte (Podajemy kartotekę zadań, która ułatwi Państwu przeprowadzenie jakościowej analizy wyników). Zadanie. (0 ). Liczby rzeczywiste.
UZUPEŁNIA ZDAJĄCY miejsce na naklejkę
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 2017 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY DATA: 9 maja 2017
Elementy logiki matematycznej
Elementy logiki matematycznej Przedmiotem logiki matematycznej jest badanie tzw. wyrażeń logicznych oraz metod rozumowania i sposobów dowodzenia używanych w matematyce, a także w innych dziedzinach, w
Konkurs dla szkół ponadgimnazjalnych Etap szkolny 9 stycznia 2013 roku
Konkurs dla szkół ponadgimnazjalnych Etap szkolny 9 stycznia roku Instrukcja dla ucznia W zadaniach o numerach od do są podane cztery warianty odpowiedzi: A, B, C, D Dokładnie jeden z nich jest poprawny
1. Liczby zespolone. Jacek Jędrzejewski 2011/2012
1. Liczby zespolone Jacek Jędrzejewski 2011/2012 Spis treści 1 Liczby zespolone 2 1.1 Definicja liczby zespolonej.................... 2 1.2 Postać kanoniczna liczby zespolonej............... 1. Postać
KONKURS MATEMATYCZNY
PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W CHEŁMIE INSTYTUT MATEMATYKI i INFORMATYKI 22-100 Chełm, ul. Pocztowa 54 tel./fax. (082) 562 11 24 KONKURS MATEMATYCZNY im. Samuela Chróścikowskiego 30 marzec 2017r. godz.
Plan wynikowy z matematyki kl.i LO
Literka.pl Plan wynikowy z matematyki kl.i LO Data dodania: 2006-09-23 09:27:55 Przedstawiam Państwu plan wynikowy z matematyki dla klasy pierwszej LO wg programu programu DKOS 4015-12/02 na rok szkolny