(g) (p q) [(p q) p]; (h) p [( p q) ( p q)]; (i) [p ( p q)]; (j) p [( q q) r]; (k) [(p q) (q p)] (p q); (l) [(p q) (r s)] [(p s) (q r)];

Wielkość: px
Rozpocząć pokaz od strony:

Download "(g) (p q) [(p q) p]; (h) p [( p q) ( p q)]; (i) [p ( p q)]; (j) p [( q q) r]; (k) [(p q) (q p)] (p q); (l) [(p q) (r s)] [(p s) (q r)];"

Transkrypt

1 Logika 1. Czy następujące sformułowania są zdaniami: (a) Wszystkie koty w Polsce są czarne. (b) Jak to udowodnić? (c) x + y = 7. (d) Jeśli x 2 = y 2, to x = y. (e) Jeśli x = y, to x 2 = y 2. (f) 2 n + n jest liczbą pierwszą dla nieskończenie wielu n naturalnych. 2. Niech p, q i r będą odpowiednio zdaniami: Pada deszcz, Nie ma chmur na niebie, Na drodze są kałuże. (a) Zapisać przy pomocy funktorów zdaniotwórczych zdania: i. Pada deszcz i na drodze są kałuże. ii. Jeśli pada deszcz, to na niebie są chmury. iii. Jeśli na drodze są kałuże, to pada deszcz i na niebie są chmury. iv. Deszcz nie pada wtedy i tylko wtedy, gdy nie ma chmur na niebie. (b) Przetłumaczyć następujące zdania na język polski: (p q) r, p (q r), (p q r), (p r) q, (p q) r. 3. Sprawdzić, czy następujące wyrażenia są tautologiami: (a) [(p q) p] q; (b) () [(p r) q]; (c) () [p (q r)]; (d) p [( p) q]; (e) [(p q) ()] (q p); (f) [(p q) r] [(p r) (q r)]; (m) [( p q) (p q)] {[p (q r)] (p r)}. (g) () [(p q) p]; (h) p [( p q) ( p q)]; (i) [p ( p q)]; (j) p [( q q) r]; (k) [() (q p)] (p q); (l) [() (r s)] [(p s) (q r)]; 4. Matka powiedziała synowi: Jeśli nie zjesz kolacji, nie będziesz mógł dłużej oglądać telewizji. Syn zjadł kolację, po czym został natychmiast wysłany do łóżka. Przedyskutować tę sytuację. 5. Czy prawdziwe są zdania: (a) Jeżeli liczba naturalna a > 1 jest liczbą pierwszą, to jeżeli a jest liczbą złożoną, to a równa się 16. (b) Jeżeli liczba całkowita a dzieli się przez 11 i dzieli się przez 17, to z faktu, że a nie dzieli się przez 17 wynika, że a nie dzieli się przez 11. (c) Jerzy zna Logikę wtedy i tylko wtedy, gdy nie jest prawdą, że nie jest prawdą, że Jerzy zna Logikę. (d) Jeżeli Jerzy nie zna Logiki, to jeśli Jerzy zna Logikę, to Jerzy jest blondynem. 6. Czy prawdziwe są zdania? (a) Jeżeli a i b są liczbami całkowitymi takimi, że a b 0 oraz b a 0, to a = b. (b) Jeżeli a i b są liczbami całkowitymi takimi, że a b > 0 oraz b a > 0, to a = b. 1

2 7. (a) Zapisać koniunkcję za pomocą alternatywy i negacji. (b) Zapisać alternatywę za pomocą koniunkcji i negacji. (c) Zapisać alternatywę za pomocą implikacji i negacji. 8. Podać uzasadnienie dla każdej równoważności w poniższym ciągu: (a) (p s) ( s t) ( p s) (s t) [( p s) s] t [ p (s s)] t ( p s) t p (s t) p (s t). (b) [(a p) p] p [(a p) p] p [ (a p) p] p [( a p) p] p p [( a p) p] [p ( a p)] (p p] [( a p) p] 1 ( a p) p a ( p p) a Znaleźć formułę o możliwie najkrótszej długości równoważną danej formule: (a) p q; (b) (q r s q) (p q p) (r s); (c) (p q s) (p q r) (p q s) (p r q); (d) () [(p q) (p q)]; (e) (p q) ( ); (f) ( p (q r)) (p ()). 10. Każde zdanie złożone jest równoważne ze zdaniem, w którym występują tylko spójniki i (odpowiednio i ). Znaleźć zdania logiczne równoważne z następującymi, w których występować będą tylko spójniki i (odpowiednio i ). (a) p q, (b) (p q) ( q r), (c) [( p r) q] (r q), (d) () (q r), (e) p q. 11. Zdania p q,, p q, (p q) ( r), (p r) q, () (p s) zapisać przy pomocy kreski Sheffera (binegacji). 12. Czy zdanie: Liczba naturalna n jest podzielna przez 3 jest warunkiem: koniecznym, wystarczającym (dostatecznym), WKW (warunkiem koniecznym i wystarczającym) dla zdań: (a) Liczba n jest podzielna przez 6. (b) Liczba n jest podzielna przez 1. (c) Liczba n jest większa od 1. (d) Suma cyfr liczby n jest podzielna przez 3. (e) Liczba n jest sumą dwóch kwadratów liczb naturalnych. 13. Niech x, y, a, b R. Podać zdanie odwrotne, przeciwne i przeciwstawne dla każdego ze zdań. Określ ich prawdziwość. (a) Jeśli x + y 1, to x 2 + y 2 1; (b) Jeśli = 30, to = 8; (c) Jeśli x > 0, to x 2 > 0; (d) x 2 = 1 x = ±1; (e) ab = 0 a = 0 b = 0; (f) ABC jest prostokątny AB 2 + BC 2 = AC 2. 2

3 14. Dane jest zdanie: Trójmian kwadratowy nie posiada pierwiastków, jeśli jego wyróżnik nie jest nieujemny. Zbudować zdanie odwrotne, przeciwne oraz zdanie przeciwstawne. Określić ich prawdziwość. 15. (a) Napisać zdanie złożone, które jest prawdziwe (fałszywe) wtedy i tylko wtedy, gdy żadne z trzech zdań p, q, r nie jest prawdziwe. (b) Napisać zdanie złożone, które jest prawdziwe (fałszywe) wtedy i tylko wtedy, gdy dokładnie jedno z trzech zdań p, q, r jest prawdziwe. 16. Następujące zdania zapisać w postaci normalnej alternatywno-koniunkcyjnej oraz koniunkcyjno-alternatywnej. (a) p q, (b) (p q) ( q r), (c) [( p r) q] (r q), (d) () (q r), (e) p (q r), (f) p q. 17. Udowodnić każde z następujących stwierdzeń lub wykazać, że jest ono nieprawdziwe. (a) Iloczyn dwóch liczb parzystych jest liczbą podzielną przez 4. (b) Iloczyn liczby parzystej i nieparzystej jest liczbą parzystą. (c) Liczba 3 jest niewymierna. (d) Suma dwóch liczb nieparzystych jest liczbą nieparzystą. (e) Suma dwóch liczb pierwszych nigdy nie jest liczbą pierwszą. (f) Suma trzech kolejnych liczb całkowitych jest podzielna przez 3. (g) Suma czterech kolejnych liczb całkowitych jest podzielna przez 4. (h) 2x 2 + 3y 2 > 0 dla każdych dwóch liczb rzeczywistych x i y. (i) Jeżeli a jest parzystą liczbą całkowitą to 1 2a jest liczbą parzystą. (j) Dla każdej liczby rzeczywistej x istnieje liczba rzeczywista y taka, że xy = 1. (k) Jeżeli a i b są liczbami rzeczywistymi oraz a + b jest liczbą wymierną, to a i b są liczbami wymiernymi. (l) Jeżeli a i b są liczbami rzeczywistymi oraz ab jest liczbą wymierną, to a i b są liczbami wymiernymi. (m) Liczba całkowita n jest parzysta wtedy i tylko wtedy, gdy n 2 jest parzysta. 18. Zbadać prawdziwość każdego z poniższych rozumowań: (a) Jeżeli późno pójdę spać, będę zmęczony. Poszedłem późno spać. Jestem rano zmęczony. (b) Jeżeli ciężko pracuję, to dużo zarabiam. Jeżeli dużo zarabiam, to płacę wysokie podatki. Jeżeli płacę wysokie podatki, to ciężko pracuję. (c) Jeżeli lubię matematykę, to chcę studiować. Nie chcę studiować. Lubię matematykę lub lubię grę w kręgle. Lubię grę w kręgle. 3

4 (d) p (q r) q p r; (g) (q r) (p s) s r q; (e) q r r r; (h) r q r p; (f) p q () r s r s; (i) p q p r r s q s. 19. Weźmy pod uwagę zdanie (m): Malaria zabiła podróżnika. (A) Które z podanych niżej zdań wynika logicznie ze zdania (m)? (B) Z którego z poniższych zdań wynika logicznie zdanie (m)? (a) Malaria zabiła podróżnika lub upał zabił podróżnika. (b) Jeżeli malaria zabiła podróżnika, to upał nie zabił podróżnika. (c) Malaria zabiła podróżnika a upał nie zabił podróżnika. (d) Jeżeli malaria nie zabiła podróżnika, to upał zabił podróżnika. (e) Jeżeli upał nie zabił podróżnika, to malaria zabiła podróżnika. 20. Rozważmy założenia: Jeśli pojadę autobusem lub metrem to spóźnię się na spotkanie. Jeśli pojadę taksówką, to nie spóźnię się na spotkanie, ale zbankrutuję. Nie spóźnię się na spotkanie. Które z poniższych wniosków mogą być wyprowadzone z założeń? Odpowiedź uzasadnić. (a) Pojadę taksówką. (b) Zbankrutuję. (c) Nie pojadę metrem. 21. Znaleźć kontrprzykłady na następujące stwierdzenia: (a) 2 n 1 jest liczbą pierwszą dla każdego n 2. (b) 2 n + 3 n jest liczbą pierwszą dla każdego n N. (c) (x + 1) 2 x 2 dla każdego x R. (d) Jeśli zbankrutowałem, to pojechałem metrem. (e) Jeśli pojadę autobusem, to nie zbankrutuję. (d) 2 n + n jest liczbą pierwszą dla każdej nieparzystej dodatniej liczby n N. 22. Napisać negacje następujących zdań nie używając spójnika negacji: (a) a 2 > 0 a / R; (e) x>0 y R (x 2 + y 2 > 0); (b) x R x = 0; (f) x R y R z R (z > y z < x 2 ); (c) x = ±1; (g) x 0 y< 1 [y > 0 z 1 (x = yz)]; (d) x R n Z (n > x); (h) x R y R z R [z > y (x > yz y > xz)]. 23. Zakładając, że x, y, z R, określić prawdziwość następujących funkcji zdaniowych: (a) x (x 2 + x + 1 = 0); (g) x,y (x 2 + y 2 1); (b) x y (x 2 + y 2 4); (h) x y,z (x + y + z = 9); (c) x,y,z (x 2 + y 2 + z 2 = 1); ( (d) x y x < 2y ) (i) x,y [(x + 2y = 4) (2x y = 2)]; ; (j) x y (xy = 1); (e) x y (x 2 + y 2 = 1); (k) y x (x + y = 22); (f) x y,z (x < z) (z < y); (l) x y (x 2 + y 2 = 0 y < x < y). 4

5 24. Pokazać, że następujące wyrażenia nie są tautologiami. Możesz to zrobić pokazując odpowiednie kontrprzykłady. (a) x [Φ(x) Ψ(x)] x Φ(x) x Ψ(x); (b) x Φ(x) x Ψ(x) x [Φ(x) Ψ(x)]; (c) y x Φ(x, y) x y Φ(x, y); (d) x y Φ(x, y) x Φ(x, x). 25. Napisać zaprzeczenie zdania x y [x < y z (x < z < y)] bez użycia spójnika negacji. Zbadać jego wartość logiczną gdy: x, y, z N x, y, z Q x, y, z R. 26. Niech Φ(x, y), x, y N będzie funkcją zdaniową określoną następująco: Φ(x, y) x y. Zbadać prawdziwość zdań: (a) x y Φ(x, y); (b) x y Φ(x, y); (c) y x Φ(x, y); (d) x y Φ(x, y) y x Φ(x, y); (e) y x Φ(x, y) y x Φ(x, y); (f) x [ y Φ(x, y) y Φ(x, y)]. 27. Niech Φ(a, b), a, b N będzie funkcją zdaniową określoną następująco: Φ(a, b) ab 4a > 0. Zbadać prawdziwość zdań: (a) a b Φ(a, b); (b) a b Φ(a, b); (c) a b Φ(a, b); (d) b a Φ(a, b); (e) a b Φ(a, b) a b Φ(a, b); (f) b a Φ(a, b) b a Φ(a, b). 28. Niech Φ(a, x), a, x R będzie funkcją zdaniową określoną następująco: Φ(a, x) ax 2 + x 3 < 0. Zbadać prawdziwość zdań: (a) a x Φ(a, x); (b) a x Φ(a, x); (c) a x Φ(a, x); (d) x a Φ(a, x); (e) a x Φ(a, x) a x Φ(a, x); (f) x a Φ(a, x) x a Φ(a, x). 29. Zapisać za pomocą funktorów i kwantyfikatorów Wielkie twierdzenie Fermata: Jeżeli n jest liczbą naturalną większą od 2, to nie istnieją liczby naturalne x, y, z takie, że x n +y n = z n. 5

Zestaw 1. Podaj zdanie odwrotne i przeciwstawne (kontrapozycję) dla każdego z następujących

Zestaw 1. Podaj zdanie odwrotne i przeciwstawne (kontrapozycję) dla każdego z następujących Zestaw 1 Zadanie 1. Podaj zdanie odwrotne i przeciwstawne (kontrapozycję) dla każdego z następujących zdań: a) p (q r). b) Jeśli x + y = 1, to x 2 + y 2 1. c) Jeśli 2 + 2 = 4, to 3 + 3 = 8. Zadanie 2.

Bardziej szczegółowo

Lekcja 3: Elementy logiki - Rachunek zdań

Lekcja 3: Elementy logiki - Rachunek zdań Lekcja 3: Elementy logiki - Rachunek zdań S. Hoa Nguyen 1 Materiał a) Zdanie proste, złożone b) Spójniki logiczne (funktory zdaniotwórcze):,,,,, (alternatywa wykluczająca - XOR). c) Tautologia, zdanie

Bardziej szczegółowo

Lista 1 (elementy logiki)

Lista 1 (elementy logiki) Podstawy nauczania matematyki 1. Zdanie Lista 1 (elementy logiki) EE I rok W logice zdaniem logicznym nazywamy wyrażenie oznajmujące o którym można powiedzieć że jest prawdziwe lub fałszywe. Zdania z reguły

Bardziej szczegółowo

Wstęp do matematyki listy zadań

Wstęp do matematyki listy zadań Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu w dziedzinach matematyczno-przyrodniczych realizowany w ramach Poddziałania 4.1.1 Programu Operacyjnego Kapitał Ludzki Wstęp do matematyki

Bardziej szczegółowo

LOGIKA I TEORIA ZBIORÓW

LOGIKA I TEORIA ZBIORÓW LOGIKA I TEORIA ZBIORÓW Logika Logika jest nauką zajmującą się zdaniami Z punktu widzenia logiki istotne jest, czy dane zdanie jest prawdziwe, czy nie Nie jest natomiast istotne o czym to zdanie mówi Definicja

Bardziej szczegółowo

MATEMATYKA WYDZIAŁ MATEMATYKI - TEST 1

MATEMATYKA WYDZIAŁ MATEMATYKI - TEST 1 Wszelkie prawa zastrzeżone. Rozpowszechnianie, wypożyczanie i powielanie niniejszych testów w jakiejkolwiek formie surowo zabronione. W przypadku złamania zakazu mają zastosowanie przepisy dotyczące naruszenia

Bardziej szczegółowo

Elementy logiki i teorii mnogości

Elementy logiki i teorii mnogości Elementy logiki i teorii mnogości Zdanie logiczne Zdanie logiczne jest to zdanie oznajmujące, któremu można przypisać określoną wartość logiczną. W logice klasycznej zdania dzielimy na: prawdziwe (przypisujemy

Bardziej szczegółowo

0.1. Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek zdań.

0.1. Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek zdań. Wykłady z Analizy rzeczywistej i zespolonej w Matematyce stosowanej Wykład ELEMENTY LOGIKI ALGEBRA BOOLE A Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek

Bardziej szczegółowo

LOGIKA MATEMATYCZNA. Poziom podstawowy. Zadanie 2 (4 pkt.) Jeśli liczbę 3 wstawisz w miejsce x, to które zdanie będzie prawdziwe:

LOGIKA MATEMATYCZNA. Poziom podstawowy. Zadanie 2 (4 pkt.) Jeśli liczbę 3 wstawisz w miejsce x, to które zdanie będzie prawdziwe: LOGIKA MATEMATYCZNA Poziom podstawowy Zadanie ( pkt.) Która koniunkcja jest prawdziwa: a) Liczba 6 jest niewymierna i 6 jest liczbą dodatnią. b) Liczba 0 jest wymierna i 0 jest najmniejszą liczbą całkowitą.

Bardziej szczegółowo

Przykłady zdań w matematyce. Jeśli a 2 + b 2 = c 2, to trójkąt o bokach długości a, b, c jest prostokątny (a, b, c oznaczają dane liczby dodatnie),

Przykłady zdań w matematyce. Jeśli a 2 + b 2 = c 2, to trójkąt o bokach długości a, b, c jest prostokątny (a, b, c oznaczają dane liczby dodatnie), Elementy logiki 1 Przykłady zdań w matematyce Zdania prawdziwe: 1 3 + 1 6 = 1 2, 3 6, 2 Q, Jeśli x = 1, to x 2 = 1 (x oznacza daną liczbę rzeczywistą), Jeśli a 2 + b 2 = c 2, to trójkąt o bokach długości

Bardziej szczegółowo

Ziemia obraca się wokół Księżyca, bo posiadając odpowiednią wiedzę można stwierdzić, czy są prawdziwe, czy fałszywe. Zdaniami nie są wypowiedzi:

Ziemia obraca się wokół Księżyca, bo posiadając odpowiednią wiedzę można stwierdzić, czy są prawdziwe, czy fałszywe. Zdaniami nie są wypowiedzi: 1 Elementy logiki W logice zdaniem nazywamy wypowiedź oznajmującą, która (w ramach danej nauki) jest albo prawdziwa, albo fałszywa. Tak więc zdanie może mieć jedną z dwóch wartości logicznych. Prawdziwość

Bardziej szczegółowo

Rachunek zdań. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak

Rachunek zdań. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak Rachunek zdań Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak RACHUNEK ZDAŃ Zdania Definicja Zdanie jest to stwierdzenie w języku naturalnym, któremu można przypisać wartość prawdy lub

Bardziej szczegółowo

Podstawy logiki i teorii zbiorów Ćwiczenia

Podstawy logiki i teorii zbiorów Ćwiczenia Podstawy logiki i teorii zbiorów Ćwiczenia Spis treści 1 Zdania logiczne i tautologie 1 2 Zdania logiczne i tautologie c.d. 2 3 Algebra zbiorów 3 4 Różnica symetryczna 4 5 Iloczyn kartezjański 5 6 Kwantyfikatory.

Bardziej szczegółowo

Elementy logiki. Zdania proste i złożone

Elementy logiki. Zdania proste i złożone Elementy logiki Zdania proste i złożone. Jaka jest wartość logiczna następujących zdań: (a) jest dzielnikiem 7 lub suma kątów wewnętrznych w trójkącie jest równa 80. (b) Jeśli sin 0 =, to 5 < 5. (c) Równanie

Bardziej szczegółowo

Logika i teoria mnogości Ćwiczenia

Logika i teoria mnogości Ćwiczenia Logika i teoria mnogości Ćwiczenia Spis treści 1 Zdania logiczne i tautologie 1 2 Zdania logiczne i tautologie c.d. 2 3 Algebra zbiorów 3 4 Różnica symetryczna 4 5 Iloczyn kartezjański 5 6 Kwantyfikatory.

Bardziej szczegółowo

Podstawy logiki i teorii zbiorów Ćwiczenia

Podstawy logiki i teorii zbiorów Ćwiczenia Podstawy logiki i teorii zbiorów Ćwiczenia Spis treści 1 Zdania logiczne i tautologie 1 2 Zdania logiczne i tautologie c.d. 2 3 Algebra zbiorów 3 4 Różnica symetryczna 4 5 Kwantyfikatory. 5 6 Relacje 7

Bardziej szczegółowo

Matematyka ETId Elementy logiki

Matematyka ETId Elementy logiki Matematyka ETId Izolda Gorgol pokój 131A e-mail: I.Gorgol@pollub.pl tel. 081 5384 563 http://antenor.pol.lublin.pl/users/gorgol Zdania w sensie logicznym DEFINICJA Zdanie w sensie logicznym - zdanie oznajmujace,

Bardziej szczegółowo

Logika, teoria zbiorów i wartość bezwzględna

Logika, teoria zbiorów i wartość bezwzględna Logika, teoria zbiorów i wartość bezwzględna Zadanie 1 Które z podanych wyrażeń są zdaniami logicznymi? a) Na Księżycu żyją istoty rozumne. b) Janek idzie do szkoły. c)wroku2000wpolscebędzie 50mln.mieszkańców.

Bardziej szczegółowo

Logika i teoria mnogości Ćwiczenia

Logika i teoria mnogości Ćwiczenia Logika i teoria mnogości Ćwiczenia Spis treści 1 Zdania logiczne i tautologie 1 2 Algebra zbiorów 3 3 Różnica symetryczna 4 4 Iloczyn kartezjański. Kwantyfikatory. 5 5 Kwantyfikatory. 6 6 Relacje 7 7 Relacje

Bardziej szczegółowo

Jest to zasadniczo powtórka ze szkoły średniej, być może z niektórymi rzeczami nowymi.

Jest to zasadniczo powtórka ze szkoły średniej, być może z niektórymi rzeczami nowymi. Logika Jest to zasadniczo powtórka ze szkoły średniej, być może z niektórymi rzeczami nowymi. Często słowu "logika" nadaje się szersze znaczenie niż temu o czym będzie poniżej: np. mówi się "logiczne myślenie"

Bardziej szczegółowo

1 Podstawowe oznaczenia

1 Podstawowe oznaczenia Poniżej mogą Państwo znaleźć skondensowane wiadomości z wykładu. Należy je traktować jako przegląd pojęć, które pojawiły się na wykładzie. Materiały te nie są w pełni tożsame z tym co pojawia się na wykładzie.

Bardziej szczegółowo

4 Klasyczny rachunek zdań

4 Klasyczny rachunek zdań 4 Klasyczny rachunek zdań Elementy Logiki i Teorii Mnogości 2015/2016 Spis najważniejszych tautologii: (a) p p prawo wyłączonego środka (b) ( p) p prawo podwójnej negacji (c) p q q p (d) p q q p prawo

Bardziej szczegółowo

Egzamin z logiki i teorii mnogości, rozwiązania zadań

Egzamin z logiki i teorii mnogości, rozwiązania zadań Egzamin z logiki i teorii mnogości, 08.02.2016 - rozwiązania zadań 1. Niech φ oraz ψ będą formami zdaniowymi. Czy formuła [( x : φ(x)) ( x : ψ(x))] [ x : (φ(x) ψ(x))] jest prawem rachunku kwantyfikatorów?

Bardziej szczegółowo

Elementy logiki matematycznej

Elementy logiki matematycznej Elementy logiki matematycznej Przedmiotem logiki matematycznej jest badanie tzw. wyrażeń logicznych oraz metod rozumowania i sposobów dowodzenia używanych w matematyce, a także w innych dziedzinach, w

Bardziej szczegółowo

Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Elementy logiki

Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Elementy logiki Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej Elementy logiki 1. Elementy logiki W logice zdaniem nazywamy wypowiedź oznajmującą, która (w ramach danej nauki) jest albo prawdziwa, albo fałszywa.

Bardziej szczegółowo

ROZDZIAŁ 1. Rachunek funkcyjny

ROZDZIAŁ 1. Rachunek funkcyjny ROZDZIAŁ 1 Rachunek funkcyjny Niech X 1,..., X n będą dowolnymi zbiorami. Wyrażenie (formułę) ϕ(x 1,..., x n ), w którym występuje n zmiennych x 1,..., x n i które zamienia się w zdanie logiczne, gdy zamiast

Bardziej szczegółowo

Pytania i polecenia podstawowe

Pytania i polecenia podstawowe Pytania i polecenia podstawowe Liczby zespolone a) 2 i 1 + 2i 1 + 2i 3 + 4i, c) 1 i 2 + i a) 4 + 3i (2 i) 2, c) 1 3i a) i 111 (1 + i) 100, c) ( 3 i) 100 Czy dla dowolnych liczb z 1, z 2 C zachodzi równość:

Bardziej szczegółowo

Roger Bacon Def. Def. Def. Funktory zdaniotwórcze

Roger Bacon Def. Def. Def. Funktory zdaniotwórcze Kto lekceważy osiągnięcia matematyki przynosi szkodę całej nauce, ponieważ ten, kto nie zna matematyki, nie może poznad innych nauk ścisłych i nie może poznad świata." Roger Bacon Def. Zdaniem logicznym

Bardziej szczegółowo

Roger Bacon Def. Def. Def Funktory zdaniotwórcze

Roger Bacon Def. Def. Def Funktory zdaniotwórcze Kto lekceważy osiągnięcia matematyki przynosi szkodę całej nauce, ponieważ ten, kto nie zna matematyki, nie może poznad innych nauk ścisłych i nie może poznad świata." Roger Bacon Def. Zdaniem logicznym

Bardziej szczegółowo

Przykładowe zadania z teorii liczb

Przykładowe zadania z teorii liczb Przykładowe zadania z teorii liczb I. Podzielność liczb całkowitych. Liczba a = 346 przy dzieleniu przez pewną liczbę dodatnią całkowitą b daje iloraz k = 85 i resztę r. Znaleźć dzielnik b oraz resztę

Bardziej szczegółowo

Roger Bacon Def. Def. Def Funktory zdaniotwórcze

Roger Bacon Def. Def. Def Funktory zdaniotwórcze Kto lekceważy osiągnięcia matematyki przynosi szkodę całej nauce, ponieważ ten, kto nie zna matematyki, nie może poznad innych nauk ścisłych i nie może poznad świata." Roger Bacon Def. Zdaniem logicznym

Bardziej szczegółowo

Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI

Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI Matematyka dla liceum ogólnokształcącego i technikum w zakresie podstawowym i rozszerzonym Z E S Z Y T M E T O D Y C Z N Y Miejski

Bardziej szczegółowo

Elementy rachunku zdań i algebry zbiorów

Elementy rachunku zdań i algebry zbiorów Rozdział 1. Elementy rachunku zdań i algebry zbiorów 1.1. Zdania Przez α, β będziemy oznaczać zdania. Każdemu zdaniu możemy przyporządkować wartość logiczną 1, gdy jest prawdziwe oraz wartość logiczną

Bardziej szczegółowo

LOGIKA MATEMATYCZNA, ZBIORY, LICZBY RZECZYWISTE

LOGIKA MATEMATYCZNA, ZBIORY, LICZBY RZECZYWISTE LOGIKA MATEMATYCZNA, ZBIORY, LICZBY RZECZYWISTE POJĘCIE PIERWOTNE, AKSJOMAT, TWIERDZENIE Pojęcie pierwotne jest to pojęcie, którego nie definiujemy, a mimo to przyjmujemy za oczywiste np.: liczba, punkt,

Bardziej szczegółowo

Bukiety matematyczne dla gimnazjum

Bukiety matematyczne dla gimnazjum Bukiety matematyczne dla gimnazjum http://www.mat.uni.torun.pl/~kolka/ 1 X 2002 Bukiet I Dany jest prostokąt o bokach wymiernych a, b, którego obwód O i pole P są całkowite. 1. Sprawdź, że zachodzi równość

Bardziej szczegółowo

Dalszy ciąg rachunku zdań

Dalszy ciąg rachunku zdań Dalszy ciąg rachunku zdań Wszystkie możliwe funktory jednoargumentowe p f 1 f 2 f 3 f 4 0 0 0 1 1 1 0 1 0 1 Wszystkie możliwe funktory dwuargumentowe p q f 1 f 2 f 3 f 4 f 5 f 6 f 7 f 8 f 9 f 10 f 11 f

Bardziej szczegółowo

ELiTM 0 Indukcja Dany jest ciąg a 0 R, a n = a n 1. Zasada minimum Każdy niepusty podzbiór liczb naturalnych zawiera liczbę najmniejszą.

ELiTM 0 Indukcja Dany jest ciąg a 0 R, a n = a n 1. Zasada minimum Każdy niepusty podzbiór liczb naturalnych zawiera liczbę najmniejszą. ELiTM 0 Indukcja Zasada minimum Każdy niepusty podzbiór liczb naturalnych zawiera liczbę najmniejszą. Zasada indukcji Jeżeli (1) istnieje n 0 N takie że T (n 0 ) jest prawdziwe; (2) z faktu, że T (n) jest

Bardziej szczegółowo

W pewnym mieście jeden z jej mieszkańców goli wszystkich tych i tylko tych jej mieszkańców, którzy nie golą się

W pewnym mieście jeden z jej mieszkańców goli wszystkich tych i tylko tych jej mieszkańców, którzy nie golą się 1 Logika Zdanie w sensie logicznym, to zdanie oznajmujące, o którym da się jednoznacznie powiedzieć, czy jest fałszywe, czy prawdziwe. Zmienna zdaniowa- to symbol, którym zastępujemy dowolne zdanie. Zdania

Bardziej szczegółowo

Jarosław Wróblewski Matematyka Elementarna, zima 2012/13

Jarosław Wróblewski Matematyka Elementarna, zima 2012/13 Poniedziałek 12 listopada 2012 - zaczynamy od omówienia zadań z kolokwium nr 1. Wtorek 13 listopada 2012 - odbywają się zajęcia czwartkowe. 79. Uprościć wyrażenia a) 4 2+log 27 b) log 3 2 log 59 c) log

Bardziej szczegółowo

Jarosław Wróblewski Matematyka Elementarna, lato 2012/13. Czwartek 28 marca zaczynamy od omówienia zadań z kolokwium nr 1.

Jarosław Wróblewski Matematyka Elementarna, lato 2012/13. Czwartek 28 marca zaczynamy od omówienia zadań z kolokwium nr 1. Czwartek 28 marca 2013 - zaczynamy od omówienia zadań z kolokwium nr 1. 122. Uprościć wyrażenia a) 4 2+log 27 b) log 3 2 log 59 c) log 6 2+log 36 9 123. Dla ilu trójek liczb rzeczywistych dodatnich a,

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13 35. O zdaniu 1 T (n) udowodniono, że prawdziwe jest T (1), oraz że dla dowolnego n 6 zachodzi implikacja T (n) T (n+2). Czy można stąd wnioskować, że a) prawdziwe jest T (10), b) prawdziwe jest T (11),

Bardziej szczegółowo

Logika pragmatyczna dla inżynierów

Logika pragmatyczna dla inżynierów Logika pragmatyczna Logika pragmatyczna dla inżynierów Kontakt: dr hab. inż. Adam Kasperski pokój 509 B4 adam.kasperski@pwr.edu.pl materiały + literatura + informacje na stronie www. Zaliczenie: Test pisemny

Bardziej szczegółowo

KURS MATEMATYKA DYSKRETNA

KURS MATEMATYKA DYSKRETNA KURS MATEMATYKA DYSKRETNA Lekcja 8 Wprowadzenie do logiki ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Które z poniższych zdań

Bardziej szczegółowo

Elementy logiki matematycznej

Elementy logiki matematycznej Elementy logiki matematycznej Przez p, q będziemy oznaczać zdania. Każdemu zdaniu możemy przyporządkować wartość logiczną 1, gdy jest prawdziwe oraz wartość logiczną 0, gdy jest fałszywe. Oznaczmy wartość

Bardziej szczegółowo

Kryteria oceniania z matematyki zakres podstawowy Klasa I

Kryteria oceniania z matematyki zakres podstawowy Klasa I Kryteria oceniania z matematyki zakres podstawowy Klasa I zakres Dopuszczający Dostateczny Dobry bardzo dobry Zdanie logiczne ( proste i złożone i forma zdaniowa oraz prawa logiczne dotyczące alternatywy,

Bardziej szczegółowo

Zadania do samodzielnego rozwiązania

Zadania do samodzielnego rozwiązania Zadania do samodzielnego rozwiązania I. Podzielność liczb całkowitych 1. Pewna liczba sześciocyfrowa a kończy się cyfrą 5. Jeśli tę cyfrę przestawimy na miejsce pierwsze ze strony lewej, to otrzymamy nową

Bardziej szczegółowo

Plan wynikowy z wymaganiami edukacyjnymi z przedmiotu matematyka w zakresie rozszerzonym dla klasy I liceum ogólnokształcącego

Plan wynikowy z wymaganiami edukacyjnymi z przedmiotu matematyka w zakresie rozszerzonym dla klasy I liceum ogólnokształcącego Plan wynikowy z wymaganiami edukacyjnymi z przedmiotu matematyka w zakresie rozszerzonym dla klasy I liceum ogólnokształcącego Temat (rozumiany jako lekcja) Lekcja organizacyjna I. Działania na liczbach

Bardziej szczegółowo

Logika pragmatyczna. Logika pragmatyczna. Kontakt: Zaliczenie:

Logika pragmatyczna. Logika pragmatyczna. Kontakt: Zaliczenie: Logika pragmatyczna Logika pragmatyczna Kontakt: dr hab. inż. Adam Kasperski pokój 509 B4 adam.kasperski@pwr.wroc.pl materiały + literatura + informacje na stronie www. Zaliczenie: Kolokwium pisemne na

Bardziej szczegółowo

Indukcja matematyczna

Indukcja matematyczna Indukcja matematyczna Zadanie. Zapisać, używając symboli i, następujące wyrażenia (a) n!; (b) sin() + sin() sin() +... + sin() sin()... sin(n); (c) ( + )( + /)( + / + /)... ( + / + / +... + /R). Zadanie.

Bardziej szczegółowo

W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1

W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1 W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1 Zadanie IV. Dany jest prostokątny arkusz kartony o długości 80 cm i szerokości 50 cm. W czterech rogach tego arkusza wycięto kwadratowe

Bardziej szczegółowo

1. ODPOWIEDZI DO ZADAŃ TESTOWYCH

1. ODPOWIEDZI DO ZADAŃ TESTOWYCH R O Z W I A Z A N I A 1. ODPOWIEDZI DO ZADAŃ TESTOWYCH 1. Dla dowolnych zbiorów A, B, C zachodzi równość (A B) (B C) (C A) = (A B C) (A B C), A (B C) = (A B) (A C), A (B C) = (A B) (A C). 2. Wyrażenie

Bardziej szczegółowo

IMIĘ NAZWISKO... grupa C... sala Egzamin ELiTM I

IMIĘ NAZWISKO... grupa C... sala Egzamin ELiTM I IMIĘ NAZWISKO............................ grupa C... sala 10... Egzamin ELiTM I 02.02.15 1. 2. 3. 4.. 1. (8 pkt.) Niech X a,b = {(x, y) R 2 : (x b) 2 + (y 1 b )2 a 2 } dla a, b R, a > 0, b 0. Wyznaczyć:

Bardziej szczegółowo

ZADANIA DO SAMODZIELNEGO ROZWIĄZNIA. oprac. I. Gorgol

ZADANIA DO SAMODZIELNEGO ROZWIĄZNIA. oprac. I. Gorgol ZADANIA DO SAMODZIELNEGO ROZWIĄZNIA oprac. I. Gorgol Spis treści. Elementy logiki. Elementy rachunku zbiorów 4. Funkcje zdaniowe i kwantyfikatory. 4 4. Funkcja złożona i odwrotna 6 5. Granica ciągu liczbowego

Bardziej szczegółowo

1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych.

1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych. Elementy logiki i teorii zbiorów. 1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych. Pojęcia pierwotne to najprostsze

Bardziej szczegółowo

Matematyka Dyskretna Zestaw 2

Matematyka Dyskretna Zestaw 2 Materiały dydaktyczne Matematyka Dyskretna (Zestaw ) Matematyka Dyskretna Zestaw 1. Wykazać, że nie istnieje liczba naturalna, która przy dzieleniu przez 18 daje resztę 13, a przy dzieleniu przez 1 daje

Bardziej szczegółowo

I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych.

I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych. I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych. 1. Elementy logiki matematycznej. 1.1. Rachunek zdań. Definicja 1.1. Zdaniem logicznym nazywamy zdanie gramatyczne

Bardziej szczegółowo

6. Liczby wymierne i niewymierne. Niewymierność pierwiastków i logarytmów (c.d.).

6. Liczby wymierne i niewymierne. Niewymierność pierwiastków i logarytmów (c.d.). 6. Liczby wymierne i niewymierne. Niewymierność pierwiastków i logarytmów (c.d.). 0 grudnia 008 r. 88. Obliczyć podając wynik w postaci ułamka zwykłego a) 0,(4)+ 3 3,374(9) b) (0,(9)+1,(09)) 1,() c) (0,(037))

Bardziej szczegółowo

Jarosław Wróblewski Matematyka Elementarna, zima 2013/14. Czwartek 21 listopada zaczynamy od omówienia zadań z kolokwium nr 2.

Jarosław Wróblewski Matematyka Elementarna, zima 2013/14. Czwartek 21 listopada zaczynamy od omówienia zadań z kolokwium nr 2. Czwartek 21 listopada 2013 - zaczynamy od omówienia zadań z kolokwium nr 2. Uprościć wyrażenia 129. 4 2+log 27 130. log 3 2 log 59 131. log 6 2+log 36 9 log 132. m (mn) log n (mn) dla liczb naturalnych

Bardziej szczegółowo

Instrukcja do testu z matematyki zdania logiczne, wyrażenia algebraiczne, równania kwadratowe Zakres materiału

Instrukcja do testu z matematyki zdania logiczne, wyrażenia algebraiczne, równania kwadratowe Zakres materiału Instrukcja do testu z matematyki zdania logiczne, wyrażenia algebraiczne, równania kwadratowe Zakres materiału Nazwisko i imię... Klasa... Wersja testu... Test zawiera 12 zadań, doktórychsą 3 odpowiedzi

Bardziej szczegółowo

Funkcje - monotoniczność, różnowartościowość, funkcje parzyste, nieparzyste, okresowe. Funkcja liniowa.

Funkcje - monotoniczność, różnowartościowość, funkcje parzyste, nieparzyste, okresowe. Funkcja liniowa. Funkcje - monotoniczność, różnowartościowość, funkcje parzyste, nieparzyste, okresowe. Funkcja liniowa. Monotoniczność i różnowartościowość. Definicja 1 Niech f : X R, X R. Funkcję f nazywamy rosnącą w

Bardziej szczegółowo

Ćwiczenia do rozdziału 2, zestaw A: z książki Alfreda Tarskiego Wprowadzenie do logiki

Ćwiczenia do rozdziału 2, zestaw A: z książki Alfreda Tarskiego Wprowadzenie do logiki 0 1 Ćwiczenia do rozdziału 2, zestaw A: z książki Alfreda Tarskiego Wprowadzenie do logiki 2. W następujących dwóch prawach wyróżnić wyrażenia specyficznie matematyczne i wyrażenia z zakresu logiki (do

Bardziej szczegółowo

1 Logika (3h) 1.1 Funkcje logiczne. 1.2 Kwantyfikatory. 1. Udowodnij prawa logiczne: 5. (p q) (p q) 6. ((p q) r) (p (q r)) 3.

1 Logika (3h) 1.1 Funkcje logiczne. 1.2 Kwantyfikatory. 1. Udowodnij prawa logiczne: 5. (p q) (p q) 6. ((p q) r) (p (q r)) 3. Logika (3h). Udowodnij prawa logiczne:. (p q) ( p q). (p q) ( p q) 3. (p q) ( q p) 4. (p q) ( p q) 5. (p q) (p q) 6. ((p q) r) (p (q r)) 7. (p q) r (p r) (q r) 8. (p q) (q r) (p r). Sprawdź, czy wyrażenia:.

Bardziej szczegółowo

Elementy logiki Zbiory Systemy matematyczne i dowodzenie twierdzeń Relacje

Elementy logiki Zbiory Systemy matematyczne i dowodzenie twierdzeń Relacje Dr Maciej Grzesiak, pok.724 E e-mail: maciej.grzesiak@put.poznan.pl http://www.put.poznan.pl/ maciej.grzesiak Konsultacje: poniedziałek, 8.45-9.30, środa 8.45-9.30, piątek 9.45-10.30, pokój 724E Treść

Bardziej szczegółowo

I) Reszta z dzielenia

I) Reszta z dzielenia Michał Kremzer tekst zawiera 9 stron na moim komputerze Tajemnice liczb I) Reszta z dzielenia 1) Liczby naturalne dodatnie a, b, c dają tę samą resztę przy dzieleniu przez 3. Czy liczba A) a + b + c B)

Bardziej szczegółowo

Rachunek zdań i predykatów

Rachunek zdań i predykatów Rachunek zdań i predykatów Agnieszka Nowak 14 czerwca 2008 1 Rachunek zdań Do nauczenia :! 1. ((p q) p) q - reguła odrywania RO 2. reguła modus tollens MT: ((p q) q) p ((p q) q) p (( p q) q) p (( p q)

Bardziej szczegółowo

Wielomiany podstawowe wiadomości

Wielomiany podstawowe wiadomości Rozdział Wielomiany podstawowe wiadomości Funkcję postaci f s = a n s n + a n s n + + a s + a 0, gdzie n N, a i R i = 0,, n, a n 0 nazywamy wielomianem rzeczywistym stopnia n; jeżeli współczynniki a i

Bardziej szczegółowo

1 Logika. 1. Udowodnij prawa logiczne: 3. (p q) (p q) 2. (p q) ( q p) 2. Sprawdź, czy wyrażenie ((p q) r) (p (q r)) jest tautologią.

1 Logika. 1. Udowodnij prawa logiczne: 3. (p q) (p q) 2. (p q) ( q p) 2. Sprawdź, czy wyrażenie ((p q) r) (p (q r)) jest tautologią. Logika. Udowodnij prawa logiczne:. (p q) ( p q). (p q) ( q p) 3. (p q) (p q). Sprawdź czy wyrażenie ((p q) r) (p (q r)) jest tautologią. 3. Zad 3. Sprawdź czy zdanie: Jeżeli liczba a dzieli się przez i

Bardziej szczegółowo

XI Olimpiada Matematyczna Gimnazjalistów

XI Olimpiada Matematyczna Gimnazjalistów XI Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa www.omg.edu.pl (24 września 2015 r.) Rozwiązania zadań testowych 1. Dane są takie dodatnie liczby a i b, że 30% liczby a

Bardziej szczegółowo

Łatwy dowód poniższej własności pozostawiamy czytelnikowi.

Łatwy dowód poniższej własności pozostawiamy czytelnikowi. Rozdział 3 Logarytm i potęga 3.1 Potęga o wykładniku naturalnym Definicja potęgi o wykładniku naturalnym. Niech x R oraz n N. Potęgą o podstawie x i wykładniku n nazywamy liczbę x n określoną następująco:

Bardziej szczegółowo

LOGIKA MATEMATYCZNA, ZBIORY I LICZBY RZECZYWISTE

LOGIKA MATEMATYCZNA, ZBIORY I LICZBY RZECZYWISTE LOGIKA MATEMATYCZNA, ZBIORY I LICZBY RZECZYWISTE ZDANIA W LOGICE Zdaniem nazywamy w logice wypowiedź twierdzącą, której można przypisać jedną z dwóch ocen: prawdę lub fałsz. Zdanie zaczynające się np.

Bardziej szczegółowo

VII Olimpiada Matematyczna Gimnazjalistów

VII Olimpiada Matematyczna Gimnazjalistów VII Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa, test próbny www.omg.edu.pl (wrzesień 2011 r.) Rozwiązania zadań testowych 1. Liczba krawędzi pewnego ostrosłupa jest o

Bardziej szczegółowo

3. Operacje na zbiorach (1) Sprowadź poniższe zdania dotyczące zbiorów do postaci zdań logicznych i sprawdź ich prawdziwość.

3. Operacje na zbiorach (1) Sprowadź poniższe zdania dotyczące zbiorów do postaci zdań logicznych i sprawdź ich prawdziwość. 1. Zapis matematyczny i elementy logiki matematycznej (1) Zapisz, używając symboliki matematycznej zdania: (a) Liczby x i y mają wspólny dzielnik większy od 2. (b) Jeśli x i y różnią się o 1, to nie mają

Bardziej szczegółowo

Wzory skróconego mnożenia w zadaniach olimpijskich

Wzory skróconego mnożenia w zadaniach olimpijskich Wzory skróconego mnożenia w zadaniach olimpijskich Jacek Dymel 17.10.008 Bardzo często uczniowie wyrażają taką opinię, że do rozwiązywania zadań olimpijskich niezbędna jest znajomość wielu skomplikowanych

Bardziej szczegółowo

Nierówności symetryczne

Nierówności symetryczne Nierówności symetryczne Andrzej Nowicki Uniwersytet Mikołaja Kopernika, Wydział Matematyki i Informatyki, ul Chopina 1 18, 87 100 Toruń (e-mail: anow@matunitorunpl) Sierpień 1995 Wstęp Jeśli x, y, z, t

Bardziej szczegółowo

1 Rachunek zdań, podstawowe funk tory logiczne

1 Rachunek zdań, podstawowe funk tory logiczne 1 Rachunek zdań, podstawowe funk tory logiczne 1.1 Zapisz symbolicznie następujące stwierdzenia i Jeśli z tego, że Paweł gra w palanta wynika to, że Robert jeździ na rowerze, to z tego, że Robert nie gra

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /15

Matematyka dyskretna. Andrzej Łachwa, UJ, /15 Matematyka dyskretna Andrzej Łachwa, UJ, 2015 andrzej.lachwa@uj.edu.pl 3/15 Indukcja matematyczna Poprawność indukcji matematycznej wynika z dobrego uporządkowania liczb naturalnych, czyli z następującej

Bardziej szczegółowo

Zestaw zadań dotyczących liczb całkowitych

Zestaw zadań dotyczących liczb całkowitych V Zestaw zadań dotyczących liczb całkowitych Opracowanie Monika Fabijańczyk ROZDZIAŁ 1 Cechy podzielności Poniższe zadania zostały wybrane z różnych zbiorów zadań, opracowań, konkursów matematycznych.

Bardziej szczegółowo

WIELOMIANY I FUNKCJE WYMIERNE

WIELOMIANY I FUNKCJE WYMIERNE WIELOMIANY I FUNKCJE WYMIERNE. RozwiąŜ nierówność.. Dla jakiej wartości parametru a R wielomian W() = ++ a dzieli się bez reszty przez +?. Rozwiązać nierówność: a) 5 b) + 4. Wyznaczyć wartości parametru

Bardziej szczegółowo

Sprawy organizacyjne. dr Barbara Przebieracz Bankowa 14, p.568

Sprawy organizacyjne. dr Barbara Przebieracz Bankowa 14, p.568 Sprawy organizacyjne Jak można się ze mna skontaktować dr Barbara Przebieracz Bankowa 14, p.568 barbara.przebieracz@us.edu.pl www.math.us.edu.pl/bp 10 wykładów, Zaliczenie wykładu: ocena z wykładu jest

Bardziej szczegółowo

W. Krysicki, L.Włodarski, Analiza matematyczna w zadaniach cz. 1 i cz. 2. Pomocnicze symbole. Spójniki logiczne: Symbole kwantyfikatorów:

W. Krysicki, L.Włodarski, Analiza matematyczna w zadaniach cz. 1 i cz. 2. Pomocnicze symbole. Spójniki logiczne: Symbole kwantyfikatorów: dr Urszula Konieczna-Spychała Instytut Matematyki i Fizyki UTP imif.utp.edu.pl Literatura: M. Lassak, Matematyka dla studiów technicznych. M. Gewert, Z. Skoczylas, Analiza matematyczna 1. M. Gewert, Z.

Bardziej szczegółowo

Lista 1 - Rachunek zdań i reguły wnioskowania

Lista 1 - Rachunek zdań i reguły wnioskowania Lista 1 - Rachunek zdań i reguły wnioskowania 1. Każda karta z jednej strony jest czerwona albo niebieska, z drugiej zaś ma narysowane kółko albo trójkąt. Na stole widzimy cztery takie karty, widoczna

Bardziej szczegółowo

Konsekwencja logiczna

Konsekwencja logiczna Konsekwencja logiczna Niech Φ 1, Φ 2,..., Φ n będa formułami logicznymi. Formuła Ψ wynika logicznie z Φ 1, Φ 2,..., Φ n jeżeli (Φ 1 Φ 2 Φ n ) Ψ jest tautologia. Formuły Φ 1, Φ 2,..., Φ n nazywamy założeniami

Bardziej szczegółowo

Indukcja matematyczna

Indukcja matematyczna Indukcja matematyczna 1 Zasada indukcji Rozpatrzmy najpierw następujący przykład. Przykład 1 Oblicz sumę 1 + + 5 +... + (n 1). Dyskusja. Widzimy że dla n = 1 ostatnim składnikiem powyższej sumy jest n

Bardziej szczegółowo

W planie dydaktycznym założono 172 godziny w ciągu roku. Treści podstawy programowej. Propozycje środków dydaktycznych. Temat (rozumiany jako lekcja)

W planie dydaktycznym założono 172 godziny w ciągu roku. Treści podstawy programowej. Propozycje środków dydaktycznych. Temat (rozumiany jako lekcja) Ramowy plan nauczania (roczny plan dydaktyczny) dla przedmiotu matematyka w zakresie rozszerzonym dla klasy I liceum ogólnokształcącego uwzględniający kształcone i treści podstawy programowej W planie

Bardziej szczegółowo

1 Rachunek zdań, podstawowe funktory logiczne

1 Rachunek zdań, podstawowe funktory logiczne 1 Rachunek zdań, podstawowe funktory logiczne 1.1 Pokaż, że dla dowolnych zmiennych zdaniowych p, q, r poniższe formuły są tautologiami a p p p b q q q c p p p p d p q r p q p r e p q r p q p r f p q p

Bardziej szczegółowo

Myślenie w celu zdobycia wiedzy = poznawanie. Myślenie z udziałem rozumu = myślenie racjonalne. Myślenie racjonalne logiczne statystyczne

Myślenie w celu zdobycia wiedzy = poznawanie. Myślenie z udziałem rozumu = myślenie racjonalne. Myślenie racjonalne logiczne statystyczne Literatura: podstawowa: C. Radhakrishna Rao, Statystyka i prawda, 1994. G. Wieczorkowska-Wierzbińska, J. Wierzbiński, Statystyka. Od teorii do praktyki, 2013. A. Aczel, Statystyka w zarządzaniu, 2002.

Bardziej szczegółowo

Rozdział 7 Relacje równoważności

Rozdział 7 Relacje równoważności Rozdział 7 Relacje równoważności Pojęcie relacji. Załóżmy, że dany jest niepusty zbiór A oraz własność W, którą mogą mieć niektóre elementy zbioru A. Własność W wyznacza pewien podzbiór W A zbioru A, złożony

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /10

Matematyka dyskretna. Andrzej Łachwa, UJ, /10 Matematyka dyskretna Andrzej Łachwa, UJ, 2018 andrzej.lachwa@uj.edu.pl 3/10 indukcja matematyczna Poprawność indukcji matematycznej wynika z dobrego uporządkowania liczb naturalnych, czyli z następującej

Bardziej szczegółowo

Dorota Pekasiewicz Uniwersytet Łódzki, Wydział Ekonomiczno-Socjologiczny Katedra Metod Statystycznych, Łódź, ul. Rewolucji 1905 r.

Dorota Pekasiewicz Uniwersytet Łódzki, Wydział Ekonomiczno-Socjologiczny Katedra Metod Statystycznych, Łódź, ul. Rewolucji 1905 r. Dorota Pekasiewicz Uniwersytet Łódzki, Wydział Ekonomiczno-Socjologiczny Katedra Metod Statystycznych, 90-214 Łódź, ul. Rewolucji 1905 r. nr 41 RECENZENT Stanisław Wanat REDAKTOR INICJUJĄCY Monika Borowczyk

Bardziej szczegółowo

XXV Rozkosze Łamania Głowy konkurs matematyczny dla klas I i III szkół ponadgimnazjalnych. zestaw A klasa I

XXV Rozkosze Łamania Głowy konkurs matematyczny dla klas I i III szkół ponadgimnazjalnych. zestaw A klasa I XXV Rozkosze Łamania Głowy konkurs matematyczny dla klas I i III szkół ponadgimnazjalnych zestaw A klasa I 1. Zbiór wszystkich środków okręgów (leżących na jednej płaszczyźnie) przechodzących przez: a)

Bardziej szczegółowo

Tautologia (wyrażenie uniwersalnie prawdziwe - prawo logiczne)

Tautologia (wyrażenie uniwersalnie prawdziwe - prawo logiczne) Tautologia (wyrażenie uniwersalnie prawdziwe - prawo logiczne) Definicja 1: Tautologia jest to takie wyrażenie, którego wartość logiczna jest prawdą przy wszystkich możliwych wartościowaniach zmiennych

Bardziej szczegółowo

ZADANIA PRZYGOTOWAWCZE

ZADANIA PRZYGOTOWAWCZE Kraj bez matematyki nie wytrzyma współzawodnictwa z tymi krajami, które matematykę uprawiają Hugo Steinhause X I Dąbrowski Konkurs Matematyczny Dla uczniów klas pierwszych szkół ponad gimnazjalnych Konkurs

Bardziej szczegółowo

1. Powtórka ze szkoły. Wykład: 4.10.2004 (4 godziny), ćwiczenia: 7.10.2004, kolokwium nr 1: 11.10.2004

1. Powtórka ze szkoły. Wykład: 4.10.2004 (4 godziny), ćwiczenia: 7.10.2004, kolokwium nr 1: 11.10.2004 ANALIZA MATEMATYCZNA A dla I roku, 2004/2005 1. Powtórka ze szkoły. Wykład: 4.10.2004 (4 godziny), ćwiczenia: 7.10.2004, kolokwium nr 1: 11.10.2004 Obliczyć sumy (postępów arytmetycznych i goemetrycznych):

Bardziej szczegółowo

VII Olimpiada Matematyczna Gimnazjalistów

VII Olimpiada Matematyczna Gimnazjalistów VII Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa www.omg.edu.pl (29 września 2011 r.) Rozwiązania zadań testowych 1. Istnieje taki graniastosłup, którego liczba krawędzi

Bardziej szczegółowo

5. Logarytmy: definicja oraz podstawowe własności algebraiczne.

5. Logarytmy: definicja oraz podstawowe własności algebraiczne. 5. Logarytmy: definicja oraz podstawowe własności algebraiczne. 78. Uprościć wyrażenia a) 4 2+log 27 b) log 3 2 log 59 c) log 6 2+log 36 9 a) 4 2+log 27 = (2 2 ) log 27 4 = 28 2 = 784 29 listopada 2008

Bardziej szczegółowo

Plan wynikowy z matematyki kl.i LO

Plan wynikowy z matematyki kl.i LO Literka.pl Plan wynikowy z matematyki kl.i LO Data dodania: 2006-09-23 09:27:55 Przedstawiam Państwu plan wynikowy z matematyki dla klasy pierwszej LO wg programu programu DKOS 4015-12/02 na rok szkolny

Bardziej szczegółowo

Dzień pierwszy- grupa młodsza

Dzień pierwszy- grupa młodsza Dzień pierwszy- grupa młodsza 1.TomekmaTlat.Tylesamolatliczysobiewsumietrójkajegodzieci.NlattemuwiekTomkarówny był dwukrotności sumy lat swoich dzieci. Wyznacz T/N. 2.Niechk=2012 2 +2 2012.Ilewynosicyfrajednościliczbyk

Bardziej szczegółowo

Internetowe Ko³o M a t e m a t yc z n e

Internetowe Ko³o M a t e m a t yc z n e Internetowe Ko³o M a t e m a t yc z n e Stowarzyszenie na rzecz Edukacji Matematycznej Zestaw 1 szkice rozwiązań zadań 1 W wierszu zapisano kolejno 2010 liczb Pierwsza zapisana liczba jest równa 7 oraz

Bardziej szczegółowo

9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie

9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie 9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie Pitagorasa i twierdzenie cosinusów, twierdzenie o kącie wpisanym i środkowym, okrąg wpisany i opisany na wielokącie, wielokąty foremne (c.d).

Bardziej szczegółowo

Jak rozwijać myślenie logiczne w edukacji matematycznej?

Jak rozwijać myślenie logiczne w edukacji matematycznej? Zestaw 4 Zeszyt 3 Jacek Stańdo Jak rozwijać myślenie logiczne w edukacji matematycznej? Podstawy logiki Dowodzenie twierdzeń Recenzja Jolanta Lazar Analiza merytoryczna Elżbieta Miterka Redakcja językowa

Bardziej szczegółowo