PODSTAWY MECHANIKI I WYTRZYMAŁOŚCI MATERIAŁÓW

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "PODSTAWY MECHANIKI I WYTRZYMAŁOŚCI MATERIAŁÓW"

Transkrypt

1 ODSTAWY MECHANIKI I WYTRZYMAŁOŚCI MATERIAŁÓW MATERIAŁY DO WYKŁADU Opacował: d hab. inż. Zygmunt Lipnicki Instytut olitechniczny aństwowa Wyższa Szkoła Zawodowa W Głogowie.3.5

2 Liteatua wykozystana w opacowanych mateiałach:. Misiak Jan: Mechanika techniczna - statyka i wytzymałość mateiałów t., WNT, Waszawa, 6. Misiak Jan: Mechanika techniczna kinematyka i dynamika t., WNT, Waszawa, Osiński Zbigniew: Mechanika Ogólna cz. I i II, WN, Waszawa, Kozeniewski Zygmunt: odstawy mechaniki ciała stałego, Wyd. olitechniki Waszawskiej, Waszawa, Niziol Józef: Metodyka ozwiązywania zadań z mechaniki, WNT, Waszawa 6. Gubynowiczowa Janina: Wytzymałość mateiałów, WN, Waszawa, Lejko Jezy, Szmeltea Jan: Zbió zadań z mechaniki ogólnej t., WN, Waszawa, Kowalski J. Stefan, Mielniczuk Janusz, aszkowicz M. Agnieszka: Mechanika techniczna dla studentów kieunków niemechanicznych, WS, Zielona Góa, Kaaśkiewicz Edmund: Zays teoii wektoów i tensoów, WN, Waszawa, 974

3 I. ELEMENTY RACHUNKU WEKTOROWEGO W MECHANICE.

4 Skalay i wektoy w mechanice. Skala. Wekto i jego odzaje: wekto swobodny, wekto posuwny. 3. Działania na wektoach: mnożenie wektoa pzez liczbę, dodawanie wektoów, iloczyn skalany wektoów, iloczyn wektoowy wektoów.

5 Skala Skalaami nazywamy wielkości, dla oznaczenia któych potzebne jest podanie jednej liczby, opisującej jej miaę. zykłady: objętość, masa, tempeatua, gęstość, paca, potencjał itp.

6 Wekto i jego odzaje z k w z w w i w ( w, w, w ) j w y y k w z z i α k γ j β jw y y y w w w w z i w cos α cos β cos γ

7 Mnożenie wektoa pzez liczbę w ( ) mw m w ( m ) m ( ) mw m

8 Dodawanie wektoów dodawanie dwóch wektoów: odejmowanie wektoów: w w w w w w w ( ) w

9 Dodawanie wektoów dodawanie n wektoów: w w w... w... i w n n i w i

10 Iloczyn skalany wektoów Iloczyn skalany dwóch wektoów: w i w w w cosα w w ww cosα α w cosα w w w w w w yw y w zwz

11 Iloczyn skalany wektoów iloczyn skalany jest pzemienny: w w w w iloczyn wektoów postopadłych: w w w w iloczyn wektoów jednakowych: w w w w

12 w w α w e e l α ( w e ) e e l Składowa wektoa wzdłuż osi l Wekto składowy wzdłuż osi l

13 Iloczyn wektoowy dwóch wektoów w w w Moduł wektoa, w α w w w sin Wekto jest postopadły do wektoów w w i w z y z y w w w w w w k j i w w w

14 Iloczyn wektoowy nie jest pzemienny. w w w w w w w w w Iloczyn wektoowy dwóch jednakowych wektoów. w w w

15 Funkcje wektoowe Wektoy mogą być stałe i zależne od czasu. v Wektoy zależne od czasu twozą funkcję wektoową czasu: w v ( ) w t z hodogaf funkcji wektoowej i k j w v w v t () y

16 ochodna wektoa z w v w v t () C w &v () t w&v () t C Δw v Δt dw t dt ( ) lim Δt Δw Δt i k j w&v w v w v t ( Δt) y ( t) w& ( t) i w& ( t) j w& ( t)k y z

17 ( ) [ ] ( ) ( ) w w w w dt w d w dt w d const t w t w t w & & v. Kieunek pochodnej wektoa o stałej długości

18 II. ODSTAWOWE RAWA MECHANIKI. OGÓLNE ZASADY STATYKI.

19 ODSTAWOWE RAWA MECHANIKI.

20 iewsze pawo Newtona Jeżeli na ciało nie działajążadne siły lub siły działające ównoważą się, to uch tego ciała pzebiega niezmiennie, tzn. jest on spoczynkiem lub co najwyżej uchem jednostajnym postoliniowym. Dugie pawo Newtona Siła działająca na ciało wywołuje zmianę pędkości, czyli nadaje ciału pzyśpieszenie. zyśpieszenie to jest wpost popocjonalne do pzyłożonej siły. Tzecie pawo Newtona Jeżeli ciało A wywiea na ciało B pewną siłę, to wzajemnie, ciało B wywiea na ciało A siłę ówną co do wielkości i kieunku, lecz pzeciwnie skieowaną.

21 awo czwate Jeżeli na punkt mateialny o masie m lub układ punktów mateialnych działa jednocześnie kilka sił, to każda z nich działa niezależnie od pozostałych, a wszystkie azem działają tak, jak jedna tylko siła ówna wektoowej sumie wektoów danych sił. d dt n mu n i i i v i awo piąte ( gawitacji) Każde dwa punkty mateialne pzyciągają się wzajemnie z siłą wpost popocjonalną do iloczynu ich mas, i odwotnie popocjonalne do kwadatu odległości między nimi. Kieunek siły leży na postej łączącej te punkty. k m m

22 III. STATYKA

23 Statyka jest działem mechaniki i bada waunki ównowagi sił (czynnych i bienych) znajdujących się w stanie ównowagi, działających na punkt mateialny lub zbió punktów mateialnych względem układu odniesienia. Metody ozwiązywania zadań stosowane w statyce: metoda wykeślna, metoda analityczna, metoda wykeślno-analityczna.

24 Aksjomaty statyki:..zasada ównoległoboku dowolne dwie siły i pzyłożone do jednego punktu O można zastąpić jedną siłą, pzyłożoną do tegoż punktu i będącą wektoem, któego miaą jest pzekątna ównoległoboku zbudowanego na wektoach sił składowych. W

25 . Zasada ównowagi dwóch sił dwie siły działające na ciało sztywne są w ównowadze, gdy działają wzdłuż jednej postej, są ówne i pzeciwnie skieowane. C C 3. Zasada ównoważności -działanie dowolnego układu sił pzyłożonych do ciała sztywnego nie ulegnie zmianie, jeśli dodamy do niego inny dowolny układ sił, ale ównoważny zeu (układ sił ównoważących się). F F B B A

26 4.Zasada zesztywnienia - ównowaga sił działających na ciało odkształcalne nie zostanie nauszona pzez zmianę go na ciało sztywne. Zasada ta może być stosowana w oganiczonym zakesie i pod pewnymi waunkami. 5. Zasada działania i pzeciwdziałania każdemu działaniu towazyszy ówne co do miay, leżące na tej samej postej i pzeciwnie skieowane pzeciwdziałanie. C G R R G

27 6. Zasada oswobodzenia z więzów -każde ciało nieswobodne można umownie oswobodzić z więzów, zastępując ich działanie siłami, zwanymi siłami eakcji i ozpatywać je jako ciało swobodne, na któe działają siły czynne i siły eakcji więzów. A G C A R R układ ównoważny G C A C k B F l C k F B l metoda pzecięć

28 STONIE SWOBODY, WIĘZY I UWALNIANIE OD WIĘZÓW.

29 Stopnie swobody okeślają liczbę współzędnych koniecznych i wystaczających do wyznaczenia położenia punktu mateialnego lub układu punktów mateialnych w pzestzeni.

30 unkt mateialny Stopnie swobody : z m Odcinek z Ciało sztywne y y A m B tzy liczby okeślą położenie punktu mateialnego - tzy stopnie swobody pięć liczb okeśla położenie odcinka AB -pięć stopni swobody m sześć liczb okeśla położenie ciała sztywnego - sześć stopni swobody z y tanslacja, otacja

31 Siły działające na ciało sztywne dzielimy na: siły czynne, siły eakcji (siły biene). Więzy twozą waunki oganiczające uch ciała w pzestzeni, dzielimy je na: obustonne, jednostonne, wewnętzne, zewnętzne i idealne (bez tacia). Rodzaje niektóych podpó stosowanych w paktyce: zegub kulowy z R zegub walcowy z swozeń R

32 odpoa pzegubowa i pzegubowo- pzesuwna R A A R B B ęt sztywny pzegubowy R G C R R 3 pęt pzegubowy

33 IV. RÓWNOWAGA STATYCZNA UNKTU I UKŁADU UNKÓW MATERIALNYCH.

34 Moment siły A l z, M z M l M γ y k M M l cosγ ( ) ( ) z y z y k j i z y k z j y i,, ;,, z y z y k j M Moment siły względem punktu O Moment siły względem osi l Wekto położenia i siła

35 zekształcenia momentu siły M M ( ) C M C z M C () biegun piewotny A y M C M ( ) M C ( ) Moment siły względem nowego bieguna C jest ówny momentowi siły względem bieguna piewotnego O plus moment względem nowego bieguna C siły (), pzeniesionej do punktu O.

36 Zbieżny układ sił W W n i i W

37 Zbieżny układ sił w ównowadze W n i i n,, iy i n i iz

38 Siły ównoległe o zgodnych zwotach C W W W W W S A D B W W S AD AD BD, AB, AD DB DB AB AB

39 Siły ównoległe o pzeciwnych zwotach D W S W A W S B W W DB DA, DB DA AB W C W AD AB, DB AB

40 aa sił nowy element w statyce W S W A B S aa sił jest układem dwóch sił ównych, ównoległych i pzeciwnie skieowanych. Nie da się jej zastąpić jedną siłą.

41 M p const płaszczyzna wyznaczona pzez paę sił M p const ( ) aa sił twozy swobodny wekto momentu.

42 Równoległe pzesunięcie siły paa sił M B A B A A B Metoda oinstona

43 Siły skośne - spowadzenie do pay sił i jednej siły W M W paa sił Układ dwóch sił skośnych można zawsze spowadzić do pay sił i siły wypadkowej.

44 Redukcja dowolnego układu sił do siły i pay sił układ piewotny sił układ zeowy sił i A n A i n i n i n Dodanie wektoów zeowych A n wekto sumy momentów M O W A n i A i n i i n wekto sumy sił Dodanie wektoów i pa sił A paa sił

45 Równowaga dowolnego płaskiego układu sił R W M,. n i i n,, iy i n i M i.

46 V. TARCIE.

47 Tacie jest zjawiskiem polegającym na powstawaniu sił eakcji na powiezchni kontaktu dwóch ciał. Siły tacia pzeciwstawiają się potencjalnemu uchowi. zyczyną tacia, pzede wszystkim, jest chopowatość powiezchni.

48 ρ y ρ T - siła tacia stożek tacia R s T ϕ N G ρ - maksymalny kąt tacia T g - tacie ozwinięte T T g μn T g N tgρ Waunek spoczynku: ϕ ρ

49 Zależność między siłą tacia i siłą czynną T tacie ozwinięte, ganiczne spoczynek tacie ślizgowe statyczne uch tacie ślizgowe kinetyczne

50 TARCIE TOCZNE.

51 Bak odkształcenia podłoża i walca N G i T Waunek baku poślizgu T μ N μg Toczenie walca wywoła minimalna siła.

52 Odkształcalne podłoże Równania ównowagi: f -współczynnik opou toczenia h N G i T, h Nf T N f h f h μ N μ Tacie toczne jest badziej kozystne, niż posuwiste. μg Waunek toczenia walca bez poślizgu: f h << μ

53 Moment tacia w łożysku popzecznym Moment tacia: R G d R G d R G d d R G dt M R R R A T μ μ π π μ ϕ π μ π 3

54 TARCIE CIĘGNA O KRĄŻEK ównowaga w kieunku : dϕ ( S ds ) cos μ dn S cos dϕ, ds μdn ównowaga w kieunku y: dn dϕ dϕ ( S ds ) sin S sin. dn Sdϕ poównując ównania ównowagi otzymujemy ównanie óżniczkowe: ds μ Sdϕ

55 Rozdzielając zmienne w ównaniu óżniczkowym mamy: ds S μ d ϕ. Całkując powyższe ównanie otzymujemy wzó na siłę napięcia w linie: ln S μϕ lnc S C ep( μϕ). Stałą C wyznaczamy z waunku bzegowego: ϕ, S G C G. Napięcie w dowolnym punkcie cięgna wynosi: S G ep( μϕ).

56 zykład. Siła potzebna do podniesienia ciężau o masie m S S mg e μπ e μϕ

57 VI. WIADOMOŚCI WSTĘNE Z WYTRZYMAŁOŚCI MATERIAŁÓW.

58 . Cele nauki o wytzymałości mateiałów.. zedmiot badań wytzymałości mateiałów. 3. Elementy konstukcyjne. 4. ojęcia podstawowe. 5. Zasady wytzymałości mateiałów: Zasada de Saint-Venanta, Zasada supepozycji. 6. Rodzaje napężeń: Rozciąganie i ściskanie, Ścinanie, Skęcanie, Zginanie, Stany napężeń. 7. odstawy pojektowania.

59 Ad-. Cele nauki o wytzymałości mateiałów Badanie zachowania się mateiałów i konstukcji z nich wykonanych pod wpływem działających na nie óżnych obciążeń zewnętznych. Uwzględnienie ich zdolności do odkształceń. oznanie odpowiednich metod obliczeniowych.

60 Ad-. zedmiot badań wytzymałości mateiałów zedmiotem badań wytzymałości mateiałów są modele ciał stałych, zbliżonych własnościami do ciał zeczywistych. Modele ciał stosowane w wytzymałości mateiałów : ciała jednoodne - własności fizyczne i stuktua niezmienna w objętości ciała, ciała izotopowe - własności fizyczne ciał nie zależą od kieunku, ciała anizotopowe własności fizyczne ciał zależą od kieunku.

61 Ad-3. odstawowe elementy konstukcyjne badanych ciał: blok - wszystkie wymiay ciała są tego samego zędu, płyta - dwa wymiay pzeważają nad tzecim, pęt (belka, słup, oś, wał, cięgno) jeden wymia pzeważa nad pozostałymi. (Oś pęta: miejsce geometyczne śodków ciężkości pzekojów popzecznych)

62 Ad-4. ojęcia podstawowe - obciążenia zewnętzne q A R A G B R B

63 - obciążenia wewnętzne napężenie styczne napężenie p napężenie nomalne τ p cosα σ p sinα

64 Ad-5. Główne zasady wytzymałości mateiałów Zasada de Saint-Venanta Jeśli na pewien niewielki obsza ciała spężystego w ównowadze działa ją statycznie ównoważne obciążenia (siły skupione), to w odległości od obszau pzewyższającej wyaźnie jego ozmiay, powstają paktycznie jednakowe stany napężenia i odkształcenia. napężenia skupione napężenia ównomiene l

65 Zasada supepozycji: Skutek w okeślonym miejscu i kieunku, wywołany pzez zespół pzyczyn działających ównocześnie, można uważać za sumę algebaiczną skutków wywołanych w tym miejscu i kieunku pzez każdą pzyczynę z osobna.

66 Ad-6. Rodzaje napężeń ozciąganie i ściskanie płaszczyzna pzecięcia σ ± A siły wewnętzne Na pęt działają dwie siły ówne, pzeciwnie skieowane i działające wzdłuż osi pęta.

67 ścinanie technologiczne: od wpływem szczególnego obciążenia zewnętznego elementu konstukcji mogą powstawać napężenia styczne. powiezchnia ścinana τ T T τ T τ T A A

68 skęcanie: owodowane jest działaniem dwóch pa sił pzyłożonych do pęta w dwóch óżnych płaszczyznach postopadłych do jego osi. Moment taki nazywamy skęcającym. łaszczyzna tnąca l τ ma M s l τ ma

69 zginanie: płaszczyzna pzecięcia l l płaszczyzna pzecięcia l σ ma (ozciąganie) M g l σ ma (ściskanie) Na belkę działają dwie pay sił w płaszczyźnie belki, w pzekoju belki powstają zmienne napężenia nomalne.

70 stany napężeń: jednoosiowy płaski pzestzenny

71 Ad-7. odstawy pojektowania ojektowanie konstukcji opate jest na spełnieniu dwóch głównych waunków: wytzymałości i sztywności. Stan obciążenia ozciąganie lub ściskanie ścinanie lub skęcanie zginanie Napężenia dopuszczalne σ, c k, c τ k t, s σ g k g Waunki sztywności ε ε dop ϕ ϕdop y f dop σ ; τ;, c σ g ε; ϕ; y - napężenia: ozciągające (ściskające), ścinające zginające, - odkształcenie ozciągające (ściskające) i skęcające, ugięcie

72 VII. ROZCIĄGANIE I ŚCISKANIE RĘTÓW.

73 awo Hooke a. Odkształcenie pzy ozciąganiu i ściskaniu.

74 Odkształcenie pęta pzy ozciąganiu. d d l l Siły są ównoległe do osi pęta. -wydłużenie bezwzględne pęta: Δl l l - zmiana wymiaów popzecznych: -wydłużenie względne pęta: Δl l ε l l l - liczba oissona: ε pop Δd d d d d ε pop ν lub ε pop ε νε

75 ε Δl l ; σ A Δl awo Hooke a: l EA ε σ E - wydłużenie względne i napężenie nomalne N E m - moduł spężystości pzy ozciąganiu (moduł Younga ) A A A A l Δl Δl/ A l Δl Δl l l Δl A Δl - pzykłady ozciągania pęta

76 óba ozciągania.

77 Maszyna wytzymałościowa INSTRON

78 óbka ozciągana: d l óbka po ozciągnięciu: szyjka d l

79 σ σm R D E σ σ S H B C A σ u σ pl Wykes ozciągania pęta. ε

80 σ H. Ganica popocjonalności ( A-odcinek linii postej) σ. Ganica spężystości - s ( AB, po zdjęciu obciążenia póbka nie ma twałych odkształceń. Enegia nagomadzona w ciele podczas odkształcenia (paca odkształcenia ) zostaje w całości zwócona) 3. Fizyczna (wyaźna ) ganica plastyczności - pl (BC, pzy tym napężeniu następuje nagłe wydłużenie póbki: σ pl pl unkt C jest początkiem płynięcia plastycznego ( póbka wydłuża się bez wzostu siły odkształcającej). Dla mateiałów kuchych ten punkt ustala się umownie,% σ pl 4. Doaźna wytzymałość na ozciąganie R ma A wielkość ta jest potzebna do obliczenia napężeń dopuszczalnych. σ A

81 5. Rzeczywiste napężenie ozywające - σ u u A 6. Wydłużenie plastyczne po zewaniu - ( l l ) l % 7. zewężenie pzekoju popzecznego A A A u % d d % A u d - pole najmniejszego pzekoju po zewaniu, - najmniejsza śednica póbki w miejscu zewania.

82 aca odkształcenia pzy ozciąganiu aca odkształcenia okeśla odponość mateiału na udezenie. A Zakes stosowalności pawa Hooke a A L A A A d Δl A ( Δl) Δl A Δ l aca odkształcenia spężystego będzie zwócona po odciążeniu pęta.

83 VIII. ANALIZA STANU NARĘŻEŃ.

84 . Jednowymiaowy stan napężenia.. Dwuwymiaowy stan napężenia. 3. Tójwymiaowy stan napężenia. 4. Uogólnione pawo Hooke a. 5. Odkształcenia postaciowe a napężenie styczne.

85 Ad.-. Jednowymiaowy stan napężenia σ A σ α α α τ α

86 σ α σ σ A σ α A cosα τ cosα α A sinα cosα..8 τ α σ σ α σ y σ α A sinα τ cosα α A cosα cosα.6.4 τ α σ σ α σ cos sin α α i τ α σ. π 6 π 3 π α

87 σ ęt jest pzekojony dwiema płaszczyznami ( l ) i ( k ), obóconymi względem siebie o kąt π : α α' l α ; α α π - napężenia w piewszym pzekoju pęta (l) są identyczne jak w wyżej ozpatywanym pzypadku, - napężenia w dugim pzekoju (k ) wynoszą k π σ α σ cos α σ cos α σ sin α, π sin α sin α sin α τ σ σ σ σ Napężenia styczne w dwóch wzajemnie postopadłych pzekojach są sobie ówne co do modułu.

88 Ad -. Dwuwymiaowy stan napężenia σ Napężenia w pzekoju ( k ) : σ y α α σ l σ y y k zy obciążeniu płytki napężeniami σ w tym pzekoju napężenia nomalne i styczne są ówne: σ σ cos α, τ σ sin α σ y zy obciążeni płytki napężeniami w tym samym pzekoju napężenia nomalne i styczne są ówne: σ σ y sin α, τ σ y sin α

89 Całkowite napężenia nomalne: σ σ σ σ cos α σ y sin α całkowite napężenia styczne: σ sin α σ y sin α σ σ y τ τ τ sin α Watości ekstemalne napężeń: - dla 3π α π 4 sin α ; α sin α 4 τ ma σ σ y lub τ ma σ σ y

90 zekoje, w któych napężenia nomalne będą osiągały watości ekstemalne: dσ σ dα ( σ σ ) y α albo cosα sinα sin α σ y α π α cosα sinα albo α π. Napężenia nomalne są największe lub najmniejsze w pzekojach ównoległych i postopadłych do kieunków działania napężeń. σ i σ y

91 τ Koło Moha Koło Moha służy do okeślania napężeń nomalnych w dowolnym ukośnym pzekoju nachylonym do płaszczyzn głównych. σ y σ α α D A C E B σ τ α σ τ α AC σ σ σ CD sin α y σ, y sin α, σ α OA AC CE σ cos α σ sin α y

92 Ad.-3 Tójwymiaowy stan napężeń σ σ 3 σ σ σ 3 σ

93 Ad.-4. Uogólnione pawo Hooke a. Związek między odkształceniami i napężeniami wielokieunkowymi. Kozystając z zasady supepozycji możemy napisać: -wydłużenie w kieunku : ( ) [ ] z y y y E E E E σ σ ν σ σ ν σ ν σ ε ( ) [ ] z y z y y E E E E σ σ ν σ σ ν σ ν σ ε ( ) [ ] y z y z z E E E E σ σ ν σ σ ν σ ν σ ε -wydłużenie w kieunku y: -wydłużenie w kieunku z:

94 Względny pzyost objętości: V V ( ε )( ε y )( ε z ) V o odzuceniu małych wyższego zędu mamy: V V ν ε ε y ε z y V E Jeżeli wszystkie napężenia są ówne: ( σ σ σ ) V V ν 3σ V E Współczynnik spężystości objętościowej (współczynnik ściśliwości spężystej): K Dla mateiału nieściśliwego σ E ΔV σ K ΔV V 3 V ( ν ) ( ν.5) współczynnik ściśliwości z K

95 Ad.-5 Odkształcenia postaciowe a napężenie styczne. σ y Czyste ścinanie d τ τ π 4 a c σ τ τ b σ y y Napężenia w pzekoju ab pzy czystym ścinaniu są ówne: σ σ σ y, σ, σ σ y τ sin α. Jaka występuje zależność między odkształceniem kątowym a skóceniem względnym pzekątnej db lub wydłużeniem względnym pzekątnej. σ y ac σ

96 d τ π γ d b b τ p γ a a c c e τ τ γ Wydłużenie połowy pzekątnej i połowy boku kwadatu: ε σ aa E ad ac ( ν ) aa' σ a' e E ( ν ) ad a'd' d' a' pa' Długość odcinka a' e ( ν ) Kąt odkształcenia postaciowego: γ a' e σ σ pa' E E σ τ γ E E ( ν ) ( ν ) ( ν ) (*)

97 . W stanie czystego ścinania wpowadzamy pojęcie współczynnika spężystości postaciowej G, któy nazywany jest modułem Kichhoffa. Współczynnik ten jest ówny stosunkowi spężystego odkształcenia postaciowego γ do napężenia stycznego. awo Hooke a dla czystego ścinania: τ γ τ G Zależność między modułem Younga i współczynnikiem spężystości postaciowej wynika ze wzou (*) G E ( ν )

98 IX. SKRĘCANIE WAŁÓW.

99 Skęcenie wału powstaje pod wpływem działania dwóch pa sił o pzeciwnych zwotach, znajdujących się w dwóch óżnych płaszczyznach postopadłych do osi wału i oddalonych od siebie o l. M S γ ϕ M S l d Model skęcania wału Kątem skęcenia wału ϕ nazywamy kąt, o jaki obócą się względem siebie pzekoje postopadłe do osi wału i oddalone o l, do któych pzyłożone są momenty skęcające. M s

100 Założenia modelowe: oś wału pozostaje linią postą; twozące, początkowo ównoległe do osi wału, po skęceniu pzyjmują kształt linii śubowej nachylonej pod kątem γ ; postokąty pzekształcają się w ównoległoboki; okęgi na powiezchni wału zachowują swój kształt i nie zmieniają swojej śednicy, pzekój czołowy dalej jest płaski; pomienie pzekojów czołowych po odkształceniu wału dalej są płaskie; pzekój utwiedzony jest nieuchomy, pozostałe pzekoje obacają się dookoła osi wału, kąt obotu względem siebie dwóch dowolnych pzekojów jest wpost popocjonalny do odległości między nimi; odległości pomiędzy pzekojami jest stała.

101 d a Związek między odkształceniami i napężeniami wału: γ c γ c b γ ρ b d dϕ dϕ o o ρ oównując długość łuku bb mamy: dϕ γ d dϕ γ d podobnie dla mniejszego pomienia ρ: γ d ρdϕ γ p p dϕ ρ d

102 τ ma o Zgodnie z pawem Hooke a napężenia styczne okeślają wzoy: dϕ τ ma Gγ G d τ ρ Gγ ρ dϕ Gρ d da. τ ρ da ρ o Suma elementanych momentów stycznych wynosi: dϕ dϕ τ ρ ρda Gρ ρda G ρ M s d d A dϕ G J d A A da, gdzie J jest biegunowym momentem bezwładności. zekształcając dalej otzymujemy wzó na kąt skęcenia na długości l: dϕ M M sd M sl s ϕ d GJ GJ GJ l

103 Napężenia styczne w zależności od momentu skęcającego okeślają wzoy : M s ρ M s τ ρ i τ ma J J Wpowadzając wskaźnik wytzymałości pzekoju pzy skęcaniu: J W Waunki wytzymałościowe ze względu na napężenia dopuszczalne i sztywność są odpowiednio ówne: τ ma M W s k t i ϕ M sl GJ ϕ dop, k t gdzie jest dopuszczalnym napężeniem na ścinanie, a ϕ dop dopuszczalnym kątem skęcenia.

104 Skęcanie wałów obotowych Wał obotowy o pomieniu pzenosi moment M i moc N.. Stumień pacy L (moc ) pzenoszony pzez wał jest ówny: Śednia moc: N L & dl dt. N L t ϕ Mϕ M πn Mω t t 6, gdzie n oznacza ilość obotów na minutę.

105 Spężyny R

106 M S R Supepozycja napężeń stycznych oś spężyny τ ma τ R M s R τ ma i τ 3 W π A π R τ τ ma τ π

107 X. ZGINANIE RĘTÓW (BELEK) ROSTYCH.

108 Moment zginający i siła popzeczna: T > M g > M g < T <

109 Wykesy momentów zginających i sił popzecznych: R A M g A a l M g ma RB B pzedział : M T ( ) a ( l a) RA ( ) R pzedział: A l ( l a) l a l T R A _ R B M a A l a T ( ) RA l ( ) R ( a) ( l )

110 Zależności óżniczkowe pomiędzy obciążeniem zewnętznym, siłą popzeczną i momentem zginającym. q q( ) A B d

111 Zależności óżniczkowe pomiędzy obciążeniem zewnętznym, siłą popzeczną i momentem zginającym. qd X T ( ) qd ( T( ) dt( ) ) M () T () d M ( ) dm T () dt M o dt d ( ) q( ) T ( ) d M ( ) ( M ( ) dm ( ) ) qd d dm d M ( ) dt ( ) d ( ) T ( ) d d q ( )

112 Napężenia i odkształcenia pzy czystym zginaniu, da σ M o z σ da y y z σ da σ, M z M y σ A da A.

113 y d c z Zmiana długości włókna elementu: ( ds) ( ρ y) dα ds d Wydłużenie włókna wynosi: a ds b y d ( ds) ( ds d( ds) ) ds ( ρ y) ρdα ydα dα wastwa obojętna M y a d ρ ds dα ściskanie ozciąganie ds d( ds) c σ M b σ Wydłużenie względne: ε ( ds) d ds ydα ρdα y ρ Napężenie okeśla pawo Hooke a: y σ Eε E ρ.

114 Moment zginający w pzekoju belki jest ówny: M E M g ρ A y da E I ρ Wzó na kzywiznę zgiętej osi belki: i napężenie: ρ M EI g z z σ M I z g y Wzó powyższy okeśla napężenie w pzekoju belki w odległości y od osi obojętnej w zależności od zadanego obciążenia M g i momentu bezwładności I z pzekoju popzecznego belki.

115 Wskaźnik wytzymałości na zginanie : W z I z y ma, σ ma M W g z k g. Wskaźniki wytzymałościowe dla óżnych pzekojów: koła: 3 πd W z 3 -pieścienia: D π 3 -postokąta : bh W z 6 d D 4 4 W z.

116 Linia ugięcia belki Wielkość kzywizny okeśla się w geometii óżniczkowej ównaniem: ± ρ d d y dy d 3 ± d d y Różniczkowe ównanie uposzczone linii ugięcia ma postać: d d y ± M EI g z,

117 y M g >, d y d < y M g <, d y d > Dodatnim watościom momentu zginającego odpowiadają watość ujemna dugiej pochodnej linii ugięcia

118 Duga pochodna linii ugięcia: d y d M EI g z Śodek kzywizny jest umieszczony w kieunku dodatnich y Dwukotne scałkowanie powyższego ównania pzyjmuje postacie: y dy d M EI EI z z g d C [ ] M gd d C C Stałe całkowania wylicza się z waunków bzegowych (zgodności).

119 R A zykład: dy d M g RA d C EI z d y d M EI g z EI z C ~ y EI l z l. ~ y 3 6EI z C C - wielkości bezwymiaowe: ~ y y l, ~ l Kozystając z waunków bzegowych otzymujemy stałe: C, C Linia ugięcia belki w bezwymiaowej postaci ma postać: ~ ~ 3 yei z l 6

120 XI. WYBOCZENIE RĘTÓW.

121 Wzó Eulea Zależność kzywizny osi pęta od momentu zginającego: ρ M EJ kzywiznę osi pęta okeśla ównanie: y M y ( ) y l k ± ρ d y d [ ( dy d) ] 3 zybliżone ównanie osi pęta: M d y EI d M d y d y y EI k d d EI

122 Równanie óżniczkowe d d y k y gdzie k k EI będzie ozwiązane pzy waunkach bzegowych: dla y dla l y

123 Rozwiązanie ównania óżniczkowego y C sin k C cosk C kl n π k n π l EI nietywialne ozwiązanie dla n Wzó Eulea na siłę kytyczną k n π y l π C sin l EI min

124 Napężenie w pętach wybaczanych Napężenie kytyczne σ k k A spawdzenie na wyboczenie (stateczność) σ A k w k w σ k n w k w nw - napężenie dopuszczalne pzy wyboczeniu - współczynnik bezpieczeństwa pzy wyboczeniu

125 Ramię bezwładności i smukłość pęta okeślają ównania: A I i A i I i l s s E i l E l i E k π π π σ i a napężenia kytyczne zależność.

126 XII. ELEMENTY KINEMATYKI.

127 ZARYS KINEMATYKI UNKTU MATERIALNEGO.

128 zedmiotem kinematyki jest geometia uchu (sam uch bez analizy pzyczyn jego powstania) punktu mateialnego i układu punktów mateialnych.

129 ołożenie punktu mateialnego - doga i wekto położenia punktu mateialnego: s s t ; t () () -pędkość i pzyśpieszenie punktu mateialnego: d v & i & jy& kz& i v jv y kvz dt d a v& & i && jy && kz && i a ja y ka z dt

130 łaszczyzna ściśle styczna binomalna płaszczyzna nomalna płaszczyzna postująca płaszczyzna styczna b N n t styczna to ρ nomalna głowna łaszczyzna najbadziej dopasowana do ozpatywanego tou punktu mateialnego.

131 Układ natualny z b N n płaszczyzna ściśle styczna t to k i nomalna główna j y

132 zyśpieszenie nomalne i styczne uch punktu N w płaszczyźnie ściśle stycznej N a t N n v v N N a n a to ρ N N ds ρdϕ dϕ a t -pzyśpieszenie styczne, C a n -pzyśpieszenie nomalne

133 a t dt hodogaf pędkości C dϕ dv v a t v dv dt a dt v, & a t dt Z analizy hodogafu pędkości Q wynika: a n dt Q a dt, Q t a dt, Q dv, n, Q C sin dϕ C dϕ vdϕ ds v, ρ ds v ds v v an dt v an v, ρ ρ dt ρ ρ zyśpieszenie punktu N jest ówne: a t a t n a n t v& n v ρ

134 Ruch złożony punktu.

135 zyśpieszenie punktu w uchu złożonym uch bezwzględny punktu : z k jy i ρ pędkość punktu : ( ), w u w v w kz jy i v w z i y i i v kz jy i kz jy i v O & & & & & & & & & & ρ ω ω ω ω ω ρ z y i j k O i j k z y ω ρ Wektoy jednostkowe obacają się

136 ( ) ( ) ( ) a n w w kz jy i kz jy i kz jy i dt d v & & & & & & & ω ρ ω ω ω ω ω ω ρ ω ρ ε ρ ω & a to ( ) ρ ω ω a n zyśpieszenie: w v v a & & & & & ρ ω ρ ω pzyśpieszenie styczne: pzyśpieszenie nomalne:

137 ( ) ( ) a w w k j i w k j i dt d w && && && & & & & ω ζ η ξ ω ζ η ξ pzyśpieszenie względne pzyśpieszenie względne:

138 zyśpieszenie punktu a a u a w a C pzyśpieszenie unoszenia: a u v& a a n t pzyśpieszenie względne: a w pzyśpieszenie Coiolisa: a C ω ( w)

139 zykłady z uchu złożonego: Wzdłuż południka kuli, obacającej się z pędkością kątową, ω pousza się punkt mateialny ze stałą pędkością ω w. ω w a u w ϕ a a u w R a C ϕ a w R a a w c w R, a u wω sinϕ ω R cosϕ,

140 ( ) ( ) ( ) ( ) ϕ ω ϕ ω ω ϕ ϕ ω ϕ ω 4 4 sin cos cos cos cos w R w R w R w R R w R a a a C w u a u a w π ϕ ϕ a w a C a u ϕ C w u a a a a u a w Obliczenie pzyśpieszenia wypadkowego punktu :

141 Kinematyka ciała sztywnego ędkości punktów ciała sztywnego są ze sobą związane. AB B A d dt ( ) AB & AB AB AB & AB AB v A AB v B v cosα v cos β v cosα AB A AB B A v B cos β

142 Ruch obotowy ciała sztywnego Ciało sztywne w uchu obotowym ma jeden stopień swobody. () ϕ ϕ t ω ω & ϕ ε ε && ϕ -kąt obotu -pędkość kątowa -pzyśpieszenie kątowe

143 ϕ ϕ ϕ ω & & & j y i z y k j i v a n a v v a & τ ω ε ędkość i pzyśpieszenie w uchu obotowym

144 Ruch płaski ciała sztywnego W uchu płaskim punkty ciała pouszają się w płaszczyznach ównoległych do płaszczyzny kieującej. śodek obotu chwilowego Chwilowa pędkość kątowa odcinka AB : ω va AC C vb BC

145 v v v A AB A B ω ω pędkość punktu B: pzyśpieszenie punktu B: ( ) ( ) ω ε ω ω ω ε ω ω ε ω ω a a a dt d dt d dt dv a A A A A B ędkość i pzyśpieszenie w uch płaskim.

146 zykład uchu płaskiego (mechanizm kobowy): B y O ϕ ω n a A Rozwiązanie analityczne: a B t a A v A A ϕ t a BA a B cosϕ v d dt sinϕ dϕ dt ω sinϕ B B n a BA t a A ϕ n a A ( ) ( ω cosϕ dω dt sinϕ ω cosϕ ε sinϕ) dv dt B n a BA v B ω k v A v BA B

147 Wyznaczenie pędkości kątowej kobowodu: v v B BA va vba va ω, bo ω k k ωk, AB AB, π ϕ v BA ϕ v B v A tójkąt pędkości π ϕ Z twiedzenia sinusów dla tójkąta pędkości wynika: vb sin ϕ v v B BA v A v A sin ω v A ( π ϕ) sin( π ϕ) sin ϕ cosϕ v A ω ω sinϕ k v BA ω sinϕ,

148 .,,,,,, a a a a a a a a a a a a a k t BA k n BA t BA n BA BA t A n A t A n A A BA A B ε ω ε ω zyśpieszenie punktu B mechanizmu kobowego:

149 Składowa styczna pzyśpieszenia względnego jest nieznana, znany jest natomiast kieunek pzyśpieszenia punktu B. Wykozystując te infomacje i zutując składowe pzyśpieszenia na kieunek y i mamy: a ω sinϕ ε cosϕ ω sinϕ ε cosϕ, a t BA B cosϕ a a t BA n BA sinϕ a sinϕ a n BA cosϕ a cosϕ a sinϕ sinϕ a cosϕ ε sinϕ ω cosϕ ε sinϕ ω cosϕ ( ε sinϕ ω cosϕ). t A t A n A n A

150 XIII. DYNAMIKA UNKTU.

151 Równanie óżniczkowe uchu punktu mateialnego Ruch punktu mateialnego opisuje ównanie Newtona: m & &,, ( t) pzy danych waunkach początkowych: ( ), ( ). & v Zadania główne z dynamiki punktu mateialnego można podzielić na dwa odzaje:.zadania poste spowadzają się do wyznaczenia siły, wywołującej uch punktu mateialnego, na podstawie ównania uchu..zadania odwotne spowadza się do wyznaczenia ównania uchu, jeżeli znamy masę punktu i siłę

152 Szczególne pzypadki uchu, w zależności od siły wywołującej uch:.siła jest stała: const.siła zależy od czasu: 3.Siła zależy od pędkości: 4. Siła zależy od położenia: (t) ( &) ( )

153 Twiedzenie o pędzie i popędzie Ogólny zapis dugiej zasady Newtona: d dt ( mv ) Zmiana pędu ciała jest ówna popędowi pzekazywanemu temu ciału. n i m v i i const Jeżeli na układ ciał nie działają siły zewnętzne to suma pędów tych ciał jest stała.

154 XIII. ZASAD RÓWNOWAŻNOŚCI ENERGII KINETYCZNEJ I RACY.

155 aca i pole sił aca mechaniczna jest iloczynem skalanym siły i pzesunięcia. z y A m ϕ dl B d ( cosϕ ) ( d cosϕ) L d ( Xd Ydy Zdz ) AB AB dl W potencjalnym polu sił paca jest ówna óżnicy potencjałów. L AB ( V ) V L m m V ; A B

156 W pzypadku obecności więzów paca jest ówna: R T m ϕ. d s N π dl Rds Rds cos ϕ Rds sinϕ Tds

157 ochodna pacy, moc (siły) okeślona jest wzoem: N dl dt dt ( d ) v, gdy siła jest stała.

158 Zasada ównoważności enegii kinetycznej i pacy. m d v dt d dt mv d v m v v dt t d dt t d dt m d dt mv dt v v AB d dt d. o scałkowaniu otzymano: mv mv AB d, gdzie mv E Zasada ównoważności enegii kinetycznej i pacy: wyaża enegię kinetyczną. E E L

159 Zasada zachowania enegii mechanicznej E E E V V V E E V const. V W potencjalnym polu sił suma enegii kinetycznej i potencjalnej (enegia mechaniczna) punktu mateialnego jest stała.

160 aca i moc w uchu obotowym l M v C dϕ v M cosγ M l ω N ( d ) m A v dl dt ω M dt ( ω ) ω ( ) M v ω cosγ M l ω γ

161 XIV. DYNAMIKA BRYŁY SZTYWNEJ.

162 Ruch obotowy były dookoła osi stałej M z d dt Zmianę pędu punktu opisuje ównanie: ( m ω) M, l v ω l, ε ω. l I l v dm d dt l y ( Iω) M, Zmianę pędu całej były: d dt ( ) dm M, ω I ε M l masowy moment bezwładności były

163 Ruch płaski ciała sztywnego Ruch płaski ciała sztywnego opisują ównania: y ϕ C m && my && I C C C ϕ& & M C Cy C Enegia kinetyczna ciała (suma enegii kinetycznej uchu postępowego śodka masy i enegii kinetycznej uchu obotowego dookoła osi pzechodzącej pzez śodek masy): E k mvc ICω

164 zykład: koło o masie m i pomieniu toczy się bez poślizgu po poziomej płaszczyźnie pod wpływem siły : T gdzie : ϕ A C N f m Równania uchu: m && I C C ϕ& & mg IC m, & ϕ && & C, C T T a N Nf

165 XV. DRGANIA UNKTU MATERIALNEGO.

166 S k λ st - eakcja statyczna spężyny k λ mg st λst Dgania swobodne: mg k m & & mg S, S k ( λ ) st m && mg k ( λ ) st k, && ω ω k m

167 C cosω t C sin ω t Acos t ( ω ϕ ) Acosϕ, C Asinϕ, A C C, C tgϕ C C T π ω π m k π λst g

168 Waunki początkowe: t i & & C cosω t C sin ω t Cω sin ωt C ω cosω t C, C & ω zebieg dgań

169 Dgania swobodne tłumione m && k c&, ω k m, n c m, && n& ω

170 t e e t ( n ω ) ównanie chaakteystyczne: n ω, n ± i ω n

171 . Tłumienie nadkytyczne n ω [ ( ) ] [ ( ) ] n n ω t C n n ω t C ep ep. Tłumienie kytyczne n ω ( ω t) C ep 3. Tłumienie podkytyczne n ω ( ω t) ( ω ϕ ) A t ep cos ω ω n -częstość dgań tłumionych

172 Dgania swobodne tłumione

173 Dgania wymuszone ( ) t m t k t k mg m t S mg m st ω ω ω ω λ ω sin, sin sin, sin && && &&

174 t C t C sin cos ω ω t A ω sin t m t C t C ω ω ω ω ω sin sin cos t m t m t t ω ω ω ω ω ω ω ω ω ω ω sin sin sin cos &

Spis treści. Wstęp Część I STATYKA

Spis treści. Wstęp Część I STATYKA Spis treści Wstęp... 15 Część I STATYKA 1. WEKTORY. PODSTAWOWE DZIAŁANIA NA WEKTORACH... 17 1.1. Pojęcie wektora. Rodzaje wektorów... 19 1.2. Rzut wektora na oś. Współrzędne i składowe wektora... 22 1.3.

Bardziej szczegółowo

Pęd, d zasada zac zasad a zac owan owan a p a p du Zgod Zg n od ie n ie z d r d u r g u im g pr p a r wem e N ew e tona ton :

Pęd, d zasada zac zasad a zac owan owan a p a p du Zgod Zg n od ie n ie z d r d u r g u im g pr p a r wem e N ew e tona ton : Mechanika ogólna Wykład n 13 Zasady zachowania w dynamice. Dynamika były sztywnej. Dynamika układu punktów mateialnych. 1 Zasady zachowania w dynamice Zasada: zachowania pędu; zachowania momentu pędu (kętu);

Bardziej szczegółowo

Ruch obrotowy. Wykład 6. Wrocław University of Technology

Ruch obrotowy. Wykład 6. Wrocław University of Technology Wykład 6 Wocław Univesity of Technology Oboty - definicje Ciało sztywne to ciało któe obaca się w taki sposób, że wszystkie jego części są związane ze sobą dzięki czemu kształt ciała nie ulega zmianie.

Bardziej szczegółowo

Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, Spis treści

Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, Spis treści Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, 2010 Spis treści Część I. STATYKA 1. Prawa Newtona. Zasady statyki i reakcje więzów 11 1.1. Prawa Newtona 11 1.2. Jednostki masy i

Bardziej szczegółowo

Podstawy fizyki wykład 4

Podstawy fizyki wykład 4 Podstawy fizyki wykład 4 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Dynamika Obroty wielkości liniowe a kątowe energia kinetyczna w ruchu obrotowym moment bezwładności moment siły II zasada

Bardziej szczegółowo

MECHANIKA OGÓLNA (II)

MECHANIKA OGÓLNA (II) MECHNIK GÓLN (II) Semest: II (Mechanika I), III (Mechanika II), ok akademicki 2017/2018 Liczba godzin: sem. II*) - wykład 30 godz., ćwiczenia 30 godz. sem. III*) - wykład 30 godz., ćwiczenia 30 godz. (dla

Bardziej szczegółowo

Politechnika Śląska w Gliwicach Wydział Organizacji i Zarządzania Katedra Podstaw Systemów Technicznych

Politechnika Śląska w Gliwicach Wydział Organizacji i Zarządzania Katedra Podstaw Systemów Technicznych Przedmiot: Mechanika stosowana Liczba godzin zajęć dydaktycznych: Politechnika Śląska w Gliwicach Wydział Organizacji i Zarządzania Katedra Podstaw Systemów Technicznych Studia magisterskie: wykład 30

Bardziej szczegółowo

Guma Guma. Szkło Guma

Guma Guma. Szkło Guma 1 Ładunek elektyczny jest cechą mateii. Istnieją dwa odzaje ładunków, nazywane dodatnimi i ujemnymi. Ładunki jednoimienne się odpychają, podczas gdy ładunki óżnoimeinne się pzyciągają Guma Guma Szkło Guma

Bardziej szczegółowo

GEOMETRIA PŁASZCZYZNY

GEOMETRIA PŁASZCZYZNY GEOMETRIA PŁASZCZYZNY. Oblicz pole tapezu ównoamiennego, któego podstawy mają długość cm i 0 cm, a pzekątne są do siebie postopadłe.. Dany jest kwadat ABCD. Punkty E i F są śodkami boków BC i CD. Wiedząc,

Bardziej szczegółowo

GRAWITACJA. przyciągają się wzajemnie siłą proporcjonalną do iloczynu ich mas i odwrotnie proporcjonalną do kwadratu ich odległości r.

GRAWITACJA. przyciągają się wzajemnie siłą proporcjonalną do iloczynu ich mas i odwrotnie proporcjonalną do kwadratu ich odległości r. GRAWITACJA Pawo powszechnego ciążenia (pawo gawitacji) Dwa punkty mateialne o masach m 1 i m pzyciągają się wzajemnie siłą popocjonalną do iloczynu ich mas i odwotnie popocjonalną do kwadatu ich odległości.

Bardziej szczegółowo

m q κ (11.1) q ω (11.2) ω =,

m q κ (11.1) q ω (11.2) ω =, OPIS RUCHU, DRGANIA WŁASNE TŁUMIONE Oga Kopacz, Adam Łodygowski, Kzysztof Tymbe, Michał Płotkowiak, Wojciech Pawłowski Konsutacje naukowe: pof. d hab. Jezy Rakowski Poznań 00/00.. Opis uchu OPIS RUCHU

Bardziej szczegółowo

Fizyka. Wykład 2. Mateusz Suchanek

Fizyka. Wykład 2. Mateusz Suchanek Fizyka Wykład Mateusz Suchanek Zadanie utwalające Ruch punktu na płaszczyźnie okeślony jest ównaniai paaetycznyi: x sin(t ) y cos(t gdzie t oznacza czas. Znaleźć ównanie tou, położenie początkowe punktu,

Bardziej szczegółowo

Siła. Zasady dynamiki

Siła. Zasady dynamiki Siła. Zasady dynaiki Siła jest wielkością wektoową. Posiada okeśloną watość, kieunek i zwot. Jednostką siły jest niuton (N). 1N=1 k s 2 Pzedstawienie aficzne A Siła pzyłożona jest do ciała w punkcie A,

Bardziej szczegółowo

Mechanika teoretyczna

Mechanika teoretyczna Wypadkowa -metoda analityczna Mechanika teoretyczna Wykład nr 2 Wypadkowa dowolnego układu sił. Równowaga. Rodzaje sił i obciążeń. Rodzaje ustrojów prętowych. Składowe poszczególnych sił układu: Składowe

Bardziej szczegółowo

Energia kinetyczna i praca. Energia potencjalna

Energia kinetyczna i praca. Energia potencjalna negia kinetyczna i paca. negia potencjalna Wykład 4 Wocław Univesity of Technology 1 NRGIA KINTYCZNA I PRACA 5.XI.011 Paca Kto wykonał większą pacę? Hossein Rezazadeh Olimpiada w Atenach 004 WR Podzut

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w popzednim odcinku 1 Zasada zachowania pędu p Δp i 0 p i const. Zasady zachowania: pęd W układzie odosobnionym całkowity pęd (suma pędów wszystkich ciał) jest wielkością stałą. p 1p + p p + = p 1k + p

Bardziej szczegółowo

Mechanika i Wytrzymałość Materiałów. Wykład nr 1 Wprowadzenie i podstawowe pojęcia. Rachunek wektorowy. Wypadkowa układu sił. Równowaga.

Mechanika i Wytrzymałość Materiałów. Wykład nr 1 Wprowadzenie i podstawowe pojęcia. Rachunek wektorowy. Wypadkowa układu sił. Równowaga. Mechanika i Wytrzymałość Materiałów Wykład nr 1 Wprowadzenie i podstawowe pojęcia. Rachunek wektorowy. Wypadkowa układu sił. Równowaga. Przedmiot Mechanika (ogólna, techniczna, teoretyczna): Dział fizyki

Bardziej szczegółowo

Mechanika ogólna Kierunek: budownictwo, sem. II studia zaoczne, I stopnia inżynierskie

Mechanika ogólna Kierunek: budownictwo, sem. II studia zaoczne, I stopnia inżynierskie Mechanika ogólna Kierunek: budownictwo, sem. II studia zaoczne, I stopnia inżynierskie materiały pomocnicze do zajęć audytoryjnych i projektowych opracowanie: dr inż. Piotr Dębski, dr inż. Dariusz Zaręba

Bardziej szczegółowo

Mechanika ogólna. Łuki, sklepienia. Zalety łuków (2) Zalety łuków (1) Geometria łuku (1) Geometria łuku (2) Kształt osi łuku (2) Kształt osi łuku (1)

Mechanika ogólna. Łuki, sklepienia. Zalety łuków (2) Zalety łuków (1) Geometria łuku (1) Geometria łuku (2) Kształt osi łuku (2) Kształt osi łuku (1) Łuki, sklepienia Mechanika ogólna Wykład n 12 Pęty o osi zakzywionej. Łuki. Łuk: pęt o osi zakzywionej (w stanie nieodkształconym) w płaszczyźnie działania sił i podpaty na końcach w taki sposób, że podpoy

Bardziej szczegółowo

II.6. Wahadło proste.

II.6. Wahadło proste. II.6. Wahadło poste. Pzez wahadło poste ozumiemy uch oscylacyjny punktu mateialnego o masie m po dolnym łuku okęgu o pomieniu, w stałym polu gawitacyjnym g = constant. Fig. II.6.1. ozkład wektoa g pzyśpieszenia

Bardziej szczegółowo

1. Ciało sztywne, na które nie działa moment siły pozostaje w spoczynku lub porusza się ruchem obrotowym jednostajnym.

1. Ciało sztywne, na które nie działa moment siły pozostaje w spoczynku lub porusza się ruchem obrotowym jednostajnym. Wykład 3. Zasada zachowania momentu pędu. Dynamika punktu mateialnego i były sztywnej. Ruch obotowy i postępowy Większość ciał w pzyodzie to nie punkty mateialne ale ozciągłe ciała sztywne tj. obiekty,

Bardziej szczegółowo

Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!)

Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!) Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!) Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Kinematyka ruchu

Bardziej szczegółowo

20 ELEKTROSTATYKA. PRAWO COULOMBA.

20 ELEKTROSTATYKA. PRAWO COULOMBA. Włodzimiez Wolczyński Pawo Coulomba 20 ELEKTROSTATYKA. PRAWO COULOMBA. POLE CENTRALNE I JEDNORODNE Q q = k- stała, dla póżni = 9 10 = 1 4 = 8,9 10 -stała dielektyczna póżni ε względna stała dielektyczna

Bardziej szczegółowo

Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka

Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka Bryła sztywna Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka Moment bezwładności Prawa ruchu Energia ruchu obrotowego Porównanie ruchu obrotowego z ruchem postępowym Przypomnienie Równowaga bryły

Bardziej szczegółowo

Mechanika. Wykład nr 2 Wypadkowa dowolnego układu sił. Równowaga. Rodzaje sił i obciążeń. Wyznaczanie reakcji.

Mechanika. Wykład nr 2 Wypadkowa dowolnego układu sił. Równowaga. Rodzaje sił i obciążeń. Wyznaczanie reakcji. Mechanika Wykład nr 2 Wypadkowa dowolnego układu sił. Równowaga. Rodzaje sił i obciążeń. Wyznaczanie reakcji. Przyłożenie układu zerowego (układ sił równoważących się, np. dwie siły o takiej samej mierze,

Bardziej szczegółowo

10 RUCH JEDNOSTAJNY PO OKRĘGU

10 RUCH JEDNOSTAJNY PO OKRĘGU Włodzimiez Wolczyński Miaa łukowa kąta 10 RUCH JEDNOSTAJNY PO OKRĘGU 360 o =2π ad = = 2 s 180 o =π ad 90 o =π/2 ad = jednostka adian [1 = 1 = 1] Π ad 180 o 1 ad - x o = 180 57, 3 57 18, Ruch jednostajny

Bardziej szczegółowo

ZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BRYŁY SZTYWNEJ

ZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BRYŁY SZTYWNEJ ZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BYŁY SZTYWNEJ 1. Welkośc w uchu obotowym. Moment pędu moment sły 3. Zasada zachowana momentu pędu 4. uch obotowy były sztywnej względem ustalonej os -II

Bardziej szczegółowo

Oddziaływania fundamentalne

Oddziaływania fundamentalne Oddziaływania fundamentalne Siła gawitacji (siła powszechnego ciążenia, oddziaływanie gawitacyjne) powoduje spadanie ciał i ządzi uchem ciał niebieskich Księżyc Ziemia Słońce Newton Dotyczy ciał posiadających

Bardziej szczegółowo

Wykład: praca siły, pojęcie energii potencjalnej. Zasada zachowania energii.

Wykład: praca siły, pojęcie energii potencjalnej. Zasada zachowania energii. Wykład: paca siły, pojęcie enegii potencjalnej. Zasada zachowania enegii. Uwaga: Obazki w tym steszczeniu znajdują się stonie www: http://www.whfeeman.com/tiple/content /instucto/inde.htm Pytanie: Co to

Bardziej szczegółowo

Podstawy fizyki. [T.] 1 / David Halliday, Robert Resnick, Jearl Walker. wyd. 2. Warszawa, Spis treści

Podstawy fizyki. [T.] 1 / David Halliday, Robert Resnick, Jearl Walker. wyd. 2. Warszawa, Spis treści Podstawy fizyki. [T.] 1 / David Halliday, Robert Resnick, Jearl Walker. wyd. 2. Warszawa, 2015 Spis treści Od Wydawcy do drugiego wydania polskiego Przedmowa Podziękowania xi xiii xxi 1. Pomiar 1 1.1.

Bardziej szczegółowo

Zasady dynamiki Isaak Newton (1686 r.)

Zasady dynamiki Isaak Newton (1686 r.) Zasady dynamiki Isaak Newton (1686 r.) I (zasada bezwładności) Istnieje taki układ odniesienia, w którym ciało pozostaje w spoczynku lub porusza się ruchem jednostajnym prostoliniowym, jeśli nie działają

Bardziej szczegółowo

Podstawy Procesów i Konstrukcji Inżynierskich. Dynamika

Podstawy Procesów i Konstrukcji Inżynierskich. Dynamika Podstawy Procesów i Konstrukcji Inżynierskich Dynamika Prowadzący: Kierunek Wyróżniony przez PKA Mechanika klasyczna Mechanika klasyczna to dział mechaniki w fizyce opisujący : - ruch ciał - kinematyka,

Bardziej szczegółowo

PRACA MOC ENERGIA. Z uwagi na to, że praca jest iloczynem skalarnym jej wartość zależy również od kąta pomiędzy siłą F a przemieszczeniem r

PRACA MOC ENERGIA. Z uwagi na to, że praca jest iloczynem skalarnym jej wartość zależy również od kąta pomiędzy siłą F a przemieszczeniem r PRACA MOC ENERGIA Paca Pojęcie pacy używane jest zaówno w fizyce (w sposób ścisły) jak i w życiu codziennym (w sposób potoczny), jednak obie te definicje nie pokywają się Paca w sensie potocznym to każda

Bardziej szczegółowo

PRAWA ZACHOWANIA Prawa zachowania najbardziej fundamentalne prawa:

PRAWA ZACHOWANIA Prawa zachowania najbardziej fundamentalne prawa: PRW ZCHOWNI Pawa achowania nabadie fundamentalne pawa: o ewnętne : pawo achowania pędu, pawo achowania momentu pędu, pawo achowania enegii; o wewnętne : pawa achowania np. całkowite licb nukleonów w eakci

Bardziej szczegółowo

Ruch jednostajny po okręgu

Ruch jednostajny po okręgu Ruch jednostajny po okęgu W uchu jednostajnym po okęgu pędkość punktu mateialnego jest stała co do watości ale zmienia się jej kieunek. Kieunek pędkości jest zawsze styczny do okęgu będącego toem. Watość

Bardziej szczegółowo

WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POLITECHNIKI KRAKOWSKIEJ Instytut Fizyki LABORATORIUM PODSTAW ELEKTROTECHNIKI, ELEKTRONIKI I MIERNICTWA

WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POLITECHNIKI KRAKOWSKIEJ Instytut Fizyki LABORATORIUM PODSTAW ELEKTROTECHNIKI, ELEKTRONIKI I MIERNICTWA WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POITEHNIKI KRAKOWSKIEJ Instytut Fizyki ABORATORIUM PODSTAW EEKTROTEHNIKI, EEKTRONIKI I MIERNITWA ĆWIZENIE 7 Pojemność złącza p-n POJĘIA I MODEE potzebne do zozumienia

Bardziej szczegółowo

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi)

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi) Kinematyka Mechanika ogólna Wykład nr 7 Elementy kinematyki Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez wnikania w związek

Bardziej szczegółowo

Mechanika ogólna. Więzy z tarciem. Prawa tarcia statycznego Coulomba i Morena. Współczynnik tarcia. Tarcie statyczne i kinetyczne.

Mechanika ogólna. Więzy z tarciem. Prawa tarcia statycznego Coulomba i Morena. Współczynnik tarcia. Tarcie statyczne i kinetyczne. Więzy z tacie Mechanika oólna Wykład n Zjawisko tacia. awa tacia. awa tacia statyczneo Couloba i Moena Siła tacia jest zawsze pzeciwna do występująceo lub ewentualneo uchu. Wielkość siły tacia jest niezależna

Bardziej szczegółowo

Pierwsze kolokwium z Mechaniki i Przyległości dla nanostudentów (wykład prof. J. Majewskiego)

Pierwsze kolokwium z Mechaniki i Przyległości dla nanostudentów (wykład prof. J. Majewskiego) Pierwsze kolokwium z Mechaniki i Przylełości dla nanostudentów (wykład prof. J. Majewskieo) Zadanie Dane są cztery wektory A, B, C oraz D. Wyrazić liczbę (A B) (C D), przez same iloczyny skalarne tych

Bardziej szczegółowo

Karta (sylabus) przedmiotu Kierunek studiów Mechatronika Studia pierwszego stopnia. Mechanika Techniczna Rodzaj przedmiotu: Podstawowy Kod przedmiotu:

Karta (sylabus) przedmiotu Kierunek studiów Mechatronika Studia pierwszego stopnia. Mechanika Techniczna Rodzaj przedmiotu: Podstawowy Kod przedmiotu: Karta (sylabus) przedmiotu Kierunek studiów Mechatronika Studia pierwszego stopnia Przedmiot: Mechanika Techniczna Rodzaj przedmiotu: Podstawowy Kod przedmiotu: MT 1 S 0 2 14-0_1 Rok: I Semestr: II Forma

Bardziej szczegółowo

cz. 1. dr inż. Zbigniew Szklarski

cz. 1. dr inż. Zbigniew Szklarski Wykład 10: Gawitacja cz. 1. d inż. Zbiniew Szklaski szkla@ah.edu.pl http://laye.uci.ah.edu.pl/z.szklaski/ Doa do pawa powszechneo ciążenia Ruch obitalny planet wokół Słońca jak i dlaczeo? Reulane, wieloletnie

Bardziej szczegółowo

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016/ /20 (skrajne daty)

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016/ /20 (skrajne daty) Załącznik nr 4 do Uchwały Senatu nr 430/01/2015 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016/17 2019/20 (skrajne daty) 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Mechanika Techniczna

Bardziej szczegółowo

Podstawy fizyki sezon 1 III. Praca i energia

Podstawy fizyki sezon 1 III. Praca i energia Podstawy fizyki sezon 1 III. Praca i energia Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha F.Żarnecki Praca Rozważamy

Bardziej szczegółowo

Płatew dachowa. Kombinacje przypadków obciążeń ustala się na podstawie wzoru. γ Gi G ki ) γ Q Q k. + γ Qi Q ki ψ ( i ) G ki - obciążenia stałe

Płatew dachowa. Kombinacje przypadków obciążeń ustala się na podstawie wzoru. γ Gi G ki ) γ Q Q k. + γ Qi Q ki ψ ( i ) G ki - obciążenia stałe Płatew dachowa Przyjęcie schematu statycznego: - belka wolnopodparta - w halach posadowionych na szkodach górniczych lub w przypadkach, w których przewiduje się nierównomierne osiadanie układów poprzecznych

Bardziej szczegółowo

Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego FIZYKA. Repetytorium Część 1 ZAJĘCIA WYRÓWNAWCZE

Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego FIZYKA. Repetytorium Część 1 ZAJĘCIA WYRÓWNAWCZE Pojekt współfinansowany pzez Unię Euopejską w amach Euopejskiego Funduszu Społecznego FIZYKA Repetytoium Część 1 ZAJĘCIA WYRÓWNAWCZE D Jezy Stasz Dąbowa Gónicza 2013 Spis teści 1. Mechanika... 4 1.1 Skalay,

Bardziej szczegółowo

Mechanika ogólna statyka

Mechanika ogólna statyka Mechanika ogóna statyka kierunek Budownictwo, sem. II materiały pomocnicze do ćwiczeń opracowanie: dr inż. iotr Dębski, dr inż. Irena Wagner TREŚĆ WYKŁADU ojęcia podstawowe, działy mechaniki. ojęcie punktu

Bardziej szczegółowo

Podstawowe pojęcia wytrzymałości materiałów. Statyczna próba rozciągania metali. Warunek nośności i użytkowania. Założenia

Podstawowe pojęcia wytrzymałości materiałów. Statyczna próba rozciągania metali. Warunek nośności i użytkowania. Założenia Wytrzymałość materiałów dział mechaniki obejmujący badania teoretyczne i doświadczalne procesów odkształceń i niszczenia ciał pod wpływem różnego rodzaju oddziaływań (obciążeń) Podstawowe pojęcia wytrzymałości

Bardziej szczegółowo

PROJEKT nr 2. Ściągacz dwuramienny do kół zębatych i łożysk tocznych.

PROJEKT nr 2. Ściągacz dwuramienny do kół zębatych i łożysk tocznych. PROJEKT n Ściąacz dwuamienny do kół zębatych i łożysk tocznych. Spoządził: Andzej Wölk PROJEKT n Zapojektować ściąacz dwuamienny do kół zębatych i łożysk tocznych. Maksymalna siła wzdłużna potzebna pzy

Bardziej szczegółowo

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona Ilość ruchu, stan ruchu danego ciała opisuje pęd Siły - wektory Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona I Każde ciało trwa w stanie spoczynku lub

Bardziej szczegółowo

MECHANIKA II. Praca i energia punktu materialnego

MECHANIKA II. Praca i energia punktu materialnego MECHANIKA II. Praca i energia punktu materialnego Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/ daniel.lewandowski@pwr.edu.pl

Bardziej szczegółowo

KINEMATYCZNE WŁASNOW PRZEKŁADNI

KINEMATYCZNE WŁASNOW PRZEKŁADNI KINEMATYCZNE WŁASNOW ASNOŚCI PRZEKŁADNI Waunki współpacy pacy zazębienia Zasada n 1 - koła zębate mogą ze sobą współpacować, kiedy mają ten sam moduł m. Czy to wymaganie jest wystaczające dla pawidłowej

Bardziej szczegółowo

Zasady i kryteria zaliczenia: Zaliczenie pisemne w formie pytań opisowych, testowych i rachunkowych.

Zasady i kryteria zaliczenia: Zaliczenie pisemne w formie pytań opisowych, testowych i rachunkowych. Jednostka prowadząca: Wydział Techniczny Kierunek studiów: Inżynieria bezpieczeństwa Nazwa przedmiotu: Mechanika techniczna Charakter przedmiotu: podstawowy, obowiązkowy Typ studiów: inżynierskie pierwszego

Bardziej szczegółowo

Podstawy Procesów i Konstrukcji Inżynierskich. Praca, moc, energia INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA

Podstawy Procesów i Konstrukcji Inżynierskich. Praca, moc, energia INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA Podstawy Procesów i Konstrukcji Inżynierskich Praca, moc, energia Energia Energia jest to wielkość skalarna, charakteryzująca stan, w jakim znajduje się jedno lub wiele ciał. Energia jest miarą różnych

Bardziej szczegółowo

Energia potencjalna jest energią zgromadzoną w układzie. Energia potencjalna może być zmieniona w inną formę energii (na przykład energię kinetyczną)

Energia potencjalna jest energią zgromadzoną w układzie. Energia potencjalna może być zmieniona w inną formę energii (na przykład energię kinetyczną) 1 Enega potencjalna jest enegą zgomadzoną w układze. Enega potencjalna może być zmenona w nną omę eneg (na pzykład enegę knetyczną) może być wykozystana do wykonana pacy. Sumę eneg potencjalnej knetycznej

Bardziej szczegółowo

Rodzaje obciążeń, odkształceń i naprężeń

Rodzaje obciążeń, odkształceń i naprężeń Rodzaje obciążeń, odkształceń i naprężeń 1. Podział obciążeń i odkształceń Oddziaływania na konstrukcję, w zależności od sposobu działania sił, mogą być statyczne lun dynamiczne. Obciążenia statyczne występują

Bardziej szczegółowo

prowadnice Prowadnice Wymagania i zasady obliczeń

prowadnice Prowadnice Wymagania i zasady obliczeń Prowadnice Wymagania i zasady obliczeń wg PN-EN 81-1 / 2 Wymagania podstawowe: - prowadzenie kabiny, przeciwwagi, masy równoważącej - odkształcenia w trakcie eksploatacji ograniczone by uniemożliwić: niezamierzone

Bardziej szczegółowo

Ruch punktu materialnego

Ruch punktu materialnego WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA INNOWACYJNY PROGRAM NAUCZANIA FIZYKI W SZKOŁACH PONADGIMNAZJALNYCH Moduł dydaktyczny: fizyka - infomatyka Ruch punktu mateialnego Elżbieta Kawecka

Bardziej szczegółowo

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16 Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16 1. Warunkiem koniecznym i wystarczającym równowagi układu sił zbieżnych jest, aby a) wszystkie

Bardziej szczegółowo

OBLICZENIA SPRZ ENIA CIERNEGO

OBLICZENIA SPRZ ENIA CIERNEGO OBLICZENIA SPRZENIA CIERNEGO 1. Dane wejciowe do oblicze: Udwig nominalny: Masa kabiny, amy i ospztu: Masa pzeciwwagi: Q := P := P b := 450 kg 60 kg 855 kg Pdko nominalna: v := 1 m s Wysoko podnoszenia:

Bardziej szczegółowo

Siły oporu prędkość graniczna w spadku swobodnym

Siły oporu prędkość graniczna w spadku swobodnym FZYKA Wykład echanika: Pojęcia podstawowe dynamika i punktu histoia mateialnego (V) Siły opou pędkość ganiczna w spadku swobodnym Układy Pojęcia nieinecjalne podstawowe () i histoia Siły w układach nieinecjalnych

Bardziej szczegółowo

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Próba skręcania pręta o przekroju okrągłym Numer ćwiczenia: 4 Laboratorium z

Bardziej szczegółowo

11. DYNAMIKA RUCHU DRGAJĄCEGO

11. DYNAMIKA RUCHU DRGAJĄCEGO 11. DYNAMIKA RUCHU DRGAJĄCEGO Ruchem dgającym nazywamy uch, któy powtaza się peiodycznie w takcie jego twania w czasie i zachodzi wokół położenia ównowagi. Zespół obiektów fizycznych zapewniający wytwozenie

Bardziej szczegółowo

FIZYKA 2. Janusz Andrzejewski

FIZYKA 2. Janusz Andrzejewski FIZYKA 2 wykład 4 Janusz Andzejewski Pole magnetyczne Janusz Andzejewski 2 Pole gawitacyjne γ Pole elektyczne E Definicja wektoa B = γ E = Indukcja magnetyczna pola B: F B F G m 0 F E q 0 qv B = siła Loentza

Bardziej szczegółowo

Pierwsze dwa podpunkty tego zadania dotyczyły równowagi sił, dla naszych rozważań na temat dynamiki ruchu obrotowego interesujące będzie zadanie 3.3.

Pierwsze dwa podpunkty tego zadania dotyczyły równowagi sił, dla naszych rozważań na temat dynamiki ruchu obrotowego interesujące będzie zadanie 3.3. Dynamika ruchu obrotowego Zauważyłem, że zadania dotyczące ruchu obrotowego bardzo często sprawiają maturzystom wiele kłopotów. A przecież wystarczy zrozumieć i stosować zasady dynamiki Newtona. Przeanalizujmy

Bardziej szczegółowo

III Zasada Dynamiki Newtona. Wykład 5: Układy cząstek i bryła sztywna. Przykład. Jak odpowiesz na pytania?

III Zasada Dynamiki Newtona. Wykład 5: Układy cząstek i bryła sztywna. Przykład. Jak odpowiesz na pytania? III Zasada Dynamiki Newtona 1:39 Wykład 5: Układy cząstek i bryła sztywna Matematyka Stosowana Ciało A na B: Ciało B na A: 0 0 Jak odpowiesz na pytania? Honda CRV uderza w Hondę Civic jak będzie wyglądał

Bardziej szczegółowo

Liczba godzin Liczba tygodni w tygodniu w semestrze

Liczba godzin Liczba tygodni w tygodniu w semestrze 15. Przedmiot: WYTRZYMAŁOŚĆ MATERIAŁÓW Kierunek: Mechatronika Specjalność: mechatronika systemów energetycznych Rozkład zajęć w czasie studiów Liczba godzin Liczba godzin Liczba tygodni w tygodniu w semestrze

Bardziej szczegółowo

Fizyka 1 (mechanika) AF14. Wykład 9

Fizyka 1 (mechanika) AF14. Wykład 9 Fizyka 1 (mechanika) 1100-1AF14 Wykład 9 Jerzy Łusakowski 05.12.2016 Plan wykładu Żyroskopy, bąki, etc. Toczenie się koła Ruch w polu sił centralnych Żyroskopy, bąki, etc. Niezrównoważony żyroskop L m

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: ENERGETYKA Rodzaj przedmiotu: Kierunkowy ogólny Rodzaj zajęć: Wykład, ćwiczenia MECHANIKA Mechanics Forma studiów: studia stacjonarne Poziom kwalifikacji: I stopnia Liczba godzin/tydzień:

Bardziej szczegółowo

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury Funkcje wektorowe Jeśli wektor a jest określony dla parametru t (t należy do przedziału t (, t k )

Bardziej szczegółowo

REZONATORY DIELEKTRYCZNE

REZONATORY DIELEKTRYCZNE REZONATORY DIELEKTRYCZNE Rezonato dielektyczny twozy małostatny, niemetalizowany dielektyk o dużej pzenikalności elektycznej ( > 0) i dobej stabilności tempeatuowej, zwykle w kształcie cylindycznych dysków

Bardziej szczegółowo

Podstawowe informacje o module

Podstawowe informacje o module Podstawowe informacje o module Nazwa jednostki prowadzącej studia: Wydział Budownictwa i Inżynierii środowiska Nazwa kierunku studiów: Budownictwo Obszar : nauki techniczne Profil : ogólnoakademicki Poziom

Bardziej szczegółowo

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas 3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas oddziaływanie między ciałami, ani też rola, jaką to

Bardziej szczegółowo

Podstawy fizyki sezon 1 IV. Pęd, zasada zachowania pędu

Podstawy fizyki sezon 1 IV. Pęd, zasada zachowania pędu Podstawy fizyki sezon 1 IV. Pęd, zasada zachowania pędu Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Pęd Rozważamy

Bardziej szczegółowo

18. Siły bezwładności Siła bezwładności w ruchu postępowych Siła odśrodkowa bezwładności Siła Coriolisa

18. Siły bezwładności Siła bezwładności w ruchu postępowych Siła odśrodkowa bezwładności Siła Coriolisa Kinematyka 1. Podstawowe własności wektorów 5 1.1 Dodawanie (składanie) wektorów 7 1.2 Odejmowanie wektorów 7 1.3 Mnożenie wektorów przez liczbę 7 1.4 Wersor 9 1.5 Rzut wektora 9 1.6 Iloczyn skalarny wektorów

Bardziej szczegółowo

Zasady dynamiki Newtona. Pęd i popęd. Siły bezwładności

Zasady dynamiki Newtona. Pęd i popęd. Siły bezwładności Zasady dynamiki Newtona Pęd i popęd Siły bezwładności Copyright by pleciuga@o2.pl Inercjalne układy odniesienia Układy inercjalne to takie układy odniesienia, względem których wszystkie ciała nie oddziałujące

Bardziej szczegółowo

9. 1. KOŁO. Odcinki w okręgu i kole

9. 1. KOŁO. Odcinki w okręgu i kole 9.. KOŁO Odcinki w okęgu i kole Cięciwa okęgu (koła) odcinek łączący dwa dowolne punkty okęgu d Śednica okęgu (koła) odcinek łączący dwa dowolne punkty okęgu pzechodzący pzez śodek okęgu (koła) Pomień

Bardziej szczegółowo

VII.1 Pojęcia podstawowe.

VII.1 Pojęcia podstawowe. II.1 Pojęcia podstawowe. Jan Królikowski Fizyka IBC 1 Model matematyczny ciała sztywnego Zbiór punktów materialnych takich, że r r = const; i, j= 1,... N i j Ciało sztywne nie ulega odkształceniom w wyniku

Bardziej szczegółowo

Defi f nicja n aprę r żeń

Defi f nicja n aprę r żeń Wytrzymałość materiałów Stany naprężeń i odkształceń 1 Definicja naprężeń Mamy bryłę materialną obciążoną układem sił (siły zewnętrzne, reakcje), będących w równowadze. Rozetniemy myślowo tę bryłę na dwie

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204

WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204 WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204 1 DZIAŁ PROGRAMOWY V. PODSTAWY STATYKI I WYTRZYMAŁOŚCI MATERIAŁÓW

Bardziej szczegółowo

DRGANIA ELEMENTÓW KONSTRUKCJI

DRGANIA ELEMENTÓW KONSTRUKCJI DRGANIA ELEMENTÓW KONSTRUKCJI (Wprowadzenie) Drgania elementów konstrukcji (prętów, wałów, belek) jak i całych konstrukcji należą do ważnych zagadnień dynamiki konstrukcji Przyczyna: nawet niewielkie drgania

Bardziej szczegółowo

Twierdzenia o wzajemności

Twierdzenia o wzajemności Twierdzenia o wzajemności Praca - definicja Praca iloczyn skalarny wektora siły i wektora drogi jaką pokonuje punkt materialny pod wpływem działania tej siły. L S r r F( s) o ds r F( s) cos ( α ) ds F

Bardziej szczegółowo

Pole magnetyczne. 5.1 Oddziaływanie pola magnetycznego na ładunki. przewodniki z prądem. 5.1.1 Podstawowe zjawiska magnetyczne

Pole magnetyczne. 5.1 Oddziaływanie pola magnetycznego na ładunki. przewodniki z prądem. 5.1.1 Podstawowe zjawiska magnetyczne Rozdział 5 Pole magnetyczne 5.1 Oddziaływanie pola magnetycznego na ładunki i pzewodniki z pądem 5.1.1 Podstawowe zjawiska magnetyczne W obecnym ozdziale ozpatzymy niektóe zagadnienia magnetostatyki. Magnetostatyką

Bardziej szczegółowo

WSTĘP DO TEORII PLASTYCZNOŚCI

WSTĘP DO TEORII PLASTYCZNOŚCI 13. WSTĘP DO TORII PLASTYCZNOŚCI 1 13. 13. WSTĘP DO TORII PLASTYCZNOŚCI 13.1. TORIA PLASTYCZNOŚCI Teoria plastyczności zajmuje się analizą stanów naprężeń ciał, w których w wyniku działania obciążeń powstają

Bardziej szczegółowo

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 7 2012/2013, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment

Bardziej szczegółowo

Z-LOG-0133 Wytrzymałość materiałów Strength of materials

Z-LOG-0133 Wytrzymałość materiałów Strength of materials KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Z-LOG-0133 Wytrzymałość materiałów Strength of materials A. USYTUOWANIE

Bardziej szczegółowo

Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 5. Energia, praca, moc Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html ENERGIA, PRACA, MOC Siła to wielkość

Bardziej szczegółowo

Wytrzymałość Materiałów

Wytrzymałość Materiałów Wytrzymałość Materiałów Rozciąganie/ ściskanie prętów prostych Naprężenia i odkształcenia, statyczna próba rozciągania i ściskania, właściwości mechaniczne, projektowanie elementów obciążonych osiowo.

Bardziej szczegółowo

MiBM sem. III Zakres materiału wykładu z fizyki

MiBM sem. III Zakres materiału wykładu z fizyki MiBM sem. III Zakres materiału wykładu z fizyki 1. Dynamika układów punktów materialnych 2. Elementy mechaniki relatywistycznej 3. Podstawowe prawa elektrodynamiki i magnetyzmu 4. Zasady optyki geometrycznej

Bardziej szczegółowo

12 RUCH OBROTOWY BRYŁY SZTYWNEJ I. a=εr. 2 t. Włodzimierz Wolczyński. Przyspieszenie kątowe. ε przyspieszenie kątowe [ ω prędkość kątowa

12 RUCH OBROTOWY BRYŁY SZTYWNEJ I. a=εr. 2 t. Włodzimierz Wolczyński. Przyspieszenie kątowe. ε przyspieszenie kątowe [ ω prędkość kątowa Włodzimierz Wolczyński Przyspieszenie kątowe 1 RUCH OROTOWY RYŁY SZTYWNEJ I = = ε przyspieszenie kątowe [ ] ω prędkość kątowa = = T okres, = - częstotliwość s=αr v=ωr a=εr droga = kąt x promień prędkość

Bardziej szczegółowo

Mechanika i wytrzymałość materiałów Kod przedmiotu

Mechanika i wytrzymałość materiałów Kod przedmiotu Mechanika i wytrzymałość materiałów - opis przedmiotu Informacje ogólne Nazwa przedmiotu Mechanika i wytrzymałość materiałów Kod przedmiotu 06.9-WM-IB-P-22_15W_pNadGenRDG4C Wydział Kierunek Wydział Mechaniczny

Bardziej szczegółowo

8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI

8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI 8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI 8. 8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI 8.. Płaski stan napężenia Tacza układ, ustój ciągły jednoodny, w któym jeden wymia jest znacznie mniejszy od pozostałych,

Bardziej szczegółowo

Tarcie poślizgowe

Tarcie poślizgowe 3.3.1. Tarcie poślizgowe Przy omawianiu więzów w p. 3.2.1 reakcję wynikającą z oddziaływania ciała na ciało B (rys. 3.4) rozłożyliśmy na składową normalną i składową styczną T, którą nazwaliśmy siłą tarcia.

Bardziej szczegółowo

Metody optymalizacji. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metody optymalizacji. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metody optymalizacji d inż. Paweł Zalewski kademia Moska w Szczecinie Optymalizacja - definicje: Zadaniem optymalizacji jest wyznaczenie spośód dopuszczalnych ozwiązań danego polemu ozwiązania najlepszego

Bardziej szczegółowo

Wykład 5: Dynamika. dr inż. Zbigniew Szklarski

Wykład 5: Dynamika. dr inż. Zbigniew Szklarski Wykład 5: Dynamika d inż. Zbigniew Szklaski szkla@agh.edu.pl http://laye.uci.agh.edu.pl/z.szklaski/ Pzyczyny uchu - zasady dynamiki dla punktu mateialnego Jeśli ciało znajduje się we właściwym miejscu,

Bardziej szczegółowo

Na skutek takiego przemieszcznia ładunku, energia potencjalna układu pole-ładunek zmienia się o:

Na skutek takiego przemieszcznia ładunku, energia potencjalna układu pole-ładunek zmienia się o: E 0 Na ładunek 0 znajdujący się w polu elektycznym o natężeniu E działa siła elektostatyczna: F E 0 Paca na pzemieszczenie ładunku 0 o ds wykonana pzez pole elektyczne: dw Fds 0E ds Na skutek takiego pzemieszcznia

Bardziej szczegółowo

Elementy dynamiki mechanizmów

Elementy dynamiki mechanizmów Elementy dynamiki mechanizmów Dynamika pojęcia podstawowe Dynamika dział mechaniki zajmujący się ruchem ciał materialnych pod działaniem sił. Głównym zadaniem dynamiki jest opis ruchu ciał pod działaniem

Bardziej szczegółowo

ROZWIĄZUJEMY PROBLEM RÓWNOWAŻNOŚCI MASY BEZWŁADNEJ I MASY GRAWITACYJNEJ.

ROZWIĄZUJEMY PROBLEM RÓWNOWAŻNOŚCI MASY BEZWŁADNEJ I MASY GRAWITACYJNEJ. ROZWIĄZUJEMY PROBLEM RÓWNOWAŻNOŚCI MASY BEZWŁADNEJ I MASY GRAWITACYJNEJ. STRESZCZENIE Na bazie fizyki klasycznej znaleziono nośnik ładunku gawitacyjnego, uzyskano jedność wszystkich odzajów pól ( elektycznych,

Bardziej szczegółowo

Treści programowe przedmiotu

Treści programowe przedmiotu WM Karta (sylabus) przedmiotu Zarządzanie i Inżynieria Produkcji Studia stacjonarne pierwszego stopnia o profilu: ogólnoakademickim A P Przedmiot: Mechanika techniczna z wytrzymałością materiałów I Status

Bardziej szczegółowo

Atom (cząsteczka niepolarna) w polu elektrycznym

Atom (cząsteczka niepolarna) w polu elektrycznym Dieektyki Dieektyki substancje, w któych nie występują swobodne nośniki ładunku eektycznego (izoatoy). Może być w nich wytwozone i utzymane bez stat enegii poe eektyczne. dieektyk Faaday Wpowadzenie do

Bardziej szczegółowo

Zginanie proste belek

Zginanie proste belek Zginanie belki występuje w przypadku obciążenia działającego prostopadle do osi belki Zginanie proste występuje w przypadku obciążenia działającego w płaszczyźnie głównej zx Siły przekrojowe w belkach

Bardziej szczegółowo