Topologia Algebraiczna - Pomocnik studenta 50 zadań na Egzamin z Topologii Algebraicznej I Semestr zimowy roku akademickiego 2010/2011

Wielkość: px
Rozpocząć pokaz od strony:

Download "Topologia Algebraiczna - Pomocnik studenta 50 zadań na Egzamin z Topologii Algebraicznej I Semestr zimowy roku akademickiego 2010/2011"

Transkrypt

1 Topologia Algebraiczna - Pomocnik studenta 50 zadań na Egzamin z Topologii Algebraicznej I Semestr zimowy roku akademickiego 2010/2011 Agnieszka Bojanowska Stefan Jackowski 10 lutego Kategorie i funktory Zad. 1. Funktor dołączony z lewej (prawej) strony zachowuje kogranice (granice) diagramów w szczególności: koprodukty (produkty), koekwalizatory (ekwalizatory), push-out y (pull-back i). Dokładniej, jeśli funktor G : C D jest lewo-dołączony do pewnego funktora, to dla dowolnego diagramu F : I C jeśli istnieje colim I F to istnieje także colim I (G F ), a naturalny morfizm colim I (G F ) G(colim I F ) jest izomorfizmem (odpowiednio dla granicy i funktora prawo-dołączonego). Zbadaj zachowanie granic i kogranic w kategorii punktowanych przestrzeni topologicznych przez funktor przestrzeni pętli i funktor zawieszenia. Zad. 2. Jeżeli morfizm ν : X X X (gdzie oznacza koprodukt w C - kategorii w której istnieją produkty i koprodukty), zdaje strukturę kogrupową, zaś µ : Y Y Y zadaje strukturę grupową w kategorii C i te dwie struktury mają wspólny morfizm neutralny e : X Y, to struktury grupy wyznaczone w zbiorze Mor C (X, Y ) przez ν i przez µ pokrywają się i ponadto otrzymana grupa jest przemienna. Wywnioskować stąd, że jeśli (G, e) jest homotopijna grupą (a nawet monoidem homotopijnym), to strukturę grupy w π q (G, e)) można zdefiniować prz pomocy mnożenia w G. Zad. 3. Przez analogię z definicjami obiektu grupowego i kogrupowego w kategorii zdefiniuj działanie obiektu grupowego na obiekcie kategorii i kodziałanie obiektu kogrupowego na obiekcie tej kategorii. Sprawdź, że jesli (X, x 0 ) jest przestrzenia dobrze punktowaną, to istnieje ko-działanie X ν X S 1, które dla dowolnej przestrzeni punktowanej (Y, y 0 ) zadaje działanie π 1 (X, x 0 ) na [X, Y ] takie, że [X, Y ] /π 1 (X, x 0 ) [X, Y ]. 2 Rozwłóknienia i korozwłóknienia Zad. 4. Korzystając z najodpowiedniejszego z równoważnych warunków definiujacych (ko-)rozwłóknienie wykaż, że następujące konstrukcje zachowują klasy (ko-)rozwłóknień: 1. Przekształcenie izomorficzne w kategorii Mor(T ) z (ko-)rozwłóknieniem jest (ko-)rozwłóknieniem; 2. Złożenie (ko-)rozwłóknień jest (ko-)rozwłóknieniem; 1

2 3. Pull-back (push-out) rozwłóknienia (ko-rozwłóknienia) jest rozwłóknieniem (ko-rozwłóknieniem); 4. Retrakt (ko-)rozwłóknienia w kategorii Mor(T ) jest (ko-)rozwłóknieniem; 5. Koprodukt i produkt (ko-)rozwłóknień jest (ko-)rozwłóknieniem. Zad. 5. Rozwłóknienie p 1 : P (Y, y 0 ) Y gdzie P (Y, y 0 ) := {ω ω(0) = x 0 } dane wzorem p(ω) := ω(1) ma przekrój (tzn. istnieje przekształcenie s : Y P (Y, y 0 ) takie, że p 1 s = id Y ) wtedy i tylko wtedy gdy Y jest ściągalna. Sformułować dualna wlasnośc dla stożka nad przestrzenią. Zad. 6. Przekształcenie f : X Y jest homotopijną równoważnością wtedy i tylko wtedy, gdy X = X {1} Z(f) jest retraktem deformacyjnym. Dualny odpowiednik tego stwierdzenia dla ko-walca przeksztalcenia? Zad. 7. Opisać typ homotopii homotopijnych push-out ów następujących diagramów w kategorii przestrzeni dobrze punktowanych: a) X ; b) A X gdzie A X jest parą Borsuka; c) X {pt} Y. Zad. 8. Zdefiniować homotopijny pull-back i opisać jego typ homotopii dla następujących diagramów w kategorii przestrzeni punktowanych: a) {x 0 } X {x 0 } b) pt B E gdzie E B jest rozwłóknieniem c) X {pt} Y Zad. 9. Niech f : X Y. Pokazać, że a) (homotopijne) włókno nad y 0 Y jest (homotopijnie równoważne) homeomorficzne z (homotopijnym) pull backiem diagramu {y 0 } Y f X. b) (homotopijne) kowłókno jest (homotopijnie równoważne) homeomorficzne z (homotopijnym) pushoutem diagramu X f Y. Zad. 10. Jeśli X jest przestrzenią ściągalną to stożek przekształcenia (homotopijne kowłókno) f : Y X jest homotopijnie równoważny z zawieszeniem ΣY. Dualne stwierdzenie dla ko-stożka (homotopijnego włókna)? Zad. 11. Czy homotopijne przekształcenia mają homotopijnie równoważne homotopijne włókna i homotopijne kowłókna? Zad. 12. Włókna homotopijne i kowłókno homotopijne odwzorowania, które jest homotopijną równowaznością są ściągalne. A jakie są homotopijne włókna i kowłókna przekształceń ściągalnych? Zad. 13. Zapoznaj się z dowodem, że dowolne przekształcenie nakrywające p : X X jest rozwłóknieniem (p.topologia II). Dlaczego ten sam dowód nie przechodzi dla dowolnych przekształceń lokalnie trywialnych? Zad. 14. Dla jednospójnej przestrzeni X dowolne rozwłóknienie z dyskretnym włóknem (np. nakrycie) p: Ỹ Y indukuje bijekcję p : [X, Ỹ ] [X, Y ]. Zad. 15. Podać przykład domkniętego podzbioru A R n, takiego że włożenie nie jest korozwłóknieniem. Jak wygląda rozkład tego włożenia na korozwłóknienie i homotopijną równoważność? 2

3 Zad. 16. Niech F = C, H, O. Wykaż, że przekształcenie Hopfa p : S 2 dim R F 1 S dim R F dane wzorem p(z 0, z 1 ) := z 0 /z 1 (utożsamiamy sferę S n z jednopunktowym uzwarceniem ciała F) jest rozwłóknieniem. Zad. 17. Niech M, N będą rozmaitościami gładkimi. Niech x 1,.., x n M będą punktami. Wtedy odwzorowanie p n : Map (M, N) N N.. N dane wzorem p n (f) := (f(x 1 ),.., f(x n )) jest rozwłóknieniem. 3 Ciągi Puppe i funktory półdokładne Zad. 18. Opisać naturalne równoważności funktorów Mor(T ) T : C(Σf) ΣC(f) oraz F (Ωf) ΩF (f). Zad. 19. Niech Y g X f Y będą odwzorowaniami dobrze puntkowanych przestrzeni takimi, że f g id Y. Wtedy włożenie Y j C(f), występujące w prawym ciągu Puppe odwzorowania f jest ściągalne. Co wynika z tego dla kontrawariantnego ciagu Puppe zadanego przez dowolny kontrawariantny funktor półdokładny? Zad. 20. Dla n > 1 i dowolnego kontrawariantnego funktora półdokładnego F, F (S n ) jest grupą abelową (ogólniej, F (X) jest grupa dla dowolnej homotopijnej ko-grupy X) oraz F (f k ) : F (S n ) F (S n ) gdzie f k jest przekształceniem stopnia k (p. Zad. 43) jest mnożeniem przez liczbę k. Zad. 21. Z Lematu o Pięciu Odwzorowaniach Zbiorów Punktowanych wywnioskuj Lemat o Pięciu Homomorfizmach w kategorii grup abelowych: Stwierdzenie. Jeśli w przemiennym diagramie grup abelowych i ich homomorfizmów: α 5 G 5 α 4 G 4 α 3 G 3 α 2 G 2 G 1 G 5 γ 5 α 5 G 4 γ 4 α 4 G 3 γ 3 α 3 G 2 γ 2 α 2 G 1 γ 1 wiersze są ciągami dokładnymi, to: 1. Jeśli γ 2, γ 4 są epimorfizmami i γ 1 jest monomorfizmem to γ 3 jest epimorfizmem; 2. Jeśli γ 2, γ 4 są monomorfizmami i γ 5 jest epimorfizmem, to γ 3 jest monomorfizmem. 4 CW-kompleksy Zad. 22. Opisać strukturę CW-kompleksu w znanych powierzchniach 2-wymiarowych (sfera, torus, precle, butelka Kleina itd.) Zad. 23. Zawieszenie ΣP g, gdzie P g jest preclem genusu g (sfera z g uchami), jest homotopijnie równoważne z bukietem 2g egezemplarzy sfer S 2 i sfery S 3. Zbadać z jaką przestrzenią jest homotopijnie równoważne zawieszenie butelki Kleina. Zad. 24. Opisać strukturę CW-kompleksu w przestrzeniach rzutowych nad ciałami R, C, H. 3

4 Zad. 25. Niech X, Y bedą skończonymi CW-kompleksami. Opisać strukturę CW-kompleksu w produkcie X Y. Gdzie korzystamy ze skończoności X, Y? Zad. 26. Produkt kartezjański dwóch sfer S m S n powstaje z bukietu S m S n przez doklejenie dysku D n+m wzdłuż jego brzegu. Zad. 27. Zawieszenie produktu dwóch sfer jest homotopijnie równoważne bukietowi trzech sfer. Jakich wymiarów? Zad. 28. Sfera nieskończenie wymiarowa S jest przestrzenią ściągalną. Zad. 29. Opisać strukturę CW-kompleksu na zawieszeniu ΣX kompleksu X. Zad. 30. Niech A X będzie podkompleksem. Wtedy X/A posiada strukturę CW-kompleksu. W szczególności dla skończonych CW-kompleksów X, Y opisać strukturę CW-kompleksu w smashprodukcie X Y. Zad. 31. Niech G S 3 H będzie podgrupą dyskretną grupy jednostkowych kwaternionów. Opisać strukturę CW-kompleksu w przestrzeni warstw S 3 /G (co najmniej, gdy G jest cykliczna). Zad. 32. Jeśli p : X X jest nakryciem i X jest CW-kompleksem, to w X istnieje naturalna struktura CW-kompleksu, taka że p jest odwzorowaniem komórkowym. (p.zad 13) Zad. 33. Jeśli K jest CW-kompleksem i dim(k) < 2n 1 to w zbiorze klas homotopii odwzorowań [K, S n ] istnieje naturalna ze względu na odwzorowania K K struktura grupy abelowej taka, że [S n, S n ] Z. Zad. 34. Jeśli K jest CW-kompleksem, to włożenie K (n) K jest n-równoważnością. 5 Obliczenia grup homotopii Zad. 35. Niech n > 1. Pokaż, że π k (S 1 S n ) = π k (S 1 ) dla k < n oraz π n (S 1 S n ) jest wolnym Z[t, t 1 ]-modułem z jednym generatorem. Zad. 36. Wykaż, że jeśli n > 1 to π i (S n S m ) π i (S n ) π i (S n ) dla i < n + m 1 Zad. 37. Dla dowolnej przestrzeni X zdefiniować homomorfizm zawieszenia (transformację naturalną) Σ: π i (X) π i+1 (ΣX), taki, że dla X = S n, i = n jest on izomorfizmem. Zad. 38. Jeśli X jest (n 1)-spójnym CW-kompleksem (n > 1), to zawieszenie ΣX jest n-spójne oraz Σ : π n (X) π n+1 (ΣX) jest izomorfizmem. Zad. 39. Zauważyć, że : π i (D n, S n 1 ) π i 1 (S n 1 ) i wskazać przedstawicieli klas homotopii odwzorowań w π n (D n, S n 1 ). Zad. 40. Udowodnij, że π n (S 2 ) = π n (S 3 CP ( )) dla każdego n. Udowodnij, że S 2 nie jest homotopijnie równoważne S 3 CP ( ). Czy zatem ten przykład przeczy twierdzeniu Whiteheada? Zad. 41. Niech F = R, C oraz i: GL(n 1, F) GL(n, F) będzie włożeniem indukowanym przez włożenie F n 1 na pierwsze n 1 współrzędnych F n. Udowodnij, że { π i (GL(n 1, F)) i # izomorfizmem dla i < n dimr F 2, π i (GL(n, F)) jest epimorfizmem dla i = n dim R F 2. Zauważ, że dla ustalonego i oraz odpowiednio dużych n grupy π i (GL(n, F)) nie zależą od n. Zad. 42. Oblicz grupy homotopii π i (GL(n, F)) dla (bardzo) małych i. 4

5 6 Klasyfikacja homotopijna przekształceń Zad. 43. (S n, 1) jest n-wymiarową sferą z punktem wyróżnionym. Dla liczby całkowitej k Z rozpatrzmy element f n k := k id S n π n(s n, 1). a) Zilustrować na rysunku odwzorowanie fk n b) [Σfk n n+1 ] = [fk ] c) [fk n f m] n = [fkm n ] d) obliczyć deg(f n k ). np. dla k = 2 i k = 1. Zad. 44. Odwzorowanie wielomianowe f : C C można rozszerzyć do przekształcenia ˆf : S 2 S 2. Znaleźć deg ˆf. Zad. 45. Niech F = C, H, O. Oblicz stopień przekształcenia k-tej potęgi f k : S dim R F 1 S dim R F 1, f k (z) := z k. Zad. 46. Z obliczeń grup homotopii sfer wywnioskować tw. Brouwera: każde odwzorowanie f : D n D n ma punkt stały. Zad. 47. Spójny CW-kompleks X ma następujące grupy homotopii: π 4 (X) = π 7 (X) Z 2 oraz π 5 (X) Z Z 2 oraz π q (X) = 0 pozostałych q. Oszacuj minimalną liczbe komórek w wymiarach < 9. Zad. 48. Opisać zbiór klas homotopii odwzorowań [T 2, T 2 ], gdzie T 2 jest 2-wymiarowym torusem. Wskazać przedstawicieli klas homotopii. Zad. 49. Opisać zbiór klas homotopii odwzorowań między powierzchniami [B, T 2 ], gdzie T 2 jest 2-wymiarowym torusem a B butelka Kleina. Wskazać przedstawicieli klas homotopii. Zad. 50. Opisać zbiór klas homotopii odwzorowań między powierzchniami [B, RP (2)], gdzie B jest butelka Kleina (lub torusem, albo inną ulubioną powierzchnią). Wskazać przedstawicieli klas homotopii. Co można powiedzieć o odwzorowaniu [B, RP (2)] [B, RP (3)] indukowanym przez włożenie RP (2) RP (3). 5

Topologia Algebraiczna - Pomocnik studenta. 1. Język teorii kategorii

Topologia Algebraiczna - Pomocnik studenta. 1. Język teorii kategorii Topologia Algebraiczna - Pomocnik studenta. 1. Język teorii kategorii Agnieszka Bojanowska Stefan Jackowski 24 listopada 2010 1 Podstawowe pojęcia Bedziemy uzywać następujących pojęć i przykładów dotyczących

Bardziej szczegółowo

Topologia Algebraiczna 2 Zadania egzaminacyjne

Topologia Algebraiczna 2 Zadania egzaminacyjne Topologia Algebraiczna 2 Zadania egzaminacyjne Agnieszka Bojanowska, Stefan Jackowski 9 czerwca 2013 1 Kompleksy łańcuchowe Zad. 1. Niech I będzie odcinkiem w kategorii kompleksów łańcuchowych, czyli kompleksem

Bardziej szczegółowo

Topologia Algebraiczna - Pomocnik studenta. 7. Klasyfikacja homotopijna odwzorowań

Topologia Algebraiczna - Pomocnik studenta. 7. Klasyfikacja homotopijna odwzorowań Topologia Algebraiczna - Pomocnik studenta. 7. Klasyfikacja homotopijna odwzorowań Agnieszka Bojanowska Stefan Jackowski 31 stycznia 2011 1 Odwzorowania w sfery Wykażemy, że klasa homotopii odwzorowania

Bardziej szczegółowo

Sto zadań o homologiach

Sto zadań o homologiach Sto zadań o homologiach Stefan Jackowski 20 maja 2007 Aksjomaty teorii homologii i kohomologii Definicja. Teorią homologii na kategorii punktowanych przestrzeni topologicznych T (lub jej podkategorii zamkniętej

Bardziej szczegółowo

Topologia Algebraiczna - Pomocnik studenta. 3. Rozwłóknienia i korozwłóknienia

Topologia Algebraiczna - Pomocnik studenta. 3. Rozwłóknienia i korozwłóknienia Topologia lgebraiczna - Pomocnik studenta. 3. Rozwłóknienia i korozwłóknienia gnieszka Bojanowska Stean Jackowski 13 grudnia 2010 1 Walce i ko-walce Deinicja 1.1. Niech będzie przestrzenią topologiczną.

Bardziej szczegółowo

Zadania o transferze

Zadania o transferze Maria Donten, 5.12.2007 Zadania o transferze 1. Oznaczenia, założenia i przypomnienia Przez M i M będziemy oznaczać rozmaitości gładkie, przy czym M nakrywa M. Przyjmujemy, że gładkie odwzorowanie p :

Bardziej szczegółowo

Podprzestrzenie niezmiennicze nilpotentnych operatorów liniowych

Podprzestrzenie niezmiennicze nilpotentnych operatorów liniowych Podprzestrzenie niezmiennicze nilpotentnych operatorów liniowych, Markus Schmidmeier, FAU Maj, 2015 Oznaczenia K ciało algebraicznie domknięte α, β, γ partycje, tzn. nierosnące ciągi liczb naturalnych

Bardziej szczegółowo

Uwaga 1.2. Niech (G, ) będzie grupą, H 1, H 2 < G. Następujące warunki są równoważne:

Uwaga 1.2. Niech (G, ) będzie grupą, H 1, H 2 < G. Następujące warunki są równoważne: 1. Wykład 1: Produkty grup. Produkty i koprodukty grup abelowych. Przypomnijmy konstrukcje słabych iloczynów (sum) prostych i iloczynów (sum) prostych grup znane z kursowego wykładu algebry. Ze względu

Bardziej szczegółowo

3 CW kompleksy Definicja i własnosci CW kompleksów Homologie komórkowe... 13

3 CW kompleksy Definicja i własnosci CW kompleksów Homologie komórkowe... 13 Spis treści 1 Teoria Homologii i Kohomologii 3 1.1 Aksjomaty Eilenberga Steenroda................ 3 1.2 Homologie relatywne. Para Borsuka............... 3 1.3 Ciąg trójki i ciąg Mayera - Vietoroisa.............

Bardziej szczegółowo

O ROZMAITOŚCIACH TORYCZNYCH

O ROZMAITOŚCIACH TORYCZNYCH O ROZMAITOŚCIACH TORYCZNYCH NA PODSTAWIE REFERATU NGUYEN QUANG LOCA Przez cały referat K oznaczać będzie ustalone ciało algebraicznie domknięte. 1. Przez cały referat N oznaczać będzie ustaloną kratę izomorficzną

Bardziej szczegółowo

Zadania z Algebry Studia Doktoranckie Instytutu Matematyki Uniwersytetu Śląskiego 1

Zadania z Algebry Studia Doktoranckie Instytutu Matematyki Uniwersytetu Śląskiego 1 Zadania z Algebry Studia Doktoranckie Instytutu Matematyki Uniwersytetu Śląskiego 1 1. (a) Udowodnić, że jeśli grupa ilorazowa G/Z(G) jest cykliczna, to grupa G jest abelowa (Z(G) oznacza centrum grupy

Bardziej szczegółowo

3 Abstrakcyjne kompleksy symplicjalne.

3 Abstrakcyjne kompleksy symplicjalne. 3 Abstrakcyjne kompleksy symplicjalne. Uwaga 3.1. Niech J będzie dowolnym zbiorem indeksów, niech R J = {(x α ) α J J α x α R} będzie produktem kartezjańskim J kopii R, niech E J = {(x α ) α J R J x α

Bardziej szczegółowo

Grupa klas odwzorowań powierzchni

Grupa klas odwzorowań powierzchni Grupa klas odwzorowań powierzchni Błażej Szepietowski Uniwersytet Gdański Horyzonty matematyki 2014 Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki 2014 1 / 36 Grupa klas odwzorowań

Bardziej szczegółowo

Działania Definicja: Działaniem wewnętrznym w niepustym zbiorze G nazywamy funkcję działającą ze zbioru GxG w zbiór G.

Działania Definicja: Działaniem wewnętrznym w niepustym zbiorze G nazywamy funkcję działającą ze zbioru GxG w zbiór G. Działania Definicja: Działaniem wewnętrznym w niepustym zbiorze G nazywamy funkcję działającą ze zbioru GxG w zbiór G. Przykłady działań wewnętrznych 1. Dodawanie i mnożenie są działaniami wewnętrznymi

Bardziej szczegółowo

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę

Bardziej szczegółowo

Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u

Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u W ) Rzeczywiście U W jest podprzetrzenią przestrzeni

Bardziej szczegółowo

Topologia i geometria różniczkowa

Topologia i geometria różniczkowa Topologia i geometria różniczkowa Andrzej Nowicki Uniwersytet Mikołaja Kopernika, Wydział Matematyki i Informatyki, ul. Chopina 12 18, 87 100 Toruń (e-mail: anow@mat.uni.torun.pl) Marzec 1995 Spis treści

Bardziej szczegółowo

Kryptografia - zastosowanie krzywych eliptycznych

Kryptografia - zastosowanie krzywych eliptycznych Kryptografia - zastosowanie krzywych eliptycznych 24 marca 2011 Niech F będzie ciałem doskonałym (tzn. każde rozszerzenie algebraiczne ciała F jest rozdzielcze lub równoważnie, monomorfizm Frobeniusa jest

Bardziej szczegółowo

Ćwiczenia 1 - Pojęcie grupy i rzędu elementu

Ćwiczenia 1 - Pojęcie grupy i rzędu elementu Algebra 1 Ćwiczenia 1 - Pojęcie grupy i rzędu elementu Definicje i podstawowe własności Definicja 1. Niech X będzie niepustym zbiorem. Działaniem w zbiorze X nazywamy dowolne odwzorowanie (funkcję) działające

Bardziej szczegółowo

1. Elementy (abstrakcyjnej) teorii grup

1. Elementy (abstrakcyjnej) teorii grup 1. Elementy (abstrakcyjnej) teorii grup Grupy symetrii def. Grupy Zbiór (skończony lub nieskończony) elementów {g} tworzy grupę gdy: - zdefiniowana operacja mnożenia (złożenia) g 1 g 2 = g 3 є G - (g 1

Bardziej szczegółowo

5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów.

5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów. 5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów. Algebra jest jednym z najstarszych działów matematyki dotyczącym początkowo tworzenia metod rozwiązywania równań

Bardziej szczegółowo

1 Zbiory. 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =.

1 Zbiory. 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =. 1 Zbiory 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =. 1.3 Pokazać, że jeśli A, B oraz (A B) (B A) = C C, to A = B = C. 1.4 Niech {X t } będzie rodziną niepustych

Bardziej szczegółowo

O centralizatorach skończonych podgrup

O centralizatorach skończonych podgrup O centralizatorach skończonych podgrup GL(n, Z) Rafał Lutowski Instytut Matematyki Uniwersytetu Gdańskiego III Północne Spotkania Geometryczne Olsztyn, 22-23 czerwca 2009 1 Wprowadzenie Grupy podstawowe

Bardziej szczegółowo

Algebra konspekt wykladu 2009/10 1. du na dzialanie na zbioze G, jeśli dla dowolnych elementów x, y S, x y S. S jest zamkniety ze wzgle

Algebra konspekt wykladu 2009/10 1. du na dzialanie na zbioze G, jeśli dla dowolnych elementów x, y S, x y S. S jest zamkniety ze wzgle Algebra konspekt wykladu 2009/10 1 3 Podgrupy Niech S g mówimy, że podzbiór S jest zamknie ty ze wzgle du na dzialanie na zbioze G, jeśli dla dowolnych elementów x, y S, x y S. S jest zamkniety ze wzgle

Bardziej szczegółowo

N (f, K, (V, φ), (U, ψ), ɛ) := {g : M N g(k) V ; D k (ψgφ 1 ) D k (ψfφ 1 ) < ɛ, k = 0,..., r}

N (f, K, (V, φ), (U, ψ), ɛ) := {g : M N g(k) V ; D k (ψgφ 1 ) D k (ψfφ 1 ) < ɛ, k = 0,..., r} 1. Przestrzenie funkcji: otwartość. Będziemy się poruszać wyłącznie po rozmaitościach różniczkowych, czyli klasy co najmniej C 1. Zakładamy parazwartość, ośrodkowość, drugi aksjomat przeliczalności, normalność,

Bardziej szczegółowo

Elementy Teorii Kategorii

Elementy Teorii Kategorii Elementy Teorii Kategorii Marek Zawadowski 27 marca 2012 Spis treści 1 Wprowadzenie 2 1.1 Rys historyczny.............................. 2 1.2 O kategoriach............................... 3 2 Kategorie,

Bardziej szczegółowo

Dyskretna teoria Morse a

Dyskretna teoria Morse a Dyskretna teoria Morse a Toruńska Letnia Szkoła Matematyki 2011 Michał Kukieła Uniwersytet Mikołaja Kopernika w Toruniu θ R θ Klasyczna teoria Morse a M n - zwarta rozmaitość gładka bez brzegu, f : M n

Bardziej szczegółowo

1 Określenie pierścienia

1 Określenie pierścienia 1 Określenie pierścienia Definicja 1. Niech P będzie zbiorem, w którym określone są działania +, (dodawanie i mnożenie). Mówimy, że struktura (P, +, ) jest pierścieniem, jeżeli spełnione są następujące

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ CIAŁO FUNKCJI WYMIERNYCH

ALGEBRA Z GEOMETRIĄ CIAŁO FUNKCJI WYMIERNYCH ALGEBRA Z GEOMETRIĄ 1/10 CIAŁO FUNKCJI WYMIERNYCH Piotr M. Hajac Uniwersytet Warszawski Wykład 7, 13.11.2013 Typeset by Jakub Szczepanik. Ułamki pierścienia całkowitego Cel: Wprowadzenie pojęcia funkcji

Bardziej szczegółowo

Grupy z jedną relacją

Grupy z jedną relacją Uniwersytet Warszawski Wydział Matematyki, Informatyki i Mechaniki Maria Donten Nr albumu: 209516 Grupy z jedną relacją Praca licencjacka na kierunku MATEMATYKA Praca wykonana pod kierunkiem dr hab. Zbigniewa

Bardziej szczegółowo

14. Wykład 14: Grupa Galois wielomianu. Zasadnicze twierdzenia teorii Galois. Rozszerzenia rozwiązalne, cykliczne i abelowe

14. Wykład 14: Grupa Galois wielomianu. Zasadnicze twierdzenia teorii Galois. Rozszerzenia rozwiązalne, cykliczne i abelowe 14. Wykład 14: Grupa Galois wielomianu. Zasadnicze twierdzenia teorii Galois. Rozszerzenia rozwiązalne, cykliczne i abelowe. 14.1. Grupa Galois wielomianu. Definicja 14.1. Niech F będzie ciałem, niech

Bardziej szczegółowo

Ciała skończone. 1. Ciała: podstawy

Ciała skończone. 1. Ciała: podstawy Ciała skończone 1. Ciała: podstawy Definicja 1. Każdy zbiór liczb, w którym są wykonalne wszystkie cztery działania z wyjątkiem dzielenia przez 0 i który zawiera więcej niż jedną liczbę, nazywamy ciałem

Bardziej szczegółowo

Zadania do Rozdziału X

Zadania do Rozdziału X Zadania do Rozdziału X 1. 2. Znajdź wszystkie σ-ciała podzbiorów X, gdy X = (i) {1, 2}, (ii){1, 2, 3}. (b) Znajdź wszystkie elementy σ-ciała generowanego przez {{1, 2}, {2, 3}} dla X = {1, 2, 3, 4}. Wykaż,

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ PIERŚCIENIE, CIAŁA I HOMOMORFIZMY

ALGEBRA Z GEOMETRIĄ PIERŚCIENIE, CIAŁA I HOMOMORFIZMY ALGEBRA Z GEOMETRIĄ 1/10 PIERŚCIENIE, CIAŁA I HOMOMORFIZMY Piotr M. Hajac Uniwersytet Warszawski Wykład 3, 16.10.2013 Typeset by Jakub Szczepanik. Definicja pierścienia 2/10 Zbiór R wyposażony w dwa działania

Bardziej szczegółowo

9 Przekształcenia liniowe

9 Przekształcenia liniowe 9 Przekształcenia liniowe Definicja 9.1. Niech V oraz W będą przestrzeniami liniowymi nad tym samym ciałem F. Przekształceniem liniowym nazywamy funkcję ϕ : V W spełniającą warunek (LM) v1,v 2 V a1,a 2

Bardziej szczegółowo

Podstawowe struktury algebraiczne

Podstawowe struktury algebraiczne Maciej Grzesiak Podstawowe struktury algebraiczne 1. Wprowadzenie Przedmiotem algebry było niegdyś przede wszystkim rozwiązywanie równań. Obecnie algebra staje się coraz bardziej nauką o systemach matematycznych.

Bardziej szczegółowo

Algebraiczna geometria rzutowa

Algebraiczna geometria rzutowa Algebraiczna geometria rzutowa Andrzej Nowicki Uniwersytet Mikołaja Kopernika, Wydział Matematyki i Informatyki, ul. Chopina 12 18, 87 100 Toruń, (e-mail: anow@mat.uni.torun.pl) Czerwiec 2003 Spis treści

Bardziej szczegółowo

1 Grupy. 1.1 Grupy. 1.2 Podgrupy. 1.3 Dzielniki normalne. 1.4 Homomorfizmy

1 Grupy. 1.1 Grupy. 1.2 Podgrupy. 1.3 Dzielniki normalne. 1.4 Homomorfizmy 1 Grupy 1.1 Grupy 1.1.1. Niech G będzie taką grupa, że (ab) 2 = a 2 b 2 dla dowolnych a, b G. Udowodnić, że grupa G jest abelowa. 1.1.2. Niech G będzie taką grupa, że (ab) 1 = a 1 b 1 dla dowolnych a,

Bardziej szczegółowo

O pewnych związkach teorii modeli z teorią reprezentacji

O pewnych związkach teorii modeli z teorią reprezentacji O pewnych związkach teorii modeli z teorią reprezentacji na podstawie referatu Stanisława Kasjana 5 i 12 grudnia 2000 roku 1. Elementy teorii modeli Będziemy rozważać język L składający się z przeliczalnej

Bardziej szczegółowo

Rozwłóknienie Milnora i twierdzenie Picarda-Lefschetza

Rozwłóknienie Milnora i twierdzenie Picarda-Lefschetza Uniwersytet Warszawski Wydział Matematyki, Informatyki i Mechaniki Aleksander Doan Nr albumu: 290720 Rozwłóknienie Milnora i twierdzenie Picarda-Lefschetza Praca licencjacka na kierunku MATEMATYKA Praca

Bardziej szczegółowo

Zadania z Algebry liniowej 3 semestr zimowy 2008/2009

Zadania z Algebry liniowej 3 semestr zimowy 2008/2009 Zadania z Algebry liniowej 3 semestr zimowy 2008/2009 1. Niech V będzie przestrzenią wektorową nad ciałem K i niech 0 K oraz θ V będą elementem zerowym ciała K i wektorem zerowym przestrzeni V. Posługując

Bardziej szczegółowo

Projekt matematyczny

Projekt matematyczny Projekt matematyczny Tomasz Kochanek Uniwersytet Śląski Instytut Matematyki Katowice VI Święto Liczby π 15 marca 2012 r. Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 1 / 32 Wielkie twierdzenie

Bardziej szczegółowo

14. Przestrzenie liniowe

14. Przestrzenie liniowe 14. 14.1 Sformułować definicję przestrzeni liniowej. Podać przykłady. Przestrzenią liniową nad ciałem F nazywamy czwórkę uporządkowaną (V, F,+, ), gdzie V jest zbiorem niepustym, F jest ciałem, + jest

Bardziej szczegółowo

Definicje- Algebra III

Definicje- Algebra III Definicje- Algebra III Opracowane na podstawie notatek z wykładu w semetrze zimowym roku 2007r. (mocno niekompletne- umieszczono kilka pierwszych wykładów) 21.11.2007r. Algebry Definicja1(K-algebra)- Przestrzeń

Bardziej szczegółowo

Algorytm Euklidesa. ZADANIE 1. Oblicz korzystając z algorytmu Euklidesa: (a) NWD(120, 195), (b) NWD(80, 208), (c) NWD(36, 60, 90),

Algorytm Euklidesa. ZADANIE 1. Oblicz korzystając z algorytmu Euklidesa: (a) NWD(120, 195), (b) NWD(80, 208), (c) NWD(36, 60, 90), Algorytm Euklidesa ZADANIE 1. Oblicz korzystając z algorytmu Euklidesa: (a) NWD(120, 195), (b) NWD(80, 208), (c) NWD(36, 60, 90), (d) NWD(120, 168, 280), (e) NWD(30, 42, 70, 105), (f) NWW[120, 195], (g)

Bardziej szczegółowo

Topologia - Zadanie do opracowania. Wioletta Osuch, Magdalena Żelazna, Piotr Kopyrski

Topologia - Zadanie do opracowania. Wioletta Osuch, Magdalena Żelazna, Piotr Kopyrski Topologia - Zadanie do opracowania Wioletta Osuch, Magdalena Żelazna, Piotr Kopyrski 5 grudnia 2013 Zadanie 1. (Topologie na płaszczyźnie) Na płaszczyźnie R 2 rozważmy następujące topologie: a) Euklidesową

Bardziej szczegółowo

Pewne klasyczne twierdzenia geometrii algebraicznej w ujęciu torycznym

Pewne klasyczne twierdzenia geometrii algebraicznej w ujęciu torycznym Pewne klasyczne twierdzenia geometrii algebraicznej w ujęciu torycznym Jacek Jendrej Maj 2011 Streszczenie Zasadniczym celem niniejszej pracy jest podanie dowodów kilku klasycznych twierdzeń geometrii

Bardziej szczegółowo

Analiza II.2*, lato komentarze do ćwiczeń

Analiza II.2*, lato komentarze do ćwiczeń Analiza.2*, lato 2018 - komentarze do ćwiczeń Marcin Kotowski 5 czerwca 2019 1 11 2019, zadanie 2 z serii domowej 1 Pokażemy, że jeśli f nie jest stała, to całka: f(x f(y B B x y dx dy jest nieskończona.

Bardziej szczegółowo

Funkcje analityczne. Wykład 2. Płaszczyzna zespolona. Paweł Mleczko. Funkcje analityczne (rok akademicki 2017/2018)

Funkcje analityczne. Wykład 2. Płaszczyzna zespolona. Paweł Mleczko. Funkcje analityczne (rok akademicki 2017/2018) Funkcje analityczne Wykład 2. Płaszczyzna zespolona Paweł Mleczko Funkcje analityczne (rok akademicki 2017/2018) Plan wykładu W czasie wykładu omawiać będziemy różne reprezentacje płaszczyzny zespolonej

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 12: Krzywe eliptyczne Gniewomir Sarbicki Rozważać będziemy przestrzeń K n Definicja: x y λ K x = λy. Relację nazywamy różnieniem się o skalar Przykład: [4, 10, 6, 14] [6, 15,

Bardziej szczegółowo

Lokalizacja ekwiwariantnych teorii kohomologii

Lokalizacja ekwiwariantnych teorii kohomologii Lokalizacja ekwiwariantnych teorii kohomologii Stanisław Szawiel 18 maja 2008 1 Preliminaria 1.1 Kilka faktów o lokalizacji algebraicznej Potrzebujemy kilku prostych faktów o lokalizacji algebraicznej.

Bardziej szczegółowo

DB Algebra liniowa 1 semestr letni 2018

DB Algebra liniowa 1 semestr letni 2018 DB Algebra liniowa 1 semestr letni 2018 Teoria oraz większość zadań w niniejszym skrypcie zostały opracowane na podstawie książek: 1 G Banaszak, W Gajda, Elementy algebry liniowej cz I, Wydawnictwo Naukowo-Techniczne,

Bardziej szczegółowo

Algebry skończonego typu i formy kwadratowe

Algebry skończonego typu i formy kwadratowe Algebry skończonego typu i formy kwadratowe na podstawie referatu Justyny Kosakowskiej 26 kwietnia oraz 10 i 17 maja 2001 Referat został opracowany w oparciu o prace Klausa Bongartza Criterion for finite

Bardziej szczegółowo

Twierdzenie Botta i rozkłady przestrzeni

Twierdzenie Botta i rozkłady przestrzeni Uniwersytet Warszawski Wydział Matematyki, Informatyki i Mechaniki Katarzyna Macioszek Nr albumu: 214556 Twierdzenie Botta i rozkłady przestrzeni pętli Praca magisterska na kierunku MATEMATYKA w zakresie

Bardziej szczegółowo

Działanie grupy na zbiorze

Działanie grupy na zbiorze Działanie grupy na zbiorze Definicja 0.1 Niech (G, ) będzie dowolną grupą oraz X niepustym zbiorem, to odwzorowanie : G X X nazywamy działaniem grupy G na zbiorze X jeślinastępujące warunki są spełnione:

Bardziej szczegółowo

Chcąc wyróżnić jedno z działań, piszemy np. (, ) i mówimy, że działanie wprowadza w STRUKTURĘ ALGEBRAICZNĄ lub, że (, ) jest SYSTEMEM ALGEBRAICZNYM.

Chcąc wyróżnić jedno z działań, piszemy np. (, ) i mówimy, że działanie wprowadza w STRUKTURĘ ALGEBRAICZNĄ lub, że (, ) jest SYSTEMEM ALGEBRAICZNYM. DEF. DZIAŁANIE DWUARGUMENTOWE Działaniem dwuargumentowym w niepsutym zbiorze nazywamy każde odwzorowanie iloczynu kartezjańskiego :. Inaczej mówiąc, w zbiorze jest określone działanie dwuargumentowe, jeśli:

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ PIERŚCIEŃ WIELOMIANÓW

ALGEBRA Z GEOMETRIĄ PIERŚCIEŃ WIELOMIANÓW ALGEBRA Z GEOMETRIĄ 1/10 PIERŚCIEŃ WIELOMIANÓW Piotr M. Hajac Uniwersytet Warszawski Wykład 6, 6.11.2013 Typeset by Jakub Szczepanik. Plan 2/10 1 Co to są wielomiany i jak się je mnoży? 2 Co to jest stopień

Bardziej szczegółowo

Zadania z algebry liniowej - sem. I Struktury algebraiczne

Zadania z algebry liniowej - sem. I Struktury algebraiczne Zadania z algebry liniowej - sem. I Struktury algebraiczne Definicja 1. Działaniem dwuargumentowym w niepustym zbiorze A nazywamy każdą funkcję : A A A, tzn. taką funkcję, że zachodzi a,b A (a, b) ((a,

Bardziej szczegółowo

Grupa podstawowa węzła. Sylwia Marek grupa 10B2

Grupa podstawowa węzła. Sylwia Marek grupa 10B2 Grupa podstawowa węzła Sylwia Marek grupa 10B2 Nurty topologii topologia jest dyscypliną niejednolitą i wyróżnić w niej można kilka nurtów idea Poincar ego polegała na badaniu rozmaito ci metodami algebraicznymi

Bardziej szczegółowo

Spektrum pierścienia i topologia Zariskiego

Spektrum pierścienia i topologia Zariskiego Uniwersytet Warmińsko Mazurski w Olsztynie Wydział Matematyki i Informatyki Kierunek: Matematyka Anna Michałek Spektrum pierścienia i topologia Zariskiego Praca magisterska wykonana w zakładzie Algebry

Bardziej szczegółowo

1 Relacje i odwzorowania

1 Relacje i odwzorowania Relacje i odwzorowania Relacje Jacek Kłopotowski Zadania z analizy matematycznej I Wykazać, że jeśli relacja ρ X X jest przeciwzwrotna i przechodnia, to jest przeciwsymetryczna Zbadać czy relacja ρ X X

Bardziej szczegółowo

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ WSHE, O/K-CE 10. Homomorfizmy Definicja 1. Niech V, W będą dwiema przestrzeniami liniowymi nad ustalonym ciałem, odwzorowanie ϕ : V W nazywamy homomorfizmem

Bardziej szczegółowo

2 Kongruencje 5. 4 Grupy 9. 5 Grupy permutacji Homomorfizmy grup Pierścienie 16

2 Kongruencje 5. 4 Grupy 9. 5 Grupy permutacji Homomorfizmy grup Pierścienie 16 DB Algebra dla informatyków 1 semestr letni 2018 1 Spis treści 1 Podzielność w Z, algorytm Euklidesa 2 2 Kongruencje 5 3 Twierdzenia: Fermata, Eulera i Wilsona 7 4 Grupy 9 5 Grupy permutacji 12 6 Homomorfizmy

Bardziej szczegółowo

Przestrzenie liniowe

Przestrzenie liniowe Rozdział 4 Przestrzenie liniowe 4.1. Działania zewnętrzne Niech X oraz F będą dwoma zbiorami niepustymi. Dowolną funkcję D : F X X nazywamy działaniem zewnętrznym w zbiorze X nad zbiorem F. Przykład 4.1.

Bardziej szczegółowo

Wyk lad 2 Podgrupa grupy

Wyk lad 2 Podgrupa grupy Wyk lad 2 Podgrupa grupy Definicja 2.1. Pod grupy (G,, e) nazywamy taki podzbiór H G, że e H, h 1 H dla każdego h H oraz h 1 h 2 H dla dowolnych h 1, h 2 H. Jeśli H jest grupy G, to bedziemy pisali H G.

Bardziej szczegółowo

Wykład 10. Stwierdzenie 1. X spełnia warunek Borela wtedy i tylko wtedy, gdy każda scentrowana rodzina zbiorów domkniętych ma niepusty przekrój.

Wykład 10. Stwierdzenie 1. X spełnia warunek Borela wtedy i tylko wtedy, gdy każda scentrowana rodzina zbiorów domkniętych ma niepusty przekrój. Wykład 10 Twierdzenie 1 (Borel-Lebesgue) Niech X będzie przestrzenią zwartą Z każdego pokrycia X zbiorami otwartymi można wybrać podpokrycie skończone Dowód Lemat 1 Dla każdego pokrycia U przestrzeni ośrodkowej

Bardziej szczegółowo

Teoria ciała stałego Cz. I

Teoria ciała stałego Cz. I Teoria ciała stałego Cz. I 1. Elementy teorii grup Grupy symetrii def. Grupy Zbiór (skończony lub nieskończony) elementów {g} tworzy grupę gdy: - zdefiniowana operacja mnożenia (złożenia) g 1 g 2 = g 3

Bardziej szczegółowo

Pewne klasyczne twierdzenia geometrii algebraicznej w ujęciu torycznym

Pewne klasyczne twierdzenia geometrii algebraicznej w ujęciu torycznym Uniwersytet Warszawski Wydział Matematyki, Informatyki i Mechaniki Jacek Jendrej Nr albumu: 277525 Pewne klasyczne twierdzenia geometrii algebraicznej w ujęciu torycznym Praca licencjacka na kierunku MATEMATYKA

Bardziej szczegółowo

B jest liniowo niezależny V = lin (B) 1. Układ pusty jest bazą przestrzeni trywialnej {θ}. a i v i = i I. b i v i, (a i b i ) v i = θ.

B jest liniowo niezależny V = lin (B) 1. Układ pusty jest bazą przestrzeni trywialnej {θ}. a i v i = i I. b i v i, (a i b i ) v i = θ. 8 Baza i wymiar Definicja 8.1. Bazą przestrzeni liniowej nazywamy liniowo niezależny układ jej wektorów, który generuję tę przestrzeń. Innymi słowy, układ B = (v i ) i I wektorów z przestrzeni V jest bazą

Bardziej szczegółowo

1. Określenie pierścienia

1. Określenie pierścienia 1. Określenie pierścienia Definicja 1. Niech P będzie zbiorem, w którym określone są działania +, (dodawanie i mnożenie). Mówimy, że struktura (P, +, ) jest pierścieniem, jeżeli spełnione są następujące

Bardziej szczegółowo

Ośrodkowość procesów, proces Wienera. Ośrodkowość procesów, proces Wienera Procesy Stochastyczne, wykład, T. Byczkowski,

Ośrodkowość procesów, proces Wienera. Ośrodkowość procesów, proces Wienera Procesy Stochastyczne, wykład, T. Byczkowski, Procesy Stochastyczne, wykład, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1136 27 luty, 2012 Ośrodkowość procesów Dalej zakładamy, że (Ω, Σ, P) jest zupełną przestrzenią miarową. Definicja.

Bardziej szczegółowo

ZWIĄZKI ROZMAITOŚCI SCHUBERTA Z REPREZENTACJAMI KOŁCZANÓW

ZWIĄZKI ROZMAITOŚCI SCHUBERTA Z REPREZENTACJAMI KOŁCZANÓW ZWIĄZKI ROZMAITOŚCI SCHUBERTA Z REPREZENTACJAMI KOŁCZANÓW NA PODSTAWIE REFERATU GRZEGORZA ZWARY Przez cały referat zakładamy, że K jest ustalonym ciałem algebraicznie domkniętym. 1. Rozmaitości flag Dla

Bardziej szczegółowo

1. R jest grupą abelową względem działania + (tzn. działanie jest łączne, przemienne, istnieje element neutralny oraz element odwrotny)

1. R jest grupą abelową względem działania + (tzn. działanie jest łączne, przemienne, istnieje element neutralny oraz element odwrotny) Rozdział 1 Pierścienie i ideały Definicja 1.1 Pierścieniem nazywamy trójkę (R, +, ), w której R jest zbiorem niepustym, działania + : R R R i : R R R są dwuargumentowe i spełniają następujące warunki dla

Bardziej szczegółowo

12. Wykład 12: Algebraiczne domkniecie ciała. Wielokrotne pierwiastki wielomianów. Rózniczkowanie wielomianów. Elementy rozdzielcze.

12. Wykład 12: Algebraiczne domkniecie ciała. Wielokrotne pierwiastki wielomianów. Rózniczkowanie wielomianów. Elementy rozdzielcze. 12. Wykład 12: Algebraiczne domkniecie ciała. Wielokrotne pierwiastki wielomianów. Rózniczkowanie wielomianów. Elementy rozdzielcze. Rozszerzenia rozdzielcze i pojedyncze. Rozszerzenia normalne. 12.1.

Bardziej szczegółowo

Wykład 11 i 12. Matematyka 3, semestr zimowy 2011/ i 18 listopada 2011

Wykład 11 i 12. Matematyka 3, semestr zimowy 2011/ i 18 listopada 2011 Wykład 11 i 12 Matematyka 3, semestr zimowy 2011/2012 15 i 18 listopada 2011 Zanim przejdziemy do formułowaniu lematu Poincaré musimy zdefiniować pojęcie transportu formy. Dyskutowaliśmy już wcześniej

Bardziej szczegółowo

Algebra liniowa. 1. Macierze.

Algebra liniowa. 1. Macierze. Algebra liniowa 1 Macierze Niech m oraz n będą liczbami naturalnymi Przestrzeń M(m n F) = F n F n będącą iloczynem kartezjańskim m egzemplarzy przestrzeni F n z naturalnie określonymi działaniami nazywamy

Bardziej szczegółowo

Grupy. Permutacje 1. (G2) istnieje element jednostkowy (lub neutralny), tzn. taki element e G, że dla dowolnego a G zachodzi.

Grupy. Permutacje 1. (G2) istnieje element jednostkowy (lub neutralny), tzn. taki element e G, że dla dowolnego a G zachodzi. Grupy. Permutacje 1 1 Definicja grupy Niech G będzie zbiorem. Działaniem na zbiorze G nazywamy odwzorowanie (oznaczane, jak mnożenie, przez ) przyporządkowujące każdej parze uporządkowanej (a, b) G G element

Bardziej szczegółowo

Praca domowa - seria 6

Praca domowa - seria 6 Praca domowa - seria 6 28 grudnia 2012 Zadanie 1. Znajdź bazę jądra i obrazu przekształcenia liniowego φ : R 4 wzorem: R 3 danego φ(x 1, x 2, x 3, x 4 ) = (x 1 +2x 2 x 3 +3x 4, x 1 +x 2 +2x 3 +x 4, 2x

Bardziej szczegółowo

Wprowadzenie do zgrubnej geometrii

Wprowadzenie do zgrubnej geometrii Wprowadzenie do zgrubnej geometrii Michał Skrzypczak 20 lutego 2008 Spis treści 1 Wstęp 2 2 Przestrzenie metryczne 2 3 Abstrakcyjne przestrzenie zgrubne 3 4 Grupy 5 5 Wymiar asymptotyczny 6 6 Dodatki 7

Bardziej szczegółowo

Cała prawda o powierzchniach

Cała prawda o powierzchniach Topologia Właściwości geometryczne, niezmiennicze przy ciagłych deformacjach Można: rozciagać giać Nie można: rozcinać złamać Jednak można rozciać wzdłuż linii, a potem skleić wzdłuż tejże linii: rozwiazać

Bardziej szczegółowo

Schemat sprawdzianu. 25 maja 2010

Schemat sprawdzianu. 25 maja 2010 Schemat sprawdzianu 25 maja 2010 5 definicji i twierdzeń z listy 12(po 10 punktów) np. 1. Proszę sformułować twierdzenie Brouwera o punkcie stałym. 2. Niech X będzie przestrzenią topologiczną. Proszę określić,

Bardziej szczegółowo

Wykład 5. Ker(f) = {v V ; f(v) = 0}

Wykład 5. Ker(f) = {v V ; f(v) = 0} Wykład 5 Niech f : V W będzie przekształceniem liniowym przestrzeni wektorowych Wtedy jądrem przekształcenia nazywamy zbiór tych elementów z V, których obrazem jest wektor zerowy w przestrzeni W Jądro

Bardziej szczegółowo

System BCD z κ. Adam Slaski na podstawie wykładów, notatek i uwag Pawła Urzyczyna. Semestr letni 2009/10

System BCD z κ. Adam Slaski na podstawie wykładów, notatek i uwag Pawła Urzyczyna. Semestr letni 2009/10 System BCD z κ Adam Slaski na podstawie wykładów, notatek i uwag Pawła Urzyczyna Semestr letni 2009/10 Rozważamy system BCD ze stałą typową κ i aksjomatami ω κ κ i κ ω κ. W pierwszej części tej notatki

Bardziej szczegółowo

= b i M i [x], gdy charf = p, to a i jest pierwiastkiem wielomianu x n i

= b i M i [x], gdy charf = p, to a i jest pierwiastkiem wielomianu x n i 15. Wykład 15: Rozszerzenia pierwiastnikowe. Elementy wyrażające się przez pierwiastniki. Rozwiązalność równań przez pierwiastniki. Równania o dowolnych współczynnikach. 15.1. Rozszerzenia pierwiastnikowe.

Bardziej szczegółowo

Podciała, podciała generowane przez zbiór, rozszerzenia ciał.

Podciała, podciała generowane przez zbiór, rozszerzenia ciał. Podciała, podciała generowane przez zbiór, rozszerzenia ciał. Definicja Niech F będzie ciałem. Podzbiór L H zbioru F nazywamy podciałem ciała F (piszemy L ă F ), gdy pl, `æ LˆL, æ LˆL q jest ciałem. Jeżeli

Bardziej szczegółowo

Metalogika (1) Jerzy Pogonowski. Uniwersytet Opolski. Zakład Logiki Stosowanej UAM

Metalogika (1) Jerzy Pogonowski. Uniwersytet Opolski. Zakład Logiki Stosowanej UAM Metalogika (1) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Uniwersytet Opolski Jerzy Pogonowski (MEG) Metalogika (1) Uniwersytet Opolski 1 / 21 Wstęp Cel: wprowadzenie

Bardziej szczegółowo

n=0 Dla zbioru Cantora prawdziwe są wersje lematu 3.6 oraz lematu 3.8 przy założeniu α = :

n=0 Dla zbioru Cantora prawdziwe są wersje lematu 3.6 oraz lematu 3.8 przy założeniu α = : 4. Zbiory borelowskie. Zbiór wszystkich podzbiorów liczb naturalnych będziemy oznaczali przez ω. Najmniejszą topologię na zbiorze ω, w której zbiory {A ω : x A ω \ y}, gdzie x oraz y są zbiorami skończonymi,

Bardziej szczegółowo

4 Przekształcenia liniowe

4 Przekształcenia liniowe MIMUW 4. Przekształcenia liniowe 16 4 Przekształcenia liniowe Obok przestrzeni liniowych, podstawowym obiektem algebry liniowej są przekształcenia liniowe. Rozpatrując przekształcenia liniowe między przestrzeniami

Bardziej szczegółowo

ZADANIA PRZYGOTOWAWCZE DO EGZAMINU Z UKŁADÓW DYNAMICZNYCH

ZADANIA PRZYGOTOWAWCZE DO EGZAMINU Z UKŁADÓW DYNAMICZNYCH ZADANIA PRZYGOTOWAWCZE DO EGZAMINU Z UKŁADÓW DYNAMICZNYCH Punkty okresowe, zbiory graniczne, sprzężenia Zadanie 1. Pokazać, że trajektoria (w przód) punktu x w przestrzeni metrycznej X pod działaniem ciągłego

Bardziej szczegółowo

4. Waluacje dyskretne

4. Waluacje dyskretne 4. Waluacje dyskretne Kryterium nieosobliwości krzywej afinicznej C K [ X, Y ] Twierdzenie Krzywa zadana równaniem Weierstrassa jest osobliwa tedy i tylko wtedy gdy = 0 Izomorfizm ϕ (dopuszczalna zmiana

Bardziej szczegółowo

Podstawowe struktury algebraiczne

Podstawowe struktury algebraiczne Rozdział 1 Podstawowe struktury algebraiczne 1.1. Działania wewnętrzne Niech X będzie zbiorem niepustym. Dowolną funkcję h : X X X nazywamy działaniem wewnętrznym w zbiorze X. Działanie wewnętrzne, jak

Bardziej szczegółowo

Zadanie 2. Obliczyć rangę dowolnego elementu zbioru uporządkowanego N 0 N 0, gdy porządek jest zdefiniowany następująco: (a, b) (c, d) (a c b d)

Zadanie 2. Obliczyć rangę dowolnego elementu zbioru uporządkowanego N 0 N 0, gdy porządek jest zdefiniowany następująco: (a, b) (c, d) (a c b d) Matemaryka dyskretna - zadania Zadanie 1. Opisać zbiór wszystkich elementów rangi k zbioru uporządkowanego X dla każdej liczby naturalnej k, gdy X jest rodziną podzbiorów zbioru skończonego Y. Elementem

Bardziej szczegółowo

Rozszerzenie ciała o pierwiastek wielomianu. Ciało rozkładu wielomianu.

Rozszerzenie ciała o pierwiastek wielomianu. Ciało rozkładu wielomianu. Rozszerzenie ciała o pierwiastek wielomianu. Ciało rozkładu wielomianu. Twierdzenie (Kroneckera) Niech F będzie ciałem, niech f P F rxs. Wówczas istnieje rozszerzenie L ciała F takie, w którym f ma pierwiastek.

Bardziej szczegółowo

Zadania z Analizy Funkcjonalnej I* - 1

Zadania z Analizy Funkcjonalnej I* - 1 Zadania z Analizy Funkcjonalnej I* - 1 1. Która z następujących przestrzeni jest przestrzenią Banacha w normie supremum: C(R); C ogr (R) przestrzeń funkcji ciągłych ograniczonych; C zw (R) przestrzeń funkcji

Bardziej szczegółowo

Rys. 11: Pomocne wykresy.

Rys. 11: Pomocne wykresy. 3 2 1 0-1 -2-3 -10-8 -6-4 -2 0 Rys. 11: Pomocne wykresy. wszystkim πe t = πe s +2πl dla l Z, tzn e s = e t +2l. Potrzeba ponadto także aby (e t 1) 2 = (e s 1) 2. Wstawiając do drugiego warunku konsekwencję

Bardziej szczegółowo

Rozdział 6. Ciągłość. 6.1 Granica funkcji

Rozdział 6. Ciągłość. 6.1 Granica funkcji Rozdział 6 Ciągłość 6.1 Granica funkcji Podamy najpierw dwie definicje granicy funkcji w punkcie i pokażemy ich równoważność. Definicja Cauchy ego granicy funkcji w punkcie. Niech f : X R, gdzie X R oraz

Bardziej szczegółowo

Działanie grupy na zbiorze

Działanie grupy na zbiorze Działanie grupy na zbiorze Definicja 0.1 Niech (G, ) będzie dowolną grupą oraz X niepustym zbiorem, to odwzorowanie : G X X nazywamy działaniem grupy G na zbiorze X jeślinastępujące warunki są spełnione:

Bardziej szczegółowo

Funkcje. Oznaczenia i pojęcia wstępne. Elementy Logiki i Teorii Mnogości 2015/2016

Funkcje. Oznaczenia i pojęcia wstępne. Elementy Logiki i Teorii Mnogości 2015/2016 Funkcje Elementy Logiki i Teorii Mnogości 2015/2016 Oznaczenia i pojęcia wstępne Niech f X Y będzie relacją. Relację f nazywamy funkcją, o ile dla dowolnego x X istnieje y Y taki, że (x, y) f oraz dla

Bardziej szczegółowo

13. Cia la. Rozszerzenia cia l.

13. Cia la. Rozszerzenia cia l. 59 13. Cia la. Rozszerzenia cia l. Z rozważań poprzedniego paragrafu wynika, że jeżeli wielomian f o wspó lczynnikach w ciele K jest nierozk ladalny, to pierścień ilorazowy K[X]/(f) jest cia lem zawieraja

Bardziej szczegółowo

Algebra. Jakub Maksymiuk. lato 2018/19

Algebra. Jakub Maksymiuk. lato 2018/19 Algebra Jakub Maksymiuk lato 2018/19 Algebra W1/0 Zbiory z działaniami Podstawowe własności Potęgi Tabelka działania Przykłady Grupa symetryczna Algebra W1/1 Podstawowe własności Definicja: Działaniem

Bardziej szczegółowo