Projekt matematyczny

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Projekt matematyczny"

Transkrypt

1 Projekt matematyczny Tomasz Kochanek Uniwersytet Śląski Instytut Matematyki Katowice VI Święto Liczby π 15 marca 2012 r. Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 1 / 32

2 Wielkie twierdzenie Fermata Równanie x n + y n = z n nie ma rozwiązań w niezerowych liczbach całkowitych x, y, z, gdy n N, n 3. Andrew Wiles (ur w Cambridge) dowód WTF w 1993 r.; uzupełnienie luk po dwóch latach pracy ostateczna wersja dowodu opublikowana w 1995 r. w Annals of Mathematics Nagroda Wolfa w 1996 r. odznaczenie Międzynarodowej Unii Matematycznej w 1998 r. w zastępstwie Medalu Fieldsa Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 2 / 32

3 Hipoteza Poincarégo Każda zwarta, jednospójna rozmaitość topologiczna bez brzegu jest homeomorficzna ze sferą trójwymiarową. Grigorij Perelman (ur w Leningradzie) dowód hipotezy opublikowany w Internecie w 2003 r.; zweryfikowany w 2006 r. magazyn Science naukowe wydarzenie roku 2006 odmowa przyjęcia Medalu Fieldsa w 2006 r. odmowa przyjęcia nagrody 1 mln $, przyznanej przez Instytut Matematyczny Claya Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 3 / 32

4 Ciągi arytmetyczne a liczby pierwsze Istnieją dowolnie długie ciągi arytmetyczne złożone z liczb pierwszych. dowód podany w 2004 r., opublikowany w 2008 r. w Annals of Mathematics Medal Fieldsa w 2006 r. dla Terence a Tao najdłuższy znany ciąg arytmetyczny liczb pierwszych ma 26 elementów; jego różnica wynosi 23, 681, , 092, 870 Ben Green (ur w Bristolu) Terence Tao (ur w Adelajdzie) Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 4 / 32

5 Projekt matematyczny 1 Definicja Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 5 / 32

6 Projekt matematyczny 1 Definicja 2 Identyfikacja Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 5 / 32

7 Projekt matematyczny 1 Definicja 2 Identyfikacja 3 Obiekty proste Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 5 / 32

8 Projekt matematyczny 1 Definicja 2 Identyfikacja 3 Obiekty proste 4 Faktoryzacja Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 5 / 32

9 Projekt matematyczny 1 Definicja 2 Identyfikacja 3 Obiekty proste 4 Faktoryzacja 5 Reprezentacja Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 5 / 32

10 Projekt matematyczny 1 Definicja 2 Identyfikacja 3 Obiekty proste 4 Faktoryzacja 5 Reprezentacja 6 Analogia Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 5 / 32

11 Symetrie czworościanu

12 Symetrie czworościanu 4 k

13 Symetrie czworościanu 4 l k , 240 Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 6 / 32

14 Symetrie czworościanu 4 l k Liczba symetrii: = , 240 Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 7 / 32

15 Symetrie sześciokątnego dysku

16 Symetrie sześciokątnego dysku

17 Symetrie sześciokątnego dysku

18 180 60, 120, 180, 240, 300 Symetrie sześciokątnego dysku Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 8 / 32

19 Symetrie sześciokątnego dysku Liczba symetrii: = , 120, 180, 240, 300 Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 9 / 32

20 Symetrie piramidy o podstawie dwunastokątnej Liczba symetrii: k 30, 0 k < 12 Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 10 / 32

21 Brak przemienności między symetriami czworościanu r obrót o 120 wokół osi l s obrót o 180 wokół osi k Wynik zastosowania operacji r: 4 l 4 l k k , , 240 Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 11 / 32

22 Brak przemienności między symetriami czworościanu r obrót o 120 wokół osi l s obrót o 180 wokół osi k Wynik zastosowania operacji s r: 4 l 1 l k k , , 240 Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 12 / 32

23 Brak przemienności między symetriami czworościanu r obrót o 120 wokół osi l s obrót o 180 wokół osi k Wynik zastosowania operacji s: 4 l 2 l k k , , 240 Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 13 / 32

24 Brak przemienności między symetriami czworościanu r obrót o 120 wokół osi l s obrót o 180 wokół osi k Wynik zastosowania operacji r s: 2 l 2 l k k , , 240 Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 14 / 32

25 Symetrie czworościanu, dysku i piramidy Każda z trzech figur ma 12 symetrii, ale różnią się one istotnie: piramida ma tylko jedną oś symetrii; Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 15 / 32

26 Symetrie czworościanu, dysku i piramidy Każda z trzech figur ma 12 symetrii, ale różnią się one istotnie: piramida ma tylko jedną oś symetrii; wszystkie symetrie piramidy są przemienne, w odróżnieniu od symetrii czworościanu i dysku sześciokątnego; Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 15 / 32

27 Symetrie czworościanu, dysku i piramidy Każda z trzech figur ma 12 symetrii, ale różnią się one istotnie: piramida ma tylko jedną oś symetrii; wszystkie symetrie piramidy są przemienne, w odróżnieniu od symetrii czworościanu i dysku sześciokątnego; istnieje tylko jedna symetria piramidy (obrót o 180 ), która złożona ze sobą jest identycznością. Dla czworościanu i dysku takich symetrii jest więcej. Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 15 / 32

28 Symetrie czworościanu, dysku i piramidy Każda z trzech figur ma 12 symetrii, ale różnią się one istotnie: piramida ma tylko jedną oś symetrii; wszystkie symetrie piramidy są przemienne, w odróżnieniu od symetrii czworościanu i dysku sześciokątnego; istnieje tylko jedna symetria piramidy (obrót o 180 ), która złożona ze sobą jest identycznością. Dla czworościanu i dysku takich symetrii jest więcej. Wniosek: Miarą symetrii danej figury nie jest tylko liczba jej symetrii. Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 15 / 32

29 Pojęcie grupy Definicja Grupą nazywamy strukturę (G, ), spełniającą warunki: działanie jest łączne, tzn. x (y z) = (x y) z dla wszelkich x, y, z G; istnieje element neutralny, tj. taki element e G, że x e = e x = x dla każdego x G; każdy element x G ma element odwrotny, tj. taki element x 1 G, że x x 1 = e = x 1 x. Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 16 / 32

30 Przykłady grup Grupa diedralna D n Dla n 3 symbolem D n oznacza się grupę wszystkich symetrii własnych n-kąta foremnego. Ma ona dokładnie 2n elementów. Np. dla n = 6 to nic innego jak wspomniana grupa obrotów dysku sześciokątnego. Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 17 / 32

31 Przykłady grup Grupa diedralna D n Dla n 3 symbolem D n oznacza się grupę wszystkich symetrii własnych n-kąta foremnego. Ma ona dokładnie 2n elementów. Np. dla n = 6 to nic innego jak wspomniana grupa obrotów dysku sześciokątnego. Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 17 / 32

32 Przykłady grup Grupy liczbowe (R, +), (R +, ), (Q, +), (Q +, ), (Z, +) itd. Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 18 / 32

33 Przykłady grup Grupy liczbowe (R, +), (R +, ), (Q, +), (Q +, ), (Z, +) itd. Grupy reszt modulo n Z n oznacza grupę możliwych reszt z dzielenia przez n, tj. zbiór {0, 1,..., n 1} z działaniem dodawania modulo n. Na przykład: Tabelka działania w grupie (Z 3, +) Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 18 / 32

34 Przykłady grup Grupy permutacji S n Dla każdego n N symbol S n oznacza grupę permutacji zbioru {1, 2,..., n}, z działaniem składania permutacji. Grupa S n ma n! elementów. Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 19 / 32

35 Przykłady grup Grupy permutacji S n Dla każdego n N symbol S n oznacza grupę permutacji zbioru {1, 2,..., n}, z działaniem składania permutacji. Grupa S n ma n! elementów. Przykład: σ = ( ), τ = ( ) Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 19 / 32

36 Przykłady grup Grupy permutacji S n Dla każdego n N symbol S n oznacza grupę permutacji zbioru {1, 2,..., n}, z działaniem składania permutacji. Grupa S n ma n! elementów. Przykład: σ = τσ = ( ( ) ), τ = ( ) Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 19 / 32

37 Przykłady grup Grupy permutacji S n Dla każdego n N symbol S n oznacza grupę permutacji zbioru {1, 2,..., n}, z działaniem składania permutacji. Grupa S n ma n! elementów. Przykład: σ = ( ), τ = ( ) τσ = ( ) ( ) = στ Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 19 / 32

38 Przykłady grup Grupy warkoczy B n Niech n N. Symbol B n oznacza zbiór wszystkich warkoczy, złożonych z n strun rozpiętych pomiędzy n punktami położonymi na dwóch równoległych płaszczyznach. Warkocze utożsamiamy homeomorficznie. Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 20 / 32

39 Przykłady grup Grupy warkoczy B n Niech n N. Symbol B n oznacza zbiór wszystkich warkoczy, złożonych z n strun rozpiętych pomiędzy n punktami położonymi na dwóch równoległych płaszczyznach. Warkocze utożsamiamy homeomorficznie. Przykłady warkoczy z B 3 i B 4 Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 20 / 32

40 Przykłady grup Dodawanie warkoczy polega na naturalnym złożeniu: warkocz a warkocz ab warkocz B Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 21 / 32

41 Przykłady grup Branie elementu odwrotnego do danego warkocza polega na odbiciu symetrycznym względem dolnej płaszczyzny: warkocz abb warkocz bba = (abb) 1 warkocz abbbba = e (jedynka grupy B 3 ) Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 22 / 32

42 Izomorfizm grup Izometrie szachownicy: identyczność e, obrót r o kąt 180 wokół środka, symetrie q 1 i q 2 względem zaznaczonych diagonali Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 23 / 32

43 Izomorfizm grup Izometrie szachownicy: identyczność e, obrót r o kąt 180 wokół środka, symetrie q 1 i q 2 względem zaznaczonych diagonali e r q 1 q 2 e e r q 1 q 2 r r e q 2 q 1 q 1 q 1 q 2 e r q 2 q 1 q 2 r e Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 23 / 32

44 Izomorfizm grup Grupa izometrii szacownicy a grupa liczb {1, 3, 5, 7} z działaniem mnożenia modulo 8 e r q 1 q 2 e e r q 1 q 2 r r e q 2 q 1 q 1 q 1 q 2 e r q 2 q 1 q 2 r e Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 24 / 32

45 Izomorfizm grup Grupa izometrii szacownicy a grupa liczb {1, 3, 5, 7} z działaniem mnożenia modulo 8 e r q 1 q 2 e e r q 1 q 2 r r e q 2 q 1 q 1 q 1 q 2 e r q 2 q 1 q 2 r e Te dwie struktury są identyczne w sensie teorii grup. Definicja Grupy (G, ) i (H, ) nazywamy izomorficznymi, jeżeli istnieje takie wzajemnie jednoznaczne odwzorowanie f : G H, że f (x y) = f (x) f (y). Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 24 / 32

46 Izomorfizm grup Grupa izometrii szacownicy a grupa liczb {1, 3, 5, 7} z działaniem mnożenia modulo 8 e r q 1 q 2 e e r q 1 q 2 r r e q 2 q 1 q 1 q 1 q 2 e r q 2 q 1 q 2 r e Te dwie struktury są identyczne w sensie teorii grup. Definicja Grupy (G, ) i (H, ) nazywamy izomorficznymi, jeżeli istnieje takie wzajemnie jednoznaczne odwzorowanie f : G H, że f (x y) = f (x) f (y). Przykład: (R, +) (R +, ) Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 24 / 32

47 Izomorfizm grup Grupa izometrii szacownicy a grupa liczb {1, 3, 5, 7} z działaniem mnożenia modulo 8 e r q 1 q 2 e e r q 1 q 2 r r e q 2 q 1 q 1 q 1 q 2 e r q 2 q 1 q 2 r e Te dwie struktury są identyczne w sensie teorii grup. Definicja Grupy (G, ) i (H, ) nazywamy izomorficznymi, jeżeli istnieje takie wzajemnie jednoznaczne odwzorowanie f : G H, że f (x y) = f (x) f (y). Przykład: (R, +) (R +, ), (Q, +) (Q +, ) Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 24 / 32

48 Obiekty proste w teorii grup każdy warkocz można wygenerować za pomocą najprostszych warkoczy typu a i A. Dokładniej mówiąc: grupa warkoczy B n daje się wygenerować za pomocą n 1 warkoczy prostych oraz warkoczy do nich odwrotnych ; Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 25 / 32

49 Obiekty proste w teorii grup każdy warkocz można wygenerować za pomocą najprostszych warkoczy typu a i A. Dokładniej mówiąc: grupa warkoczy B n daje się wygenerować za pomocą n 1 warkoczy prostych oraz warkoczy do nich odwrotnych ; grupy (R, +) nie da się wygenerować za pomocą skończenie wielu elementów; Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 25 / 32

50 Obiekty proste w teorii grup każdy warkocz można wygenerować za pomocą najprostszych warkoczy typu a i A. Dokładniej mówiąc: grupa warkoczy B n daje się wygenerować za pomocą n 1 warkoczy prostych oraz warkoczy do nich odwrotnych ; grupy (R, +) nie da się wygenerować za pomocą skończenie wielu elementów; grupa (Z, +), oraz wszystkie grupy (Z n, +), są generowane przez 1 element (przez jedynkę). Taką grupą jest na przykład grupa symetrii piramidy, która jest izomorficzna z (Z 12, +). Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 25 / 32

51 Obiekty proste w teorii grup każdy warkocz można wygenerować za pomocą najprostszych warkoczy typu a i A. Dokładniej mówiąc: grupa warkoczy B n daje się wygenerować za pomocą n 1 warkoczy prostych oraz warkoczy do nich odwrotnych ; grupy (R, +) nie da się wygenerować za pomocą skończenie wielu elementów; grupa (Z, +), oraz wszystkie grupy (Z n, +), są generowane przez 1 element (przez jedynkę). Taką grupą jest na przykład grupa symetrii piramidy, która jest izomorficzna z (Z 12, +). Które z tych grup są najprostszymi obiektami? Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 25 / 32

52 Obiekty proste w teorii grup każdy warkocz można wygenerować za pomocą najprostszych warkoczy typu a i A. Dokładniej mówiąc: grupa warkoczy B n daje się wygenerować za pomocą n 1 warkoczy prostych oraz warkoczy do nich odwrotnych ; grupy (R, +) nie da się wygenerować za pomocą skończenie wielu elementów; grupa (Z, +), oraz wszystkie grupy (Z n, +), są generowane przez 1 element (przez jedynkę). Taką grupą jest na przykład grupa symetrii piramidy, która jest izomorficzna z (Z 12, +). Które z tych grup są najprostszymi obiektami? Definicja Grupę, która jest generowana przez jeden element nazywamy grupą cykliczną. Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 25 / 32

53 Podgrupa Jak można rozkładać grupę na czynniki proste (na grupy cykliczne)? dla grup diedralnych D 3 i D 6 mamy D 3 < D 6 (D 3 jest podgrupą grupy D 6 ); Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 26 / 32

54 Podgrupa Jak można rozkładać grupę na czynniki proste (na grupy cykliczne)? dla grup diedralnych D 3 i D 6 mamy D 3 < D 6 (D 3 jest podgrupą grupy D 6 ); Z 3 < Z 6 ; Q < R; Z < Q; Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 26 / 32

55 Faktoryzacja i reprezentacja 1 Definicja 2 Identyfikacja 3 Obiekty proste Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 27 / 32

56 Faktoryzacja i reprezentacja 1 Definicja 2 Identyfikacja 3 Obiekty proste Przechodzimy do omówienia (w kontekście teorii grup) dwóch najważniejszych punktów: 4 Faktoryzacja 5 Reprezentacja Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 27 / 32

57 Faktoryzacja skończenie generowalnych grup abelowych Twierdzenie Frobeniusa & Stickelbergera, 1878 Każda skończenie generowalna grupa abelowa G ma rozkład: G Z n Z p k Z k p l, l gdzie n N 0, k 1,..., k l N, a p 1,..., p l są liczbami pierwszymi. Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 28 / 32

58 Faktoryzacja skończenie generowalnych grup abelowych Twierdzenie Frobeniusa & Stickelbergera, 1878 Każda skończenie generowalna grupa abelowa G ma rozkład: G Z n Z p k Z k p l, l gdzie n N 0, k 1,..., k l N, a p 1,..., p l są liczbami pierwszymi. Przykład: Z 2 = {0, 1}, Z 2 Z 2 = {(0, 0), (0, 1), (1, 0), (1, 1)} jest grupą 4-elementową, w której działamy następująco: (0, 0) + (0, 0) = (0, 0), (0, 1) + (1, 1) = (1, 0) itd. Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 28 / 32

59 Faktoryzacja skończenie generowalnych grup abelowych Twierdzenie Frobeniusa & Stickelbergera, 1878 Każda skończenie generowalna grupa abelowa G ma rozkład: G Z n Z p k Z k p l, l gdzie n N 0, k 1,..., k l N, a p 1,..., p l są liczbami pierwszymi. Przykład: Z 2 = {0, 1}, Z 2 Z 2 = {(0, 0), (0, 1), (1, 0), (1, 1)} jest grupą 4-elementową, w której działamy następująco: (0, 0) + (0, 0) = (0, 0), (0, 1) + (1, 1) = (1, 0) itd. Uwaga: Z 2 Z 2 Z 4. Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 28 / 32

60 Faktoryzacja skończenie generowalnych grup abelowych Twierdzenie Frobeniusa & Stickelbergera, 1878 Każda skończenie generowalna grupa abelowa G ma rozkład: G Z n Z p k Z k p l, l gdzie n N 0, k 1,..., k l N, a p 1,..., p l są liczbami pierwszymi. Zastosowania: w informatyce (w przesyłaniu i kompresji danych); w mechanice kwantowej (do opisu symetrii cząstek elementarnych). Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 29 / 32

61 Reprezentacja grup skończonych Twierdzenie Cayleya, 1854 Jeżeli G jest grupą skończoną o n elementach, to G jest izomorficzna z pewną podgrupą grupy permutacji S n. Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 30 / 32

62 Reprezentacja grup skończonych Twierdzenie Cayleya, 1854 Jeżeli G jest grupą skończoną o n elementach, to G jest izomorficzna z pewną podgrupą grupy permutacji S n. Grupy symetrii własnych dla pięciu brył platońskich: czworościan: A 4 (permutacje parzyste zbioru {1, 2, 3, 4}), sześcian: S 4, ośmiościan: S 4, dwunastościan: A 5, dwudziestościan: A 5. Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 30 / 32

63 Analogia Rozkład na czynniki pierwsze a teoria grup: potęgi liczb pierwszych grupy cykliczne, Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 31 / 32

64 Analogia Rozkład na czynniki pierwsze a teoria grup: potęgi liczb pierwszych grupy cykliczne, podzielność podgrupa, Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 31 / 32

65 Analogia Rozkład na czynniki pierwsze a teoria grup: potęgi liczb pierwszych grupy cykliczne, podzielność podgrupa, zasadnicze twierdzenie arytmetyki twierdzenie Frobeniusa-Stickelbergera Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 31 / 32

66 Analogia Rozkład na czynniki pierwsze a teoria grup: potęgi liczb pierwszych grupy cykliczne, podzielność podgrupa, zasadnicze twierdzenie arytmetyki twierdzenie Frobeniusa-Stickelbergera Reprezentacje unitarne: każda liczba rzeczywista da się zapisać w postaci: x = ±1 x, Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 31 / 32

67 Analogia Rozkład na czynniki pierwsze a teoria grup: potęgi liczb pierwszych grupy cykliczne, podzielność podgrupa, zasadnicze twierdzenie arytmetyki twierdzenie Frobeniusa-Stickelbergera Reprezentacje unitarne: każda liczba rzeczywista da się zapisać w postaci: x = ±1 x, każda liczba zespolona w postaci z = e iϕ z, Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 31 / 32

68 Analogia Rozkład na czynniki pierwsze a teoria grup: potęgi liczb pierwszych grupy cykliczne, podzielność podgrupa, zasadnicze twierdzenie arytmetyki twierdzenie Frobeniusa-Stickelbergera Reprezentacje unitarne: każda liczba rzeczywista da się zapisać w postaci: x = ±1 x, każda liczba zespolona w postaci z = e iϕ z, każdy porządny operator w postaci T = I P, gdzie I - izometria, P - rozciągnięcie, Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 31 / 32

69 Analogia Rozkład na czynniki pierwsze a teoria grup: potęgi liczb pierwszych grupy cykliczne, podzielność podgrupa, zasadnicze twierdzenie arytmetyki twierdzenie Frobeniusa-Stickelbergera Reprezentacje unitarne: każda liczba rzeczywista da się zapisać w postaci: x = ±1 x, każda liczba zespolona w postaci z = e iϕ z, każdy porządny operator w postaci T = I P, gdzie I - izometria, P - rozciągnięcie, grupy przekształceń układów kwantowych reprezentuje się jako porządne operatory. Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 31 / 32

70 Analogia Matematyk to ktoś, kto dostrzega analogie między twierdzeniami, dobry matematyk analogie między dowodami, wybitny matematyk analogie między teoriami, zaś genialny matematyk analogie między analogiami. Stefan Banach ( ) Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 32 / 32

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 9: Grupy skończone Gniewomir Sarbicki Grupy cykliczne Definicja: Jeżeli każdy element grupy G jest postaci a n dla pewnego a G, to mówimy, że grupa G jest grupą cykliczną o

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 6: Ciała skończone i kongruencje Gniewomir Sarbicki 24 lutego 2015 Relacja przystawania Definicja: Mówimy, że liczby a, b Z przystają modulo m (co oznaczamy jako a = b (mod

Bardziej szczegółowo

Grupy. Permutacje 1. (G2) istnieje element jednostkowy (lub neutralny), tzn. taki element e G, że dla dowolnego a G zachodzi.

Grupy. Permutacje 1. (G2) istnieje element jednostkowy (lub neutralny), tzn. taki element e G, że dla dowolnego a G zachodzi. Grupy. Permutacje 1 1 Definicja grupy Niech G będzie zbiorem. Działaniem na zbiorze G nazywamy odwzorowanie (oznaczane, jak mnożenie, przez ) przyporządkowujące każdej parze uporządkowanej (a, b) G G element

Bardziej szczegółowo

Grupa klas odwzorowań powierzchni

Grupa klas odwzorowań powierzchni Grupa klas odwzorowań powierzchni Błażej Szepietowski Uniwersytet Gdański Horyzonty matematyki 2014 Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki 2014 1 / 36 Grupa klas odwzorowań

Bardziej szczegółowo

Algebra liniowa z geometrią

Algebra liniowa z geometrią Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........

Bardziej szczegółowo

Teoria ciała stałego Cz. I

Teoria ciała stałego Cz. I Teoria ciała stałego Cz. I 1. Elementy teorii grup Grupy symetrii def. Grupy Zbiór (skończony lub nieskończony) elementów {g} tworzy grupę gdy: - zdefiniowana operacja mnożenia (złożenia) g 1 g 2 = g 3

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III WRAZ Z PLANEM WYNIKOWYM (ZAKRES PODSTAWOWY)

PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III WRAZ Z PLANEM WYNIKOWYM (ZAKRES PODSTAWOWY) PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III WRAZ Z PLANEM WYNIKOWYM (ZAKRES PODSTAWOWY) Kategorie celów nauczania: A zapamiętanie wiadomości, B rozumienie wiadomości, C stosowanie wiadomości

Bardziej szczegółowo

1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia.

1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia. 1. Elementy logiki i algebry zbiorów 1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia. Funkcje zdaniowe. Zdania z kwantyfikatorami oraz ich zaprzeczenia.

Bardziej szczegółowo

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012 1. Liczby zespolone Jacek Jędrzejewski 2011/2012 Spis treści 1 Liczby zespolone 2 1.1 Definicja liczby zespolonej.................... 2 1.2 Postać kanoniczna liczby zespolonej............... 1. Postać

Bardziej szczegółowo

Rozdział 2. Liczby zespolone

Rozdział 2. Liczby zespolone Rozdział Liczby zespolone Zbiór C = R z działaniami + oraz określonymi poniżej: x 1, y 1 ) + x, y ) := x 1 + x, y 1 + y ), 1) x 1, y 1 ) x, y ) := x 1 x y 1 y, x 1 y + x y 1 ) ) jest ciałem zob rozdział

Bardziej szczegółowo

Matematyka z plusem dla szkoły ponadgimnazjalnej. ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy)

Matematyka z plusem dla szkoły ponadgimnazjalnej. ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy) Program nauczania: Matematyka z plusem, Liczba godzin nauki w tygodniu: 3 Planowana liczba godzin w ciągu roku: 72 ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy)

Bardziej szczegółowo

Paweł Gładki. Algebra. http://www.math.us.edu.pl/ pgladki/

Paweł Gładki. Algebra. http://www.math.us.edu.pl/ pgladki/ Paweł Gładki Algebra http://www.math.us.edu.pl/ pgladki/ Konsultacje: Środa, 14:00-15:00 Jeżeli chcesz spotkać się z prowadzącym podczas konsultacji, postaraj się powiadomić go o tym przed lub po zajęciach,

Bardziej szczegółowo

GEOMETRIA PRZESTRZENNA (STEREOMETRIA)

GEOMETRIA PRZESTRZENNA (STEREOMETRIA) GEOMETRIA PRZESTRZENNA (STEREOMETRIA) WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. Na początek omówimy

Bardziej szczegółowo

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6 Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności

Bardziej szczegółowo

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum)

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum) Podstawa programowa przedmiotu MATEMATYKA III etap edukacyjny (klasy I - III gimnazjum) Cele kształcenia wymagania ogólne: I. Wykorzystanie i tworzenie informacji. Uczeń interpretuje i tworzy teksty o

Bardziej szczegółowo

Ułamki i działania 20 h

Ułamki i działania 20 h Propozycja rozkładu materiału Klasa I Razem h Ułamki i działania 0 h I. Ułamki zwykłe II. Ułamki dziesiętne III. Ułamki zwykłe i dziesiętne. Przypomnienie wiadomości o ułamkach zwykłych.. Dodawanie i odejmowanie

Bardziej szczegółowo

φ(x 1,..., x n ) = a i x 2 i +

φ(x 1,..., x n ) = a i x 2 i + Teoria na egzamin z algebry liniowej Wszystkie podane pojęcia należy umieć określić i podać pprzykłady, ewentualnie kontrprzykłady. Ponadto należy znać dowody tam gdzie to jest zaznaczone. Liczby zespolone.

Bardziej szczegółowo

Stereometria bryły. Wielościany. Wielościany foremne

Stereometria bryły. Wielościany. Wielościany foremne Stereometria bryły Stereometria - geometria przestrzeni trójwymiarowej. Przedmiotem jej badań są własności brył oraz przekształcenia izometryczne i afiniczne przestrzeni. Przyjęte oznaczenia: - Pole powierzchni

Bardziej szczegółowo

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6 Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności

Bardziej szczegółowo

podstawowe (ocena dostateczna) 3 Dział 1. Liczby naturalne i dziesiętne. Działania na liczbach naturalnych i dziesiętnych Uczeń:

podstawowe (ocena dostateczna) 3 Dział 1. Liczby naturalne i dziesiętne. Działania na liczbach naturalnych i dziesiętnych Uczeń: Klasa V Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem

Bardziej szczegółowo

ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLASY IV SP NA PODSTAWIE PROGRAMU DKW /99 Liczę z Pitagorasem

ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLASY IV SP NA PODSTAWIE PROGRAMU DKW /99 Liczę z Pitagorasem ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLASY IV SP NA PODSTAWIE PROGRAMU DKW 4014 180/99 Liczę z Pitagorasem Lp. Dział programu Tematyka jednostki metodycznej Uwagi 1 2 3 4 Lekcja organizacyjna I Działania

Bardziej szczegółowo

Liczby zespolone. Magdalena Nowak. 23 marca Uniwersytet Śląski

Liczby zespolone. Magdalena Nowak. 23 marca Uniwersytet Śląski Uniwersytet Śląski 23 marca 2012 Ciało liczb zespolonych Rozważmy zbiór C = R R, czyli C = {(x, y) : x, y R}. W zbiorze C definiujemy następujące działania: dodawanie: mnożenie: (a, b) + (c, d) = (a +

Bardziej szczegółowo

Wymagania na poszczególne oceny w klasie I gimnazjum do programu nauczania MATEMATYKA NA CZASIE

Wymagania na poszczególne oceny w klasie I gimnazjum do programu nauczania MATEMATYKA NA CZASIE Wymagania na poszczególne oceny w klasie I gimnazjum do programu nauczania MATEMATYKA NA CZASIE I.LICZBY - zaznacza na osi liczbowej punkty odpowiadające liczbom całkowitym, wymiernym(np. 1 2, 2 1 1 ),

Bardziej szczegółowo

GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI

GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI Klasa I Liczby i działania wskazać liczby naturalne, całkowite, wymierne zaznaczyć liczbę wymierną na osi liczbowej podać liczbę przeciwną do danej

Bardziej szczegółowo

Planimetria 1 12 godz.

Planimetria 1 12 godz. Planimetria 1 1 godz. Funkcje trygonometryczne kąta ostrego 1 definicje funkcji trygonometrycznych kąta ostrego wartości funkcji trygonometrycznych kątów 30º, 45º, 60º Trygonometria zastosowania Rozwiązywanie

Bardziej szczegółowo

ZAKRES PODSTAWOWY CZĘŚĆ II. Wyrażenia wymierne

ZAKRES PODSTAWOWY CZĘŚĆ II. Wyrażenia wymierne CZĘŚĆ II ZAKRES PODSTAWOWY Wyrażenia wymierne Temat: Wielomiany-przypomnienie i poszerzenie wiadomości. (2 godz.) znać i rozumieć pojęcie jednomianu (2) znać i rozumieć pojęcie wielomianu stopnia n (2)

Bardziej szczegółowo

PYTANIA TEORETYCZNE Z MATEMATYKI

PYTANIA TEORETYCZNE Z MATEMATYKI Zbiory liczbowe: 1. Wymień znane Ci zbiory liczbowe. 2. Co to są liczby rzeczywiste? 3. Co to są liczby naturalne? 4. Co to są liczby całkowite? 5. Co to są liczby wymierne? 6. Co to są liczby niewymierne?

Bardziej szczegółowo

KRZYŻÓWKA 2. 11. Może być np. równoboczny lub rozwartokątny. Jego pole to a b HASŁO:

KRZYŻÓWKA 2. 11. Może być np. równoboczny lub rozwartokątny. Jego pole to a b HASŁO: KRZYŻÓWKA.Wyznaczają ją dwa punkty.. Jego pole to π r² 3. Jego pole to a a 4.Figura przestrzenna, której podstawą jest dowolny wielokąt, a ściany boczne są trójkątami o wspólnym wierzchołku. 5.Prosta mająca

Bardziej szczegółowo

Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 1

Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 1 Agnieszka Kamińska, Dorota Ponczek Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 1 Proponujemy, by omawiając dane zagadnienie programowe lub rozwiązując

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne z matematyki. dla uczniów klasy Ia i Ib. Gimnazjum im. Jana Pawła II w Mętowie. w roku szkolnym 2015/2016

Wymagania na poszczególne oceny szkolne z matematyki. dla uczniów klasy Ia i Ib. Gimnazjum im. Jana Pawła II w Mętowie. w roku szkolnym 2015/2016 Wymagania na poszczególne oceny szkolne z matematyki dla uczniów klasy Ia i Ib Gimnazjum im. Jana Pawła II w Mętowie w roku szkolnym 2015/2016 DZIAŁ I: LICZBY zaznacza na osi liczbowej punkty odpowiadające

Bardziej szczegółowo

Przedmiotowy system oceniania

Przedmiotowy system oceniania Przedmiotowy system oceniania gimnazjum - matematyka Opracowała mgr Katarzyna Kukuła 1 MATEMATYKA KRYTERIA OCEN Kryteria oceniania zostały określone przez podanie listy umiejętności, którymi uczeń musi

Bardziej szczegółowo

PLAN WYNIKOWY Z ROZKŁADEM MATERIAŁU klasa 3

PLAN WYNIKOWY Z ROZKŁADEM MATERIAŁU klasa 3 PLAN WYNIKOWY Z ROZKŁADEM MATERIAŁU klasa 3 W planie wynikowym wraz z rozkładem materiału dla klasy trzeciej uwzględniono zarówno nowy materiał, zawarty w programie nauczania Matematyka wokół nas Gimnazjum

Bardziej szczegółowo

Podstawy systemów kryptograficznych z kluczem jawnym RSA

Podstawy systemów kryptograficznych z kluczem jawnym RSA Podstawy systemów kryptograficznych z kluczem jawnym RSA RSA nazwa pochodząca od nazwisk twórców systemu (Rivest, Shamir, Adleman) Systemów z kluczem jawnym można używać do szyfrowania operacji przesyłanych

Bardziej szczegółowo

Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 1

Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 1 Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 1 Wyróżniono następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające

Bardziej szczegółowo

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.)

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.) Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. godz. = 76 godz.) I. Funkcja i jej własności.4godz. II. Przekształcenia wykresów funkcji...9 godz. III. Funkcja

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I GIMNAZJUM WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I GIMNAZJUM LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie zaznaczać liczbę

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE - MATEMATYKA KL. I

WYMAGANIA EDUKACYJNE - MATEMATYKA KL. I WYMAGANIA EDUKACYJNE - MATEMATYKA KL. I Ocenę dopuszczającą otrzymuje uczeń, który: 1. Zna pojęcie liczby naturalnej, całkowitej, wymiernej 2. Rozumie rozszerzenie osi liczbowej na liczby ujemne 3. Umie

Bardziej szczegółowo

MATEMATYKA. WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski. KLASA I Wymagania

MATEMATYKA. WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski. KLASA I Wymagania MATEMATYKA WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski Treści zapisane kursywą (i oznaczone gwiazdką) wykraczają poza podstawę programową. Nauczyciel może je realizować,

Bardziej szczegółowo

KARTA KURSU DLA STUDIÓW PODYPLOMOWYCH

KARTA KURSU DLA STUDIÓW PODYPLOMOWYCH KARTA KURSU DLA STUDIÓW PODYPLOMOWYCH Nazwa Nazwa w j. ang. Geometria Geometry Punktacja ECTS* 9 Opis kursu (cele kształcenia) Celem przedmiotu jest powtórzenie i pogłębienie wiadomości słuchaczy z geometrii

Bardziej szczegółowo

Algebra z geometrią analityczną zadania z odpowiedziami

Algebra z geometrią analityczną zadania z odpowiedziami Algebra z geometrią analityczną zadania z odpowiedziami Maciej Burnecki Spis treści 0 Wyrażenia algebraiczne, indukcja matematyczna 2 2 2 1 Geometria analityczna w R 2 3 3 3 2 Liczby zespolone 4 4 4 3

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE STOPNIE KLASA I GIMNAZJUM

WYMAGANIA NA POSZCZEGÓLNE STOPNIE KLASA I GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE STOPNIE KLASA I GIMNAZJUM OCENA DOPUSZCZAJĄCA pojęcie liczby naturalnej, całkowitej, wymiernej, pojęcia: rozwinięcie dziesiętne skończone, nieskończone, okres, algorytm zaokrąglania

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE - MATEMATYKA KLASA I GIMNAZJUM

WYMAGANIA EDUKACYJNE - MATEMATYKA KLASA I GIMNAZJUM WYMAGANIA EDUKACYJNE - MATEMATYKA KLASA I GIMNAZJUM na rok szkolny 2014/2015 Wymagania edukacyjne na poszczególne oceny: (na każdą wyższą ocenę obowiązują również wiadomości na oceny niższe oraz wiadomości

Bardziej szczegółowo

Co to są liczby naturalne i czemu ich nie ma?! Adam Kolany

Co to są liczby naturalne i czemu ich nie ma?! Adam Kolany Co to są liczby naturalne i czemu ich nie ma?! Adam Kolany Co to są liczby naturalne i czemu ich nie ma?! Adam Kolany Załóżmy, że wiemy co to są liczby naturalne... Język (I-go rzędu): V, { F n : n IN

Bardziej szczegółowo

Wymagania edukacyjne klasa pierwsza.

Wymagania edukacyjne klasa pierwsza. Wymagania edukacyjne klasa pierwsza. TEMAT WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I DZIAŁANIA Liczby Rozwinięcia dziesiętne liczb wymiernych Zaokrąglanie liczb. Szacowanie wyników Dodawanie

Bardziej szczegółowo

Elementy symetrii. obiekt geometryczny taki jak linia, płaszczyzna lub punkt, względem którego dokonuje się operacji symetrii.

Elementy symetrii. obiekt geometryczny taki jak linia, płaszczyzna lub punkt, względem którego dokonuje się operacji symetrii. ELEMENTY SYMETRII Element symetrii obiekt geometryczny taki jak linia, płaszczyzna lub punkt, względem którego dokonuje się operacji symetrii. ELEMENTY SYMETRII Elementy symetrii PŁASZZYZNA peracje symetrii

Bardziej szczegółowo

Wyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm

Wyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm Wyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm 1 Grupa ilorazowa Niech H b edzie dzielnikiem normalnym grupy G. Oznaczmy przez G/H zbiór wszystkich warstw lewostronnych grupy G wzgl edem podgrupy

Bardziej szczegółowo

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y.

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. FUNKCJE LICZBOWE Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. Innymi słowy f X Y = {(x, y) : x X oraz y Y }, o ile (x, y) f oraz (x, z) f pociąga

Bardziej szczegółowo

TEMAT 1. LICZBY I DZIAŁANIA 14 20. 1. Liczby 1-2. 2. Rozwinięcia dziesiętne liczb wymiernych. 3. Zaokrąglanie liczb. Szacowanie wyników 1-2

TEMAT 1. LICZBY I DZIAŁANIA 14 20. 1. Liczby 1-2. 2. Rozwinięcia dziesiętne liczb wymiernych. 3. Zaokrąglanie liczb. Szacowanie wyników 1-2 TEMAT 1. LICZBY I DZIAŁANIA 14 0 LICZBA GODZIN LEKCYJNYCH 1. Liczby 1-. Rozwinięcia dziesiętne liczb wymiernych 3. Zaokrąglanie liczb. Szacowanie wyników 4. Dodawanie i odejmowanie liczb dodatnich 1 1-

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE PIERWSZEJ Z PODZIAŁEM NA POZIOMY W ODNIESIENIU DO DZIAŁÓW NAUCZANIA

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE PIERWSZEJ Z PODZIAŁEM NA POZIOMY W ODNIESIENIU DO DZIAŁÓW NAUCZANIA Poziomy wymagań edukacyjnych : KONIECZNY (K) - OCENA DOPUSZCZAJĄCA, PODSTAWOWY( P) - OCENA DOSTATECZNA, ROZSZERZAJĄCY(R) - OCENA DOBRA, DOPEŁNIAJĄCY (D) - OCENA BARDZO DOBRA WYKRACZAJACY(W) OCENA CELUJĄCA.

Bardziej szczegółowo

6. Notacja wykładnicza stosuje notację wykładniczą do przedstawiania bardzo dużych liczb

6. Notacja wykładnicza stosuje notację wykładniczą do przedstawiania bardzo dużych liczb LICZBY I DZIAŁANIA PROCENTY str. 1 Przedmiot: matematyka Klasa: 2 ROK SZKOLNY 2015/2016 temat Wymagania podstawowe P 2. Wartość bezwzględna oblicza wartość bezwzględną liczby wymiernej 3. Potęga o wykładniku

Bardziej szczegółowo

Wymagania edukacyjne klasa trzecia.

Wymagania edukacyjne klasa trzecia. TEMAT Wymagania edukacyjne klasa trzecia. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE Lekcja organizacyjna System dziesiątkowy System rzymski Liczby wymierne i niewymierne

Bardziej szczegółowo

Kryteria oceniania z zakresu klasy pierwszej opracowane w oparciu o program Matematyki z plusem dla Gimnazjum

Kryteria oceniania z zakresu klasy pierwszej opracowane w oparciu o program Matematyki z plusem dla Gimnazjum Kryteria oceniania z zakresu klasy pierwszej opracowane w oparciu o program Matematyki z plusem dla Gimnazjum DZIAŁ 1. LICZBY I DZIAŁANIA HASŁO PROGRAMOWE WIADOMOŚCI I UMIEJĘTNOŚCI PODSTAWOWE WIADOMOŚCI

Bardziej szczegółowo

MATeMAtyka 1. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Klasa pierwsza

MATeMAtyka 1. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Klasa pierwsza MATeMAtyka 1 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Klasa pierwsza Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe

Bardziej szczegółowo

Semestr Pierwszy Liczby i działania

Semestr Pierwszy Liczby i działania MATEMATYKA KL. I 1 Semestr Pierwszy Liczby i działania wskazać liczby naturalne, całkowite, wymierne zaznaczyć liczbę wymierną na osi liczbowej podać liczbę przeciwną do danej podać odwrotność liczby porównać

Bardziej szczegółowo

PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ

PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ L.p. 1. Liczby rzeczywiste 2. Wyrażenia algebraiczne bada, czy wynik obliczeń jest liczbą

Bardziej szczegółowo

GIMNAZJUM Wymagania edukacyjne z matematyki na poszczególne oceny półroczne i roczne w roku szkolnym

GIMNAZJUM Wymagania edukacyjne z matematyki na poszczególne oceny półroczne i roczne w roku szkolnym GIMNAZJUM Wymagania edukacyjne z matematyki na poszczególne oceny półroczne i roczne w roku szkolnym 2013-2014 Ocenę celującą otrzymuje uczeń, który: wykorzystuje na lekcjach matematyki wiadomości z innych

Bardziej szczegółowo

DZIAŁ I: LICZBY I DZIAŁANIA Ocena dostateczna. Ocena dobra. Ocena bardzo dobra (1+2) (1+2+3+4) Uczeń: (1+2+3) Uczeń: określone warunki

DZIAŁ I: LICZBY I DZIAŁANIA Ocena dostateczna. Ocena dobra. Ocena bardzo dobra (1+2) (1+2+3+4) Uczeń: (1+2+3) Uczeń: określone warunki MATEMATYKA KLASA I I PÓŁROCZE -wyróżnia liczby naturalne, całkowite, wymierne -zna kolejność wykonywania działań -rozumie poszerzenie osi liczbowej na liczby ujemne -porównuje liczby wymierne -zaznacza

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY W KLASIE I GIMNAZJUM

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY W KLASIE I GIMNAZJUM WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY W KLASIE I GIMNAZJUM NA OCENĘ DOPUSZCZJĄCĄ UCZEN: zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie

Bardziej szczegółowo

Teoria grafów - Teoria rewersali - Teoria śladów

Teoria grafów - Teoria rewersali - Teoria śladów 17 maja 2012 1 Planarność Wzór Eulera Kryterium Kuratowskiego Algorytmy testujące planarność 2 Genom i jego przekształcenia Grafy złamań Sortowanie przez odwrócenia Inne rodzaje sortowania Algorytmy sortujące

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymagania edukacyjne z matematyki Klasa I - program Matematyka z plusem" Dział: LICZBY I DZIAŁANIA Poziom konieczny - ocena dopuszczająca porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej,

Bardziej szczegółowo

Elementy algebry ogólnej 1

Elementy algebry ogólnej 1 Elementy algebry ogólnej 1 Notatki do wykładu w semestrze zimowym 2015/2016 Ewa Cygan Wersja z 13 sierpnia 2015 Spis treści Wstęp ii Oznaczenia, konwencje i podstawowe twierdzenia.................. ii

Bardziej szczegółowo

Dopuszczający. Opracowanie: mgr Michał Wolak 2

Dopuszczający. Opracowanie: mgr Michał Wolak 2 Dopuszczający zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie porównywać liczby wymierne proste przypadki umie zaznaczać liczbę wymierną na

Bardziej szczegółowo

Liczby rzeczywiste. Działania w zbiorze liczb rzeczywistych. Robert Malenkowski 1

Liczby rzeczywiste. Działania w zbiorze liczb rzeczywistych. Robert Malenkowski 1 Robert Malenkowski 1 Liczby rzeczywiste. 1 Liczby naturalne. N {0, 1,, 3, 4, 5, 6, 7, 8...} Liczby naturalne to liczby używane powszechnie do liczenia i ustalania kolejności. Liczby naturalne można ustawić

Bardziej szczegółowo

KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY

KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY 1 KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASA I LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie porównywać

Bardziej szczegółowo

P 2.3. Plan wynikowy z rozkładem materiału klasa 3

P 2.3. Plan wynikowy z rozkładem materiału klasa 3 P 2.3. Plan wynikowy z rozkładem materiału klasa 3 W planie wynikowym wraz z rozkładem materiału dla klasy trzeciej uwzględniono zarówno nowy materiał, zawarty w programie nauczania Matematyka wokół nas

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc

WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc 1, Ciągi zna definicję ciągu (ciągu liczbowego); potrafi wyznaczyć dowolny wyraz ciągu liczbowego określonego wzorem ogólnym;

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ LICEUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ LICEUM Potęgi, pierwiastki i logarytmy 23 h DZIAŁ PROGRAMOWY JEDNOSTKA LEKCYJNA Matematyka z plusem dla szkoły ponadgimnazjalnej 1 WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ LICEUM POZIOMY WYMAGAŃ EDUKACYJNYCH:

Bardziej szczegółowo

Strona 1 z 9. prowadzić rozumowania matematyczne sprawnie posługiwać się językiem matematycznym

Strona 1 z 9. prowadzić rozumowania matematyczne sprawnie posługiwać się językiem matematycznym Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego w klasie 3 gimnazjum uczeń potrafi: Umiejętności konieczne i podstawowe KONIECZNE( 2) PODSTAWOWE (3) ROZSZERZAJĄCE (4) DOPEŁNIAJACE

Bardziej szczegółowo

Wymagania eduka cyjne z matematyki

Wymagania eduka cyjne z matematyki Wymagania eduka cyjne z matematyki Klasa I - program Matematyka z plusem" Dział: LICZ B Y I DZIAŁANIA porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej, zamieniać ułamki zwykłe na

Bardziej szczegółowo

TEMAT 1. LICZBY I DZIAŁANIA 14 20. 1. Liczby 1-2. 2. Rozwinięcia dziesiętne liczb wymiernych. 3. Zaokrąglanie liczb. Szacowanie wyników 1-2

TEMAT 1. LICZBY I DZIAŁANIA 14 20. 1. Liczby 1-2. 2. Rozwinięcia dziesiętne liczb wymiernych. 3. Zaokrąglanie liczb. Szacowanie wyników 1-2 TEMAT 1. LICZBY I DZIAŁANIA 14 20 LICZBA GODZIN LEKCYJNYCH 1. Liczby 1-2 2. Rozwinięcia dziesiętne liczb wymiernych 3. Zaokrąglanie liczb. Szacowanie wyników 1 1-2 WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ

Bardziej szczegółowo

Matematyka z kluczem klasa 4. I. Wymagania edukacyjne z matematyki w klasie 4 szkoły podstawowej

Matematyka z kluczem klasa 4. I. Wymagania edukacyjne z matematyki w klasie 4 szkoły podstawowej Matematyka z kluczem klasa 4 I. Wymagania edukacyjne z matematyki w klasie 4 szkoły podstawowej 1. W zakresie sprawności rachunkowej uczeń: wykonuje proste działania pamięciowe na liczbach naturalnych,

Bardziej szczegółowo

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM Na ocenę dopuszczającą uczeń umie : WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM stosować cztery podstawowe działania na liczbach wymiernych, zna kolejność wykonywania działań

Bardziej szczegółowo

WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY DLA I KLASY GIMNAZJUM

WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY DLA I KLASY GIMNAZJUM WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY DLA I KLASY GIMNAZJUM OPRACOWANO NA PODSTAWIE PLANU REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI Matematyka 1 Podręcznik do gimnazjum Nowa wersja, praca zbiorowa

Bardziej szczegółowo

Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych

Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1 Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1. Podstawowe operacje logiczne dla cyfr binarnych Jeśli cyfry 0 i 1 potraktujemy tak, jak wartości logiczne fałsz i prawda, to działanie

Bardziej szczegółowo

WYMAGANIA KONIECZNE - OCENA DOPUSZCZAJĄCA:

WYMAGANIA KONIECZNE - OCENA DOPUSZCZAJĄCA: WYMAGANIA KONIECZNE - OCENA DOPUSZCZAJĄCA: zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie zaznaczać liczbę wymierną na osi liczbowej umie

Bardziej szczegółowo

V. WYMAGANIA EGZAMINACYJNE

V. WYMAGANIA EGZAMINACYJNE V. WYMAGANIA EGZAMINACYJNE Standardy wymagań egzaminacyjnych Zdający posiada umiejętności w zakresie: POZIOM PODSTAWOWY POZIOM ROZSZERZONY 1. wykorzystania i tworzenia informacji: interpretuje tekst matematyczny

Bardziej szczegółowo

MATEMATYKA KLASA IV. Podstawa programowa przedmiotu SZKOŁY BENEDYKTA

MATEMATYKA KLASA IV. Podstawa programowa przedmiotu SZKOŁY BENEDYKTA 2016-09-01 MATEMATYKA KLASA IV Podstawa programowa przedmiotu SZKOŁY BENEDYKTA Cele kształcenia wymagania ogólne I. Sprawność rachunkowa. Uczeń wykonuje proste działania pamięciowe na liczbach naturalnych,

Bardziej szczegółowo

Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka

Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka TEMAT 5. Przekątna kwadratu. Wysokość trójkąta równobocznego 6. Trójkąty o kątach 90º, 45º, 45º oraz 90º, 30º, 60º 1. Okrąg opisany na trójkącie

Bardziej szczegółowo

WYMAGANIA PROGRAMOWE Z MATEMATYKI KLASA I GIMNAZJUM (Ian1, Ian2, Ib) Na rok szkolny 2015/2016

WYMAGANIA PROGRAMOWE Z MATEMATYKI KLASA I GIMNAZJUM (Ian1, Ian2, Ib) Na rok szkolny 2015/2016 WYMAGANIA PROGRAMOWE Z MATEMATYKI KLASA I GIMNAZJUM (Ian1, Ian2, Ib) Na rok szkolny 2015/2016 OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM I PODRĘCZNIKA O NR DOP. 168/1/2015/z1 POZIOMY WYMAGAŃ

Bardziej szczegółowo

ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE II ( zakres podstawowy)

ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE II ( zakres podstawowy) 1 ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE II ( zakres podstawowy) Program nauczania: Matematyka z plusem Liczba godzin nauki w tygodniu: 3 Planowana liczba godzin w ciągu roku:

Bardziej szczegółowo

... [a n,b n ] kn [M 1,M 2 ], gdzie a i M 1, b i M 2, dla i {1,..., n}. Wówczas: [a 1,b 1 ] k 1. ... [a n,b n ] kn =(a 1 b 1 a 1

... [a n,b n ] kn [M 1,M 2 ], gdzie a i M 1, b i M 2, dla i {1,..., n}. Wówczas: [a 1,b 1 ] k 1. ... [a n,b n ] kn =(a 1 b 1 a 1 4. Wykład 4: Grupy rozwiązalne i nilpotentne. Definicja 4.1. Niech (G, ) będzie grupą. Wówczas (1) ciąg podgrup grupy G zdefiniowany indukcyjnie wzorami G (0) = G, G (i) =[G (i 1),G (i 1) ], dla i N nazywamy

Bardziej szczegółowo

Matematyka klasy IA i IB gimnazjum - rok szkolny 2016/2017

Matematyka klasy IA i IB gimnazjum - rok szkolny 2016/2017 Matematyka klasy IA i IB gimnazjum - rok szkolny 2016/2017 Wymagania edukacyjne na ocenę roczną Każda wyższa ocena zawiera wymagania dotyczące ocen niższych Uczeń otrzymuje na koniec roku ocenę dopuszczającą

Bardziej szczegółowo

Równania diofantyczne

Równania diofantyczne Równania diofantyczne Beata Łojan b.lojan@knm.katowice.pl Koło Naukowe Matematyków Uniwersytetu Śląskiego w Katowicach www.knm.katowice.pl III Liceum Ogólnokształcące im. Lucjana Szenwalda w Dąbrowie Górniczej

Bardziej szczegółowo

Macierze - obliczanie wyznacznika macierzy z użyciem permutacji

Macierze - obliczanie wyznacznika macierzy z użyciem permutacji Macierze - obliczanie wyznacznika macierzy z użyciem permutacji I LO im. F. Ceynowy w Świeciu Radosław Rudnicki joix@mat.uni.torun.pl 17.03.2009 r. Typeset by FoilTEX Streszczenie Celem wykładu jest wprowadzenie

Bardziej szczegółowo

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA I 2015/2016

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA I 2015/2016 SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA I 2015/2016 Ocenę dopuszczającą otrzymuje uczeń, który: (Liczby i działania) zna pojęcie liczby naturalnej, całkowitej, wymiernej

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV Zna zależności wartości cyfry od jej położenia w liczbie Zna kolejność działań bez użycia nawiasów Zna algorytmy czterech działań pisemnych

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE

WYMAGANIA EDUKACYJNE GIMNAZJUM NR 2 W RYCZOWIE WYMAGANIA EDUKACYJNE niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z MATEMATYKI w klasie I gimnazjum str. 1 Wymagania edukacyjne niezbędne

Bardziej szczegółowo

DZIAŁ 1. LICZBY NATURALNE I DZIESIĘTNE. DZIAŁANIA NA LICZBACH NATURALNYCH I DZIESIĘTNYCH (40 GODZ.)

DZIAŁ 1. LICZBY NATURALNE I DZIESIĘTNE. DZIAŁANIA NA LICZBACH NATURALNYCH I DZIESIĘTNYCH (40 GODZ.) Matematyka w otaczającym nas świecie Gra tabliczka mnożenia Karta pracy 1 Po IV klasie szkoły podstawowej Ślimak gra edukacyjna z tabliczką mnożenia 1. Zastosowania matematyki w sytuacjach praktycznych

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA- MATEMATYKA KLASA 6. Rok szkolny 2012/2013. Tamara Kostencka

PRZEDMIOTOWY SYSTEM OCENIANIA- MATEMATYKA KLASA 6. Rok szkolny 2012/2013. Tamara Kostencka PRZEDMIOTOWY SYSTEM OCENIANIA- MATEMATYKA KLASA 6 Rok szkolny 2012/2013 Tamara Kostencka 1 LICZBY NA CO DZIEŃ LICZBY NATURALNE I UŁAMKI Wymagania programowe dla klasy VI szkoły podstawowej DZIAŁ WYMAGANIA

Bardziej szczegółowo

Matematyka, kl. 6. Konieczne umiejętności

Matematyka, kl. 6. Konieczne umiejętności Matematyka, kl. 6 Liczby naturalne i ułamki Program Matematyka z plusem Odczytywanie liczb na osi liczbowej. Zapisywanie potęg w postaci iloczynu i obliczanie ich wartości. Sprawność rachunkowa w pisemnych

Bardziej szczegółowo

WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z XII 2008 R. TEMAT 1.LICZBY I DZIAŁANIA

WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z XII 2008 R. TEMAT 1.LICZBY I DZIAŁANIA TEMAT.LICZBY I DZIAŁANIA LICZBA GODZIN LEKCYJNYCH. Zapisywanie i porównywanie liczb.. Rachunki pamięciowe. 3. Sprytne rachunki. 4. Szacowanie wyników działań. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ

Bardziej szczegółowo

Wymagania edukacyjne z matematyki Klasa I. LICZBY I DZIAŁANIA Dopuszczający (K) Dostateczny (P) Dobry (R) bardzo dobry (D) Celujący (W) Uczeń:

Wymagania edukacyjne z matematyki Klasa I. LICZBY I DZIAŁANIA Dopuszczający (K) Dostateczny (P) Dobry (R) bardzo dobry (D) Celujący (W) Uczeń: zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie porównywać liczby wymierne umie zaznaczać liczbę wymierną na osi liczbowej umie zamieniać ułamek

Bardziej szczegółowo

I. LICZBY I DZIAŁANIA

I. LICZBY I DZIAŁANIA WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA PIERWSZA GIMNAZJUM I. LICZBY I DZIAŁANIA 1. Zna pojęcie liczby naturalnej, całkowitej, wymiernej. 2. Rozumie rozszerzenie osi liczbowej na liczby ujemne. 3. Umie

Bardziej szczegółowo

KLASA 3 Wiedza i umiejętności ucznia na poszczególne oceny

KLASA 3 Wiedza i umiejętności ucznia na poszczególne oceny Kryteria oceniania z matematyki KLASA 3 Wiedza i umiejętności ucznia na poszczególne oceny Arytmetyka: Ocenę dopuszczającą otrzymuje uczeń, który potrafi : - określić pojęcie liczby naturalnej, całkowitej,

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE I GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE I GIMNAZJUM WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE I GIMNAZJUM OCENA DOPUSZCZAJĄCA I DZIAŁ; LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby

Bardziej szczegółowo

KLASA I LICZBY dopuszczający dostateczny

KLASA I LICZBY dopuszczający dostateczny KLASA I LICZBY 1) zna pojęcie liczby naturalnej, całkowitej, wymiernej, 2) rozumie rozszerzenie osi liczbowej na liczby ujemne, 3) umie porównywać liczby wymierne, 4) umie zaznaczać liczbę wymierną na

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM Opracowano na podstawie programu Matematyka z plusem dla III etapu edukacyjnego (klasy I III) dopuszczonego przez MEN do użytku szkolnego i

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WG PROGRAMU MATEMATYKA Z PLUSEM" w roku szkolnym 2015/2016

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WG PROGRAMU MATEMATYKA Z PLUSEM w roku szkolnym 2015/2016 WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WG PROGRAMU MATEMATYKA Z PLUSEM" w roku szkolnym 2015/2016 Litery w nawiasach oznaczają kolejno: K - ocena dopuszczająca P - ocena dostateczna

Bardziej szczegółowo

Plan wynikowy klasa 3

Plan wynikowy klasa 3 Plan wynikowy klasa 3 Przedmiot: matematyka Klasa 3 liceum (technikum) Rok szkolny:........................ Nauczyciel:........................ zakres podstawowy: 28 tyg. 3 h = 84 h (78 h + 6 h do dyspozycji

Bardziej szczegółowo

Wymagania przedmiotowe z matematyki w klasie I gimnazjum opracowane dla programu Matematyka z plusem GWO DZIAŁ 1. LICZBY I DZIAŁANIA

Wymagania przedmiotowe z matematyki w klasie I gimnazjum opracowane dla programu Matematyka z plusem GWO DZIAŁ 1. LICZBY I DZIAŁANIA Wymagania przedmiotowe z matematyki w klasie I gimnazjum opracowane dla programu Matematyka z plusem GWO POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (2) P - podstawowy ocena dostateczna

Bardziej szczegółowo