Zadanie 2. Obliczyć rangę dowolnego elementu zbioru uporządkowanego N 0 N 0, gdy porządek jest zdefiniowany następująco: (a, b) (c, d) (a c b d)

Wielkość: px
Rozpocząć pokaz od strony:

Download "Zadanie 2. Obliczyć rangę dowolnego elementu zbioru uporządkowanego N 0 N 0, gdy porządek jest zdefiniowany następująco: (a, b) (c, d) (a c b d)"

Transkrypt

1 Matemaryka dyskretna - zadania Zadanie 1. Opisać zbiór wszystkich elementów rangi k zbioru uporządkowanego X dla każdej liczby naturalnej k, gdy X jest rodziną podzbiorów zbioru skończonego Y. Elementem najmniejszym, a więc o randze 0, jest zbiór pusty - jako zawarty w każdym innym podzbiorze zbioru Y. Elementami o randze 1 będą wszystkie podzbiory jednoelementowe, elementami o randze 2 będą podzbiory dwuelementowe. Ogólnie elementami o randze k będą te podzbiory zbioru Y, których moc jest równa k. Zadanie 2. Obliczyć rangę dowolnego elementu zbioru uporządkowanego N 0 N 0, gdy porządek jest zdefiniowany następująco: (a, b) (c, d) (a c b d) Elementem o randze 0 będzie oczywiście element najmniejszy, czyli para (0, 0). Dalej, zgodnie z definicją porządku, elementami o randze 1 będą elementy (0, 1) i (1, 0). Elementami o randze 2 będą pary postaci (0, 2), (2, 0) oraz (1, 1). Ogólnie ranga dowolnej pary (a, b) N 0 N 0 jest równa: a + b. Zadanie 3 Pokazać, że zbiór elementów ustalonej rangi jest antyłańcuchem. Niech (X, ) będzie zbiorem uporządkowanym. Niech T X będzie zbiorem elementów o ustalonej randze k. Weźmy dwa dowolne elementy a i b tego zbioru. Gdyby a i b należały do jednego łańcucha, to byłoby a b lub b a, ale to znaczyłoby, że elementy a i b nie są tej samej rangi. Więc a i b są nieporównywalne. Wobec dowoloności wyboru elementów a i b wnioskujemy, że każde dwa elementy ze zbioru T są nieporównywalne, ale to oznacza, że zbiór T jest antyłańcuchem. Zadanie 4. Pokazać, że jeśli (L, <) jest kratą, to działania i są łączne, przemienne oraz a a = a i a a = a. Jeśli krata jest skończona, to istnieją elementy najmniejszy i największy i są one elementami neutralnymi względem działań w tej kracie. Działania i są przemienne, gdyż a b = sup{a, b} = sup{b, a} = b a oraz a b = inf{a, b} = inf{b, a} = b a. Działania i są łączne, gdyż a (b c) = sup{a, sup{b, c}} = sup{a, b, c} oraz a (b c) = inf{a, inf{b, c}} = inf{a, b, c}. Ponadto a a = sup{a, a} = a oraz a a = inf{a, a} = a. Zakładamy, że krata jest skończona, czyli L <. Niech L = {x 1,..., x n }. Elementem najmniejszym jest element 0 = x 1... x n, elementem największym - 1 = x 1... x n. Niech teraz x i L. Wówczas: 0 = x 1... x n x i x i x i x 1... x n x i x i = x i a więc x i x 1... x n = x i. Analogicznie dla działania : x i x 1... x n = 1 x i = x i x i x i (x 1... x n ) x i bo a b a. A więc x i (x 1... x n ) = x i.

2 Zadanie 5. Pokazać, że jeśli (L, <) jest kratą rozdzielną, to każdy element może mieć co najwyżej jedno uzupełnienie. Załóżmy, że krata jest skończona. Niech a L i niech elementy e, f będą uzupełnieniami elementu a, czyli: a e = 1, a e = 0, a f = 1, a f = 0. e = e 0 = e (a f) = (e a) (e f) = 1 (e f) = e f f = f 0 = f (a e) = (f a) (f e) = 1 (f e) = f e skąd wynika, że e = f. Zadanie 6. Pokazać, że krata (30) jest izomorficzna (jako zbiór uporządkowany) z kratą P (3). (30) = {1, 2, 3, 5, 6, 10, 15, 30} P (3) = {Ø, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}. Aby pokazać izomorficzność obu zbiorów należy określić odpowiednią funkcję zachowującą porządki w obu zbiorach. Funkcję f: (30) P (3) definujemy następująco: f(1) = Ø, f(2) = {1}, f(3) = {2}, f(5) = {3}, f(6) = {1, 2} f(10) = {1, 3}, f(15) = {2, 3}, f(30) = {1, 2, 3} Zadanie 7. Wyznaczyć wartości funkcji Möbiusa zbioru (12) = {1, 2, 3, 4, 6, 12} µ(i, i) = 1, i {1, 2, 3, 4, 6, 12}, µ(1, 2) = µ(2, 2) = 1 µ(1, 3) = µ(3, 3) = 1, µ(2, 6) = µ(3, 6) = µ(6, 6) = 1 µ(1, 6) = (µ(2, 6) + µ(3, 6) + µ(6, 6)) = 1 µ(2, 4) = µ(4, 4) = 1, µ(1, 4) = (µ(2, 4) + µ(4, 4)) = 0 µ(4, 12) = µ(12, 12) = 1, µ(6, 12) = µ(12, 12) = 1 µ(2, 12) = (µ(4, 12) + µ(6, 12) + µ(12, 12)) = 1 µ(3, 12) = (µ(6, 12) + µ(12, 12)) = 0 µ(1, 12) = (µ(2, 12) + µ(3, 12) + µ(4, 12) + µ(6, 12) + µ(12, 12)) = 0 Zadanie 8. Ile jest liczb naturalnych niepodzielnych przez 2, 3 i 5 w przedziałach: (0, 901), (0, 1001), (16, 1219) A = {x (0, 901): 2 x}, B = {x (0, 901): 3 x}, C = {x (0, 901): 5 x}. Wówczas: A = 450, B = 300, C = 180, A B = 150, A C = 90, B C = 60, A B C = 30. Stąd {x (0, 901): (x A B C)} = 240 Dla pozostałych przedziałów postępujemy analogicznie. A więc {x (0, 1001): (x A B C)} = 266 oraz {x (16, 1219): (x A B C)} = 321

3 Zadanie 9. Pokazać, że zbiór (n) wszystkich dzielników naturalnych liczby naturalnej n, uporządkowany przez relację podzielności jest kratą rozdzielną. Pokazać, że (n) jest algebrą Boole a wtedy i tyklo wtedy, gdy n jest liczbą bezkwadratową (tzn. niepodzielną przez kwadrat żadnej liczby pierwszej). 1 Mamy pokazać, że zbiór ( (n), ) jest kratą rozdzielną. Zauważmy, że w tej kracie a b = NW W (a, b) oraz a b = NW D(a, b). Niech a, b, c (n) = {k N: k n}. Wówczas: a (b c) = NW D(a, NW W (b, c)) = = NW W (NW D(a, b), NW D(a, c)) = (a b) (a c) a (b c) = NW W (a, NW D(b, c)) = = NW D(NW W (a, b), NW W (a, c)) = (a b) (a c) 2 ( ) Załóżmy, że (n) jest algebrą Boole a i przypuśćmy, że n nie jest liczbą bezkwadratową, tzn: p n p 2 n P zbiór liczb pierwszych p P Ponieważ (n) jest algebrą Boole a, to każdy element ma swoje uzupełnienie, a więc istnieje taki element a (n), że a p = 1 oraz a p = 0. A więc (NW W (p, a) = n oraz NW D(p, a) = 1, skąd wynika następujący fakt: NW W (p, a) = pa = n a = n p = pk gdzie k jest liczbą naturalną (ostatnia równość wynika z faktu, że p 2 n). A więc NW D(p, a) = NW D(p, n/p) = p i dostajemy sprzeczność, gdyż NW D(p, a) 1 ( ) Załóżmy, że n jest liczbą bezkwadratową, czyli n = p 1... p s. Niech k (n) co oznacza, że k n. Pokażemy, że uzupełnieniem elementu k jest element k = n/k. Oczywiście NW D(k, k ) = 1, gdyż liczby pierwsze wystepujące w rozkładzie liczby k są różna (żadna się nie powtarza) od liczb z rozkładu k (co wynika z faktu, że n jest liczbą bezkwadratową). A więc NW W (k, k ) = k k = n. Zadanie 10. Łańcuch (C i ), i = 1,..., n podzbiorów pewnego skończonego zbioru nazywamy zupełnym, jeśli C i = i. Wyznaczyć liczbę łańcuchów zupełnych zawartych w P (n). Wyznaczyć liczbę łańcuchów zupełnych w P (n) zawierających ustalony zbiór k- elementowy. Dla n = 3, P = {0, 1, 2} przykładem łańcucha zupełnego jest: {0}, {0, 1}, {0, 1, 2}. Łatwo zauważyć, że ilość wszystkich łańcuchów zupełnych w zbiorze P (n) wynosi n!. Ilość wszystkich łańcuchów zupełnych zawierających ustalony zbiór k-elementowy wynosi k!(n k)!.

4 Zadanie 11. Udowodnić, że jeżeli przedziały [a, b] i [c, d] zawarte w pewnym lokalnie skończonym zbiorze uporządkowanym są izomorficzne, to µ(a, b) = µ(c, d) Załóżmy, że [a, b] = [c, d]. Niech f: [a, b] [c, d] będzie izomorfizmem. A więc dla każdych x, y [a, b] prawdziwa jest równoważność: x [a,b] y f(x) [c,d] f(y) Niech k = [a, b] = [c, d]. Indukcja względem k. Jeśli k = 1, to a = b i c = d. A więc µ(a, a) = µ(c, c) = 1. Załóżmy, że dowodzona implikacja zachodzi dla k = n 1. Niech [a, b] = [c, d] = n. A więc µ(a, b) = µ(a, z) = µ(c, f(z)) = µ(c, d) a z<b gdyż [a, z] < n i [c, f(z)] < n. c f(z)<d Zadanie 12. Wskazać pokrycie minimalną liczbą łańcuchów zbioru uporządkowanego: a) P (5) b) I 4 I 5, gdzie I n = {1,..., n} z naturalnym porządkiem. (a) Minimalna ilość łańcuchów potrzebna do pokrycia zbioru P (5) wynosi 10, gdyż taka jest ilość elementów w maksymalnym antyłańcuchu zbioru P (5) (b) Minimalna ilość łańcuchów potrzebna do pokrycia zbioru I 4 I 5 wynosi 4: ((1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 5), (3, 5), (4, 5)) ((1, 1), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (3, 5), (4, 5)) ((1, 1), (2, 1), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (4, 5)) ((1, 1), (2, 1), (3, 1), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5)) Zadanie 13. Czy każdy łańcuch w zbiorze A = {(x, y) Z Z: x 0 x + y 0} jest skończony. Czy długości łańcuchów w tym zbiorze są wspólnie ograniczone. Dla każdej liczby naturalnej n podać przykład nieskończonego podzbioru zbioru A, w którym maksymalna długość łańcucha wynosi n. Nie każdy łańcuch w zbiorze A jest skończony, np. nieskończony jest łańcuch (0, 0), ( 1, 0), ( 2, 0),.. Wobec tego długość łańcuchów w zbiorze A nie może być wspólnie ograniczona. Nieskończony podzbiór zbioru A, w ktorym maksymalna długość łańcucha wynosi 1, to na przykład: P 1 = ((0, 1), (1, 2),..., (n, n 1),...) Nieskończony podzbiór zbioru A, w ktorym maksymalna długość łańcucha wynosi 2, to na przykład: P 2 = P 1 (0, 2), (1, 3),..., (n, n 2),...) Ostatecznie nieskończony podzbiór P n A, w ktorym maksymalna długość łańcucha wynosi n, to na przykład: P n = P 1... P n 1 (0, n), (1, n 1),..., (n, 2n),...)

5 Zadanie 14. Niech (P, ) będzie zbiorem uporządkowanym. Określmy dwie funkcje: η(a, b) = ζ(a, b) = Wyznaczyć wartości funkcji η ζ oraz ζ η Rozwiązanie. Załóżmy, że a b. Niech a = b, wtedy: Jeśli [a, b] = 2, to { 1, [a, b] = 2 0, ( [a, b] = 2) { 1, a b 0, (a b) η ζ(a, b) = η(a, a)ζ(a, a) = 0 ζ η(a, b) = ζ(a, a)η(a, a) = 0 η ζ(a, b) = η(a, a)ζ(a, b) + η(a, b)ζ(b, b) = 1 ζ η(a, b) = ζ(a, a)η(a, b) + ζ(a, b)η(b, b) = 1 Niech teraz [a, b] > 2. Zauważmy, że dla wszystkich c [a, b] jest c b, a więc dla wszystkich c jest ζ(c, b) = 1. Stąd η(a, c)ζ(c, b) = η(a, c) W przedziale [a, b] istnieje co najmniej jeden element c, taki że [a, c] = 2. Stąd wartość powyższej sumy jest równa mocy zbioru: {c [a, b]: [a, c] = 2} Rozpatrzmy teraz splot ζ η. Dla wszystkich c [a, b] mamy a c, a więc ζ(a, c) = 1, dla c [a, b]. Stąd ζ(a, c)η(c, b) = η(c, b) W przedziale [a, b] istnieje co najmniej jeden element c, taki że [c, b] = 2. Stąd wartość powyższej sumy jest równa mocy zbioru: {c [a, b]: [c, b] = 2}

6 Zadanie 15. Pokazać, że krata X = (a k(1) 1... a k(n) n ), jako zbiór uporządkowany przez relację podzielności (a 1,..., a n są liczbami pierwszymi), jest izomorficzna z iloczynem kartezjańskim Z = (a k(1) 1 )... (a k(n) n ). Niech Zauważmy najpierw, że ilość elementów w obu zbiorach jest taka sama. Ponadto jeśli x X, to x = a u(1) 1... a u(n). Określmy funkcję f: X Z następująco: n f(x) = f(a u(1) 1... a u(n) n ) = (a u(1) 1,..., a u(n) n ) Tak określona funkcja zachowuje porządki w obu zbiorach. Niech x, y X i niech x = a u(1) 1... a u(n) n, y = a v(1) 1... a v(n) n. Załóżmy, że x y. Wtedy u(1) v(1),..., u(n) v(n). Zatem f(x) f(y). Copyright c Grzegorz Gierlasiński

Matematyka Dyskretna Zestaw 2

Matematyka Dyskretna Zestaw 2 Materiały dydaktyczne Matematyka Dyskretna (Zestaw ) Matematyka Dyskretna Zestaw 1. Wykazać, że nie istnieje liczba naturalna, która przy dzieleniu przez 18 daje resztę 13, a przy dzieleniu przez 1 daje

Bardziej szczegółowo

Rozdział 4. Ciągi nieskończone. 4.1 Ciągi nieskończone

Rozdział 4. Ciągi nieskończone. 4.1 Ciągi nieskończone Rozdział 4 Ciągi nieskończone W rozdziale tym wprowadzimy pojęcie granicy ciągu. Dalej rozszerzymy to pojęcie na przypadek dowolnych funkcji. Jak zauważyliśmy we wstępie jest to najważniejsze pojęcie analizy

Bardziej szczegółowo

Teoria ciała stałego Cz. I

Teoria ciała stałego Cz. I Teoria ciała stałego Cz. I 1. Elementy teorii grup Grupy symetrii def. Grupy Zbiór (skończony lub nieskończony) elementów {g} tworzy grupę gdy: - zdefiniowana operacja mnożenia (złożenia) g 1 g 2 = g 3

Bardziej szczegółowo

Wyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm

Wyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm Wyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm 1 Grupa ilorazowa Niech H b edzie dzielnikiem normalnym grupy G. Oznaczmy przez G/H zbiór wszystkich warstw lewostronnych grupy G wzgl edem podgrupy

Bardziej szczegółowo

Grupy. Permutacje 1. (G2) istnieje element jednostkowy (lub neutralny), tzn. taki element e G, że dla dowolnego a G zachodzi.

Grupy. Permutacje 1. (G2) istnieje element jednostkowy (lub neutralny), tzn. taki element e G, że dla dowolnego a G zachodzi. Grupy. Permutacje 1 1 Definicja grupy Niech G będzie zbiorem. Działaniem na zbiorze G nazywamy odwzorowanie (oznaczane, jak mnożenie, przez ) przyporządkowujące każdej parze uporządkowanej (a, b) G G element

Bardziej szczegółowo

LXIII Olimpiada Matematyczna

LXIII Olimpiada Matematyczna 1 Zadanie 1. LXIII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia drugiego 17 lutego 2012 r. (pierwszy dzień zawodów) Rozwiązać w liczbach rzeczywistych a, b, c, d układ równań a

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA ZBIORY Z POWTÓRZENIAMI W zbiorze z powtórzeniami ten sam element może występować kilkakrotnie. Liczbę wystąpień nazywamy krotnością tego elementu w zbiorze X = { x,..., x n } - zbiór k,..., k n - krotności

Bardziej szczegółowo

Zbiór zadań ze wstępu do matematyki

Zbiór zadań ze wstępu do matematyki Zbiór zadań ze wstępu do matematyki Jan Kraszewski Wrocław 2009 1 Spis treści 2 Przedmowa W zbiorach zadań ze wstępu do matematyki zadania zazwyczaj są tak pogrupowane, by dotyczyły pojęć z poszczególnych

Bardziej szczegółowo

Działanie grupy na zbiorze

Działanie grupy na zbiorze Działanie grupy na zbiorze Definicja 0.1 Niech (G, ) będzie dowolną grupą oraz X niepustym zbiorem, to odwzorowanie : G X X nazywamy działaniem grupy G na zbiorze X jeślinastępujące warunki są spełnione:

Bardziej szczegółowo

Twierdzenie spektralne

Twierdzenie spektralne Twierdzenie spektralne Algebrę ograniczonych funkcji borelowskich na K R będziemy oznaczać przez B (K). Spektralnym rozkładem jedności w przestrzeni Hilberta H nazywamy odwzorowanie, które każdemu zbiorowi

Bardziej szczegółowo

Paweł Gładki. Algebra. http://www.math.us.edu.pl/ pgladki/

Paweł Gładki. Algebra. http://www.math.us.edu.pl/ pgladki/ Paweł Gładki Algebra http://www.math.us.edu.pl/ pgladki/ Konsultacje: Środa, 14:00-15:00 Jeżeli chcesz spotkać się z prowadzącym podczas konsultacji, postaraj się powiadomić go o tym przed lub po zajęciach,

Bardziej szczegółowo

φ(x 1,..., x n ) = a i x 2 i +

φ(x 1,..., x n ) = a i x 2 i + Teoria na egzamin z algebry liniowej Wszystkie podane pojęcia należy umieć określić i podać pprzykłady, ewentualnie kontrprzykłady. Ponadto należy znać dowody tam gdzie to jest zaznaczone. Liczby zespolone.

Bardziej szczegółowo

Logika I. Wykład 1. Wprowadzenie do rachunku zbiorów

Logika I. Wykład 1. Wprowadzenie do rachunku zbiorów Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 1. Wprowadzenie do rachunku zbiorów 1 Podstawowe pojęcia rachunku zbiorów Uwaga 1.1. W teorii mnogości mówimy o zbiorach

Bardziej szczegółowo

VII Olimpiada Matematyczna Gimnazjalistów

VII Olimpiada Matematyczna Gimnazjalistów VII Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa, test próbny www.omg.edu.pl (wrzesień 2011 r.) Rozwiązania zadań testowych 1. Liczba krawędzi pewnego ostrosłupa jest o

Bardziej szczegółowo

Algebra liniowa z geometrią

Algebra liniowa z geometrią Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........

Bardziej szczegółowo

Systemy baz danych. Notatki z wykładu. http://robert.brainusers.net 17.06.2009

Systemy baz danych. Notatki z wykładu. http://robert.brainusers.net 17.06.2009 Systemy baz danych Notatki z wykładu http://robert.brainusers.net 17.06.2009 Notatki własne z wykładu. Są niekompletne, bez bibliografii oraz mogą zawierać błędy i usterki. Z tego powodu niniejszy dokument

Bardziej szczegółowo

1 Funkcje i ich granice

1 Funkcje i ich granice Funkcje i ich granice Było: Zbiór argumentów; zbiór wartości; monotoniczność; funkcja odwrotna; funkcja liniowa; kwadratowa; wielomiany; funkcje wymierne; funkcje trygonometryczne i ich odwrotności; funkcja

Bardziej szczegółowo

III. ZMIENNE LOSOWE JEDNOWYMIAROWE

III. ZMIENNE LOSOWE JEDNOWYMIAROWE III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta

Bardziej szczegółowo

Rachunek prawdopodobieństwa - Teoria - Przypomnienie.. A i B są niezależne, gdy P(A B) = P(A)P(B). P(A B i )P(B i )

Rachunek prawdopodobieństwa - Teoria - Przypomnienie.. A i B są niezależne, gdy P(A B) = P(A)P(B). P(A B i )P(B i ) Rachunek prawdopodobieństwa - Teoria - Przypomnienie Podstawy Definicja 1. Schemat klasyczny - wszystkie zdarzenia elementarne są równo prawdopodobne, licząc prawdopodobieństwo liczymy stosunek liczby

Bardziej szczegółowo

LVII Olimpiada Matematyczna

LVII Olimpiada Matematyczna LVII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia pierwszego (12 września 2005 r 5 grudnia 2005 r) Zadanie 1 Wyznaczyć wszystkie nieujemne liczby całkowite n, dla których liczba

Bardziej szczegółowo

Definicja: alfabetem. słowem długością słowa

Definicja: alfabetem. słowem długością słowa Definicja: Niech X będzie zbiorem niepustym. Zbiór ten będziemy nazywać alfabetem. Skończony ciąg elementów alfabetu X będziemy nazywać słowem a liczbę elementów tego ciągu nazywamy długością słowa. Na

Bardziej szczegółowo

Zadania o numerze 4 z zestawów licencjat 2014.

Zadania o numerze 4 z zestawów licencjat 2014. Zadania o numerze 4 z zestawów licencjat 2014. W nawiasie przy zadaniu jego występowanie w numerze zestawu Spis treści (Z1, Z22, Z43) Definicja granicy ciągu. Obliczyć granicę:... 3 Definicja granicy ciągu...

Bardziej szczegółowo

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y.

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. FUNKCJE LICZBOWE Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. Innymi słowy f X Y = {(x, y) : x X oraz y Y }, o ile (x, y) f oraz (x, z) f pociąga

Bardziej szczegółowo

Wykład 1. Przestrzeń Hilberta

Wykład 1. Przestrzeń Hilberta Wykład 1. Przestrzeń Hilberta Sygnały. Funkcje (w języku inżynierów - sygnały) które będziemy rozważali na tym wykładzie będą kilku typów Sygnały ciągłe (analogowe). ) L (R) to funkcje na prostej spełniające

Bardziej szczegółowo

Notatki do wykładu Geometria Różniczkowa I

Notatki do wykładu Geometria Różniczkowa I Notatki do wykładu Geometria Różniczkowa I Katarzyna Grabowska, KMMF 1 listopada 013 1 Odwzorowanie styczne i cofnięcie formy cd: 1.1 Transport pola wektorowego i cofnięcie formy W poprzednim paragrafie

Bardziej szczegółowo

... [a n,b n ] kn [M 1,M 2 ], gdzie a i M 1, b i M 2, dla i {1,..., n}. Wówczas: [a 1,b 1 ] k 1. ... [a n,b n ] kn =(a 1 b 1 a 1

... [a n,b n ] kn [M 1,M 2 ], gdzie a i M 1, b i M 2, dla i {1,..., n}. Wówczas: [a 1,b 1 ] k 1. ... [a n,b n ] kn =(a 1 b 1 a 1 4. Wykład 4: Grupy rozwiązalne i nilpotentne. Definicja 4.1. Niech (G, ) będzie grupą. Wówczas (1) ciąg podgrup grupy G zdefiniowany indukcyjnie wzorami G (0) = G, G (i) =[G (i 1),G (i 1) ], dla i N nazywamy

Bardziej szczegółowo

Wykłady ze Wstępu do Matematyki. Jacek Cichoń WPPT, Politechnika Wrocławska

Wykłady ze Wstępu do Matematyki. Jacek Cichoń WPPT, Politechnika Wrocławska Wykłady ze Wstępu do Matematyki Jacek Cichoń WPPT, Politechnika Wrocławska MAJ 2012 Spis treści 1 Rachunek Zdań 7 1.1 Zdania i Waluacje............................ 7 1.2 Przegląd Najważniejszych Tautologii..................

Bardziej szczegółowo

14. Grupy, pierścienie i ciała.

14. Grupy, pierścienie i ciała. 4. Grup, pierścienie i ciała. Definicja : Zbiór A nazwam grupą jeśli jest wposaŝon w działanie wewnętrzne łączne, jeśli to działanie posiada element neutraln i kaŝd element zbioru A posiada element odwrotn.

Bardziej szczegółowo

Rozdział 1. Zadania. 1.1 Liczby pierwsze. 1. Wykorzystując sito Eratostenesa wyznaczyć wszystkie liczby pierwsze mniejsze niż 200.

Rozdział 1. Zadania. 1.1 Liczby pierwsze. 1. Wykorzystując sito Eratostenesa wyznaczyć wszystkie liczby pierwsze mniejsze niż 200. Rozdział 1 Zadania 1.1 Liczby pierwsze 1. Wykorzystując sito Eratostenesa wyznaczyć wszystkie liczby pierwsze mniejsze niż 200. 2. Wyliczyć największy wspólny dzielnik d liczb n i m oraz znaleźć liczby

Bardziej szczegółowo

Grupa klas odwzorowań powierzchni

Grupa klas odwzorowań powierzchni Grupa klas odwzorowań powierzchni Błażej Szepietowski Uniwersytet Gdański Horyzonty matematyki 2014 Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki 2014 1 / 36 Grupa klas odwzorowań

Bardziej szczegółowo

Wielomiany. dr Tadeusz Werbiński. Teoria

Wielomiany. dr Tadeusz Werbiński. Teoria Wielomiany dr Tadeusz Werbiński Teoria Na początku przypomnimy kilka szkolnych definicji i twierdzeń dotyczących wielomianów. Autorzy podręczników szkolnych podają różne definicje wielomianu - dla jednych

Bardziej szczegółowo

X Olimpiada Matematyczna Gimnazjalistów

X Olimpiada Matematyczna Gimnazjalistów www.omg.edu.pl X Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część korespondencyjna (10 listopada 01 r. 15 grudnia 01 r.) Szkice rozwiązań zadań konkursowych 1. nia rozmieniła banknot

Bardziej szczegółowo

Schemat rekursji. 1 Schemat rekursji dla funkcji jednej zmiennej

Schemat rekursji. 1 Schemat rekursji dla funkcji jednej zmiennej Schemat rekursji 1 Schemat rekursji dla funkcji jednej zmiennej Dla dowolnej liczby naturalnej a i dowolnej funkcji h: N 2 N istnieje dokładnie jedna funkcja f: N N spełniająca następujące warunki: f(0)

Bardziej szczegółowo

Ciągi. Pojęcie granicy ciągu.

Ciągi. Pojęcie granicy ciągu. Rozdział 2 Ciągi. Pojęcie granicy ciągu. Definicja 2.. Ciąg jest to funkcja określona na zbiorze liczb naturalnych. Będziemy rozważać ciągi o wyrazach rzeczywistych, czyli zgodnie z powyższą definicją

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ OD RÓWNAŃ DO ODWZOROWAŃ LINIOWYCH

ALGEBRA Z GEOMETRIĄ OD RÓWNAŃ DO ODWZOROWAŃ LINIOWYCH ALGEBRA Z GEOMETRIĄ 1/10 OD RÓWNAŃ DO ODWZOROWAŃ LINIOWYCH Piotr M Hajac Uniwersytet Warszawski Wykład 8, 27112013 Typeset by Jakub Szczepanik Motywacja 2/10 Przechodzimy od rozwiązywania jednego równania

Bardziej szczegółowo

Lista zadań. Babilońska wiedza matematyczna

Lista zadań. Babilońska wiedza matematyczna Lista zadań Babilońska wiedza matematyczna Zad. 1 Babilończycy korzystali z tablicy dodawania - utwórz w arkuszu kalkulacyjnym EXCEL tablicę dodawania liczb w układzie sześćdziesiątkowym, dla liczb ze

Bardziej szczegółowo

Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.

Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów. Rachunek prawdopodobieństwa MAP1181 Wydział PPT, MS, rok akad. 213/14, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.

Bardziej szczegółowo

Dzień pierwszy- grupa młodsza

Dzień pierwszy- grupa młodsza Dzień pierwszy- grupa młodsza 1.TomekmaTlat.Tylesamolatliczysobiewsumietrójkajegodzieci.NlattemuwiekTomkarówny był dwukrotności sumy lat swoich dzieci. Wyznacz T/N. 2.Niechk=2012 2 +2 2012.Ilewynosicyfrajednościliczbyk

Bardziej szczegółowo

13 Zastosowania Lematu Szemerédiego

13 Zastosowania Lematu Szemerédiego 13 Zastosowania Lematu Szemerédiego 13.1 Twierdzenie Erdősa-Stone a (Rozdzia ly 7.1 i 7.5 podre cznika) Jednym z g lównych zagadnień ekstremalnej teorii grafów jest wyznaczenie parametru ex(n, H) = max{

Bardziej szczegółowo

ciałem F i oznaczamy [L : F ].

ciałem F i oznaczamy [L : F ]. 11. Wykład 11: Baza i stopień rozszerzenia. Elementy algebraiczne i przestępne. Rozszerzenia algebraiczne i skończone. 11.1. Baza i stopień rozszerzenia. Uwaga 11.1. Niech F będzie ciałem, L rozszerzeniem

Bardziej szczegółowo

a 1, a 2, a 3,..., a n,...

a 1, a 2, a 3,..., a n,... III. Ciągi liczbowe. 1. Definicja ciągu liczbowego. Definicja 1.1. Ciągiem liczbowym nazywamy funkcję a : N R odwzorowującą zbiór liczb naturalnych N w zbiór liczb rzeczywistych R i oznaczamy przez {a

Bardziej szczegółowo

LICZBY PIERWSZE. 14 marzec 2007. Jeśli matematyka jest królową nauk, to królową matematyki jest teoria liczb. C.F.

LICZBY PIERWSZE. 14 marzec 2007. Jeśli matematyka jest królową nauk, to królową matematyki jest teoria liczb. C.F. Jeśli matematyka jest królową nauk, to królową matematyki jest teoria liczb. C.F. Gauss (1777-1855) 14 marzec 2007 Zasadnicze twierdzenie teorii liczb Zasadnicze twierdzenie teorii liczb Ile jest liczb

Bardziej szczegółowo

Zadania na dowodzenie Opracowała: Ewa Ślubowska

Zadania na dowodzenie Opracowała: Ewa Ślubowska Egzamin Gimnazjalny Zadania na dowodzenie Opracowała: Ewa Ślubowska W nauczaniu matematyki ważne jest rozwijanie różnych aktywności umysłu. Ma temu służyć min. rozwiązywanie jednego zadania czy dowodzenie

Bardziej szczegółowo

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012 1. Liczby zespolone Jacek Jędrzejewski 2011/2012 Spis treści 1 Liczby zespolone 2 1.1 Definicja liczby zespolonej.................... 2 1.2 Postać kanoniczna liczby zespolonej............... 1. Postać

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl. Przykłady zadań egzaminacyjnych (do liczenia lub dowodzenia)

Matematyka dyskretna. Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl. Przykłady zadań egzaminacyjnych (do liczenia lub dowodzenia) Matematyka dyskretna Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl Przykłady zadań egzaminacyjnych (do liczenia lub dowodzenia) 1. Ile układów kart w pokerze to Dwie pary? Dwie pary to układ 5 kart

Bardziej szczegółowo

Nierówności. dla początkujących olimpijczyków. Aleksander Kubica Tomasz Szymczyk

Nierówności. dla początkujących olimpijczyków. Aleksander Kubica Tomasz Szymczyk STOWARZYSZENIE NA RZECZ EDUKACJI MATEMATYCZNEJ KOMITET GŁÓWNY OLIMPIADY MATEMATYCZNEJ GIMNAZJALISTÓW Nierówności dla początkujących olimpijczyków Aleksander Kubica Tomasz Szymczyk wwwomgedupl Warszawa

Bardziej szczegółowo

Probabilistyczne podstawy statystyki matematycznej. Dr inż. Małgorzata Michalcewicz-Kaniowska

Probabilistyczne podstawy statystyki matematycznej. Dr inż. Małgorzata Michalcewicz-Kaniowska Probabilistyczne podstawy statystyki matematycznej Dr inż. Małgorzata Michalcewicz-Kaniowska 1 Zdarzenia losowe, algebra zdarzeń Do podstawowych pojęć w rachunku prawdopodobieństwa zaliczamy: doświadczenie

Bardziej szczegółowo

Lista 1. Procesy o przyrostach niezależnych.

Lista 1. Procesy o przyrostach niezależnych. Lista. Procesy o przyrostach niezależnych.. Niech N t bedzie procesem Poissona o intensywnoci λ = 2. Obliczyć a) P (N 2 < 3, b) P (N =, N 3 = 6), c) P (N 2 = N 5 = 2), d) P (N =, N 2 = 3, N 4 < 5), e)

Bardziej szczegółowo

Podzielność liczb; iloczyn i suma dzielników

Podzielność liczb; iloczyn i suma dzielników Podzielność liczb; iloczyn i suma dzielników Liczba dzielników Postać (rozkład) kanoniczna każdej liczby N = p α1 1 pα2 2... pαr 1 pαr r. Każdy dzielnik d naszej liczby ma swojego partnera d 1 : N = d

Bardziej szczegółowo

Topologia i geometria różniczkowa

Topologia i geometria różniczkowa Topologia i geometria różniczkowa Andrzej Nowicki Uniwersytet Mikołaja Kopernika, Wydział Matematyki i Informatyki, ul. Chopina 12 18, 87 100 Toruń (e-mail: anow@mat.uni.torun.pl) Marzec 1995 Spis treści

Bardziej szczegółowo

A i A j lub A j A i. Operator γ : 2 X 2 X jest ciągły gdy

A i A j lub A j A i. Operator γ : 2 X 2 X jest ciągły gdy 3. Wyład 7: Inducja i reursja struturalna. Termy i podstawianie termów. Dla uninięcia nieporozumień notacyjnych wprowadzimy rozróżnienie między funcjami i operatorami. Operatorem γ w zbiorze X jest funcja

Bardziej szczegółowo

Notatki przygotowawcze dotyczące inwersji na warsztaty O geometrii nieeuklidesowej hiperbolicznej Wrocław, grudzień 2013

Notatki przygotowawcze dotyczące inwersji na warsztaty O geometrii nieeuklidesowej hiperbolicznej Wrocław, grudzień 2013 Notatki przygotowawcze dotyczące inwersji na warsztaty O geometrii nieeuklidesowej hiperbolicznej Wrocław, grudzień 013 3.4.1 Inwersja względem okręgu. Inwersja względem okręgu jest przekształceniem płaszczyzny

Bardziej szczegółowo

Szeregi liczbowe. Analiza Matematyczna. Alexander Denisjuk

Szeregi liczbowe. Analiza Matematyczna. Alexander Denisjuk Analiza Matematyczna Szeregi liczbowe Alexander Denisjuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych zamiejscowy ośrodek dydaktyczny w Gdańsku ul. Brzegi 55 80-045 Gdańsk

Bardziej szczegółowo

4 Kilka klas procesów

4 Kilka klas procesów Marek Beśka, Całka Stochastyczna, wykład 4 48 4 Kilka klas procesów 4.1 Procesy rosnące i przestrzenie V,, loc Jak poprzednio niech (Ω, F, F, P ) będzie zupełną bazą stochastyczną. Definicja 4.1 Proces

Bardziej szczegółowo

Elżbieta Świda Elżbieta Kurczab Marcin Kurczab. Zadania otwarte krótkiej odpowiedzi na dowodzenie na obowiązkowej maturze z matematyki

Elżbieta Świda Elżbieta Kurczab Marcin Kurczab. Zadania otwarte krótkiej odpowiedzi na dowodzenie na obowiązkowej maturze z matematyki Elżbieta Świda Elżbieta Kurczab Marcin Kurczab Zadania otwarte krótkiej odpowiedzi na dowodzenie na obowiązkowej maturze z matematyki Zadanie Trójkąt ABC jest trójkątem prostokątnym. Z punktu M, należącego

Bardziej szczegółowo

Matura próbna 2014 z matematyki-poziom podstawowy

Matura próbna 2014 z matematyki-poziom podstawowy Matura próbna 2014 z matematyki-poziom podstawowy Klucz odpowiedzi do zadań zamkniętych zad 1 2 3 4 5 6 7 8 9 10 11 12 odp A C C C A A B B C B D A 13 14 15 16 17 18 19 20 21 22 23 24 25 C C A B A D C B

Bardziej szczegółowo

Obóz Naukowy Olimpiady Matematycznej

Obóz Naukowy Olimpiady Matematycznej Obóz Naukowy Olimpiady Matematycznej Zwardoń, 29 maja - 12 czerwca 2008 (wydanie pierwsze) Obóz Naukowy Olimpiady Matematycznej Zwardoń, 29 maja - 12 czerwca 2008 Dom wczasowy Zgoda, Zwardoń 45A 34-373

Bardziej szczegółowo

Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe.

Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Rachunek prawdopodobieństwa MAP3040 WPPT FT, rok akad. 2010/11, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Warunkowa wartość oczekiwana.

Bardziej szczegółowo

Podstawy logiki i teorii mnogości w zadaniach

Podstawy logiki i teorii mnogości w zadaniach Uniwersytet Wrocławski Wydział Matematyki i Informatyki Piotr Koczenasz Podstawy logiki i teorii mnogości w zadaniach Praca magisterska napisana pod kierunkiem prof. dr. hab. Leszka Pacholskiego Wrocław,

Bardziej szczegółowo

Algorytmy Równoległe i Rozproszone Część III - Układy kombinacyjne i P-zupełność

Algorytmy Równoległe i Rozproszone Część III - Układy kombinacyjne i P-zupełność Algorytmy Równoległe i Rozproszone Część III - Układy kombinacyjne i P-zupełność Łukasz Kuszner pokój 209, WETI http://www.kaims.pl/ kuszner/ kuszner@eti.pg.gda.pl Oficjalna strona wykładu http://www.kaims.pl/

Bardziej szczegółowo

Twierdzenie Halla o małżeństwach

Twierdzenie Halla o małżeństwach Twierdzenie Halla o małżeństwach Tomasz Tkocz Streszczenie. Notatki te, przygotowane do referatu wygłoszonego na kółku w II LO w Rybniku, pokazują jak można rozwiązywać życiowe problemy oraz te bardziej

Bardziej szczegółowo

Zadania z podstaw matematyki dla 1 roku informatyki 1

Zadania z podstaw matematyki dla 1 roku informatyki 1 29 września 2008, godzina 17: 13 strona 1 Zadania z podstaw matematyki dla 1 roku informatyki 1 Zadania na rozgrzewk e 1. Zaznacz na rysunku zbiory: (a) { x, y : R 2 (x 2 + y 2 > 1) [(x 2 + y 2 2) ( (x

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka matematyczna. Leszek Adamczyk Wykłady dla kierunku Fizyka Medyczna w semestrze letnim 2014/2015

Rachunek prawdopodobieństwa i statystyka matematyczna. Leszek Adamczyk Wykłady dla kierunku Fizyka Medyczna w semestrze letnim 2014/2015 Rachunek prawdopodobieństwa i statystyka matematyczna Leszek Adamczyk Wykłady dla kierunku Fizyka Medyczna w semestrze letnim 2014/2015 1 1 Wstęp Rachunek prawdopodobieństwa i statystyka to: działy matematyki

Bardziej szczegółowo

Analiza matematyczna - 14. Analiza zmiennych dyskretnych: ciągi i szeregi liczbowe

Analiza matematyczna - 14. Analiza zmiennych dyskretnych: ciągi i szeregi liczbowe Analiza matematyczna - 4. Analiza zmiennych dyskretnych: ciągi i szeregi liczbowe Wstęp: zmienne ciągłe i zmienne dyskretne Podczas dotychczasowych wykładów rozważaliśmy przede wszystkim zależności funkcyjne

Bardziej szczegółowo

LICZBY PIERWSZE. Jan Ciurej Radosław Żak

LICZBY PIERWSZE. Jan Ciurej Radosław Żak LICZBY PIERWSZE Jan Ciurej Radosław Żak klasa IV a Katolicka Szkoła Podstawowa im. Świętej Rodziny z Nazaretu w Krakowie ul. Pędzichów 13, 31-152 Kraków opiekun - mgr Urszula Zacharska konsultacja informatyczna

Bardziej szczegółowo

EGZAMIN DYPLOMOWY, część II, 23.09.2008 Biomatematyka

EGZAMIN DYPLOMOWY, część II, 23.09.2008 Biomatematyka Biomatematyka W 200-elementowej próbie losowej z diploidalnej populacji wystąpiło 89 osobników genotypu AA, 57 osobników genotypu Aa oraz 54 osobników genotypu aa. Na podstawie tych danych (a) dokonaj

Bardziej szczegółowo

Wykład 1. Przestrzeń Hilberta

Wykład 1. Przestrzeń Hilberta Wykład 1. Przestrzeń Hilberta Sygnały. Funkcje (w języku inżynierów - sygnały) które będziemy rozważali na tym wykładzie będą kilku typów Sygnały ciągłe (analogowe). ) L 2 (R) to funkcje na prostej spełniające

Bardziej szczegółowo

Metodydowodzenia twierdzeń

Metodydowodzenia twierdzeń 1 Metodydowodzenia twierdzeń Przez zdanie rozumiemy dowolne stwierdzenie, które jest albo prawdziwe, albo faªszywe (nie mo»e by ono jednocze±nie prawdziwe i faªszywe). Tradycyjnie b dziemy u»ywali maªych

Bardziej szczegółowo

Rozdział 9. Funkcja pierwotna. 9.1 Funkcja pierwotna

Rozdział 9. Funkcja pierwotna. 9.1 Funkcja pierwotna Rozdział 9 Funkcja pierwotna 9. Funkcja pierwotna Definicja funkcji pierwotnej. Niech f będzie funkcją określoną na przedziale P. Mówimy, że funkcja F : P R jest funkcją pierwotną funkcji f w przedziale

Bardziej szczegółowo

A,B M! v V ; A + v = B, (1.3) AB = v. (1.4)

A,B M! v V ; A + v = B, (1.3) AB = v. (1.4) Rozdział 1 Prosta i płaszczyzna 1.1 Przestrzeń afiniczna Przestrzeń afiniczna to matematyczny model przestrzeni jednorodnej, bez wyróżnionego punktu. Można w niej przesuwać punkty równolegle do zadanego

Bardziej szczegółowo

Matematyka Dyskretna (Ćwiczenia)

Matematyka Dyskretna (Ćwiczenia) Matematyka Dyskretna (Ćwiczenia) Jarosław Grytczuk 1 O trudnej sztuce liczenia 1.1 Zasada Mnożenia 1. Pewien pan ma 5 garniturów, 7 krawatów i 10 koszul. Ile różnych zestawów może skompletować? 2. W zawodach

Bardziej szczegółowo

Test, dzień pierwszy, grupa młodsza

Test, dzień pierwszy, grupa młodsza Test, dzień pierwszy, grupa młodsza 1. Na połowinkach 60 procent wszystkich uczniów to dziewczyny. Impreza jest kiepska, bo tylko 40 procent wszystkich uczniów chce się tańczyć. Sytuacja poprawia sie odrobinę,

Bardziej szczegółowo

Automaty Büchi ego i równoważne modele obliczeń

Automaty Büchi ego i równoważne modele obliczeń Politechnika Krakowska im. Tadeusza Kościuszki Wydział Fizyki, Matematyki i Informatyki Kierunek Matematyka Paulina Barbara Rozwód Automaty Büchi ego i równoważne modele obliczeń praca magisterska studia

Bardziej szczegółowo

LOGIKA MATEMATYCZNA, ZBIORY I LICZBY RZECZYWISTE

LOGIKA MATEMATYCZNA, ZBIORY I LICZBY RZECZYWISTE LOGIKA MATEMATYCZNA, ZBIORY I LICZBY RZECZYWISTE ZDANIA W LOGICE Zdaniem nazywamy w logice wypowiedź twierdzącą, której można przypisać jedną z dwóch ocen: prawdę lub fałsz. Zdanie zaczynające się np.

Bardziej szczegółowo

Konkurs matematyczny im. Samuela Chróścikowskiego

Konkurs matematyczny im. Samuela Chróścikowskiego Konkurs matematyczny im. Samuela Chróścikowskiego Państwowa Wyższa Szkoła Zawodowa w Chełmie 13 marzec 2008 Imię i nazwisko:... Szkoła:... Wyrażam zgodę na przetwarzanie moich danych osobowych w zakresie

Bardziej szczegółowo

Półgrupa prawie jak grupa?

Półgrupa prawie jak grupa? Półgrupa prawie jak grupa? Arkadiusz Męcel Seminarium magisterskie: Klasyczne struktury algebraiczne 15 października 2009r. Celem tego referatu jest zarysowanie podstaw teorii półgrup. Sama nazwa półgrupy

Bardziej szczegółowo

im = (P )={b 2 R : 9a 2 P [b = (a)]} nazywamy obrazem homomorfizmu.

im = (P )={b 2 R : 9a 2 P [b = (a)]} nazywamy obrazem homomorfizmu. 61 7. Wyk ad 7: Homomorfizmy pierúcieni, idea y pierúcieni. Idea y generowane przez zbiory. PierúcieÒ ilorazowy, twierdzenie o homomorfizmie. Idea y pierwsze i maksymalne. 7.1. Homomorfizmy pierúcieni,

Bardziej szczegółowo

Podstawy działań na wektorach - dodawanie

Podstawy działań na wektorach - dodawanie Podstawy działań na wektorach - dodawanie Metody dodawania wektorów można podzielić na graficzne i analityczne (rachunkowe). 1. Graficzne (rysunkowe) dodawanie dwóch wektorów. Założenia: dane są dwa wektory

Bardziej szczegółowo

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) PRAWDOPODOBIEŃSTWO ZAJŚCIA ZDARZENIA A POD WARUNKIEM, ŻE ZASZŁO ZDARZENIE B

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) PRAWDOPODOBIEŃSTWO ZAJŚCIA ZDARZENIA A POD WARUNKIEM, ŻE ZASZŁO ZDARZENIE B KLASYCZ NA DEFINICJA PRAW DOPOD OBIEŃSTWA ( ) PRAWDOPOD OBIEŃSTW O W A RUNKOWE PRAWDOPODOBIEŃSTWO ZAJŚCIA ZDARZENIA A POD WARUNKIEM, ŻE ZASZŁO ZDARZENIE B ( ) WIĘC CO OZNACZA, ŻE ZDARZENIE B NIE MA WPŁYWU

Bardziej szczegółowo

do instrukcja while (wyrażenie);

do instrukcja while (wyrażenie); Instrukcje pętli -ćwiczenia Instrukcja while Pętla while (póki) powoduje powtarzanie zawartej w niej sekwencji instrukcji tak długo, jak długo zaczynające pętlę wyrażenie pozostaje prawdziwe. while ( wyrażenie

Bardziej szczegółowo

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych.

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Denicja Mówimy,»e funkcja

Bardziej szczegółowo

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej 7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej Definicja 1 n-elementowa losowa próba prosta nazywamy ciag n niezależnych zmiennych losowych o jednakowych rozkładach

Bardziej szczegółowo

MIARY NIERÓWNOŚCI. 6. Miary oparte na kwantylach rozkładu dochodu

MIARY NIERÓWNOŚCI. 6. Miary oparte na kwantylach rozkładu dochodu MIARY NIERÓWNOŚCI Charakterystyka miar nierówności 2 Własności miar nierówności 3 Miary nierówności oparte o funkcję Lorenza 3 Współczynnik Giniego 32 Współczynnik Schutza 4 Miary nierówności wykorzystujące

Bardziej szczegółowo

1. DZIAŁANIA NA UŁAMKACH, POTĘGACH I PIERWIASTKACH Zad.1 Oblicz: d) + e) (0,15+(-1,15)) 3. g) 15 (45,2 : 12 30 : 6 )- 1 7 36.

1. DZIAŁANIA NA UŁAMKACH, POTĘGACH I PIERWIASTKACH Zad.1 Oblicz: d) + e) (0,15+(-1,15)) 3. g) 15 (45,2 : 12 30 : 6 )- 1 7 36. Zestaw zadań na ocenę dopuszczającą z matematyki po klasie - ZSP w Żelechowie Opracowała A. Lasocka. DZIAŁANIA NA UŁAMKACH, POTĘGACH I PIERWIASTKACH Zad. Oblicz: + - + - + e + 0 Zad. Oblicz: 9 + 0 : 9

Bardziej szczegółowo

X Dąbrowski Konkurs Matematyczny Dla uczniów klas pierwszych szkół ponad gimnazjalnych

X Dąbrowski Konkurs Matematyczny Dla uczniów klas pierwszych szkół ponad gimnazjalnych Kraj bez matematyki nie wytrzyma współzawodnictwa z tymi krajami, które matematykę uprawiają Hugo Steinhause X Dąbrowski Konkurs Matematyczny Dla uczniów klas pierwszych szkół ponad gimnazjalnych Cele

Bardziej szczegółowo

Test kwalifikacyjny na I Warsztaty Matematyczne

Test kwalifikacyjny na I Warsztaty Matematyczne Test kwalifikacyjny na I Warsztaty Matematyczne Na pytania odpowiada się tak lub nie poprzez wpisanie odpowiednio T bądź N w pole obok pytania. W danym trzypytaniowym zestawie możliwa jest dowolna kombinacja

Bardziej szczegółowo

TEKSTY ZADAŃ. Zawody stopnia pierwszego

TEKSTY ZADAŃ. Zawody stopnia pierwszego TEKSTY ZŃ Zawody stopnia pierwszego. owieść, że wśród liczb postaci 50 n +(50n+) 50, gdzie n jest liczbą naturalną, występuje nieskończenie wiele liczb złożonych.. Wykazać, że dla dowolnych liczb rzeczywistych

Bardziej szczegółowo

Parametry systemów klucza publicznego

Parametry systemów klucza publicznego Parametry systemów klucza publicznego Andrzej Chmielowiec Instytut Podstawowych Problemów Techniki Polskiej Akademii Nauk 24 marca 2010 Algorytmy klucza publicznego Zastosowania algorytmów klucza publicznego

Bardziej szczegółowo

x 1 2 3 t 1 (x) 2 3 1 o 1 : x 1 2 3 s 3 (x) 2 1 3. Tym samym S(3) = {id 3,o 1,o 2,s 1,s 2,s 3 }. W zbiorze S(n) definiujemy działanie wzorem

x 1 2 3 t 1 (x) 2 3 1 o 1 : x 1 2 3 s 3 (x) 2 1 3. Tym samym S(3) = {id 3,o 1,o 2,s 1,s 2,s 3 }. W zbiorze S(n) definiujemy działanie wzorem 9.1. Izomorfizmy algebr.. Wykład Przykłady: 13) Działaia w grupach często wygodie jest zapisywać w tabelkach Cayleya. Na przykład tabelka działań w grupie Z 5, 5) wygląda astępująco: 5 1 3 1 1 3 1 3 3

Bardziej szczegółowo

Funkcja jednej zmiennej - przykładowe rozwiązania 1. Badając przebieg zmienności funkcji postępujemy według poniższego schematu:

Funkcja jednej zmiennej - przykładowe rozwiązania 1. Badając przebieg zmienności funkcji postępujemy według poniższego schematu: Funkcja jednej zmiennej - przykładowe rozwiązania Zadanie 4 c) Badając przebieg zmienności funkcji postępujemy według poniższego schematu:. Analiza funkcji: (a) Wyznaczenie dziedziny funkcji (b) Obliczenie

Bardziej szczegółowo

Cechy X, Y są dowolnego typu: Test Chi Kwadrat niezależności. Łączny rozkład cech X, Y jest normalny: Test współczynnika korelacji Pearsona

Cechy X, Y są dowolnego typu: Test Chi Kwadrat niezależności. Łączny rozkład cech X, Y jest normalny: Test współczynnika korelacji Pearsona Badanie zależności między cechami Obserwujemy dwie cechy: X oraz Y Obiekt (X, Y ) H 0 : Cechy X oraz Y są niezależne Próba: (X 1, Y 1 ),..., (X n, Y n ) Cechy X, Y są dowolnego typu: Test Chi Kwadrat niezależności

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE STOPNIE KLASA I GIMNAZJUM

WYMAGANIA NA POSZCZEGÓLNE STOPNIE KLASA I GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE STOPNIE KLASA I GIMNAZJUM OCENA DOPUSZCZAJĄCA pojęcie liczby naturalnej, całkowitej, wymiernej, pojęcia: rozwinięcie dziesiętne skończone, nieskończone, okres, algorytm zaokrąglania

Bardziej szczegółowo

Ciągi. Kurs matematyki w Oratorium (http://www.salezjanie.rumia.pl/math)

Ciągi. Kurs matematyki w Oratorium (http://www.salezjanie.rumia.pl/math) Ciągi Kurs matematyki w Oratorium (http://www.salezjanie.rumia.pl/math) Spis treści 1 Ciągi liczbowe 1 1.1 Podstawowe własności ciągów................... 2 1.2 Granica ciągu............................

Bardziej szczegółowo

Lista 1 liczby rzeczywiste.

Lista 1 liczby rzeczywiste. Lista 1 liczby rzeczywiste Zad 1 Przedstaw liczbę m w postaci W każdym ze składników tej sumy musimy wyłączyd czynnik przed znak pierwiastka Można to zrobid rozkładając liczby podpierwiastkowe na czynniki

Bardziej szczegółowo

INDUKOWANE REGUŁY DECYZYJNE ALORYTM APRIORI JAROSŁAW FIBICH

INDUKOWANE REGUŁY DECYZYJNE ALORYTM APRIORI JAROSŁAW FIBICH INDUKOWANE REGUŁY DECYZYJNE ALORYTM APRIORI JAROSŁAW FIBICH 1. Czym jest eksploracja danych Eksploracja danych definiowana jest jako zbiór technik odkrywania nietrywialnych zależności i schematów w dużych

Bardziej szczegółowo

Analiza wariancji. dr Janusz Górczyński

Analiza wariancji. dr Janusz Górczyński Analiza wariancji dr Janusz Górczyński Wprowadzenie Powiedzmy, że badamy pewną populację π, w której cecha Y ma rozkład N o średniej m i odchyleniu standardowym σ. Powiedzmy dalej, że istnieje pewien czynnik

Bardziej szczegółowo

1 Równania różniczkowe zwyczajne liniowe pierwszego rzędu

1 Równania różniczkowe zwyczajne liniowe pierwszego rzędu Równania różniczkowe zwyczajne liniowe I-go rzędu 1 1 1 Równania różniczkowe zwyczajne liniowe pierwszego rzędu Równaniem różniczkowym zwyczajnym liniowym pierwszego rzędu nazywamy równanie postaci (RL1)

Bardziej szczegółowo

Zadania, które zaproponowałem na różne konkursy Olimpiada Matematyczna. bc(b 3 + c 3 ) + c4 + a 4. ca(c 3 + a 3 ) 1. c + ca + cab 1 ( 1

Zadania, które zaproponowałem na różne konkursy Olimpiada Matematyczna. bc(b 3 + c 3 ) + c4 + a 4. ca(c 3 + a 3 ) 1. c + ca + cab 1 ( 1 Zadania, które zaproponowałem na różne konkursy Olimpiada Matematyczna. (57-II-3) Liczby dodatnie a, b, c spełniają warunek ab + bc + ca = abc. Dowieść, że a 4 + b 4 ab(a 3 + b 3 ) + b4 + c 4 bc(b 3 +

Bardziej szczegółowo

Komentarz do arkusza maturalnego z matematyki, poziom podstawowy maj 2014r.

Komentarz do arkusza maturalnego z matematyki, poziom podstawowy maj 2014r. Komentarz do arkusza maturalnego z matematyki, poziom podstawowy maj 2014r. Podczas tegorocznego kursu do każdego działu matematyki przygotowałem średnio około 60 zadań zamkniętych i około 40 zadań otwartych,

Bardziej szczegółowo

Grupy i cia la, liczby zespolone

Grupy i cia la, liczby zespolone Rozdzia l 1 Grupy i cia la, liczby zespolone Dla ustalenia uwagi, b edziemy używać nast epuj acych oznaczeń: N = { 1, 2, 3,... } - liczby naturalne, Z = { 0, ±1, ±2,... } - liczby ca lkowite, W = { m n

Bardziej szczegółowo