Grupa klas odwzorowań powierzchni

Wielkość: px
Rozpocząć pokaz od strony:

Download "Grupa klas odwzorowań powierzchni"

Transkrypt

1 Grupa klas odwzorowań powierzchni Błażej Szepietowski Uniwersytet Gdański Horyzonty matematyki 2014 Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki / 36

2 Grupa klas odwzorowań (mapping class group) to pewna grupa stowarzyszona z powierzchnią (lub ogólniej, z dowolną przestrzenią topologiczną). Odgrywa ona ważną rolę w następujących działach matematyki: topologia teoria grup geometria analiza zespolona Badanie grup klas odwzorowań zostało zapoczątkowane w latach 20-tych XX w. przez Maxa Dehna i Jakoba Nielsena. Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki / 36

3 Rozmaitości topologiczne Definicja n-wymiarową rozmaitością nazywamy przestrzeń topologiczną Hausdorffa, której każdy punkt posiada otwarte otoczenie homeomorficzne z otwartą kulą jednostkową w R n : U n = {x R n : x < 1}. Przykłady: 1 dowolny otwarty podzbiór R n 2 S n = {x R n+1 : x = 1} 3 Jeżeli M jest m-wymiarową rozmaitością, a N jest n-wymiarową rozmaitością, to iloczyn kartezjański M N jest (m + n)-wymiarową rozmaitością. Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki / 36

4 Powierzchnie Definicja Powierzchnią nazywamy 2-wymiarową rozmaitość. Będą nas interesować wyłącznie powierzchnie spójne i zwarte. Przykłady: 1 sfera S 2 = {x R 3 : x = 1} 2 torus T 2 Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki / 36

5 4 różne definicje torusa 1 iloczyn kartezjański dwóch okręgów 2 powierzchnia obrotowa w R 3 powstająca przez obrót okręgu (x 2) 2 + y 2 = 1 na płaszczyźnie xy wokół osi y 3 przestrzeń powstająca przez sklejenie naprzeciwległych boków kwadratu. 4 przestrzeń orbit R 2 /Z 2 Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki / 36

6 Torus jako przestrzeń orbit Grupa Z 2 działa na płaszczyźnie R 2 za pomocą przesunięć: dla (x, y) R 2 i (a, b) Z 2. (x, y) + (a, b) = (x + a, y + b) Przestrzenią orbit tego działania nazywamy przestrzeń ilorazową R 2 /Z 2, powstającą przez utożsamienie wszystkich punktów płaszczyzny różniących się o przesunięcie o wektor z Z 2. (x, y) (x, y ) (x x, y y) Z 2 Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki / 36

7 Torus jako przestrzeń orbit Grupa Z 2 działa na płaszczyźnie R 2 za pomocą przesunięć: dla (x, y) R 2 i (a, b) Z 2. (x, y) + (a, b) = (x + a, y + b) Przestrzenią orbit tego działania nazywamy przestrzeń ilorazową R 2 /Z 2, powstającą przez utożsamienie wszystkich punktów płaszczyzny różniących się o przesunięcie o wektor z Z 2. (x, y) (x, y ) (x x, y y) Z 2 Uwaga. Powyższe 4 definicje torusa są topologicznie równoważne, tzn. definiują homeomorficzne przestrzenie. Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki / 36

8 (0, 1) (1, 1) (0, 0) (1, 0) Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki / 36

9 Płaszczyzna rzutowa Płaszczyzna rzutowa RP 2 jest to powierzchnia powstająca przez utożsamienie antypodycznych punktów na sferze S 2. RP 2 = S 2 / gdzie x x Rozważmy pierścień otaczający równik sfery: {(x, y, z) S 2 : z 1/4} Po utożsamieniu antypodycznych punktów powstaje z niego wstęga Möbiusa. Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki / 36

10 Płaszczyzna rzutowa Płaszczyzna rzutowa RP 2 jest to powierzchnia powstająca przez utożsamienie antypodycznych punktów na sferze S 2. RP 2 = S 2 / gdzie x x Rozważmy pierścień otaczający równik sfery: {(x, y, z) S 2 : z 1/4} Po utożsamieniu antypodycznych punktów powstaje z niego wstęga Möbiusa. Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki / 36

11 Orientacja Definicja Powierzchnię nazywamy nieorientowalną jeżeli zawiera wstęgę Möbiusa, a orientowalną w przeciwnym wypadku. Na powierzchni orientowalnej możemy ustalić, dla każdego podzbioru U homeomorficznego z otwartym dyskiem na płaszczyźnie, którą z dwóch możliwych orientacji okręgu zawartego w U uznajemy za dodatnią, w taki sposób, że jeżeli okrąg (wraz z otoczeniem U) będzie się poruszał w sposób ciągły po powierzchni, to będzie on przez cały czas zorientowany dodatnio. Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki / 36

12 Suma spójna Mając dane dwie powierzchnie A i B, ich sumą spójną nazywamy powierzchnię A#B powstającą w następujący sposób: Wycinamy z obu powierzchni mały dysk, a następnie sklejamy powierzchnie ze sobą wzdłuż brzegów wyciętych dysków. Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki / 36

13 Własności sumy spójnej Z dokładnością do homeomorfizmu, A#B nie zależy od wyboru dysków użytych w konstrukcji, ani od wyboru sklejenia. Suma spójna ma następujące własności, gdzie L = P należy rozumieć jako L jest homeomorficzne z P : A#B = B#A (A#B)#C = A#(B#C) A#S 2 = A Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki / 36

14 Klasyfikacja zwartych powierzchni Twierdzenie Dowolna spójna i zwarta powierzchnia jest homeomorficzna z jedną z następujących: 1 sfera S 2 2 suma spójna g torusów dla pewnego g 1 3 suma spójna g płaszczyzn rzutowych dla pewnego g 1 Powierzchnie z punktów 1 i 2 są orientowalne, a powierzchnia z punktu 3 jest nieorientowalna. Liczbę naturalną g występującą w punktach 2 i 3 nazywamy rodzajem powierzchni (przyjmujemy, że sfera ma rodzaj 0). Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki / 36

15 Orientowalne, zwarte powierzchnie Będziemy oznaczać przez S g dowolną powierzchnię homeomorficzną z sumą spójną g torusów. Na mocy poprzedniego twierdzenia, dowolna spójna, zwarta i orientowalna powierzchnia jest homeomorficzna z S g dla pewnego g 0 (przyjmujemy S 0 = S 2 ). Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki / 36

16 Homeomorfizmy zachowujące orientację Definicja Ustalmy dowolną orientację powierzchni S g. Mówimy, że homeomorfizm f : S g S g zachowuje orientację, jeżeli dla każdego podzbioru U S g homeomorficznego z otwartym dyskiem na płaszczyźnie i okręgu c U zorientowanego dodatnio, f (c) również jest zorientowany dodatnio. Wszystkie homeomorfizmy f : S g S g zachowujące orientację tworzą grupę z działaniem składania. Grupę tą oznaczamy Homeo + (S g ). Elementem neutralnym w Homeo + (S g ) jest identyczność id(x) = x. Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki / 36

17 Homotopia Definicja Dwa ciągłe odwzorowania f 0, f 1 : X Y są homotopijne, jeżeli istnieje takie ciągłe odwzorowanie H : [0, 1] X Y, że H(0, x) = f 0 (x), H(1, x) = f 1 (x) dla każdego x X. Powyższe odwzorowanie H nazywamy homotopią między f 0 i f 1. Przykład. Niech l będzie dowolną prostą w R 3 przechodzącą przez punkt (0, 0, 0). Dla dowolnego ϕ [0, 2π) niech f l,ϕ Homeo + (S 2 ) będzie obrotem S 2 wokół osi l o kąt ϕ. Definiujemy H : [0, 1] S 2 S 2 wzorem H(t, x) = f l,tϕ (x). Takie H jest homotopią między f l,ϕ i identycznością. Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki / 36

18 Klasy homotopii odwzorowań Homotopijność jest relacją równoważności w zbiorze ciągłych odwzorowań X Y. Jej klasy abstrakcji nazywamy klasami homotopii. Przykład. Rozważmy okrąg S 1 = {z C: z = 1}. Dowolne ciągłe odwzorowanie f : S 1 S 1 jest hometopijne z odwzorowaniem postaci z z n dla pewnego (jedynego) n Z. Liczbę n nazywamy stopniem f i oznaczamy deg(f ). Pojęcie stopnia uogólnia się na odwzorowania S n S n dla n > 1. Mamy wzajemnie jednoznaczną odpowiedniość { } klasy homotopii odwzorowań S n S n {liczby całkowite} f : S n S n jest homeomorfizmem deg(f ) = ±1. Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki / 36

19 Grupa klas odwzorowań Wszystkie homeomorfizmy S g S g homotopijne z identycznością tworzą podgrupę normalną grupy Homeo + (S g ), którą oznaczamy Homeo 0 (S g ). Grupa klas odwzorowań powierzchni S g to grupa ilorazowa Mod(S g ) = Homeo + (S g )/Homeo 0 (S g ) Jej elementami są klasy homotopii homeomorfizmów zachowujących orientację. Przykład Jeżeli f : S 2 S 2 jest homeomorfizmem zachowującym orientację, to deg(f ) = 1, zatem f jest homotopijne z identycznością. Stąd Homeo + (S 2 ) = Homeo 0 (S 2 ), czyli Mod(S 2 ) jest grupą trywialną. Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki / 36

20 Przykład nietrywialnego elementu Mod(S g ) Niech g 1. Powierzchnię S g możemy otrzymać przez sklejenie naprzeciwległych boków (4g + 2)-kąta foremnego. Obracając ten (4g + 2)-kąt wokół środka ciężkości o kąt 2nπ/(4g + 2) dla n = 1, 2,..., 4g + 1 otrzymujemy nietrywialne elementy Mod(S g ). Przykład dla g = 2: Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki / 36

21 Grupa SL 2 (Z) Definiujemy {( ) a b SL 2 (Z) = c d : a, b, c, d Z; ad bc = 1 } Jest to grupa z działaniem mnożenia macierzy. Każdej macierzy A SL 2 (Z) odpowiada odwzorowanie liniowe L A : R 2 R 2 (takie, że A jest macierzą L A w bazie standardowej) L A (x, y) = (x, y ) A [ ] x = y [ ] x y Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki / 36

22 Mod(S 1 ) SL 2 (Z) Rozważmy torus S 1 jako przestrzeń ilorazową R 2 /, gdzie (x, y) (x, y ) (x x, y y) Z 2 Dla dowolnego A SL 2 (Z) i dowolnych (x, y) R 2, (a, b) Z 2 mamy L A (x + a, y + b) = L A (x, y) + L A (a, b) L A (x, y), ponieważ L A (a, b) Z 2. Skoro L A zachowuje klasy abstrakcji relacji, możemy zdefiniować odwzorowanie L A : R 2 / R 2 / wzorem L A [x] = [L A (x)], gdzie [x] oznacza klasę abstrakcji w R 2 / punktu x R 2. Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki / 36

23 Mod(S 1 ) SL 2 (Z) Własności: L A Homeo + (S 1 ) przyporządkowanie A L A definiuje homomorfizm grup SL 2 (Z) Homeo + (S 1 ) to znaczy L AB = L A L B dla A, B SL 2 (Z). Każdy homeomorfizm f Homeo + (S 1 ) jest homotopijny z L A dla pewnego A SL 2 (Z) L A i L B są homotopijne A = B Wniosek Grupy Mod(S 1 ) i SL 2 (Z) są izomorficzne. Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki / 36

24 Generatory Definicja Mówimy, że grupa G jest generowana przez zbiór X G, jeżeli każdy jej element daje się zapisać w postaci iloczynu x a 1 1 x a 2 2 x n an, gdzie x i X i a i Z. Jeśli zbiór X jest skończony, to mówimy, że G jest skończenie generowana. Przykład. Dla każdego n 2, grupa SL n (Z) macierzy n n o współczynnikach całkowitych i wyznaczniku 1, jest generowana przez {T ij : 1 i j n}, gdzie T ij jest macierzą, której współczynniki na głównej przekątnej i na pozycji (i, j) są równe 1, a pozostałe współczynniki są równe 0. Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki / 36

25 Generatory Mod(S 1 ) Grupa SL 2 (Z) jest generowana przez dwie macierze: A = ( ) B = ( ) Stąd wynika, że Mod(S 1 ) jest generowana przez klasy homotopii homeomorfizmów L A i L B. Proste y = 0 i x = 0 są niezmiennicze odpowiednio względem przekształceń L A i L B. Obrazem prostej y = 0 (odp. x = 0) na torusie S 1 = R 2 / jest krzywa zamknięta α (odp. β), homeomorficzna z okręgiem S 1, niezmiennicza względem L A (odp. L B ). Można pokazać, że L A (odp. L B ) jest homotpijne z twistem Dehna względem krzywej α (odp. β). Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki / 36

26 Twist Dehna Niech α będzie krzywą zamkniętą (homeomorficznym obrazem okręgu) na zorientowanej powierzchni S g. Twistem Dehna (dodatnim) względem krzywej α nazywamy homeomorfizm T α : S g S g zdefiniowany następująco: 1 rozcinamy powierzchnię wzdłuż krzywej α, 2 skręcamy jeden z końców o 360 (w kierunku dodatnim względem ustalonej orientacji), 3 sklejamy z powrotem. Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki / 36

27 Własności twistów Dehna Będziemy nazywać dodatnim twistem Dehna względem α i oznaczać T α dowolny homeomorfizm homotopijny z T α, jak również całą klasę homotopii (element Mod(S g )). Analogicznie definiuje się ujemny twist Dehna względem α. Jest to element odwrotny do T α w grupie Mod(S g ). Jeżeli α ogranicza dysk w S g, to twist T α jest homotopijny z identycznością, tzn. T α = 1 w Mod(S g ). W przeciwnym przypadku T α ma nieskończony rząd: n>0 T n α 1 Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki / 36

28 Twisty Dehna jako generatory Mod(S g ) Twierdzenie (Dehn) Dla g 1 grupa Mod(S g ) jest generowana przez skończenie wiele twistów Dehna. Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki / 36

29 Twisty Dehna jako generatory Mod(S g ) Twierdzenie (Dehn) Dla g 1 grupa Mod(S g ) jest generowana przez skończenie wiele twistów Dehna. Twierdzenie (Lickorish 1964) Dla g 1 grupa Mod(S g ) jest generowana przez 3g 1 twistów Dehna. Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki / 36

30 Generatory Mod(S g ) Twierdzenie (Humphries 1979) Dla g > 1 minimalna liczba twistów Dehna generujących Mod(S g ) jest równa 2g + 1. Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki / 36

31 Generatory Mod(S g ) Twierdzenie (Humphries 1979) Dla g > 1 minimalna liczba twistów Dehna generujących Mod(S g ) jest równa 2g + 1. Twierdzenie (Wajnryb 1996) Dla g 1 grupa Mod(S g ) jest generowana przez 2 elementy. Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki / 36

32 Generatory Mod(S g ) Twierdzenie (Humphries 1979) Dla g > 1 minimalna liczba twistów Dehna generujących Mod(S g ) jest równa 2g + 1. Twierdzenie (Wajnryb 1996) Dla g 1 grupa Mod(S g ) jest generowana przez 2 elementy. Twierdzenie (Korkmaz 2003) Dla g 1 grupa Mod(S g ) jest generowana przez 2 elementy skończonego rzędu. Rzędy tych elementów są równe 4 i 6 dla g = 1 6 i 10 dla g = 2 4g + 2 dla g 3 Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki / 36

33 Geometria powierzchni Powierzchnie rodzaju 0 i 1 (sfera i torus) są bardzo wyjątkowe, z powodu geometrii. Twierdzenie (Uniformizacja powierzchni) Dla każdego g 0 istnieje zwarta orientowalna powierzchnia rodzaju g, wyposażona w metrykę riemannowską o stałej krzywiźnie K, przy czym K > 0 g = 0 K = 0 g = 1 K < 0 g 2 (metryka sferyczna) (metryka euklidesowa) (metryka hiperboliczna) Powyższa trychotomia znajduje swoje odzwierciedlenie we własnościach grupy klas odwzorowań. Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki / 36

34 Skończone podgrupy Homeo + (S g ) i Mod(S g ). Dla dowolnego n N istnieje homeomorfizm S 1 S 1 rzędu n (np. obrót o kąt 2π/n). Natomiast jeżeli A SL 2 (Z) Mod(S 1 ) spełnia A n = I, to n {0, 1, 2, 3, 4, 6}. Twierdzenie Niech g 2 i załóżmy, że G < Homeo + (S g ) jest skończoną podgrupą. Wtedy obcięcie kanonicznego rzutowania Homeo + (S g ) Mod(S g ) do G jest różnowartościowe. Innymi słowy, każda skończona podgrupa Homeo + (S g ) jest izomorficzna z podgrupą Mod(S g ). Co z twierdzeniem odwrotnym? Czy każda skończona podgrupa Mod(S g ) jest izomorficzna z podgrupą Homeo + (S g )? Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki / 36

35 Realizacja Nielsena Złóżmy, że x Mod(S g ) ma skończony rząd k i niech f Homeo + (S g ) będzie dowolnym reprezentantem x. Wtedy f k jest homotpijne z identycznością. Czy można wybrać takie f, żeby f k było równe identyczności? Twierdzenie (Nielsen) Złóżmy, że g 2 i x Mod(S g ) ma skończony rząd k. Wtedy istnieje taki reprezentant f Homeo + (S g ), że f ma rząd k. Ponadto, można tak wybrać f, żeby było izometrią względem pewnej metryki hiperbolicznej na S g. Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki / 36

36 Twierdzenie Kerckhoffa Steven Kerckhoff uogólnił w 1983 roku twierdzenie Nielsena dla dowolnej skończonej grupy. Twierdzenie (Kerckhoff) Złóżmy, że g 2 i G < Mod(S g ) jest skończoną podgrupą. Wtedy istnieje taka podgrupa G < Homeo + (S g ), że kanoniczne rzutowanie Homeo + (S g ) Mod(S g ) obcina się do izomorfizmu G G. Ponadto, można tak wybrać G, żeby była podgrupą izometrii względem pewnej metryki hiperbolicznej na S g. Innymi słowy, każda skończona podgrupa Mod(S g ) pochodzi od skończonej podgrupy Homeo + (S g ). Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki / 36

37 Ograniczenia Hurwitza i Wimana Twierdzenie Kerckhoffa wraz z klasycznymi twierdzeniami Hurwitza (1893) i Wimana (1895) dotyczącymi izometrii powierzchni hiperbolicznych dają następujące górne ograniczenia na rząd dowolnej skończonej podgrupy Mod(S g ) i rząd skończonej podgrupy cyklicznej. Wniosek Złóżmy, że g 2 i G < Mod(S g ) jest skończoną podgrupą. Wtedy G 84(g 1), a jeżeli G jest cykliczna, to G 4g + 2. Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki / 36

38 Grupy Hurwitza Twierdzenie Niech G będzie dowolną grupą skończoną. Wtedy G jest izomorficzna z podgrupą Mod(S g ) dla pewnego g 2. Wiadomo, że ograniczenie 84(g 1) jest osiągane dla nieskończenie wielu g oraz nie jest osiągane dla nieskończenie wielu g. Grupę skończoną G, która jest izomorficzna z podgrupą Mod(S g ) dla takiego g 2, że G = 84(g 1), nazywamy grupą Hurwitza Najmniejsza grupa Hurwitza ma rząd 168 (g = 3), a następna 504 (g = 7). Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki / 36

39 Problem liniowości GL n (C) grupa macierzy nieosobliwych stopnia n o współczynnikach w C. Otwarty problem Niech g 3. Czy Mod(S g ) jest izomorficzna z podgrupą GL n (C) dla pewnego n? Mod(S 1 ) SL 2 (Z) < GL 2 (C) Mod(S 2 ) jest izomorficzna z podgrupą GL 64 (C) (Bigelow-Budney 2001). Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki / 36

40 Problem liniowości GL n (C) grupa macierzy nieosobliwych stopnia n o współczynnikach w C. Otwarty problem Niech g 3. Czy Mod(S g ) jest izomorficzna z podgrupą GL n (C) dla pewnego n? Mod(S 1 ) SL 2 (Z) < GL 2 (C) Mod(S 2 ) jest izomorficzna z podgrupą GL 64 (C) (Bigelow-Budney 2001). Twierdzenie (Korkmaz 2011) Niech g 3 i n 3g 3. Wtedy Mod(S g ) nie jest izomorficzna z żadną podgrupą GL n (C). Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki / 36

41 Koniec Dziękuję za uwagę! Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki / 36

42 Informacja o obrazkach wykorzystanych w tej prezentacji, które nie są mojego autorstwa i nie są w domenie publicznej: autorem obrazka na slajdzie 10 jest Oleg Alexandrov; autorem obrazka na slajdzie 26 jest Søren Fuglede Jørgensen; Oba obrazki na licencji Creative Commons Attribution-Share Alike 3.0 Unported Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki / 36

φ(x 1,..., x n ) = a i x 2 i +

φ(x 1,..., x n ) = a i x 2 i + Teoria na egzamin z algebry liniowej Wszystkie podane pojęcia należy umieć określić i podać pprzykłady, ewentualnie kontrprzykłady. Ponadto należy znać dowody tam gdzie to jest zaznaczone. Liczby zespolone.

Bardziej szczegółowo

Algebra liniowa z geometrią

Algebra liniowa z geometrią Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........

Bardziej szczegółowo

Teoria ciała stałego Cz. I

Teoria ciała stałego Cz. I Teoria ciała stałego Cz. I 1. Elementy teorii grup Grupy symetrii def. Grupy Zbiór (skończony lub nieskończony) elementów {g} tworzy grupę gdy: - zdefiniowana operacja mnożenia (złożenia) g 1 g 2 = g 3

Bardziej szczegółowo

Topologia i geometria różniczkowa

Topologia i geometria różniczkowa Topologia i geometria różniczkowa Andrzej Nowicki Uniwersytet Mikołaja Kopernika, Wydział Matematyki i Informatyki, ul. Chopina 12 18, 87 100 Toruń (e-mail: anow@mat.uni.torun.pl) Marzec 1995 Spis treści

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 9: Grupy skończone Gniewomir Sarbicki Grupy cykliczne Definicja: Jeżeli każdy element grupy G jest postaci a n dla pewnego a G, to mówimy, że grupa G jest grupą cykliczną o

Bardziej szczegółowo

A,B M! v V ; A + v = B, (1.3) AB = v. (1.4)

A,B M! v V ; A + v = B, (1.3) AB = v. (1.4) Rozdział 1 Prosta i płaszczyzna 1.1 Przestrzeń afiniczna Przestrzeń afiniczna to matematyczny model przestrzeni jednorodnej, bez wyróżnionego punktu. Można w niej przesuwać punkty równolegle do zadanego

Bardziej szczegółowo

Topologia kombinatoryczna zadania kwalifikacyjne

Topologia kombinatoryczna zadania kwalifikacyjne Topologia kombinatoryczna zadania kwalifikacyjne Piotr Suwara 9 czerwca 2013 Nie ma wyznaczonego progu na kwalifikację na zajęcia. Gorąco zachęcam do wysyłania rozwiązań dużo przed terminem wtedy będzie

Bardziej szczegółowo

Twierdzenie geometryzacyjne

Twierdzenie geometryzacyjne Jest to tekst związany z odczytem wygłoszonym na XLV Szkole Matematyki Poglądowej, Co mi się podoba, Jachranka, sierpień 2010. Twierdzenie geometryzacyjne Zdzisław POGODA, Kraków Pod koniec lat siedemdziesiątych

Bardziej szczegółowo

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y.

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. FUNKCJE LICZBOWE Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. Innymi słowy f X Y = {(x, y) : x X oraz y Y }, o ile (x, y) f oraz (x, z) f pociąga

Bardziej szczegółowo

Schemat sprawdzianu. 25 maja 2010

Schemat sprawdzianu. 25 maja 2010 Schemat sprawdzianu 25 maja 2010 5 definicji i twierdzeń z listy 12(po 10 punktów) np. 1. Proszę sformułować twierdzenie Brouwera o punkcie stałym. 2. Niech X będzie przestrzenią topologiczną. Proszę określić,

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ OD RÓWNAŃ DO ODWZOROWAŃ LINIOWYCH

ALGEBRA Z GEOMETRIĄ OD RÓWNAŃ DO ODWZOROWAŃ LINIOWYCH ALGEBRA Z GEOMETRIĄ 1/10 OD RÓWNAŃ DO ODWZOROWAŃ LINIOWYCH Piotr M Hajac Uniwersytet Warszawski Wykład 8, 27112013 Typeset by Jakub Szczepanik Motywacja 2/10 Przechodzimy od rozwiązywania jednego równania

Bardziej szczegółowo

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012 1. Liczby zespolone Jacek Jędrzejewski 2011/2012 Spis treści 1 Liczby zespolone 2 1.1 Definicja liczby zespolonej.................... 2 1.2 Postać kanoniczna liczby zespolonej............... 1. Postać

Bardziej szczegółowo

Wyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm

Wyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm Wyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm 1 Grupa ilorazowa Niech H b edzie dzielnikiem normalnym grupy G. Oznaczmy przez G/H zbiór wszystkich warstw lewostronnych grupy G wzgl edem podgrupy

Bardziej szczegółowo

Uniwersytet Warszawski Wydział Matematyki, Informatyki i Mechaniki. Maria Donten. Nr albumu: 209516. Rozmaitości Kummera

Uniwersytet Warszawski Wydział Matematyki, Informatyki i Mechaniki. Maria Donten. Nr albumu: 209516. Rozmaitości Kummera Uniwersytet Warszawski Wydział Matematyki, Informatyki i Mechaniki Maria Donten Nr albumu: 209516 Rozmaitości Kummera Praca magisterska na kierunku MATEMATYKA w zakresie MATEMATYKI OGÓLNEJ Praca wykonana

Bardziej szczegółowo

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1 PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1 Planimetria to dział geometrii, w którym przedmiotem badań są własności figur geometrycznych leżących na płaszczyźnie (patrz określenie płaszczyzny). Pojęcia

Bardziej szczegółowo

... [a n,b n ] kn [M 1,M 2 ], gdzie a i M 1, b i M 2, dla i {1,..., n}. Wówczas: [a 1,b 1 ] k 1. ... [a n,b n ] kn =(a 1 b 1 a 1

... [a n,b n ] kn [M 1,M 2 ], gdzie a i M 1, b i M 2, dla i {1,..., n}. Wówczas: [a 1,b 1 ] k 1. ... [a n,b n ] kn =(a 1 b 1 a 1 4. Wykład 4: Grupy rozwiązalne i nilpotentne. Definicja 4.1. Niech (G, ) będzie grupą. Wówczas (1) ciąg podgrup grupy G zdefiniowany indukcyjnie wzorami G (0) = G, G (i) =[G (i 1),G (i 1) ], dla i N nazywamy

Bardziej szczegółowo

Grupy. Permutacje 1. (G2) istnieje element jednostkowy (lub neutralny), tzn. taki element e G, że dla dowolnego a G zachodzi.

Grupy. Permutacje 1. (G2) istnieje element jednostkowy (lub neutralny), tzn. taki element e G, że dla dowolnego a G zachodzi. Grupy. Permutacje 1 1 Definicja grupy Niech G będzie zbiorem. Działaniem na zbiorze G nazywamy odwzorowanie (oznaczane, jak mnożenie, przez ) przyporządkowujące każdej parze uporządkowanej (a, b) G G element

Bardziej szczegółowo

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. 1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy

Bardziej szczegółowo

Działanie grupy na zbiorze

Działanie grupy na zbiorze Działanie grupy na zbiorze Definicja 0.1 Niech (G, ) będzie dowolną grupą oraz X niepustym zbiorem, to odwzorowanie : G X X nazywamy działaniem grupy G na zbiorze X jeślinastępujące warunki są spełnione:

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ LINIOWA NIEZALEŻNOŚĆ, ROZPINANIE I BAZY

ALGEBRA Z GEOMETRIĄ LINIOWA NIEZALEŻNOŚĆ, ROZPINANIE I BAZY ALGEBRA Z GEOMETRIĄ 1/10 LINIOWA NIEZALEŻNOŚĆ, ROZPINANIE I BAZY Piotr M. Hajac Uniwersytet Warszawski Wykład 10, 11.12.2013 Typeset by Jakub Szczepanik. Geometryczne intuicje Dla pierścienia R = R mamy

Bardziej szczegółowo

GRAFIKA KOMPUTEROWA podstawy matematyczne. dr inż. Hojny Marcin pokój 406, pawilon B5 E-mail: mhojny@metal.agh.edu.pl Tel.

GRAFIKA KOMPUTEROWA podstawy matematyczne. dr inż. Hojny Marcin pokój 406, pawilon B5 E-mail: mhojny@metal.agh.edu.pl Tel. GRAFIKA KOMPUTEROWA podstawy matematyczne dr inż. Hojny Marcin pokój 406, pawilon B5 E-mail: mhojny@metal.agh.edu.pl Tel. (12) 617 46 37 Plan wykładu 1/4 ZACZNIEMY OD PRZYKŁADOWYCH PROCEDUR i PRZYKŁADÓW

Bardziej szczegółowo

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.)

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.) Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. godz. = 76 godz.) I. Funkcja i jej własności.4godz. II. Przekształcenia wykresów funkcji...9 godz. III. Funkcja

Bardziej szczegółowo

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ MATEMATYKA I SEMESTR ALK (PwZ). Sumy i sumy podwójne : Σ i ΣΣ.. OKREŚLENIE Ciąg liczbowy = Dowolna funkcja przypisująca liczby rzeczywiste pierwszym n (ciąg skończony), albo wszystkim (ciąg nieskończony)

Bardziej szczegółowo

ELEMENTY TEORII WĘZŁÓW

ELEMENTY TEORII WĘZŁÓW Łukasz Janus 10B2 ELEMENTY TEORII WĘZŁÓW Elementarne deformacje węzła Równoważność węzłów Węzły trywialne Ruchy Reidemeistera Twierdzenie o równoważności węzłów Grafy Powtórzmy Diagram węzła Węzły reprezentuje

Bardziej szczegółowo

Zmiana baz. Jacek Jędrzejewski 2014. 1 Macierz przejścia od bazy do bazy 2

Zmiana baz. Jacek Jędrzejewski 2014. 1 Macierz przejścia od bazy do bazy 2 Zmiana baz Jacek Jędrzejewski 2014 Spis treści 1 Macierz przejścia od bazy do bazy 2 2 Wektory a zmiana baz 2 21 Współrzędne wektora względem różnych baz 2 22 Wektory o tych samych współrzędnych względem

Bardziej szczegółowo

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3 DEFINICJE PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3 Czworokąt to wielokąt o 4 bokach i 4 kątach. Przekątną czworokąta nazywamy odcinek łączący przeciwległe wierzchołki. Wysokością czworokąta nazywamy

Bardziej szczegółowo

Paweł Gładki. Algebra. http://www.math.us.edu.pl/ pgladki/

Paweł Gładki. Algebra. http://www.math.us.edu.pl/ pgladki/ Paweł Gładki Algebra http://www.math.us.edu.pl/ pgladki/ Konsultacje: Środa, 14:00-15:00 Jeżeli chcesz spotkać się z prowadzącym podczas konsultacji, postaraj się powiadomić go o tym przed lub po zajęciach,

Bardziej szczegółowo

4. O funkcji uwikłanej 4.1. Twierdzenie. Niech będzie dana funkcja f klasy C 1 na otwartym podzbiorze. ϕ : K(x 0, δ) (y 0 η, y 0 + η), taka że

4. O funkcji uwikłanej 4.1. Twierdzenie. Niech będzie dana funkcja f klasy C 1 na otwartym podzbiorze. ϕ : K(x 0, δ) (y 0 η, y 0 + η), taka że 4. O funkcji uwikłanej 4.1. Twierdzenie. Niech będzie dana funkcja f klasy C 1 na otwartym podzbiorze taka że K(x 0, δ) (y 0 η, y 0 + η) R n R, f(x 0, y 0 ) = 0, y f(x 0, y 0 ) 0. Wówczas dla odpowiednio

Bardziej szczegółowo

Zadanie 2. Obliczyć rangę dowolnego elementu zbioru uporządkowanego N 0 N 0, gdy porządek jest zdefiniowany następująco: (a, b) (c, d) (a c b d)

Zadanie 2. Obliczyć rangę dowolnego elementu zbioru uporządkowanego N 0 N 0, gdy porządek jest zdefiniowany następująco: (a, b) (c, d) (a c b d) Matemaryka dyskretna - zadania Zadanie 1. Opisać zbiór wszystkich elementów rangi k zbioru uporządkowanego X dla każdej liczby naturalnej k, gdy X jest rodziną podzbiorów zbioru skończonego Y. Elementem

Bardziej szczegółowo

Klasyfikator. ˆp(k x) = 1 K. I(ρ(x,x i ) ρ(x,x (K) ))I(y i =k),k =1,...,L,

Klasyfikator. ˆp(k x) = 1 K. I(ρ(x,x i ) ρ(x,x (K) ))I(y i =k),k =1,...,L, Klasyfikator Jedną z najistotniejszych nieparametrycznych metod klasyfikacji jest metoda K-najbliższych sąsiadów, oznaczana przez K-NN. W metodzie tej zaliczamy rozpoznawany obiekt do tej klasy, do której

Bardziej szczegółowo

Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/

Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ MATEMATYKA Klasa III ZAKRES PODSTAWOWY Dział programu Temat Wymagania. Uczeń: 1. Miara łukowa kąta zna pojęcia: kąt skierowany, kąt

Bardziej szczegółowo

Systemy baz danych. Notatki z wykładu. http://robert.brainusers.net 17.06.2009

Systemy baz danych. Notatki z wykładu. http://robert.brainusers.net 17.06.2009 Systemy baz danych Notatki z wykładu http://robert.brainusers.net 17.06.2009 Notatki własne z wykładu. Są niekompletne, bez bibliografii oraz mogą zawierać błędy i usterki. Z tego powodu niniejszy dokument

Bardziej szczegółowo

KRZYŻÓWKA 2. 11. Może być np. równoboczny lub rozwartokątny. Jego pole to a b HASŁO:

KRZYŻÓWKA 2. 11. Może być np. równoboczny lub rozwartokątny. Jego pole to a b HASŁO: KRZYŻÓWKA.Wyznaczają ją dwa punkty.. Jego pole to π r² 3. Jego pole to a a 4.Figura przestrzenna, której podstawą jest dowolny wielokąt, a ściany boczne są trójkątami o wspólnym wierzchołku. 5.Prosta mająca

Bardziej szczegółowo

Wykład 1. Przestrzeń Hilberta

Wykład 1. Przestrzeń Hilberta Wykład 1. Przestrzeń Hilberta Sygnały. Funkcje (w języku inżynierów - sygnały) które będziemy rozważali na tym wykładzie będą kilku typów Sygnały ciągłe (analogowe). ) L (R) to funkcje na prostej spełniające

Bardziej szczegółowo

Planimetria 1 12 godz.

Planimetria 1 12 godz. Planimetria 1 1 godz. Funkcje trygonometryczne kąta ostrego 1 definicje funkcji trygonometrycznych kąta ostrego wartości funkcji trygonometrycznych kątów 30º, 45º, 60º Trygonometria zastosowania Rozwiązywanie

Bardziej szczegółowo

Czworościany ortocentryczne zadania

Czworościany ortocentryczne zadania Czworościany ortocentryczne zadania 1. Wykazać, że nastepujące warunki są równoważne: a) istnieje przecięcie wysokości czworościanu, b) przeciwległe krawędzie są prostopadłe, c) sumy kwadratów długości

Bardziej szczegółowo

Twierdzenie spektralne

Twierdzenie spektralne Twierdzenie spektralne Algebrę ograniczonych funkcji borelowskich na K R będziemy oznaczać przez B (K). Spektralnym rozkładem jedności w przestrzeni Hilberta H nazywamy odwzorowanie, które każdemu zbiorowi

Bardziej szczegółowo

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą 1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku

Bardziej szczegółowo

Formy kwadratowe. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 14. wykład z algebry liniowej Warszawa, styczeń 2011

Formy kwadratowe. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 14. wykład z algebry liniowej Warszawa, styczeń 2011 Formy kwadratowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 14. wykład z algebry liniowej Warszawa, styczeń 2011 Mirosław Sobolewski (UW) Warszawa, 2011 1 / 16 Definicja Niech V,

Bardziej szczegółowo

im = (P )={b 2 R : 9a 2 P [b = (a)]} nazywamy obrazem homomorfizmu.

im = (P )={b 2 R : 9a 2 P [b = (a)]} nazywamy obrazem homomorfizmu. 61 7. Wyk ad 7: Homomorfizmy pierúcieni, idea y pierúcieni. Idea y generowane przez zbiory. PierúcieÒ ilorazowy, twierdzenie o homomorfizmie. Idea y pierwsze i maksymalne. 7.1. Homomorfizmy pierúcieni,

Bardziej szczegółowo

Macierze - obliczanie wyznacznika macierzy z użyciem permutacji

Macierze - obliczanie wyznacznika macierzy z użyciem permutacji Macierze - obliczanie wyznacznika macierzy z użyciem permutacji I LO im. F. Ceynowy w Świeciu Radosław Rudnicki joix@mat.uni.torun.pl 17.03.2009 r. Typeset by FoilTEX Streszczenie Celem wykładu jest wprowadzenie

Bardziej szczegółowo

Notacja Denavita-Hartenberga

Notacja Denavita-Hartenberga Notacja DenavitaHartenberga Materiały do ćwiczeń z Podstaw Robotyki Artur Gmerek Umiejętność rozwiązywania prostego zagadnienia kinematycznego jest najbardziej bazową umiejętność zakresu Robotyki. Wyznaczyć

Bardziej szczegółowo

Pytania do spr / Własności figur (płaskich i przestrzennych) (waga: 0,5 lub 0,3)

Pytania do spr / Własności figur (płaskich i przestrzennych) (waga: 0,5 lub 0,3) Pytania zamknięte / TEST : Wybierz 1 odp prawidłową. 1. Punkt: A) jest aksjomatem in. pewnikiem; B) nie jest aksjomatem, bo można go zdefiniować. 2. Prosta: A) to zbiór punktów; B) to zbiór punktów współliniowych.

Bardziej szczegółowo

Automatyzacja Ćwicz. 2 Teoria mnogości i algebra logiki Akademia Morska w Szczecinie - Wydział Inżynieryjno-Ekonomiczny Transportu

Automatyzacja Ćwicz. 2 Teoria mnogości i algebra logiki Akademia Morska w Szczecinie - Wydział Inżynieryjno-Ekonomiczny Transportu Automatyzacja Ćwicz. 2 Teoria mnogości i algebra logiki Historia teorii mnogości Teoria mnogości to inaczej nauka o zbiorach i ich własnościach; Zapoczątkowana przez greckich matematyków i filozofów w

Bardziej szczegółowo

Wykład 1. Przestrzeń Hilberta

Wykład 1. Przestrzeń Hilberta Wykład 1. Przestrzeń Hilberta Sygnały. Funkcje (w języku inżynierów - sygnały) które będziemy rozważali na tym wykładzie będą kilku typów Sygnały ciągłe (analogowe). ) L 2 (R) to funkcje na prostej spełniające

Bardziej szczegółowo

MATEMATYKA WYDZIAŁ MATEMATYKI - TEST 1

MATEMATYKA WYDZIAŁ MATEMATYKI - TEST 1 Wszelkie prawa zastrzeżone. Rozpowszechnianie, wypożyczanie i powielanie niniejszych testów w jakiejkolwiek formie surowo zabronione. W przypadku złamania zakazu mają zastosowanie przepisy dotyczące naruszenia

Bardziej szczegółowo

V Konkurs Matematyczny Politechniki Białostockiej

V Konkurs Matematyczny Politechniki Białostockiej V Konkurs Matematyczny Politechniki iałostockiej Rozwiązania - klasy pierwsze 27 kwietnia 2013 r. 1. ane są cztery liczby dodatnie a b c d. Wykazać że przynajmniej jedna z liczb a + b + c d b + c + d a

Bardziej szczegółowo

Geometria. Rodzaje i własności figur geometrycznych:

Geometria. Rodzaje i własności figur geometrycznych: Geometria Jest jednym z działów matematyki, którego przedmiotem jest badanie figur geometrycznych i zależności między nimi. Figury geometryczne na płaszczyźnie noszą nazwę figur płaskich, w przestrzeni

Bardziej szczegółowo

Notatki przygotowawcze dotyczące inwersji na warsztaty O geometrii nieeuklidesowej hiperbolicznej Wrocław, grudzień 2013

Notatki przygotowawcze dotyczące inwersji na warsztaty O geometrii nieeuklidesowej hiperbolicznej Wrocław, grudzień 2013 Notatki przygotowawcze dotyczące inwersji na warsztaty O geometrii nieeuklidesowej hiperbolicznej Wrocław, grudzień 013 3.4.1 Inwersja względem okręgu. Inwersja względem okręgu jest przekształceniem płaszczyzny

Bardziej szczegółowo

Elżbieta Świda Elżbieta Kurczab Marcin Kurczab. Zadania otwarte krótkiej odpowiedzi na dowodzenie na obowiązkowej maturze z matematyki

Elżbieta Świda Elżbieta Kurczab Marcin Kurczab. Zadania otwarte krótkiej odpowiedzi na dowodzenie na obowiązkowej maturze z matematyki Elżbieta Świda Elżbieta Kurczab Marcin Kurczab Zadania otwarte krótkiej odpowiedzi na dowodzenie na obowiązkowej maturze z matematyki Zadanie Trójkąt ABC jest trójkątem prostokątnym. Z punktu M, należącego

Bardziej szczegółowo

Notatki do wykładu Geometria Różniczkowa I

Notatki do wykładu Geometria Różniczkowa I Notatki do wykładu Geometria Różniczkowa I Katarzyna Grabowska, KMMF 1 listopada 013 1 Odwzorowanie styczne i cofnięcie formy cd: 1.1 Transport pola wektorowego i cofnięcie formy W poprzednim paragrafie

Bardziej szczegółowo

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale Zestaw nr 1 Poziom Rozszerzony Zad.1. (1p) Liczby oraz, są jednocześnie ujemne wtedy i tylko wtedy, gdy A. B. C. D. Zad.2. (1p) Funkcja przyjmuje wartości większe od funkcji dokładnie w przedziale. Wtedy

Bardziej szczegółowo

Matura próbna 2014 z matematyki-poziom podstawowy

Matura próbna 2014 z matematyki-poziom podstawowy Matura próbna 2014 z matematyki-poziom podstawowy Klucz odpowiedzi do zadań zamkniętych zad 1 2 3 4 5 6 7 8 9 10 11 12 odp A C C C A A B B C B D A 13 14 15 16 17 18 19 20 21 22 23 24 25 C C A B A D C B

Bardziej szczegółowo

24. CAŁKA POWIERZCHNIOWA ZORIENTOWANA

24. CAŁKA POWIERZCHNIOWA ZORIENTOWANA 4. CAŁA POWIERZCHNIOWA ZORIENTOWANA Płat powierzchniowy gładki o równaniach parametrycznych: x = x( u, v ), y = y( u, v ), z = z( u, v ),, (u,v) w którym rozróżniamy dwie jego stron dodatnią i ujemną.

Bardziej szczegółowo

GEOMETRIA ANALITYCZNA W PRZESTRZENI

GEOMETRIA ANALITYCZNA W PRZESTRZENI GEOMETRIA ANALITYCZNA W PRZESTRZENI Położenie punktu w przestrzeni określamy za pomocą trzech liczb (x, y, z). Liczby te odpowiadają rzutom na osie układu współrzędnych: każdy rzut wzdłuż płaszczyzny równoległej

Bardziej szczegółowo

Odkrywanie twierdzeń geometrycznych przy pomocy komputera

Odkrywanie twierdzeń geometrycznych przy pomocy komputera Odkrywanie twierdzeń geometrycznych przy pomocy komputera Andrzej Sendlewski WMiI UMK Koło Matematyczne 15 maja 2010 DGS programy komputerowe CINDERELLA ver. 1.4, ver. 2.0 (komercyjna) Circle & Ruler (R.

Bardziej szczegółowo

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne: Prosto do matury klasa d Rok szkolny 014/015 WYMAGANIA EDUKACYJNE Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające

Bardziej szczegółowo

Zagadnienia na egzamin dyplomowy Matematyka

Zagadnienia na egzamin dyplomowy Matematyka INSTYTUT MATEMATYKI UNIWERSYTET JANA KOCHANOWSKIEGO w Kielcach Zagadnienia na egzamin dyplomowy Matematyka Pytania kierunkowe Wstęp do matematyki 1. Relacja równoważności, przykłady relacji równoważności.

Bardziej szczegółowo

ARKUSZ ĆWICZENIOWY Z MATEMATYKI MARZEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

ARKUSZ ĆWICZENIOWY Z MATEMATYKI MARZEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 Centralna Komisja Egzaminacyjna ARKUSZ ĆWICZENIOWY Z MATEMATYKI MARZEC 01 POZIOM PODSTAWOWY 1. Sprawdź, czy arkusz ćwiczeniowy zawiera strony (zadania 1 ).. Rozwiązania zadań i odpowiedzi wpisuj w miejscu

Bardziej szczegółowo

Podstawowe pojęcia geometryczne

Podstawowe pojęcia geometryczne PLANIMETRIA Podstawowe pojęcia geometryczne Geometria (słowo to pochodzi z języka greckiego i oznacza mierzenie ziemi) jest jednym z działów matematyki, którego przedmiotem jest badanie figur geometrycznych

Bardziej szczegółowo

PROGRAM KLASY Z ROZSZERZONĄ MATEMATYKĄ

PROGRAM KLASY Z ROZSZERZONĄ MATEMATYKĄ PROGRAM KLASY Z ROZSZERZONĄ MATEMATYKĄ ALGEBRA Klasa I 3 godziny tygodniowo Klasa II 4 godziny tygodniowo Klasa III 3 godziny tygodniowo A. Liczby (24) 1. Liczby naturalne i całkowite. a. Własności, kolejność

Bardziej szczegółowo

Eliza Wajch, Geometria z Topologią, wykład 1, 2012/2013

Eliza Wajch, Geometria z Topologią, wykład 1, 2012/2013 Eliza Wajch Wykłady i ćwiczenia z geometrii analitycznej z elementami topologii w UPH w Siedlcach w semestrze zimowym roku akad. 2012/2013. Literatura podstawowa: 1. K. Kuratowski, A. Mostowski: Teoria

Bardziej szczegółowo

Algebra i jej zastosowania konspekt wyk ladu, czȩść druga

Algebra i jej zastosowania konspekt wyk ladu, czȩść druga Algebra i jej zastosowania konspekt wyk ladu, czȩść druga Anna Romanowska January 29, 2016 4 Kraty i algebry Boole a 41 Kraty zupe lne Definicja 411 Zbiór uporza dkowany (P, ) nazywamy krata zupe lna,

Bardziej szczegółowo

Ćwiczenia z Geometrii I, czerwiec 2006 r.

Ćwiczenia z Geometrii I, czerwiec 2006 r. Waldemar ompe echy przystawania trójkątów 1. unkt leży na przekątnej kwadratu (rys. 1). unkty i R są rzutami prostokątnymi punktu odpowiednio na proste i. Wykazać, że = R. R 2. any jest trójkąt ostrokątny,

Bardziej szczegółowo

Metody matematyczne fizyki

Metody matematyczne fizyki Metody matematyczne fizyki Tadeusz Lesiak Wykład I Wektory Wektory w geometrii i algebrze Historycznie pierwszy był opis geometryczny: B Wektor = uporządkowana para punktów = ukierunkowany odcinek linii

Bardziej szczegółowo

Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy

Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Wariant nr (klasa I 4 godz., klasa II godz., klasa III godz.) Klasa I 7 tygodni 4 godziny = 48 godzin Lp. Tematyka zajęć

Bardziej szczegółowo

MATEMATYKA Z SENSEM. Ryszard Kalina Tadeusz Szymański Marek Lewicki. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych.

MATEMATYKA Z SENSEM. Ryszard Kalina Tadeusz Szymański Marek Lewicki. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. MATEMATYKA Z SENSEM Ryszard Kalina Tadeusz Szymański Marek Lewicki Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Klasa I Zakres podstawowy i rozszerzony Wymagania konieczne (K)

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA ZBIORY Z POWTÓRZENIAMI W zbiorze z powtórzeniami ten sam element może występować kilkakrotnie. Liczbę wystąpień nazywamy krotnością tego elementu w zbiorze X = { x,..., x n } - zbiór k,..., k n - krotności

Bardziej szczegółowo

PRACA MAGISTERSKA DYSKRETNY NIELINIOWY UKŁAD SEMIDYNAMICZNY UNIWERSYTET JAGIELLOŃSKI

PRACA MAGISTERSKA DYSKRETNY NIELINIOWY UKŁAD SEMIDYNAMICZNY UNIWERSYTET JAGIELLOŃSKI UNIWERSYTET JAGIELLOŃSKI Wydział Matematyki i Fizyki Kierunek: Matematyka Sekcja teoretyczna PRACA MAGISTERSKA DYSKRETNY NIELINIOWY UKŁAD SEMIDYNAMICZNY NA PŁASZCZYŹNIE Zbigniew Galias opiekun: doc. Jerzy

Bardziej szczegółowo

Osiągnięcia ponadprzedmiotowe

Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego uczeń potrafi: Osiągnięcia ponadprzedmiotowe Umiejętności konieczne i podstawowe czytać teksty w stylu matematycznym wykorzystywać słownictwo wprowadzane przy okazji

Bardziej szczegółowo

Test, dzień pierwszy, grupa młodsza

Test, dzień pierwszy, grupa młodsza Test, dzień pierwszy, grupa młodsza 1. Na połowinkach 60 procent wszystkich uczniów to dziewczyny. Impreza jest kiepska, bo tylko 40 procent wszystkich uczniów chce się tańczyć. Sytuacja poprawia sie odrobinę,

Bardziej szczegółowo

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA I 2015/2016

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA I 2015/2016 SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA I 2015/2016 Ocenę dopuszczającą otrzymuje uczeń, który: (Liczby i działania) zna pojęcie liczby naturalnej, całkowitej, wymiernej

Bardziej szczegółowo

Internetowe Ko³o M a t e m a t yc z n e

Internetowe Ko³o M a t e m a t yc z n e Internetowe Ko³o M a t e m a t yc z n e Stowarzyszenie na rzecz Edukacji Matematycznej Zestaw 3 szkice rozwiązań zadań 1. Plansza do gry składa się z 15 ustawionych w rzędzie kwadratów. Pierwszy z graczy

Bardziej szczegółowo

Matematyka 2 wymagania edukacyjne

Matematyka 2 wymagania edukacyjne Matematyka wymagania edukacyjne Zakres podstawowy POZIOMY WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I GIMNAZJUM WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I GIMNAZJUM LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie zaznaczać liczbę

Bardziej szczegółowo

Wielokąty na płaszczyźnie obliczenia z zastosowaniem trygonometrii

Wielokąty na płaszczyźnie obliczenia z zastosowaniem trygonometrii Wielokąty na płaszczyźnie obliczenia z zastosowaniem trygonometrii Obliczenia geometryczne z zastosowaniem własności funkcji trygonometrycznych w wielokątach wypukłych Wielokąt - figura płaską będąca sumą

Bardziej szczegółowo

WYMAGANIA KONIECZNE - OCENA DOPUSZCZAJĄCA:

WYMAGANIA KONIECZNE - OCENA DOPUSZCZAJĄCA: WYMAGANIA KONIECZNE - OCENA DOPUSZCZAJĄCA: zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie zaznaczać liczbę wymierną na osi liczbowej umie

Bardziej szczegółowo

Metody matematyczne fizyki

Metody matematyczne fizyki Metody matematyczne fizyki Tadeusz Lesiak Wykład VI Elementy teorii grup Wstęp do teorii grup Teoria grup (TG) = matematyka symetrii liczne zastosowania w fizyce i chemii Odpowiada na ważne pytanie: jakie

Bardziej szczegółowo

Twierdzenie o n-kanapce

Twierdzenie o n-kanapce Twierdzenie o n-kanapce Jacek J. Łakis Naukowe Koło Matematyki PG 24 marca 204. Wprowadzenie Twierdzenie o n-kanapce jest jednym z tych twierdzeń, które pokazują niezwykłe własności i zastosowania funkcji

Bardziej szczegółowo

Probabilistyczne podstawy statystyki matematycznej. Dr inż. Małgorzata Michalcewicz-Kaniowska

Probabilistyczne podstawy statystyki matematycznej. Dr inż. Małgorzata Michalcewicz-Kaniowska Probabilistyczne podstawy statystyki matematycznej Dr inż. Małgorzata Michalcewicz-Kaniowska 1 Zdarzenia losowe, algebra zdarzeń Do podstawowych pojęć w rachunku prawdopodobieństwa zaliczamy: doświadczenie

Bardziej szczegółowo

Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym

Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym Zadania rozwiązali: Przykładowe rozwiązania zadań Próbnej Matury 014 z matematyki na poziomie rozszerzonym Małgorzata Zygora-nauczyciel matematyki w II Liceum Ogólnokształcącym w Inowrocławiu Mariusz Walkowiak-nauczyciel

Bardziej szczegółowo

MATeMAtyka klasa II poziom rozszerzony

MATeMAtyka klasa II poziom rozszerzony MATeMAtyka klasa II poziom rozszerzony W klasie drugiej na poziomie rozszerzonym realizujemy materiał z klasy pierwszej tylko z poziomu rozszerzonego (na czerwono) oraz cały materiał z klasy drugiej. Rozkład

Bardziej szczegółowo

Metoda mnożników Lagrange a i jej zastosowania w ekonomii

Metoda mnożników Lagrange a i jej zastosowania w ekonomii Maciej Grzesiak Metoda mnożników Lagrange a i jej zastosowania w ekonomii 1 Metoda mnożników Lagrange a znajdowania ekstremum warunkowego Pochodna kierunkowa i gradient Dla prostoty ograniczymy się do

Bardziej szczegółowo

Działania na przekształceniach liniowych i macierzach

Działania na przekształceniach liniowych i macierzach Działania na przekształceniach liniowych i macierzach Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 5 wykład z algebry liniowej Warszawa, listopad 2013 Mirosław Sobolewski (UW) Warszawa,

Bardziej szczegółowo

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI SPIS TREŚCI WSTĘP.................................................................. 8 1. LICZBY RZECZYWISTE Teoria............................................................ 11 Rozgrzewka 1.....................................................

Bardziej szczegółowo

TEORIA GIER W EKONOMII WYKŁAD 2: GRY DWUOSOBOWE O SUMIE ZEROWEJ. dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ

TEORIA GIER W EKONOMII WYKŁAD 2: GRY DWUOSOBOWE O SUMIE ZEROWEJ. dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ TEORIA GIER W EKONOMII WYKŁAD 2: GRY DWUOSOBOWE O SUMIE ZEROWEJ dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ Definicja gry o sumie zerowej Powiemy, że jest grą o

Bardziej szczegółowo

2.Piszemy równanie prostej przechodzącej przez dwa punkty P i S

2.Piszemy równanie prostej przechodzącej przez dwa punkty P i S Zadanie 1. Napisz równanie prostej przechodzącej przez punkt odcinka o koocach M N. Rozwiązanie - 1 sposób 1.Znajdujemy współrzędne punktu S będącego środkiem odcinka MN: oraz środek 2.Piszemy równanie

Bardziej szczegółowo

Informatyk i matematyk: dwa spojrzenia na jedno zadanie (studium przypadku) Krzysztof Ciebiera, Krzysztof Diks, Paweł Strzelecki

Informatyk i matematyk: dwa spojrzenia na jedno zadanie (studium przypadku) Krzysztof Ciebiera, Krzysztof Diks, Paweł Strzelecki Informatyk i matematyk: dwa spojrzenia na jedno zadanie (studium przypadku) Krzysztof Ciebiera, Krzysztof Diks, Paweł Strzelecki Zadanie (matura z informatyki, 2009) Dane: dodatnia liczba całkowita R.

Bardziej szczegółowo

Komentarz do arkusza maturalnego z matematyki, poziom podstawowy maj 2014r.

Komentarz do arkusza maturalnego z matematyki, poziom podstawowy maj 2014r. Komentarz do arkusza maturalnego z matematyki, poziom podstawowy maj 2014r. Podczas tegorocznego kursu do każdego działu matematyki przygotowałem średnio około 60 zadań zamkniętych i około 40 zadań otwartych,

Bardziej szczegółowo

ZBIÓR ZADAŃ Z MATEMATYKI DLA KLASY II GIMNAZJUM W ZAKRESIE WYMAGAŃ KONIECZNYCH I PODSTAWOWYCH

ZBIÓR ZADAŃ Z MATEMATYKI DLA KLASY II GIMNAZJUM W ZAKRESIE WYMAGAŃ KONIECZNYCH I PODSTAWOWYCH ZBIÓR ZADAŃ Z MATEMATYKI DLA KLASY II GIMNAZJUM W ZAKRESIE WYMAGAŃ KONIECZNYCH I PODSTAWOWYCH Opracowała: nauczyciel matematyki mgr Małgorzata Drejka Legionowo 007 SPIS TREŚCI ALGEBRA potęgi i pierwiastki

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY 1. FUNKCJA KWADRATOWA rysuje wykres funkcji i podaje jej własności sprawdza algebraicznie, czy dany punkt należy

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 2 CZERWCA 2015. Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 2 CZERWCA 2015. Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 013 KOD UZUPEŁNIA ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM

Bardziej szczegółowo

Kryteria oceniania z zakresu klasy pierwszej opracowane w oparciu o program Matematyki z plusem dla Gimnazjum

Kryteria oceniania z zakresu klasy pierwszej opracowane w oparciu o program Matematyki z plusem dla Gimnazjum Kryteria oceniania z zakresu klasy pierwszej opracowane w oparciu o program Matematyki z plusem dla Gimnazjum DZIAŁ 1. LICZBY I DZIAŁANIA HASŁO PROGRAMOWE WIADOMOŚCI I UMIEJĘTNOŚCI PODSTAWOWE WIADOMOŚCI

Bardziej szczegółowo

Definicja: alfabetem. słowem długością słowa

Definicja: alfabetem. słowem długością słowa Definicja: Niech X będzie zbiorem niepustym. Zbiór ten będziemy nazywać alfabetem. Skończony ciąg elementów alfabetu X będziemy nazywać słowem a liczbę elementów tego ciągu nazywamy długością słowa. Na

Bardziej szczegółowo

VII Olimpiada Matematyczna Gimnazjalistów

VII Olimpiada Matematyczna Gimnazjalistów VII Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa, test próbny www.omg.edu.pl (wrzesień 2011 r.) Rozwiązania zadań testowych 1. Liczba krawędzi pewnego ostrosłupa jest o

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLAS IA I IB NA ROK SZKOLNY 2014/2015

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLAS IA I IB NA ROK SZKOLNY 2014/2015 WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLAS IA I IB NA ROK SZKOLNY 2014/2015 UŁAMKI ZWYKŁE I DZIESIĘTNE Rozpoznaje ułamki właściwe i niewłaściwe Rozszerza ułamek zwykły Skraca ułamek zwykły Zapisuje ułamek

Bardziej szczegółowo

Rozdział 4. Ciągi nieskończone. 4.1 Ciągi nieskończone

Rozdział 4. Ciągi nieskończone. 4.1 Ciągi nieskończone Rozdział 4 Ciągi nieskończone W rozdziale tym wprowadzimy pojęcie granicy ciągu. Dalej rozszerzymy to pojęcie na przypadek dowolnych funkcji. Jak zauważyliśmy we wstępie jest to najważniejsze pojęcie analizy

Bardziej szczegółowo

Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI

Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI Matematyka dla liceum ogólnokształcącego i technikum w zakresie podstawowym i rozszerzonym Z E S Z Y T M E T O D Y C Z N Y Miejski

Bardziej szczegółowo

Test kwalifikacyjny na I Warsztaty Matematyczne

Test kwalifikacyjny na I Warsztaty Matematyczne Test kwalifikacyjny na I Warsztaty Matematyczne Na pytania odpowiada się tak lub nie poprzez wpisanie odpowiednio T bądź N w pole obok pytania. W danym trzypytaniowym zestawie możliwa jest dowolna kombinacja

Bardziej szczegółowo

Ekonomia matematyczna - 1.2

Ekonomia matematyczna - 1.2 Ekonomia matematyczna - 1.2 6. Popyt Marshalla, a popyt Hicksa. Poruszać się będziemy w tzw. standardowym polu preferencji X,, gdzie X R n i jest relacją preferencji, która jest: a) rosnąca (tzn. x y x

Bardziej szczegółowo