Podciała, podciała generowane przez zbiór, rozszerzenia ciał.

Wielkość: px
Rozpocząć pokaz od strony:

Download "Podciała, podciała generowane przez zbiór, rozszerzenia ciał."

Transkrypt

1 Podciała, podciała generowane przez zbiór, rozszerzenia ciał.

2 Definicja Niech F będzie ciałem. Podzbiór L H zbioru F nazywamy podciałem ciała F (piszemy L ă F ), gdy pl, `æ LˆL, æ LˆL q jest ciałem. Jeżeli L ă F to mówimy, że F jest rozszerzeniem ciała L.

3 Przykłady: 1. Q ă R, 2. R ă C.

4 Twierdzenie Niech F będzie ciałem i niech H L Ă F. Następujące warunki są równoważne: 1. L ă F, 2. L ma następujące własności: 1 P y P Lpx y P y P Lpx y 1 P Lq.

5 Twierdzenie Niech R tl i : i P Iu będzie rodziną podciał ciała F ; 1. Ş ipi L i jest podciałem ciała F, 2. Ť ipi L i jest podciałem ciała F, o ile R jest łańcuchem.

6 Definicja Niech F będzie ciałem oraz A Ă F pewnym zbiorem. Niech ponadto L ă F. Najmniejsze w sensie inkluzji podciało ciała F zawierające zbiór L Y A (tj. przekrój wszystkich podciał ciała F zawierających L Y A) nazywamy podciałem generowanym przez A nad L (rozszerzeniem ciała L o zbiór A, rozszerzeniem ciała L o elementy zbioru A) i oznaczamy LpAq. Jeżeli A ta 1,..., a n u, to ciało Lpta 1,..., a n uq nazywamy podciałem skończenie generowanym przez A nad L (rozszerzeniem skończenie generowanym ciała L o zbiór A) i oznaczamy Lpa 1,..., a n q. Jeżeli A tau to skończenie generowane rozszerzenie Lpaq ciała L o element a nazywamy rozszerzeniem prostym.

7 Twierdzenie (o postaci elementów rozszerzenia ciała o zbiór) Niech F będzie ciałem oraz A Ă F pewnym zbiorem. Niech L ă F. Wówczas LpAq t fpa 1,..., a n q gpa 1,..., a n q : f, g P Lrx 1,..., x n s, gpa 1,..., a n q 0, a 1,..., a

8 Wniosek 1. Niech F będzie ciałem oraz niech a P F. Niech L ă F. Wówczas Lpaq t x 0 ` x 1 a `... ` x n a n y 0 ` y 1 a `... ` y n a n : y 0`y 1 a`...`y n a n 0, n P NYt0u 2. Niech F będzie ciałem oraz niech ta 1,..., a n u Ă F. Niech K ă F. Wówczas Lpa 1,..., a n q t fpa 1,..., a n q gpa 1,..., a n q : f, g P Lrx 1,..., x n s, gpa 1,..., a n q (to znaczy elementy rozszerzenia ciała o zbiór skończony są wartościami funkcji wymiernych o współczynnikach z danego ciała).

9 Przykłady: 3. Niech F C,? 2 P C, L Q ă C. Wówczas: Qp? 2q t fp? 2q gp? 2q : f, g P Qrxs, gp? 2q 0u.

10 Definicja Niech F będzie ciałem oraz niech L 1 ă F, L 2 ă F,..., L n ă F. Podciało generowane przez L 2 Y... Y L n nad L 1 nazywamy kompozytem (lub iloczynem) ciał L 1, L 2,..., L n i oznaczamy L 1 L 2... L n.

11 Uwaga 1. Niech F będzie ciałem oraz niech L 1 ă F, L 2 ă F. Niech ta 1,..., a n u Ă F oraz tb 1,..., b m u Ă F. Wówczas: L 1 pa 1,..., a n q L 2 pb 1,..., b m q L 1 L 2 pa 1,..., a n, b 1,..., b m q. 2. Niech F będzie ciałem oraz niech L ă F. Niech ta 1,..., a n u Ă F oraz tb 1,..., b m u Ă F. Wówczas Lpa 1,..., a n q Lpb 1,..., b m q Lpa 1,..., a n, b 1,..., b m q. 3. Niech F będzie ciałem oraz niech L 1 ă F, L 2 ă F. Niech K 1 ă L 1 oraz niech K 2 ă L 2. Wówczas K 1 K 2 ă L 1 L 2.

12 Uwaga Niech F, L będą ciałami, niech φ : F Ñ L będzie homomorfizmem. Wówczas φ jest różnowartościowy.

13 Dowód. Ponieważ φ jest homomorfizmem, więc ker φ Ÿ F. Ponieważ jednak F jest ciałem, więc ker φ P tt0u, F u. Gdyby ker φ F, to w szczególności φp1q 0, a więc φ nie byłby homomorfizmem. Zatem ker φ t0u.

14 Definicja Niech F będzie ciałem, niech F ă K i F ă L będą jego rozszerzeniami. Niech ponadto φ : K Ñ L będzie homomorfizmem. Jeśli φæ F id F, to φ nazywamy F -zanurzeniem.

15 Twierdzenie Niech F, L będą ciałami, niech F 1 ă F, L 1 ă L, niech φ : F Ñ L będzie homomorfizmem. Wówczas: 1. φpf 1 q ă L, 2. φ 1 pl 1 q ă F.

16 Charakterystyka pierścienia i ciała, ciała proste i klasyfikacja ciał prostych.

17 Definicja Niech R będzie pierścieniem. Liczbę: # 0, gdy rp1q 8 w grupie addytywnej pr, `q, charr n, gdy rp1q n w grupie addytywnej pr, `q, nazywamy charakterystyką pierścienia R.

18 Przykłady: 1. charz 0, charq 0; 2. charz 4 4, charz 7 7; 3. charrrxs 0; 4. charz 5 rxs 5.

19 Uwaga Niech R będzie pierścieniem. Odwzorowanie φ : Z Ñ R dane wzorem φpmq m 1 jest homomorfizmem pierścieni. Jeśli charr 0, to ker φ t0u. Jeśli charr n, to ker φ pnq.

20 Dowód. Bez trudu pokazujemy, że φ jest homomorfizmem. Załóżmy, że charr 0. Pokażemy, że ker φ t0u. Ustalmy m P ker φ. Wówczas m P ker φ ô m 1 0 Ø m 0. Załóżmy, że charr n. Pokażemy, że ker φ pnq. Ustalmy m P ker φ. Wówczas m P ker φ ô m 1 0 Ø n m ô m P pnq.

21 Wniosek Niech R będzie pierścieniem. 1. Jeśli charr 0, to R zawiera podpierścień izomorficzny z Z. 2. Jeśli charr n, to R zawiera podpierścień izomorficzny z Z n.

22 Dowód. 1. Zdefiniujmy odwzorowanie φ : Z Ñ R wzorem φpmq m 1. Oznaczmy R 1 im φ. Wobec twierdzenia o izomorfizmie Z{ ker φ R 1. Ponieważ ker φ t0u, więc R Z{t0u Z. 2. Analogicznie.

23 Wniosek Niech R będzie pierścieniem. 1. Jeśli R jest pierścieniem całkowitym, to charr 0 lub charr p dla pewnej liczby pierwszej p. 2. Jeśli R jest ciałem, to charr 0 lub charr p dla pewnej liczby pierwszej p.

24 Dowód. 1. Przypuśćmy, że charr pq, dla pewnych liczb pierwszych p, q. Wówczas R zawiera pierścień izomorficzny z Z pq, a więc p, q P DpZ pq q Ă DpRq, co daje sprzeczność. 2. Oczywiste.

25 Przykłady: 5. charr 0; 6. charz p p, gdzie p jest dowolną liczbą pierwszą.

26 Uwaga Niech R będzie pierścieniem i niech R 1 ă R. Wówczas charr 1 charr.

27 Uwaga Niech R będzie pierścieniem i niech charr p. Wówczas b P Rpa ` bq p a p ` b p ; b P Rpa ` bq pn a pn ` b pn.

28 Dowód. 1. Ponieważ oraz więc 2. Indukcja. pa ` bq p pÿ k 0 ˆp a k b p k k P t1,..., p 1up k P t1,..., p 1u a k b p k 0. k

29 Definicja i uwaga Niech F będzie ciałem i niech charf p. Wówczas odwzorowanie φ : F Ñ F dane wzorem φpaq a p jest homomorfizmem ciał. Obraz im φ oznaczamy przez F p i nazywamy p-potęgą ciała F.

30 Definicja Ciało F nazywamy ciałem prostym gdy nie zawiera podciał właściwych.

31 Twierdzenie Niech F będzie ciałem. Wówczas F zawiera podciało proste.

32 Dowód. Zdefiniujmy K č tl : L ă F u. Wówczas K jest podciałem ciała F. Pokażemy, że K jest ciałem prostym. Ustalmy M ă K. Wówczas M ă F, więc K Ă M i tym samym K M.

33 Twierdzenie (o klasyfikacji ciał prostych) Niech F będzie ciałem prostym. Wówczas 1. Jeśli charf 0, to F Q. 2. Jeśli charf n, to F Z p.

34 Dowód: 1. Odwzorowanie φ : Z Ñ F dane wzorem φpmq m 1 jest różnowartościowym homomorfizmem. Wobec własności uniwersalnej ciała ułamków, istnieje dokładnie jeden homomorfizm różnowartościowy ψ : pzq Ñ F taki, że ψ λ φ, gdzie λ : Z Ñ pzq jest homomorfizmem kanonicznym. Ponadto im ψ ă F i skoro F jest proste, więc im ψ F. Wobec tego Q pzq F.

35 2. Odwzorowanie φ : Z Ñ F dane wzorem φpmq m 1 jest homomorfizmem takim, że ker φ ppq. Wobec twierdzenia o homomorfizmie istnieje dokładnie jeden homomorfizm ψ : Z{ppq Ñ F taki, że ψ κ ψ, gdzie κ : Z Ñ Z{ppq jest epimorfizmem kanonicznym. Ponadto Z{ppq jest ciałem, więc ψ jest różnowartościowy. Ponadto im ψ ă F i skoro F jest ciałem prostym, to im ψ F. Wobec tego Z p F.

36 Wniosek Niech F będzie ciałem. Wówczas 1. Jeśli charf 0, to F zawiera podciało izomorficzne z Q. 2. Jeśli charf p, to F zawiera podciało izomorficzne z Z p.

37 Wniosek Niech F będzie ciałem o p elementach, gdzie p jest liczbą pierwszą. Wówczas F Z p.

38 Dowód. Charakterystyka ciała F jest różna od 0, a zatem równa pewnej liczbie pierwszej q. Tym samym F zawiera podciało izomorficzne z Z q. W szczególności grupa addytywna pf, `q ciała F zawiera jako podgrupę grupę izomorficzną z grupą addytywną pz q, `q ciała Z q. Stąd, wobec twierdzenia Lagrange a, q p i w konsekwencji q p.

39 Definicja Niech F będzie ciałem. Pierścieniem prostym zawartym w ciele F nazywamy Z, jeżeli charf 0, Z p, jeżeli charf p, dla pewnej liczby pierwszej p.

40 Uwaga Niech F będzie ciałem prostym, niech F ă K i F ă L będą jego rozszerzeniami. Niech ponadto φ : K Ñ L będzie homomorfizmem. Wówczas φ jest F -zanurzeniem.

41 Dowód. Z definicji φp1q 1 i skoro φ jest homomorfizmem, to φ 1looooomooooon `... ` 1 1looooomooooon `... ` 1. m Jeśli charf p, to dowód jest zakończony. Jeśli charf 0, to, dalej z definicji homomorfizmu, mamy: 1looooomooooon `... ` 1 φ 1looooomooooon `... ` 1 1looooomooooon `... ` 1 φ m 1 looooomooooon `... ` 1 m m. looooomooooon 1 `... ` 1 n φ 1looooomooooon `... ` 1 n n m

Pojęcie pierścienia.

Pojęcie pierścienia. Pojęcie pierścienia. Definicja: Niech R będzie zbiorem niepustym. 1. Algebrę pr, `, q nazywamy pierścieniem, gdy pr, `q jest grupą abelową, działanie jest łaczne oraz rozdzielne względem działania `, to

Bardziej szczegółowo

Rozszerzenie ciała o pierwiastek wielomianu. Ciało rozkładu wielomianu.

Rozszerzenie ciała o pierwiastek wielomianu. Ciało rozkładu wielomianu. Rozszerzenie ciała o pierwiastek wielomianu. Ciało rozkładu wielomianu. Twierdzenie (Kroneckera) Niech F będzie ciałem, niech f P F rxs. Wówczas istnieje rozszerzenie L ciała F takie, w którym f ma pierwiastek.

Bardziej szczegółowo

Baza i stopień rozszerzenia.

Baza i stopień rozszerzenia. Baza i stopień rozszerzenia. Uwaga Niech F będzie ciałem, L rozszerzeniem ciała F. Wówczas L jest przestrzenią liniową nad ciałem F. Definicja Niech F będzie ciałem, L rozszerzeniem ciała F. 1. Wymiar

Bardziej szczegółowo

Ciała skończone. 1. Ciała: podstawy

Ciała skończone. 1. Ciała: podstawy Ciała skończone 1. Ciała: podstawy Definicja 1. Każdy zbiór liczb, w którym są wykonalne wszystkie cztery działania z wyjątkiem dzielenia przez 0 i który zawiera więcej niż jedną liczbę, nazywamy ciałem

Bardziej szczegółowo

Definicja. Niech pg, q będzie grupą. Wówczas ciąg podgrup grupy G zdefiniowany indukcyjnie wzorami G p0q G,

Definicja. Niech pg, q będzie grupą. Wówczas ciąg podgrup grupy G zdefiniowany indukcyjnie wzorami G p0q G, Grupy rozwiązalne. Definicja Niech pg, q będzie grupą. Wówczas ciąg podgrup grupy G zdefiniowany indukcyjnie wzorami G p0q G, G piq rg pi 1q, G pi 1q s, dla i P N nazywamy górnym ciągiem centralnym grupy

Bardziej szczegółowo

14. Wykład 14: Grupa Galois wielomianu. Zasadnicze twierdzenia teorii Galois. Rozszerzenia rozwiązalne, cykliczne i abelowe

14. Wykład 14: Grupa Galois wielomianu. Zasadnicze twierdzenia teorii Galois. Rozszerzenia rozwiązalne, cykliczne i abelowe 14. Wykład 14: Grupa Galois wielomianu. Zasadnicze twierdzenia teorii Galois. Rozszerzenia rozwiązalne, cykliczne i abelowe. 14.1. Grupa Galois wielomianu. Definicja 14.1. Niech F będzie ciałem, niech

Bardziej szczegółowo

Wielomiany wielu zmiennych.

Wielomiany wielu zmiennych. Wielomiany wielu zmiennych. Definicja i uwaga: Niech R będzie dowolnym pierścieniem. Wielomianem zmiennych x 1,..., x n o współczynnikach z pierścienia R będziemy nazywali wyrażenie postaci ÿ a i1...i

Bardziej szczegółowo

. : a 1,..., a n F. . a n Wówczas (F n, F, +, ) jest przestrzenią liniową, gdzie + oraz są działaniami zdefiniowanymi wzorami:

. : a 1,..., a n F. . a n Wówczas (F n, F, +, ) jest przestrzenią liniową, gdzie + oraz są działaniami zdefiniowanymi wzorami: 9 Wykład 9: Przestrzenie liniowe i podprzestrzenie Definicja 9 Niech F będzie ciałem Algebrę (V, F, +, ), gdzie V, + jest działaniem w zbiorze V zwanym dodawaniem wektorów, a jest działaniem zewnętrznym

Bardziej szczegółowo

= b i M i [x], gdy charf = p, to a i jest pierwiastkiem wielomianu x n i

= b i M i [x], gdy charf = p, to a i jest pierwiastkiem wielomianu x n i 15. Wykład 15: Rozszerzenia pierwiastnikowe. Elementy wyrażające się przez pierwiastniki. Rozwiązalność równań przez pierwiastniki. Równania o dowolnych współczynnikach. 15.1. Rozszerzenia pierwiastnikowe.

Bardziej szczegółowo

Uwaga 1.2. Niech (G, ) będzie grupą, H 1, H 2 < G. Następujące warunki są równoważne:

Uwaga 1.2. Niech (G, ) będzie grupą, H 1, H 2 < G. Następujące warunki są równoważne: 1. Wykład 1: Produkty grup. Produkty i koprodukty grup abelowych. Przypomnijmy konstrukcje słabych iloczynów (sum) prostych i iloczynów (sum) prostych grup znane z kursowego wykładu algebry. Ze względu

Bardziej szczegółowo

12. Wykład 12: Algebraiczne domkniecie ciała. Wielokrotne pierwiastki wielomianów. Rózniczkowanie wielomianów. Elementy rozdzielcze.

12. Wykład 12: Algebraiczne domkniecie ciała. Wielokrotne pierwiastki wielomianów. Rózniczkowanie wielomianów. Elementy rozdzielcze. 12. Wykład 12: Algebraiczne domkniecie ciała. Wielokrotne pierwiastki wielomianów. Rózniczkowanie wielomianów. Elementy rozdzielcze. Rozszerzenia rozdzielcze i pojedyncze. Rozszerzenia normalne. 12.1.

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 6: Ciała skończone i kongruencje Gniewomir Sarbicki 24 lutego 2015 Relacja przystawania Definicja: Mówimy, że liczby a, b Z przystają modulo m (co oznaczamy jako a = b (mod

Bardziej szczegółowo

1. R jest grupą abelową względem działania + (tzn. działanie jest łączne, przemienne, istnieje element neutralny oraz element odwrotny)

1. R jest grupą abelową względem działania + (tzn. działanie jest łączne, przemienne, istnieje element neutralny oraz element odwrotny) Rozdział 1 Pierścienie i ideały Definicja 1.1 Pierścieniem nazywamy trójkę (R, +, ), w której R jest zbiorem niepustym, działania + : R R R i : R R R są dwuargumentowe i spełniają następujące warunki dla

Bardziej szczegółowo

Twierdzenie 15.3 (o postaci elementów rozszerzenia ciała o zbiór). Niech F będzie ciałem oraz A F pewnym zbiorem. Niech L<F.

Twierdzenie 15.3 (o postaci elementów rozszerzenia ciała o zbiór). Niech F będzie ciałem oraz A F pewnym zbiorem. Niech L<F. 15. Wyład 15: Podciała, podciała geerowae przez zbiór, rozszerzeia ciał. Charaterystya pierścieia i ciała, ciała proste i lasyfiacja ciał prostych. 15.1. Podciała, podciała geerowae przez zbiór, rozszerzeia

Bardziej szczegółowo

Podstawowe pojęcia teorii podzielności.

Podstawowe pojęcia teorii podzielności. Podstawowe pojęcia teorii podzielności. Definicja Niech pr, `, q będzie pierścieniem 1 całkowitym. Mówimy, że element a dzieli b, a, b P R, (lub że a jest dzielnikiem b, lub że b jest wielokrotnością a)

Bardziej szczegółowo

(6) Homomorfizm φ : P R nazywamy epimorfizmem kategoryjnym, jeśli dla każdego pierścienia. jeśli φ ψ 1 = φ ψ 2, to ψ 1 = ψ 2 ;

(6) Homomorfizm φ : P R nazywamy epimorfizmem kategoryjnym, jeśli dla każdego pierścienia. jeśli φ ψ 1 = φ ψ 2, to ψ 1 = ψ 2 ; 10. Wykład 10: Homomorfizmy pierścieni, ideały pierścieni. Ideały generowane przez zbiory. 10.1. Homomorfizmy pierścieni, ideały pierścieni. Definicja 10.1. Niech P, R będą pierścieniami. (1) Odwzorowanie

Bardziej szczegółowo

1 Określenie pierścienia

1 Określenie pierścienia 1 Określenie pierścienia Definicja 1. Niech P będzie zbiorem, w którym określone są działania +, (dodawanie i mnożenie). Mówimy, że struktura (P, +, ) jest pierścieniem, jeżeli spełnione są następujące

Bardziej szczegółowo

1 Grupy. 1.1 Grupy. 1.2 Podgrupy. 1.3 Dzielniki normalne. 1.4 Homomorfizmy

1 Grupy. 1.1 Grupy. 1.2 Podgrupy. 1.3 Dzielniki normalne. 1.4 Homomorfizmy 1 Grupy 1.1 Grupy 1.1.1. Niech G będzie taką grupa, że (ab) 2 = a 2 b 2 dla dowolnych a, b G. Udowodnić, że grupa G jest abelowa. 1.1.2. Niech G będzie taką grupa, że (ab) 1 = a 1 b 1 dla dowolnych a,

Bardziej szczegółowo

1. Określenie pierścienia

1. Określenie pierścienia 1. Określenie pierścienia Definicja 1. Niech P będzie zbiorem, w którym określone są działania +, (dodawanie i mnożenie). Mówimy, że struktura (P, +, ) jest pierścieniem, jeżeli spełnione są następujące

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ PIERŚCIENIE, CIAŁA I HOMOMORFIZMY

ALGEBRA Z GEOMETRIĄ PIERŚCIENIE, CIAŁA I HOMOMORFIZMY ALGEBRA Z GEOMETRIĄ 1/10 PIERŚCIENIE, CIAŁA I HOMOMORFIZMY Piotr M. Hajac Uniwersytet Warszawski Wykład 3, 16.10.2013 Typeset by Jakub Szczepanik. Definicja pierścienia 2/10 Zbiór R wyposażony w dwa działania

Bardziej szczegółowo

Robert Kowalczyk. Zbiór zadań z teorii miary i całki

Robert Kowalczyk. Zbiór zadań z teorii miary i całki Robert Kowalczyk Zbiór zadań z teorii miary i całki 2 Zadanie 1 Pokazać, że poniższe dwie definicje σ-ciała M są równoważne: (i) Rodzinę M podzbiorów przestrzeni X nazywamy σ-ciałem jeżeli zachodzą następujące

Bardziej szczegółowo

Wielomiany i rozszerzenia ciał

Wielomiany i rozszerzenia ciał Wielomiany i rozszerzenia ciał Maciej Grzesiak 1 Pierścień wielomianów 1.1 Pojęcia podstawowe Z wielomianami spotykamy się już w pierwszych latach nauki w szkole średniej. Jest to bowiem najprostsza pojęciowo

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 6: Ciała skończone i kongruencje Gniewomir Sarbicki 2 marca 2017 Relacja przystawania Definicja: Mówimy, że liczby a, b Z przystają modulo m (co oznaczamy jako a = b (mod m)),

Bardziej szczegółowo

Wyk lad 14 Cia la i ich w lasności

Wyk lad 14 Cia la i ich w lasności Wyk lad 4 Cia la i ich w lasności Charakterystyka cia la Określenie cia la i w lasności dzia lań w ciele y ly omówione na algerze liniowej. Stosujac terminologie z teorii pierścieni możemy powiedzieć,

Bardziej szczegółowo

... [a n,b n ] kn [M 1,M 2 ], gdzie a i M 1, b i M 2, dla i {1,..., n}. Wówczas: [a 1,b 1 ] k 1. ... [a n,b n ] kn =(a 1 b 1 a 1

... [a n,b n ] kn [M 1,M 2 ], gdzie a i M 1, b i M 2, dla i {1,..., n}. Wówczas: [a 1,b 1 ] k 1. ... [a n,b n ] kn =(a 1 b 1 a 1 4. Wykład 4: Grupy rozwiązalne i nilpotentne. Definicja 4.1. Niech (G, ) będzie grupą. Wówczas (1) ciąg podgrup grupy G zdefiniowany indukcyjnie wzorami G (0) = G, G (i) =[G (i 1),G (i 1) ], dla i N nazywamy

Bardziej szczegółowo

Wniosek Niech R będzie pierścieniem, niech I R. WówczasI R wtedy i tylko wtedy, gdy I jest jądrem pewnego homomorfizmu.

Wniosek Niech R będzie pierścieniem, niech I R. WówczasI R wtedy i tylko wtedy, gdy I jest jądrem pewnego homomorfizmu. 11. Wykład 11: Pierścień ilorazowy, twierdzenie o homomorfizmie. Ideały pierwsze i maksymalne. 11.1. Pierścień ilorazowy, twierdzenie o homomorfizmie. Definicja i Uwaga 11.1. Niech R będzie pierścieniem,

Bardziej szczegółowo

ciałem F i oznaczamy [L : F ].

ciałem F i oznaczamy [L : F ]. 11. Wykład 11: Baza i stopień rozszerzenia. Elementy algebraiczne i przestępne. Rozszerzenia algebraiczne i skończone. 11.1. Baza i stopień rozszerzenia. Uwaga 11.1. Niech F będzie ciałem, L rozszerzeniem

Bardziej szczegółowo

i=0 a ib k i, k {0,..., n+m}. Przypuśćmy, że wielomian

i=0 a ib k i, k {0,..., n+m}. Przypuśćmy, że wielomian 9. Wykład 9: Jednoznaczność rozkładu w pierścieniach wielomianów. Kryteria rozkładalności wielomianów. 9.1. Jednoznaczność rozkładu w pierścieniach wielomianów. Uwaga 9.1. Niech (R, +, ) będzie pierścieniem

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ CIAŁO FUNKCJI WYMIERNYCH

ALGEBRA Z GEOMETRIĄ CIAŁO FUNKCJI WYMIERNYCH ALGEBRA Z GEOMETRIĄ 1/10 CIAŁO FUNKCJI WYMIERNYCH Piotr M. Hajac Uniwersytet Warszawski Wykład 7, 13.11.2013 Typeset by Jakub Szczepanik. Ułamki pierścienia całkowitego Cel: Wprowadzenie pojęcia funkcji

Bardziej szczegółowo

Kombinacje liniowe wektorów.

Kombinacje liniowe wektorów. Kombinacje liniowe wektorów Definicja: Niech V będzie przestrzenią liniową nad ciałem F, niech A V Zbiór wektorów A nazywamy liniowo niezależnym, jeżeli m N v,, v m A a,, a m F [a v + + a m v m = θ a =

Bardziej szczegółowo

5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów.

5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów. 5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów. Algebra jest jednym z najstarszych działów matematyki dotyczącym początkowo tworzenia metod rozwiązywania równań

Bardziej szczegółowo

im = (P )={b 2 R : 9a 2 P [b = (a)]} nazywamy obrazem homomorfizmu.

im = (P )={b 2 R : 9a 2 P [b = (a)]} nazywamy obrazem homomorfizmu. 61 7. Wyk ad 7: Homomorfizmy pierúcieni, idea y pierúcieni. Idea y generowane przez zbiory. PierúcieÒ ilorazowy, twierdzenie o homomorfizmie. Idea y pierwsze i maksymalne. 7.1. Homomorfizmy pierúcieni,

Bardziej szczegółowo

Działania Definicja: Działaniem wewnętrznym w niepustym zbiorze G nazywamy funkcję działającą ze zbioru GxG w zbiór G.

Działania Definicja: Działaniem wewnętrznym w niepustym zbiorze G nazywamy funkcję działającą ze zbioru GxG w zbiór G. Działania Definicja: Działaniem wewnętrznym w niepustym zbiorze G nazywamy funkcję działającą ze zbioru GxG w zbiór G. Przykłady działań wewnętrznych 1. Dodawanie i mnożenie są działaniami wewnętrznymi

Bardziej szczegółowo

Ćwiczenia 1 - Pojęcie grupy i rzędu elementu

Ćwiczenia 1 - Pojęcie grupy i rzędu elementu Algebra 1 Ćwiczenia 1 - Pojęcie grupy i rzędu elementu Definicje i podstawowe własności Definicja 1. Niech X będzie niepustym zbiorem. Działaniem w zbiorze X nazywamy dowolne odwzorowanie (funkcję) działające

Bardziej szczegółowo

Rodzinę spełniającą trzeci warunek tylko dla sumy skończonej nazywamy ciałem (algebrą) w zbiorze X.

Rodzinę spełniającą trzeci warunek tylko dla sumy skończonej nazywamy ciałem (algebrą) w zbiorze X. 1 σ-ciała Definicja 1.1 (σ - ciało) σ - ciałem (σ - algebrą) w danym zbiorze X (zwanym przestrzenią) nazywamy rodzinę M pewnych podzbiorów zbioru X, spełniającą trzy warunki: 1 o M; 2 o jeśli A M, to X

Bardziej szczegółowo

9 Przekształcenia liniowe

9 Przekształcenia liniowe 9 Przekształcenia liniowe Definicja 9.1. Niech V oraz W będą przestrzeniami liniowymi nad tym samym ciałem F. Przekształceniem liniowym nazywamy funkcję ϕ : V W spełniającą warunek (LM) v1,v 2 V a1,a 2

Bardziej szczegółowo

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ WSHE, O/K-CE 10. Homomorfizmy Definicja 1. Niech V, W będą dwiema przestrzeniami liniowymi nad ustalonym ciałem, odwzorowanie ϕ : V W nazywamy homomorfizmem

Bardziej szczegółowo

B jest liniowo niezależny V = lin (B) 1. Układ pusty jest bazą przestrzeni trywialnej {θ}. a i v i = i I. b i v i, (a i b i ) v i = θ.

B jest liniowo niezależny V = lin (B) 1. Układ pusty jest bazą przestrzeni trywialnej {θ}. a i v i = i I. b i v i, (a i b i ) v i = θ. 8 Baza i wymiar Definicja 8.1. Bazą przestrzeni liniowej nazywamy liniowo niezależny układ jej wektorów, który generuję tę przestrzeń. Innymi słowy, układ B = (v i ) i I wektorów z przestrzeni V jest bazą

Bardziej szczegółowo

Grupy, pierścienie i ciała

Grupy, pierścienie i ciała Grupy, pierścienie i ciała Definicja: Niech A będzie niepustym zbiorem. Działaniem wewnętrznym (lub, krótko, działaniem) w zbiorze A nazywamy funkcję : A A A. Niech ponadto B będzie niepustym zbiorem.

Bardziej szczegółowo

Uniwersytet w Białymstoku. Wykład monograficzny

Uniwersytet w Białymstoku. Wykład monograficzny Uniwersytet w Białymstoku Wydział Matematyczno-Fizyczny Instytut Matematyki dr hab. Ryszard Andruszkiewicz Wykład monograficzny Wykład monograficzny prowadzony dla studentów V roku matematyki przez dr

Bardziej szczegółowo

Podstawowe struktury algebraiczne

Podstawowe struktury algebraiczne Maciej Grzesiak Podstawowe struktury algebraiczne 1. Wprowadzenie Przedmiotem algebry było niegdyś przede wszystkim rozwiązywanie równań. Obecnie algebra staje się coraz bardziej nauką o systemach matematycznych.

Bardziej szczegółowo

Skończone rozszerzenia ciał

Skończone rozszerzenia ciał Skończone rozszerzenia ciał Notkę tę rozpoczniemy od definicji i prostych własności wielomianu minimalnego, następnie wprowadzimy pojecie rozszerzenia pojedynczego o element algebraiczny, udowodnimy twierdzenie

Bardziej szczegółowo

020 Liczby rzeczywiste

020 Liczby rzeczywiste 020 Liczby rzeczywiste N = {1,2,3,...} Z = { 0,1, 1,2, 2,...} m Q = { : m, n Z, n 0} n Operacje liczbowe Zbiór Dodawanie Odejmowanie Mnożenie Dzielenie N Z Q Pytanie Dlaczego zbiór liczb wymiernych nie

Bardziej szczegółowo

13. Cia la. Rozszerzenia cia l.

13. Cia la. Rozszerzenia cia l. 59 13. Cia la. Rozszerzenia cia l. Z rozważań poprzedniego paragrafu wynika, że jeżeli wielomian f o wspó lczynnikach w ciele K jest nierozk ladalny, to pierścień ilorazowy K[X]/(f) jest cia lem zawieraja

Bardziej szczegółowo

Algebrą nazywamy strukturę A = (A, {F i : i I }), gdzie A jest zbiorem zwanym uniwersum algebry, zaś F i : A F i

Algebrą nazywamy strukturę A = (A, {F i : i I }), gdzie A jest zbiorem zwanym uniwersum algebry, zaś F i : A F i Algebrą nazywamy strukturę A = (A, {F i : i I }), gdzie A jest zbiorem zwanym uniwersum algebry, zaś F i : A F i A (symbol F i oznacza ilość argumentów funkcji F i ). W rozważanych przez nas algebrach

Bardziej szczegółowo

O pewnych związkach teorii modeli z teorią reprezentacji

O pewnych związkach teorii modeli z teorią reprezentacji O pewnych związkach teorii modeli z teorią reprezentacji na podstawie referatu Stanisława Kasjana 5 i 12 grudnia 2000 roku 1. Elementy teorii modeli Będziemy rozważać język L składający się z przeliczalnej

Bardziej szczegółowo

Algebra liniowa z geometrią. wykład I

Algebra liniowa z geometrią. wykład I Algebra liniowa z geometrią wykład I 1 Oznaczenia N zbiór liczb naturalnych, tutaj zaczynających się od 1 Z zbiór liczb całkowitych Q zbiór liczb wymiernych R zbiór liczb rzeczywistych C zbiór liczb zespolonych

Bardziej szczegółowo

G. Plebanek, MIARA I CAŁKA Zadania do rozdziału 1 28

G. Plebanek, MIARA I CAŁKA Zadania do rozdziału 1 28 G. Plebanek, MIARA I CAŁKA Zadania do rozdziału 1 28 1.9 Zadania 1.9.1 Niech R będzie pierścieniem zbiorów. Zauważyć, że jeśli A, B R to A B R i A B R. Sprawdzić, że (R,, ) jest także pierścieniem w sensie

Bardziej szczegółowo

Pojęcia wstępne. Piotr P. Karwasz. Kraków, 22 kwietnia 2017 r. Uniwersytet Gdański

Pojęcia wstępne. Piotr P. Karwasz. Kraków, 22 kwietnia 2017 r. Uniwersytet Gdański Piotr P. Karwasz Uniwersytet Gdański Kraków, 22 kwietnia 2017 r. Redukcja Niech p Z będzie liczbą pierwszą oraz π p kanonicznym homomorfizmem: π p : Z F p. Twierdzenie (wersja dla studentów) Niechaj w(x)

Bardziej szczegółowo

Relacje. opracował Maciej Grzesiak. 17 października 2011

Relacje. opracował Maciej Grzesiak. 17 października 2011 Relacje opracował Maciej Grzesiak 17 października 2011 1 Podstawowe definicje Niech dany będzie zbiór X. X n oznacza n-tą potęgę kartezjańską zbioru X, tzn zbiór X X X = {(x 1, x 2,..., x n ) : x k X dla

Bardziej szczegółowo

1. Wykład NWD, NWW i algorytm Euklidesa.

1. Wykład NWD, NWW i algorytm Euklidesa. 1.1. NWD, NWW i algorytm Euklidesa. 1. Wykład 1 Twierdzenie 1.1 (o dzieleniu z resztą). Niech a, b Z, b 0. Wówczas istnieje dokładnie jedna para liczb całkowitych q, r Z taka, że a = qb + r oraz 0 r< b.

Bardziej szczegółowo

1 Pierścienie, algebry

1 Pierścienie, algebry Podstawowe Własności Pierścieni Literatura Pomocnicza: 1. S.Balcerzyk,T.Józefiak, Pierścienie przemienne, PWN 2. A.Białynicki-Birula, Algebra, PWN 3. J.Browkin, Teoria ciał, PWN 4. D.Cox, J.Little, D.O

Bardziej szczegółowo

O ROZMAITOŚCIACH TORYCZNYCH

O ROZMAITOŚCIACH TORYCZNYCH O ROZMAITOŚCIACH TORYCZNYCH NA PODSTAWIE REFERATU NGUYEN QUANG LOCA Przez cały referat K oznaczać będzie ustalone ciało algebraicznie domknięte. 1. Przez cały referat N oznaczać będzie ustaloną kratę izomorficzną

Bardziej szczegółowo

Ą Ą Ś Ń Ć Ó Ą Ą

Ą Ą Ś Ń Ć Ó Ą Ą Ń Ś Ą Ż Ż Ś Ż Ź Ń Ą Ą Ś Ń Ć Ó Ą Ą Ś Ą Ź Ń Ó Ś Ć Ż Ą Ą Ć Ż Ó Ą Ó Ą Ć Ś Ą Ą Ń Ń Ń Ń Ń Ą Ń Ą Ń Ń Ń Ń Ą Ń Ń Ń Ń Ń Ń Ń Ń Ś Ą Ń Ś Ś Ó Ś Ó Ą Ń Ś Ą Ś Ą Ś Ś Ż Ą Ą Ą Ą Ą Ś Ą Ś Ó Ą Ś Ś Ś Ń Ń Ż Ą Ś Ś Ą Ń Ż

Bardziej szczegółowo

Kierunek i poziom studiów: Sylabus modułu: Wstęp do algebry i teorii liczb (03-M01N-WATL) Nazwa wariantu modułu (opcjonalnie): -

Kierunek i poziom studiów: Sylabus modułu: Wstęp do algebry i teorii liczb (03-M01N-WATL) Nazwa wariantu modułu (opcjonalnie): - Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Sylabus modułu: Wstęp do algebry i teorii liczb (03-M01N-WATL) Nazwa wariantu modułu (opcjonalnie): - 1. Informacje ogólne koordynator

Bardziej szczegółowo

Zadania z Algebry Studia Doktoranckie Instytutu Matematyki Uniwersytetu Śląskiego 1

Zadania z Algebry Studia Doktoranckie Instytutu Matematyki Uniwersytetu Śląskiego 1 Zadania z Algebry Studia Doktoranckie Instytutu Matematyki Uniwersytetu Śląskiego 1 1. (a) Udowodnić, że jeśli grupa ilorazowa G/Z(G) jest cykliczna, to grupa G jest abelowa (Z(G) oznacza centrum grupy

Bardziej szczegółowo

Ó Ż Ń Ń ć ż ć Ż Ż ć ż Ż ć

Ó Ż Ń Ń ć ż ć Ż Ż ć ż Ż ć ż ż Ą ż Ż Ć Ó Ż Ń Ń ć ż ć Ż Ż ć ż Ż ć Ż ć Ż ć Ż Ó Ż ć Ó Ą ż ć Ż Ż ć ż ć Ż ć Ż Ż Ż Ż Ż Ż Ó Ż Ż Ó Ż Ż Ś Ś Ś ż Ż Ś Ó ż Ż Ż Ń Ż ż ć ż ż ż ż Ń Ś Ó Ż Ś Ż ć Ś Ś ć ż Ś Ą Ż Ś Ń Ń Ś Ż ż Ś ż Ż Ą Ż Ś Ż ż Ś ć Ś Ś Ż

Bardziej szczegółowo

Struktury formalne, czyli elementy Teorii Modeli

Struktury formalne, czyli elementy Teorii Modeli Struktury formalne, czyli elementy Teorii Modeli Szymon Wróbel, notatki z wykładu dra Szymona Żeberskiego semestr zimowy 2016/17 1 Język 1.1 Sygnatura językowa Sygnatura językowa: L = ({f i } i I, {P j

Bardziej szczegółowo

Ż ż Ź ś ż ż ś Ą Ą Ź ż Ż ś ż ż Ż Ż ż ć ś ś ć ć Ń ź ś Ż ć ż ż ś ś ś

Ż ż Ź ś ż ż ś Ą Ą Ź ż Ż ś ż ż Ż Ż ż ć ś ś ć ć Ń ź ś Ż ć ż ż ś ś ś ś ż ź ż ś Ż ż Ź ś ż ż ś Ą Ą Ź ż Ż ś ż ż Ż Ż ż ć ś ś ć ć Ń ź ś Ż ć ż ż ś ś ś ż ż ś ź Ą ż Ń ż ż ż Ż ź ż ść Ż ś ź ź ś Ś ź ś ś Ą Ż ś Ż ś Ż ś ż ż ś ż ść ś ż ż ś ż ś ż ć ś ś ź ś ż ś ż ź ż ż ź ź Ó ż ć ż ż ż ź

Bardziej szczegółowo

Ś

Ś ź Ś ź Ż Ż Ż Ż ć Ś Ó Ń ć ć Ż Ż Ż Ż ń ć Ż Ż Ż Ż Ą Ś ć Ź Ż ć ć Ż ć ć Ż Ż Ż Ż Ż ć Ó Ó ź Ż Ż ź ź Ś Ż ć Ż ć ć Ą Ż ź Ż ź Ż ć Ż Ż Ż Ź Ż Ż ź ć ć ć ć Ż ć ć ć ć Ż Ż ź ź Ż Ż Ś ć Ź ć ć ć ć ć Ż ć ć ć ć ć Ż ć ć ć Ż Ń

Bardziej szczegółowo

1. Struktury zbiorów 2. Miara 3. Miara zewnętrzna 4. Miara Lebesgue a 5. Funkcje mierzalne 6. Całka Lebesgue a. Analiza Rzeczywista.

1. Struktury zbiorów 2. Miara 3. Miara zewnętrzna 4. Miara Lebesgue a 5. Funkcje mierzalne 6. Całka Lebesgue a. Analiza Rzeczywista. Literatura P. Billingsley, Miara i prawdopodobieństwo, PWN, Warszawa 1997, P. R. Halmos, Measure theory, Springer-Verlag, 1994, W, Kołodziej, naliza matematyczna, PWN, Warszawa 1978, S. Łojasiewicz, Wstęp

Bardziej szczegółowo

Teoria miary i całki

Teoria miary i całki Teoria miary i całki Spis treści 1 Wstęp 3 2 lgebra zbiorów 5 3 Pierścienie, ciała, σ ciała zbiorów. 7 3.1 Definicja pierścienia ciała i σ ciała............... 7 3.2 Pierścień, ciało i σ ciało generowane

Bardziej szczegółowo

Teoria ciała stałego Cz. I

Teoria ciała stałego Cz. I Teoria ciała stałego Cz. I 1. Elementy teorii grup Grupy symetrii def. Grupy Zbiór (skończony lub nieskończony) elementów {g} tworzy grupę gdy: - zdefiniowana operacja mnożenia (złożenia) g 1 g 2 = g 3

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa

Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa 2.1. σ ciało (algebra) zdarzeń Katarzyna Rybarczyk-Krzywdzińska losowe Zdarzenie losowe to pewien podzbiór przestrzeni zdarzeń

Bardziej szczegółowo

2 Kongruencje 5. 4 Grupy 9. 5 Grupy permutacji Homomorfizmy grup Pierścienie 16

2 Kongruencje 5. 4 Grupy 9. 5 Grupy permutacji Homomorfizmy grup Pierścienie 16 DB Algebra dla informatyków 1 semestr letni 2018 1 Spis treści 1 Podzielność w Z, algorytm Euklidesa 2 2 Kongruencje 5 3 Twierdzenia: Fermata, Eulera i Wilsona 7 4 Grupy 9 5 Grupy permutacji 12 6 Homomorfizmy

Bardziej szczegółowo

Definicje- Algebra III

Definicje- Algebra III Definicje- Algebra III Opracowane na podstawie notatek z wykładu w semetrze zimowym roku 2007r. (mocno niekompletne- umieszczono kilka pierwszych wykładów) 21.11.2007r. Algebry Definicja1(K-algebra)- Przestrzeń

Bardziej szczegółowo

jest przemienny. h f J.

jest przemienny. h f J. 12. Wykład 12: Moduły injektyne. Deinicja 12.1. Niec będzie pierścieniem, leym -modułem. eżeli dla każdego -modułu M i omomorizmu : M Ñ zacodzi następujący arunek: dla każdego leego -modułu N idlakażdego

Bardziej szczegółowo

0.1 Pierścienie wielomianów

0.1 Pierścienie wielomianów 0.1 Pierścienie wielomianów Zadanie 1. Znaleźć w pierścieniu Z 5 [X] drugi wielomian określający tę samą funkcję, co wielomian X 2 X + 1. (Odp. np. X 5 + X 2 2X + 1). Zadanie 2. Znaleźć sumę i iloczyn

Bardziej szczegółowo

Zadania z Algebry liniowej 3 semestr zimowy 2008/2009

Zadania z Algebry liniowej 3 semestr zimowy 2008/2009 Zadania z Algebry liniowej 3 semestr zimowy 2008/2009 1. Niech V będzie przestrzenią wektorową nad ciałem K i niech 0 K oraz θ V będą elementem zerowym ciała K i wektorem zerowym przestrzeni V. Posługując

Bardziej szczegółowo

Wyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm

Wyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm Wyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm 1 Grupa ilorazowa Niech H b edzie dzielnikiem normalnym grupy G. Oznaczmy przez G/H zbiór wszystkich warstw lewostronnych grupy G wzgl edem podgrupy

Bardziej szczegółowo

Zadanie 2. Obliczyć rangę dowolnego elementu zbioru uporządkowanego N 0 N 0, gdy porządek jest zdefiniowany następująco: (a, b) (c, d) (a c b d)

Zadanie 2. Obliczyć rangę dowolnego elementu zbioru uporządkowanego N 0 N 0, gdy porządek jest zdefiniowany następująco: (a, b) (c, d) (a c b d) Matemaryka dyskretna - zadania Zadanie 1. Opisać zbiór wszystkich elementów rangi k zbioru uporządkowanego X dla każdej liczby naturalnej k, gdy X jest rodziną podzbiorów zbioru skończonego Y. Elementem

Bardziej szczegółowo

Algebra konspekt wykladu 2009/10 1. du na dzialanie na zbioze G, jeśli dla dowolnych elementów x, y S, x y S. S jest zamkniety ze wzgle

Algebra konspekt wykladu 2009/10 1. du na dzialanie na zbioze G, jeśli dla dowolnych elementów x, y S, x y S. S jest zamkniety ze wzgle Algebra konspekt wykladu 2009/10 1 3 Podgrupy Niech S g mówimy, że podzbiór S jest zamknie ty ze wzgle du na dzialanie na zbioze G, jeśli dla dowolnych elementów x, y S, x y S. S jest zamkniety ze wzgle

Bardziej szczegółowo

Algebra i jej zastosowania - konspekt wykładu

Algebra i jej zastosowania - konspekt wykładu Algebra i jej zastosowania - konspekt wykładu Agata Pilitowska MiNI - rok akademicki 2018/2019 Spis treści 1 Pierścienie i ciała 1 11 Definicja i przykłady 1 12 Pierścienie całkowite 3 13 Pierścienie Euklidesa

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ LINIOWA NIEZALEŻNOŚĆ, ROZPINANIE I BAZY

ALGEBRA Z GEOMETRIĄ LINIOWA NIEZALEŻNOŚĆ, ROZPINANIE I BAZY ALGEBRA Z GEOMETRIĄ 1/10 LINIOWA NIEZALEŻNOŚĆ, ROZPINANIE I BAZY Piotr M. Hajac Uniwersytet Warszawski Wykład 10, 11.12.2013 Typeset by Jakub Szczepanik. Geometryczne intuicje Dla pierścienia R = R mamy

Bardziej szczegółowo

Algorytm Euklidesa. ZADANIE 1. Oblicz korzystając z algorytmu Euklidesa: (a) NWD(120, 195), (b) NWD(80, 208), (c) NWD(36, 60, 90),

Algorytm Euklidesa. ZADANIE 1. Oblicz korzystając z algorytmu Euklidesa: (a) NWD(120, 195), (b) NWD(80, 208), (c) NWD(36, 60, 90), Algorytm Euklidesa ZADANIE 1. Oblicz korzystając z algorytmu Euklidesa: (a) NWD(120, 195), (b) NWD(80, 208), (c) NWD(36, 60, 90), (d) NWD(120, 168, 280), (e) NWD(30, 42, 70, 105), (f) NWW[120, 195], (g)

Bardziej szczegółowo

Algebra Abstrakcyjna i Kodowanie Lista zadań

Algebra Abstrakcyjna i Kodowanie Lista zadań Algebra Abstrakcyjna i Kodowanie Lista zadań Jacek Cichoń, WPPT PWr, Wrocław 2016/17 1 Grupy Zadanie 1 Pokaż, że jeśli grupy G i H są abelowe, to grupa G H też jest abelowa. Zadanie 2 Niech X będzie niepustym

Bardziej szczegółowo

1.1 Definicja. 1.2 Przykład. 1.3 Definicja. Niech G oznacza dowolny, niepusty zbiór.

1.1 Definicja. 1.2 Przykład. 1.3 Definicja. Niech G oznacza dowolny, niepusty zbiór. 20. Definicje i przykłady podstawowych struktur algebraicznych (grupy, pierścienie, ciała, przestrzenie liniowe). Pojęcia dotyczące przestrzeni liniowych (liniowa zależność i niezależność układu wektorów,

Bardziej szczegółowo

Podstawowe struktury algebraiczne

Podstawowe struktury algebraiczne Rozdział 1 Podstawowe struktury algebraiczne 1.1. Działania wewnętrzne Niech X będzie zbiorem niepustym. Dowolną funkcję h : X X X nazywamy działaniem wewnętrznym w zbiorze X. Działanie wewnętrzne, jak

Bardziej szczegółowo

ż ż ż ń ń Ł ń ń ż Ż ń ż ń Ż Ż

ż ż ż ń ń Ł ń ń ż Ż ń ż ń Ż Ż Ó Ń ń ż Ń ż ż ż ń ń Ł ń ń ż Ż ń ż ń Ż Ż ń ć ż ń ż ń ż Ą Ż ć ż ć ć ź ć ć ń Ż Ż ć Ż Ą Ż ć ń ć ć ż ć ć ć ć ć ć ż ć ć ż ć ń ć ć ż ć ć ż ż ć ż ć Ż ż ć Ż Ż Ż ż ż ć Ą ń Ż Ń ń Ą Ą ż Ż ż ż ż ż ż ż ż ż ż ż ż ż ż

Bardziej szczegółowo

LICZBY RZECZYWISTE AKSJOMATYKA I KONSTRUKCJA DEDEKINDA

LICZBY RZECZYWISTE AKSJOMATYKA I KONSTRUKCJA DEDEKINDA [O]dwoływanie się do intucji geometrycznych w pierwszej prezentacji rachunku różniczkowego uważam za niezmiernie użyteczne z dydaktycznego punktu widzenia, a nawet za niezastąpione, gdy nie chcemy tracić

Bardziej szczegółowo

n=0 Dla zbioru Cantora prawdziwe są wersje lematu 3.6 oraz lematu 3.8 przy założeniu α = :

n=0 Dla zbioru Cantora prawdziwe są wersje lematu 3.6 oraz lematu 3.8 przy założeniu α = : 4. Zbiory borelowskie. Zbiór wszystkich podzbiorów liczb naturalnych będziemy oznaczali przez ω. Najmniejszą topologię na zbiorze ω, w której zbiory {A ω : x A ω \ y}, gdzie x oraz y są zbiorami skończonymi,

Bardziej szczegółowo

Zasada indukcji matematycznej

Zasada indukcji matematycznej Zasada indukcji matematycznej Twierdzenie 1 (Zasada indukcji matematycznej). Niech ϕ(n) będzie formą zdaniową zmiennej n N 0. Załóżmy, że istnieje n 0 N 0 takie, że 1. ϕ(n 0 ) jest zdaniem prawdziwym,.

Bardziej szczegółowo

Matematyka dyskretna. 1. Relacje

Matematyka dyskretna. 1. Relacje Matematyka dyskretna 1. Relacje Definicja 1.1 Relacją dwuargumentową nazywamy podzbiór produktu kartezjańskiego X Y, którego elementami są pary uporządkowane (x, y), takie, że x X i y Y. Uwaga 1.1 Jeśli

Bardziej szczegółowo

1. Informacje ogólne. 2. Opis zajęć dydaktycznych i pracy studenta. wykład

1. Informacje ogólne. 2. Opis zajęć dydaktycznych i pracy studenta. wykład Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Matematyka, studia I stopnia, rok I Sylabus modułu: Wstęp do algebry i teorii liczb (03-MO1S-12-WATL) Nazwa wariantu modułu (opcjonalnie):

Bardziej szczegółowo

Ł Ą ź ź Ż ź Ź Ó Ó ź Ł

Ł Ą ź ź Ż ź Ź Ó Ó ź Ł Ł Ń Ó Ł Ą ź ź Ż ź Ź Ó Ó ź Ł ź Ń Ł Ź Ś Ł ź Ś Ó Ć Ą Ń Ą ź ź ź Ż ź ź Ź Ć ź ź Ł ź Ó Ą Ą Ł Ą Ą Ś ŚĆ Ł ź ź ź ź Ł ź Ń ź ź ź ź ź ź ź ź Ż Ą Ą Ó Ą Ł Ś Ś ź Ł ź Ł ź ź ź Ź Ź Ś Ź Ź Ó ź ź Ś Ó Ł Ś ź Ł ź ź Ź ź ź ź ź Ś

Bardziej szczegółowo

Ó Ń Ś Ą Ś Ń Ś Ś

Ó Ń Ś Ą Ś Ń Ś Ś ź Ó Ń Ś Ą Ś Ń Ś Ś Ś Ą Ś Ń Ś Ę Ń Ą Ą Ś ź Ś ć Ó Ą Ś Ć ć Ś ć Ń ć Ń Ó Ą Ś ć Ó ć ć ć Ń Ę Ń ź ź ć ć Ę ć ć Ń Ń Ę Ą ź Ą Ń Ń Ą Ą Ą Ń ź ć Ń ź Ę ź ć Ą ć Ń ć Ś Ś Ń ć Ń ź ć Ś ź ź Ń Ń Ń ź Ę Ę ź Ę Ś ź Ń ź ć Ń Ń Ń

Bardziej szczegółowo