Ð ÓÖÝØÑÝ ØÖÙ ØÙÖÝ ÒÝ Ñ Ø Ö Ý ÛÝ ÓÛ ËØÙ Þ ÓÞÒ ÈÂÏËÌÃ Á ËÌÊÍÃÌÍÊ Æ À Ä ÇÊ ÌÅ ÁÁ Ñ Ø Ö Ý ÔÓÑÓÒ Þ µ Ï Ã ÈÖÓ Ð Ñ ÛÝ ÞÙ Ò ÈÓÐ Ó Â ÔÓ ÏÝ Þ ËÞ Ó Ì Ò ÃÓÑÔÙØ ÖÓ

Wielkość: px
Rozpocząć pokaz od strony:

Download "Ð ÓÖÝØÑÝ ØÖÙ ØÙÖÝ ÒÝ Ñ Ø Ö Ý ÛÝ ÓÛ ËØÙ Þ ÓÞÒ ÈÂÏËÌÃ Á ËÌÊÍÃÌÍÊ Æ À Ä ÇÊ ÌÅ ÁÁ Ñ Ø Ö Ý ÔÓÑÓÒ Þ µ Ï Ã ÈÖÓ Ð Ñ ÛÝ ÞÙ Ò ÈÓÐ Ó Â ÔÓ ÏÝ Þ ËÞ Ó Ì Ò ÃÓÑÔÙØ ÖÓ"

Transkrypt

1 Á ËÌÊÍÃÌÍÊ Æ À Ä ÇÊ ÌÅ ÁÁ Ñ Ø Ö Ý ÔÓÑÓÒ Þ µ Ï Ã ÈÖÓ Ð Ñ ÛÝ ÞÙ Ò ÈÓÐ Ó Â ÔÓ ÏÝ Þ ËÞ Ó Ì Ò ÃÓÑÔÙØ ÖÓÛÝ Ï Ö Þ Û Ð ØÓÔ ¾¼¼ Ð ØÓÔ ¾¼¼ ËÐ ½ È Û Ê Ñ Ð

2 Ð ÓÖÝØÑ Û ÒÝ ÒÝ Ð ÓÖÝØÑ ØÙÖÒ Ð ÔÖÓ Ð ÑÙ ¾¹ Ó Ó Ó Û Ð Ó Ð ÓÖÝØÑ Ó Ó k Ð ÓÖÝØÑ Ò ÖÒÝ Ð ÓÖÝØÑ ÒØ ÖÔÓÐ Ý Òݺ ÛÝ Ù ÈÐ Ò ÙÒ Û Ö ÙÑ Ò ÙÔÓÖÞ ÓÛ Ò Ð ÓÖÝØÑ Ö ÙÖ ÒÝ ÒÝ Ð ÔÖÓ Ð ÑÙ Ñ Ò¹Ñ Ü ÙÒ Û Ö ÙÑ ÙÔÓÖÞ ÓÛ Ò Ð ØÓÔ ¾¼¼ ËÐ ¾ È Û Ê Ñ Ð

3 ÖÓÞÛ Þ Ò Ò ÛÒ Ð ÓÖÝØÑ ÀÓ Ö Ð ÓÖÝØÑ ÐÙÑ ¹ ÐÓÝ ¹ÈÖ ØØ ¹Ê Ú Ø ¹ÌÖ Ò ÛÝ Ù º ÈÐ Ò ÔÖÓ Ð Ñ k¹ø Ó Ó Ó Û Ð Ó Ð ØÓÔ ¾¼¼ ËÐ È Û Ê Ñ Ð

4 ÍÒ Û Ö ÙÑ Ò ÙÔÓÖÞ ÓÛ Ò Ð ÓÖÝØÑ Û ÒÝ Òݵ Ð ØÓÔ ¾¼¼ ËÐ È Û Ê Ñ Ð

5 ÔÖÓ Ð Ñ ÛÝ ÞÙ Ò µº Æ A Þ Ø Ð n 1 Ö ÒÝ Ð Þ Ò ØÙÖ ÐÒÝ º ÈÓ Ò Ø ÖÝ ÛÝÞÒ ÞÝ Ò Ø Ð Ý i Þ 0 i < n Ø A[i] = 0 Þ ÑÝ Ð ÓÖÝØÑ ÍÒ Û Ö ÙÑ Ò ÙÔÓÖÞ ÓÛ Ò Ð ÓÖÝØÑ Û ÒÝ ÒÝ ÔÓ ÞÙ Û ÒÝ Ð Ñ ÒØ ÞÒ Ù Û Ø Ð Ý Aµº ÊÓÞÛ Þ Ò º Ð ÓÖÝØÑ Û ÒÝ ÒÝ ÒØ Ò ÁÒ Ü ÒØ Ò ÒØ Òµ ß»» ÛÔ n 1 ÒØ ÓÖ ¼ Ò µ ¼µ Ö ØÙÖÒ»» Û A [i] = 0 Ð ÈÝØ Ò º Â Ø Þ Ó ÓÒÓ Þ ÓÛ Ð ÓÖÝØÑÙ Ò ÁÒ Ü Û ÔÖÞÝÔ Ù Ö Ò Ñ ÈÝØ Ò º Â Ø Þ Ó ÓÒÓ Þ ÓÛ Ð ÓÖÝØÑÙ Ò ÁÒ Ü Û ÔÖÞÝÔ Ù Ô ÝÑ ØÝÞÒÝÑ ÈÝØ Ò º Â Ø Þ Ó ÓÒÓ Ô Ñ ÓÛ Ð ÓÖÝØÑÙ Ò ÁÒ Ü ÌÛ Ö Þ Ò º Ð ÓÖÝØÑ Ò ÁÒ Ü Ø ÓÔØÝÑ ÐÒÝÑ ÖÓÞÛ Þ Ò Ñ ÔÖÓ Ð ÑÙ ÛÝ ÞÙ Ò Û ÙÒ Û Ö ÙÑ Ò ÙÔÓÖÞ ÓÛ ÒÝѺ Ð ØÓÔ ¾¼¼ ËÐ È Û Ê Ñ Ð

6 ÍÒ Û Ö ÙÑ Ò ÙÔÓÖÞ ÓÛ Ò Ð ÓÖÝØÑ ØÙÖÒ Ð ÔÖÓ Ð ÑÙ ¾¹ Ó Ó Ó Û Ð Ó µ Ð ØÓÔ ¾¼¼ ËÐ È Û Ê Ñ Ð

7 ÔÖÓ Ð Ñ ¾¹ Ó Ó Ó Û Ð Ó µº Æ A Þ Ø Ð n Ö ÒÝ Ð Þ Ò ØÙÖ ÐÒÝ Ò n = 2 k k N + º ÈÓ Ð ÓÖÝØÑ Ø ÖÝ ÛÝÞÒ ÞÝ ÖÙ Ó Ó Û Ð Ó Ð Ñ ÒØ Ø Ð Ý Aº Þ ÍÒ Û Ö ÙÑ Ò ÙÔÓÖÞ ÓÛ Ò Ð ÓÖÝØÑ ØÙÖÒ ÊÓÞÛ Þ Ò º Ð ÓÖÝØÑ Û ÒÝ ÒÝ ÒØ Ò ¾Ò ÒØ Ò ÒØ Òµ ß»» ÛÔ n = 2 k k N + ÒØ Ñ Ü Å Ü ¼ ½ µ Å Ò ¼ ½ µ ÓÖ ¾ Ò µ Ñ Üµ ß Ñ Ü Ñ Ü Ð Ð µ Ö ØÙÖÒ»» Û sec Ø ÖÙ Ñ Ó Ó Û Ð Ó Ð Ñ ÒØ Ñ Ø Ð Ý Ð ÈÝØ Ò º Â Ø Þ Ó ÓÒÓ Þ ÓÛ Ð ÓÖÝØÑÙ Ò ¾Ò Û ÔÖÞÝÔ Ù Ö Ò Ñ ÈÝØ Ò º Â Ø Þ Ó ÓÒÓ Þ ÓÛ Ð ÓÖÝØÑÙ Ò ¾Ò Û ÔÖÞÝÔ Ù Ô ÝÑ ØÝÞÒÝÑ ÈÝØ Ò º Â Ø Þ Ó ÓÒÓ Ô Ñ ÓÛ Ð ÓÖÝØÑÙ Ò ¾Ò Ð ØÓÔ ¾¼¼ ËÐ È Û Ê Ñ Ð

8 Ð ÓÖÝØÑÙ ØÙÖÒ º Ù Ù ÖÞ ÛÓ ØÙÖÒ Ù Þ Ó Ò Þ Þ ÔÖÞ Ó Þ ØÝÐ Ó Á ÒÔº Ð A = [9,3, 5,7,2,1, 6,4] n = 8 ÓØÖÞÝÑÙ ÑÝ ÛÝ ÖÝÛ Ý ÁÐ ÔÓÖ ÛÒ Ð Ñ ÒØ Û Ø Ð Ý A Ø Ò Þ ÒÝ Ó Þ Ù ÓÛ Ò ÖÞ Û ØÙÖÒ Ù Û ÈÝØ Ò º ÔÖÞÝ Þ Ø º n = 8µ Û ÔÖÞÝÔ Ù Ó ÐÒÝÑ ÖÓÞÛ ÒÝÑ ÍÒ Û Ö ÙÑ Ò ÙÔÓÖÞ ÓÛ Ò Ð ÓÖÝØÑ ØÙÖÒ ÈÝØ Ò º Â Ò ÑÒ ÞÝÑ Ó ÞØ Ñ ÑÓ Ò ÞÒ Ð õ Ð Ñ ÒØ ¾¹ Ó Ó Û Ð Ó Ð ØÓÔ ¾¼¼ ËÐ È Û Ê Ñ Ð

9 Ð Ñ ÒØ ¾¹ Ó Ó Û Ð Ó Ø ÒÝÑ Þ ØÝ Ø Ö ÔÖÞ Ö Ý Þ Ð Ñ ÒØ Ñ ÏÒ Ó º ÞÝÐ Ò Û ÞÝÑ Â Ø Þ Ó ÓÒÓ Þ ÓÛ Ô Ñ ÓÛ Ð ÓÖÝØÑÙ ØÙÖÒ Û ÖÓÞÛ ÒÝÑ ÈÝØ Ò º Û ÔÖÞÝÔ Ù Ó ÐÒÝÑ ÔÖÞÝ Þ ÍÒ Û Ö ÙÑ Ò ÙÔÓÖÞ ÓÛ Ò Ð ÓÖÝØÑ ØÙÖÒ ÌÛ Ö Þ Ò º Ð ÓÖÝØÑ ØÙÖÒ Ø ÓÔØÝÑ ÐÒÝÑ ÖÓÞÛ Þ Ò Ñ Ð ÔÖÓ Ð ÑÙ ÛÝ ÞÙ Ò ¾¹ Ó Ó Ó Û Ð Ó Ð Ñ ÒØÙ Û ÙÒ Û Ö ÙÑ Ò ÙÔÓÖÞ ÓÛ ÒÝѺ Ð ØÓÔ ¾¼¼ ËÐ È Û Ê Ñ Ð

10 ÍÒ Û Ö ÙÑ Ò ÙÔÓÖÞ ÓÛ Ò Ð ÓÖÝØÑ Ö ÙÖ ÒÝ ÒÝ Ð ÔÖÓ Ð ÑÙ Ñ Ò¹Ñ Üµ Ð ØÓÔ ¾¼¼ ËÐ ½¼ È Û Ê Ñ Ð

11 ÍÒ Û Ö ÙÑ Ò ÙÔÓÖÞ ÓÛ Ò Ð ÓÖÝØÑ Ö ÙÖ ÒÝ ÒÝ Ð ÔÖÓ Ð ÑÙ Ñ Ò¹Ñ Ü ÔÖÓ Ð Ñ Ñ Ò¹Ñ Üµº Æ A Þ Ø Ð n Ð Þ Ò ØÙÖ ÐÒÝ Þ n = 2 k Ò k N + ÈÓ Ð ÓÖÝØÑ Ø ÖÝ ÛÝÞÒ ÞÝ Ð Ñ ÒØ Ñ Ò Ñ ÐÒÝ Ñ ÝÑ ÐÒÝ Û Ø Ð Ý Aº º ÊÓÞÛ Þ Ò º Ð ÓÖÝØÑ Û ÒÝ ÒÝ ÒØ ÒØµ Ò Å ÒÅ Ü ½ ÒØ Ò ÒØ Òµ ß»» ÛÔ n = 2 k k N + ÒØ Ñ Ò Å Ò ¼ ½ µ Ñ Ü Å Ü ¼ ½ µ ÓÖ ¾ Ò µ ß Ñ Òµ Ñ Ò Ñ Üµ Ñ Ü Ð Ö ØÙÖÒ Ñ Ò Ñ Üµ»» Û min = min (A) max = max (A) Ð ÈÝØ Ò º Â Ø Þ Ó ÓÒÓ Þ ÓÛ Ð ÓÖÝØÑÙ Ò Å ÒÅ Ü ½ Û ÔÖÞÝÔ Ù Ö Ò Ñ ÈÝØ Ò º Â Ø Þ Ó ÓÒÓ Þ ÓÛ Ð ÓÖÝØÑÙ Ò Å ÒÅ Ü ½ Û ÔÖÞÝÔ Ù Ô ÝÑ ØÝÞÒÝÑ ÈÝØ Ò º Â Ø Þ Ó ÓÒÓ Ô Ñ ÓÛ Ð ÓÖÝØÑÙ Ò Å ÒÅ Ü ½ Ð ØÓÔ ¾¼¼ ËÐ ½½ È Û Ê Ñ Ð

12 ÁÐ ÔÓÖ ÛÒ Ð Ñ ÒØ Û Ø Ð Ý A Ø Ò Þ ÒÝ Ó Þ Ù ÓÛ Ò ÞÑÓ Ý ÓÛ Ò Ó ÈÝØ Ò º ØÙÖÒ Ù Û ÖÓÞÛ ÒÝÑ ÔÖÞÝ Þ Ø º n = 8µ ÖÞ Û ÍÒ Û Ö ÙÑ Ò ÙÔÓÖÞ ÓÛ Ò Ð ÓÖÝØÑ Ö ÙÖ ÒÝ ÒÝ Ð ÔÖÓ Ð ÑÙ Ñ Ò¹Ñ Ü Ð ÓÖÝØÑÙ Ö ÙÖ ÒÝ Ò Óº Ù Ù ÞÑÓ Ý ÓÛ Ò ÖÞ ÛÓ ØÙÖÒ Ù Þ Ó Ò Þ Þ Á ØÝÐ Ó Ð Ñ ÒØÝ Ñ Ò Ñ ÐÒÝ Ñ ÝÑ ÐÒÝ ÒÔº A = [9,3, 5,7,2,1, 6,4] n = 8 ÔÖÞ Ó Þ ÓØÖÞÝÑÙ ÑÝ Ð ØÓÔ ¾¼¼ ËÐ ½¾ È Û Ê Ñ Ð

13 ÍÒ Û Ö ÙÑ Ò ÙÔÓÖÞ ÓÛ Ò Ð ÓÖÝØÑ Ö ÙÖ ÒÝ ÒÝ Ð ÔÖÓ Ð ÑÙ Ñ Ò¹Ñ Ü ÊÓÞÛ Þ Ò º Ð ÓÖÝØÑ Ö ÙÖ ÒÝ ÒÝ ÒØ ÒØµ Ò Å ÒÅ Ü ¾ ÒØ Ò ÒØ Ð ÒØ Öµ ß»» ÛÔ n = 2 k k N + ÒØ Ñ Ò Ñ Ü ÒØ ÒØµ Ö ÙÐØ½ Ö ÙÐØ¾ ֹР½µ Ö Ð µ Ö ØÙÖÒ Ð Ö µ Ð Ö ØÙÖÒ Ö Ð µ Ð ß Ö ÙÐØ½ Ò Å ÒÅ Ü ¾ Ð Ð Öµ Ú ¾µ Ö ÙÐØ¾ Ò Å ÒÅ Ü ¾ Ð Öµ Ú ¾µ ½ Öµ Ö ÙÐØ½ ¼ Ö ÙÐØ¾ ¼ µ Ñ Ò Ö ÙÐØ½ ¼ Ð Ñ Ò Ö ÙÐØ¾ ¼ Ö ÙÐØ½ ½ Ö ÙÐØ¾ ½ µ Ñ Ü Ö ÙÐØ½ ½ Ð Ñ Ü Ö ÙÐØ¾ ½ Ö ØÙÖÒ Ñ Ò Ñ Üµ»» Û min = min (A [l], A [l + 1],..., [r]) A max = max (A [l], A [l + 1],..., A [r])»» Ð Ð Ð ØÓÔ ¾¼¼ ËÐ ½ È Û Ê Ñ Ð

14 ÍÒ Û Ö ÙÑ Ò ÙÔÓÖÞ ÓÛ Ò Ð ÓÖÝØÑ Ö ÙÖ ÒÝ ÒÝ Ð ÔÖÓ Ð ÑÙ Ñ Ò¹Ñ Ü Þ ÓÛ Ð ÓÖÝØÑÙº ÓÛ ÔÖÞ Þ Ò Ù Þ ÛÞ Ð Ù Ò k Þ n = 2 k ÈÓÔÖ ÛÒÓ k N + º Þ Ò Ù Ð k = 1 Ø º n = 2 Þ Ó Þ r l = 1 Þ Ø Ñ ÛÝ ÓÒ ÒÝ Ø Ô ÖÛ ÞÝ Û ÖÙÒ Ò ØÖÙ Û ÖÙÒ ÓÛ Ö Ð µ Ö ØÙÖÒ Ð Ö µ Ð Ö ØÙÖÒ Ö Ð µ Ø ÛÝÒ Ð ÓÖÝØÑÙ Ø ÔÓÔÖ ÛÒÝ Þ Ó Ò Ò Ù Ý Ò Ð k = p Þ p 1 ÛÝÒ Ð ÓÖÝØÑÙ Ò Å ÒÅ Ü Ð Ø Ð Ý A ÖÓÞÑ ÖÙ n = 2 p Ø ÔÓÔÖ ÛÒÝ Ø Þ Ò Ù Ý Ò Ð k = p + 1 Þ p 1 ÛÝÒ Ð ÓÖÝØÑÙ Ò Å ÒÅ Ü Ð Ø Ð Ý A ÖÓÞÑ ÖÙ n = 2 p+1 Ø ÔÓÔÖ ÛÒÝ Ð ØÓÔ ¾¼¼ ËÐ ½ È Û Ê Ñ Ð

15 Ò ÙÔÓÖÞ ÓÛ Ò Ð ÓÖÝØÑ Ö ÙÖ ÒÝ ÒÝ Ð ÔÖÓ Ð ÑÙ Ñ Ò¹Ñ Ü ÍÒ Û Ö ÙÑ ÓÛ Ø ÞÝ Ð k 1 Ø º > n > Þ Ó Þ 2 r l 2 Þ Ø Ñ ÛÝ ÓÒ ÒÝ Ø ÖÙ Û ÖÙÒ > Ò ØÖÙ Û ÖÙÒ ÓÛ Ø Ö Ó ÔÓÞ Ø ÓÛ Ò ØÖÙ ÔÓ Ø Ö ÙÐØ½ Ò Å ÒÅ Ü ¾ Ð Ð Öµ Ú ¾µ Ö ÙÐØ¾ Ò Å ÒÅ Ü ¾ Ð Öµ Ú ¾µ ½ Öµ Þ Ò Ù Ý Ò Ó ÓÐ ÒÓ Þ Ó Ò ÃÓÖÞÝ Ø Þ Ó Þ ( [ ]) l + r result1[0] = min A[l], A[l + 1],..., A, 2 ( [ ]) l + r result1[1] = max A[l], A[l + 1],..., A, 2 ( [ ] [ l + r l + r result2[0] = min A + 1, A 2 2 ( [ ] [ l + r l + r result2[1] = max A + 1, A 2 2 l = r + 1 = n n = 2 p º Þ l+r 2 l+r 2 ] ) + 2,..., A [r], ] ) + 2,..., A [r], Ð ØÓÔ ¾¼¼ ËÐ ½ È Û Ê Ñ Ð

16 Ò ÙÔÓÖÞ ÓÛ Ò Ð ÓÖÝØÑ Ö ÙÖ ÒÝ ÒÝ Ð ÔÖÓ Ð ÑÙ Ñ Ò¹Ñ Ü ÍÒ Û Ö ÙÑ ÓÛ Ø ÞÝ º º Ò ØÔÒ ÛÝ ÓÒ Ò Ò ØÖÙ Û ÖÙÒ ÓÛ Ö ÙÐØ½ ¼ Ö ÙÐØ¾ ¼ µ Ñ Ò Ö ÙÐØ½ ¼ Ð Ñ Ò Ö ÙÐØ¾ ¼ Ö ÙÐØ½ ½ Ö ÙÐØ¾ ½ µ Ñ Ü Ö ÙÐØ½ ½ Ð Ñ Ü Ö ÙÐØ¾ ½ Ö ØÙÖÒ Ñ Ò Ñ Üµ ËØ min = min(a[l], A[l + 1],..., A [r]), max = max (A[l], A[l + 1],..., A [r]), Þ r l = 2n = 2 2 p = 2 p+1 Ó Ó ÞÝ ÓÛ º ÏÒ Ó º Ð ÓÖÝØÑ Ò Å ÒÅ Ü ¾ Ø Þ ÓÛÓ ÔÓÔÖ ÛÒÝÑ ÖÓÞÛ Þ Ò Ñ ÔÖÓ Ð ÑÙ Ñ Ò¹Ñ Üº ÈÝØ Ò º  ÙÞ Ò ÓÛ Ø ÔÓÔÖ ÛÒÓ Ð ÓÖÝØÑÙ Ò Å ÒÅ Ü ¾ Ð ÔÖÓ Ð ÑÙ Ñ Ò¹Ñ Ü Ð ØÓÔ ¾¼¼ ËÐ ½ È Û Ê Ñ Ð

17 Þ ÓÛ º Æ T (n) Þ Ð Þ ÓÔ Ö ÔÓÖ ÛÒ ÛÝ ÓÒÙ Ð ÓÖÝØÑ Ó ÓÒÓ Ð ÒÝ ÖÓÞÑ ÖÙ n ÛØ Ý Ò Å ÒÅ Ü ¾ ÍÒ Û Ö ÙÑ Ò ÙÔÓÖÞ ÓÛ Ò Ð ÓÖÝØÑ Ö ÙÖ ÒÝ ÒÝ Ð ÔÖÓ Ð ÑÙ Ñ Ò¹Ñ Ü ÞÝÐ Ð n = 2 k k N + T T (n) = ( 2 k) = Ð 1 n = 2 2T ( ) n Ð n > 2, 1 Ð k = 1 2T ( 2 k 1) + Ð 2 k > 1, Ó Ø Ø ÞÒ T ( 2 k) = 3 2 2k ÞÝÐ T (n) = 3 2 n 2º 2 k = Ñ ÑÝ 1 T ( 2 1) = T (2) = = 1 Ó Ø ÒÓÛ Þ Ò Ù º 2 Ð ÍÞ Ò Ò º k > 1 Þ Ó Þ T ( 2 k) = 3 2 2k 2 ÛØ Ý Ð k + 1 Ñ ÑÝ ÑÝ Ð T ( 2 k+1) = 2T ( 2 k) Ò ÔÓ Ø Û Þ Ó Ò + 2 ( T 2 k+1) ( ) 3 = 2 2 2k = 3 2 k 2 = 3 2 2k+1 2 Ó Ó ÞÝ ÓÛ Ò Ù Ý Òݺ ËØ Ð n = 2 k k N + Þ Ó Þ T (n) = 3 2 n 2º Ð ØÓÔ ¾¼¼ ËÐ ½ È Û Ê Ñ Ð

18 µº ÈÓ Ð ÓÖÝØÑ Û ÒÝ ÒÝ Ð ÔÖÓ Ð ÑÙ Ñ Ò¹Ñ Ü Ø Ö Ó Ö Ò Þ Ó ÓÒÓ Ò Þ ØÓØÒ ÑÒ Þ Ò Þ Ó ÓÒÓ Þ ÓÛ Ð ÓÖÝØÑÙ Û ÒÝ Ò Ó Þ ÓÛ ÍÒ Û Ö ÙÑ Ò ÙÔÓÖÞ ÓÛ Ò Ð ÓÖÝØÑ Ö ÙÖ ÒÝ ÒÝ Ð ÔÖÓ Ð ÑÙ Ñ Ò¹Ñ Ü ÈÝØ Ò º Â Ø Þ Ó ÓÒÓ Þ ÓÛ Ð ÓÖÝØÑÙ Ò Å ÒÅ Ü ¾ Û ÔÖÞÝÔ Ù Ö Ò Ñ ÈÝØ Ò º Â Ø Þ Ó ÓÒÓ Þ ÓÛ Ð ÓÖÝØÑÙ Ò Å ÒÅ Ü ¾ Û ÔÖÞÝÔ Ù Ô ÝÑ ØÝÞÒÝÑ ÈÝØ Ò º Â Ø Þ Ó ÓÒÓ Ô Ñ ÓÛ Ð ÓÖÝØÑÙ Ò Å ÒÅ Ü ¾ ÌÛ Ö Þ Ò º Ð ÓÖÝØÑ Ö ÙÖ ÒÝ ÒÝ Ò Å ÒÅ Ü ¾ Ø ÓÔØÝÑ ÐÒÝÑ ÖÓÞÛ Þ Ò Ñ Ð ÔÖÓ Ð ÑÙ Ñ Ò¹Ñ Ü Û ÙÒ Û Ö ÙÑ Ò ÙÔÓÖÞ ÓÛ ÒÝѺ Ò Å ÒÅ Ü ½º Ð ØÓÔ ¾¼¼ ËÐ ½ È Û Ê Ñ Ð

19 ÍÒ Û Ö ÙÑ ÙÔÓÖÞ ÓÛ Ò Ð ÓÖÝØÑ Ó Ó k µ Ð ØÓÔ ¾¼¼ ËÐ ½ È Û Ê Ñ Ð

20 ÔÖÓ Ð Ñ ÛÝ ÞÙ Ò µº Æ A Þ ÙÔÓÖÞ ÓÛ Ò Ø Ð n 1 Ö ÒÝ Ð Þ Ò ÈÓ Ð ÓÖÝØÑ Ø ÖÝ ÛÝÞÒ ÞÝ Ò Ø Ð Ý i Þ 0 i < n Ø A[i] = x Ò ØÙÖ ÐÒÝ º ÞÝ Ð ÓÖÝØÑ Û ÒÝ ÒÝ Ò ÁÒ Ü Ø ÔÓÔÖ ÛÒÝÑ ÖÓÞÛ Þ Ò Ñ Ð ÔÖÓ Ð ÑÙ ÈÝØ Ò º Ø Ð ÓÒ ÞÒ Â Ð Ø ØÓ Ð ÓÖÝØÑÙ Ó Ó k º ÈÓÖ ÛÒÙ ÑÝ Ð Þ x Þ Ó k¹øýñ Ð Ñ ÒØ Ñ Ø Ð Ý A ÔÓÞÝÒ Á Ð Ñ ÒØÙ k¹ø Ó Ø º A[k], A[2k], A[3k],...º ÈÖÓ ÔÖÞ ÖÝÛ ÑÝ ÛØ Ý Ý A[ik] > x Ð Ó ÍÒ Û Ö ÙÑ ÙÔÓÖÞ ÓÛ Ò Ð ÓÖÝØÑ Ó Ó k x N Þ ÑÝ ÔÓ ÞÙ Û ÒÝ Ð Ñ ÒØ ÞÒ Ù Û Ø Ð Ý Aµº Ø Þ Ó ÓÒÓ Þ ÓÛ Ð ÓÖÝØÑÙ Ø Ó Ð ÓÖÝØÑÙ Û ÔÖÞÝÔ Ù Ö Ò Ñ Ø Þ Ó ÓÒÓ Þ ÓÛ Ð ÓÖÝØÑÙ Ø Ó Ð ÓÖÝØÑÙ Û ÔÖÞÝÔ Ù Ô ÝÑ ØÝÞÒÝÑ i Nº Ë Û ÒÝ Ò ÔÖÞ Ð ÑÝ k 1 Ð Ñ ÒØÝ Ô ÛÒ Ó A [ik k], A[ik (k 1)],..., A [ik 1]. ÈÖÞÝ º ËÞÙ ÑÝ Ò Ù Ð Þ Ý 15 Û Ø Ð Ý A = [2,3,7,9, 12,15,23, 24] Ð k = 3º Ð ØÓÔ ¾¼¼ ËÐ ¾¼ È Û Ê Ñ Ð

21 Ð Û ÖØÓ Ô Ö Ñ ØÖÙ k Ð ÓÖÝØÑ Ó Ó k Ñ Ò ÑÒ Þ Þ Ó ÓÒÓ ÈÝØ Ò º Ô ÝÑ ØÝÞÒ ÍÒ Û Ö ÙÑ ÙÔÓÖÞ ÓÛ Ò Ð ÓÖÝØÑ Ó Ó k ÊÓÞÛ Þ Ò º Ð ÓÖÝØÑ Ó Ó k ÒØ Ë Ó ÒØ Ò ÒØ Ò ÒØ ÒØ ܵ ß»» ÛÔ n 1 A [0] < A [1] <... < A [n 1] x A ÒØ ¼ Û Ð Ò Æ Ü µ»» ÒÞ x A [0], A [1],..., A [i k] ¹ Û Ð Üµ ½ Ö ØÙÖÒ»» Û A [i] = x Ð ÈÝØ Ò º Â Ø Þ Ó ÓÒÓ Þ ÓÛ Ð ÓÖÝØÑÙ Ó Ó k Û ÔÖÞÝÔ Ù Ö Ò Ñ ÈÝØ Ò º Â Ø Þ Ó ÓÒÓ Þ ÓÛ Ð ÓÖÝØÑÙ Ó Ó k Û ÔÖÞÝÔ Ù Ô ÝÑ ØÝÞÒÝÑ ÈÝØ Ò º Â Ø Þ Ó ÓÒÓ Ô Ñ ÓÛ Ð ÓÖÝØÑÙ Ó Ó k Ð ØÓÔ ¾¼¼ ËÐ ¾½ È Û Ê Ñ Ð

22 ÍÒ Û Ö ÙÑ ÙÔÓÖÞ ÓÛ Ò Ð ÓÖÝØÑ ÔÓ ÞÙ Û Ò ÖÒÝ µ Ð ØÓÔ ¾¼¼ ËÐ ¾¾ È Û Ê Ñ Ð

23 ÍÒ Û Ö ÙÑ ÙÔÓÖÞ ÓÛ Ò Ð ÓÖÝØÑ ÔÓ ÞÙ Û Ò ÖÒÝ Ð ÓÖÝØÑÙ ÔÓ ÞÙ Û Ò ÖÒÝ º ÈÓÖ ÛÒÙ ÑÝ Ð Þ x Þ m¹øýñ Ð Ñ ÒØ Ñ Ø Ð Ý A Á m = n 2 Ð Þ A[m] ØÓ ÔÓÛØ ÖÞ ÑÝ ÔÓ Ó Ò ÔÓ ØÔÓÛ Ò Ð Ø Ð Ý x A [0], A[1],... [m] Û ÔÖÞ ÛÒÝÑ ÔÖÞÝÔ Ù ÔÓÛØ ÖÞ ÑÝ ÔÓ Ó Ò ÔÓ ØÔÓÛ Ò Ð Ø Ð Ý A A [m + 1], A[m + 2],... A [n 1]º Â Ð ÖÓÞÑ Ö ØÙ ÐÒ ÖÓÞÛ Ò Ø Ð Ý Ø Ö ÛÒÝ 1 ØÓ ÔÓ ÞÙ Û ÒÝÑ Ò Ñ Ø mº ÈÖÞÝ º ËÞÙ ÑÝ Ò Ù Ð Þ Ý 15 Û Ø Ð Ý A = [2,3,7,9, 12,15,23, 24]º Ð ØÓÔ ¾¼¼ ËÐ ¾ È Û Ê Ñ Ð

24 ÍÒ Û Ö ÙÑ ÙÔÓÖÞ ÓÛ Ò Ð ÓÖÝØÑ ÔÓ ÞÙ Û Ò ÖÒÝ ÊÓÞÛ Þ Ò º Ð ÓÖÝØÑ ÔÓ ÞÙ Û Ò ÖÒÝ ÒØ ÒË Ö ÒØ Ò ÒØ Ò ÒØ ܵ ß»» ÛÔ n 1 A [0] < A [1] <... < A [n 1] x A ÒØ Ð ¼ Ö Ò¹½ Ñ Û Ð Ö¹Ð ½µ ß»» ÒÞ A [l] x A [r] Ñ Ð Öµ Ú ¾ Ñ Üµ Ö Ñ Ð Ð Ñ ½ Ð Ö ØÙÖÒ Ð»» Û A [l] = x Ð ÈÝØ Ò º Â Ø Þ Ó ÓÒÓ Þ ÓÛ Ð ÓÖÝØÑÙ ÒË Ö ÈÝØ Ò º Â Ø Þ Ó ÓÒÓ Ô Ñ ÓÛ Ð ÓÖÝØÑÙ ÒË Ö Ð ØÓÔ ¾¼¼ ËÐ ¾ È Û Ê Ñ Ð

25 Ð ÓÖÝØÑ ÒË Ö Ø ÓÔØÝÑ ÐÒÝÑ ÖÓÞÛ Þ Ò Ñ ÔÖÓ Ð ÑÙ ÛÝ ÞÙ Ò Û ÌÛ Ö Þ Ò º ÙÔÓÖÞ ÓÛ ÒÝѺ ÙÒ Û Ö ÙÑ ÃÓÒ ØÖÙÙ ÑÝ ÖÞ ÛÓ ÝÞÝ Ò Ð ÓÛÓÐÒ Ó Ð ÓÖÝØÑÙ ÖÓÞÛ ÞÙ Ó ÔÖÓ Ð Ñ ÍÞ Ò Ò º Û ÙÒ Û Ö ÙÑ ÙÔÓÖÞ ÓÛ ÒÝѺ ÆÔº ÛÝ ÞÙ Ò ÖÞ ÛÓ ÝÞÝ Ò Ð ÖÓÞÛ Ò Ó ÔÖÓ Ð ÑÙ Þ Û Ö n Ð Ø ØÓ ÖÞ ÛÓ Ò ÖÒ ØÓ ÈÓÒ Û Û Ø Ñ ÖÞ Û Ó Ò ÑÒ Ò Ó ÓÖÞ Ò Ó Ò Ó Þ Û ÖÞ Ó Û ØÒ ÍÒ Û Ö ÙÑ ÙÔÓÖÞ ÓÛ Ò Ð ÓÖÝØÑ ÔÓ ÞÙ Û Ò ÖÒÝ Ø Ö Ù Ó ÛÝÒÓ Ó Ò ÑÒ lg n º ËØ Ý Ð ÓÖÝØÑ Þ Ý ÔÖÞ Þ Þ ÛÒØÖÞÒÝ Ð ÖÓÞÛ Ò Ó ÔÖÓ Ð ÑÙ Û ÔÖÞÝÔ Ù Ô ÝÑ ØÝÞÒÝÑ ÛÝ ÓÒ Ó Ò ÑÒ lg n ÔÓÖ ÛÒ Ò ÔÓÖ ÛÒ º Ø Ñ Ñ ØÓ ÒË Ö Ø ÖÓÞÛ Þ Ò Ñ ÓÔØÝÑ ÐÒÝѺ Ð ØÓÔ ¾¼¼ ËÐ ¾ È Û Ê Ñ Ð

26 ÍÒ Û Ö ÙÑ ÙÔÓÖÞ ÓÛ Ò Ð ÓÖÝØÑ ÔÓ ÞÙ Û Ò ÒØ ÖÔÓÐ Ý Ò Óµ Ð ØÓÔ ¾¼¼ ËÐ ¾ È Û Ê Ñ Ð

27 Ð ÓÖÝØÑÙ ÔÓ ÞÙ Û Ò ÒØ ÖÔÓÐ Ý Ò Óº ÙÛ ÑÝ Û ÔÖÞÝÔ Ù Ý Ð Ñ ÒØÝ Á A ÖÓÞ Ó ÓÒ Ö ÛÒÓÑ ÖÒ Ò Ô ÛÒÝÑ ÔÖÞ Þ Ð Þ ÓÖÙ Ð Þ Ò ØÙÖ ÐÒÝ ØÓ Þ Ó Þ Ø Ð Ý Ó ÓÒÓ Ô ÝÑ ØÝÞÒ Ð ÓÖÝØÑÙ ÛÝ ÞÙ Û Ò ÒØ ÖÔÓÐ Ý Ò Ó ÑÓ Ò Ó Þ ÓÛ Øº Θ(n)º ÔÖÞ Þ ÞÝ Þ Ó ÓÒÓ Ô Ñ ÓÛ Ð ÓÖÝØÑÙ ÔÓ ÞÙ Û Ò ÒØ ÖÔÓÐ Ý Ò Ó Ø ØÓØÒ Ö Ò ÈÝØ Ò º Þ Ó ÓÒÓ Ô Ñ ÓÛ Ð ÓÖÝØÑÙ ÔÓ ÞÙ Û Ò ÖÒÝ Ó ÍÒ Û Ö ÙÑ ÙÔÓÖÞ ÓÛ Ò Ð ÓÖÝØÑ ÔÓ ÞÙ Û Ò ÒØ ÖÔÓÐ Ý Ò Ó m l r l x A[l] A[r] A[l], Ò ØÔÙ Þ Ð ÒÓ m = l + (x A[l])(r l). A[r] A[l] Ø ÔÙÒ Ø ÔÓ Þ Ù Ð Ð ÓÖÝØÑÙ Ò ÖÒÝ ÔÓ ÞÙ Û ÑÓ ÑÝ ÛÝÞÒ ÞÝ Ó Ò Ê ÞØ ÔÓ ØÔÓÛ Ò Ø ÒØÝÞÒ Û ÔÖÞÝÔ Ù Ñ ØÓ Ý ÒË Ö º Ó ÓÒÓ Ö Ò Ð ÓÖÝØÑÙ ÛÝ ÞÙ Û Ò ÒØ ÖÔÓÐ Ý Ò Ó ÑÓ Ò Ó Þ ÓÛ ÔÖÞ Þ Øº O (lg n)º lg Ð ØÓÔ ¾¼¼ ËÐ ¾ È Û Ê Ñ Ð

28 ÈÖÓ Ð Ñ k¹ø Ó Ó Ó Û Ð Ó ÖÓÞÛ Þ Ò Ò ÛÒ µ Ð ØÓÔ ¾¼¼ ËÐ ¾ È Û Ê Ñ Ð

29 ÔÖÓ Ð Ñ k¹ Ó Ó Ó Û Ð Ó µº Æ A Þ Ø Ð n Ö ÒÝ Ð Þ Ò ØÙÖ ÐÒÝ Ò n k k N + º ÈÓ Ð ÓÖÝØÑ Ø ÖÝ ÛÝÞÒ ÞÝ k¹øý Ó Ó Û Ð Ó Ð Ñ ÒØ Ø Ð Ý Aº Þ ÛÝ ÞÙ Ð Ñ ÒØ Ò Û ÞÝ Û Ö Ð Ñ ÒØ Û A[i], A[i + 1],..., A [n 1] Ò ØÓ Ð Ñ ÒØ A[max] Þ ÈÖÓ Ð Ñ k¹ø Ó Ó Ó Û Ð Ó ÖÓÞÛ Þ Ò Ò ÛÒ Ð ÓÖÝØÑÙ Ò ÛÒ Ó º Æ i = 0 Á k¹ ÖÓØÒ ÔÓÛØ ÖÞ Ò ØÔÙ Þ Ò Þ Ñ Ð Ñ ÒØ A[max] Þ Ð Ñ ÒØ Ñ A[i] ÞÛ Þ i Ó Òº Ö ÞÙÐØ Ø Ñ Ø Ó Ø ØÒ Þ ÛÝ ÞÙ ÒÝ Ð Ñ ÒØ Û A[max] Ø º A[i 1]º ÈÖÞ Ø Û Þ Ò Ð ÓÖÝØÑÙ Ò ÛÒ Ó Ð Ò ØÔÙ Ý ÒÝ Û ÓÛÝ Ò º A = [10, 7,6,4,2, 11,16,8, 3,1,9], k = 5. ÈÝØ Ò º Â Ø Þ Ó ÓÒÓ Þ ÓÛ Ð ÓÖÝØÑÙ Ò ÛÒ Ó Û ÔÖÞÝÔ Ù Ö Ò Ñ ÈÝØ Ò º Â Ø Þ Ó ÓÒÓ Þ ÓÛ Ð ÓÖÝØÑÙ Ò ÛÒ Ó Û ÔÖÞÝÔ Ù Ô ÝÑ ØÝÞÒÝÑ ÈÝØ Ò º Â Ø Þ Ó ÓÒÓ Ô Ñ ÓÛ Ð ÓÖÝØÑÙ Ò ÛÒ Ó Ð ØÓÔ ¾¼¼ ËÐ ¾ È Û Ê Ñ Ð

30 ÈÖÓ Ð Ñ k¹ø Ó Ó Ó Û Ð Ó ÖÓÞÛ Þ Ò Ò ÛÒ ÊÓÞÛ Þ Ò º Ð ÓÖÝØÑ Ò ÛÒÝ ÒØ Ò ÃØ ÒØ Ò ÒØ Ò ÒØ µ ß»» ÛÔ n k k N + ÒØ ¼ Ñ Ü Û Ð µ ß Ñ Ü»» ÒÞ A [0] > A [1] >... > A [i 1] > Ó Ð Ñ ÒØÙ A [i], A [i + 1],..., A [n 1] ÓÖ Ñ Ü ½ Ò µ Ñ Ü µ Ñ Ü ËÛ Ô Ñ Ü µ»» A [i] > Ó Ð Ñ ÒØÙ A [i + 1], A [i + 2],..., A [n 1] ½»» ÒÞ A [0] > A [1] >... > A [i 1] > Ó Ð Ñ ÒØÙ A [i], A [i + 1],..., A [n 1] Ð Ö ØÙÖÒ ¹½»» Û A [i 1] Ø k¹øýñ Ó Ó Û Ð Ó Ð Ñ ÒØ Ñ Ð Ð ØÓÔ ¾¼¼ ËÐ ¼ È Û Ê Ñ Ð

31 ÈÖÓ Ð Ñ k¹ø Ó Ó Ó Û Ð Ó Ð ÓÖÝØÑ ÀÓ Ö µ Ð ØÓÔ ¾¼¼ ËÐ ½ È Û Ê Ñ Ð

32 Ð Þ Ø Ö Þ Ð ÞÝ Û Ò k 1 Ð Ñ ÒØ Û ØÓ ÔÓ ÞÙ Ö ÙÖ ÒÝ Ò k¹ø Ó Ó Û Ð Ó Ð Ñ ÒØÙ ØÝÐ Ó Û Þ Ø Ö Þ Ó Û ÔÖÞ ÛÒÝÑ ÔÖÞÝÔ Ù ÔÓ ÞÙ Ö ÙÖ ÒÝ Ò k Ð Þ Ð Ñ ÒØ Û Û Þ Ó Ó Û Ð Ó Ð Ñ ÒØÙ ØÝÐ Ó Û Þ Ñ Ó Þ º Ø Ö Þ 1µ¹Ø Ó ÈÖÓ Ð Ñ k¹ø Ó Ó Ó Û Ð Ó Ð ÓÖÝØÑ ÀÓ Ö Ð ÓÖÝØÑÙ ÀÓ Ö º ÈÓÛØ ÖÞ Ö ÙÖ ÒÝ Ò Ò ØÔÙ Ý Ñ Ø Þ Ò Á ÛÝ ÖÞ ÓÛÓÐÒÝ Ð Ñ ÒØ ØÙ ÐÒ ÖÓÞÛ Ò Ó Ö Ñ ÒØÙ Ø Ð Ý A ØÞÛº Ñ Ò Ò Þ ØÓ A[m] ÖÓÞ Þ Ð Ð Ñ ÒØÝ ØÙ ÐÒ ÖÓÞÛ Ò Ó Ö Ñ ÒØÙ Ø Ð Ý Ò Ð Ñ ÒØÝ ÑÒ Þ Ó A[m] ØÞÛº Þ Ñ Ó Þ Ø Ð Ý ÓÖ Þ Ð Ñ ÒØÝ Û Þ Ó A[m] ØÞÛº Þ Ø Ö Þ Ø Ð Ý ÙÑ Ð Ñ ÒØ A[m] Û Ø Ð Ý A Ø Ý ÔÓÔÖ ÛÒ ÖÓÞ Þ Ð Þ Ñ Ó Þ Ó Ø Ö Þ Ð Þ Ø Ö Þ Ð ÞÝ Ó Ò k 1 Ð Ñ ÒØ Û ØÓ ÖÓÞÛ Þ Ò Ñ Ø A[m] Þ Ó Þ Þ Ò Ð ÓÖÝØÑÙ Û ÔÖÞ ÛÒÝÑ ÔÖÞÝÔ Ù ÈÖÞ Ø Û Þ Ò Ð ÓÖÝØÑÙ ÀÓ Ö Ð Ò ØÔÙ Ý ÒÝ Û ÓÛÝ Ò º A = [10, 7,6,4,2, 11,16,8, 3,1,9], k = 5. ÈÖÞÝ Ñ Ñ Ò Ø Þ Û Þ Ô ÖÛ ÞÝ Ð Ñ ÒØ ØÙ ÐÒ ÖÓÞÛ Ò Ó Ö Ñ ÒØÙ Ø Ð Ýº Ð ØÓÔ ¾¼¼ ËÐ ¾ È Û Ê Ñ Ð

33 ÈÖÓ Ð Ñ k¹ø Ó Ó Ó Û Ð Ó Ð ÓÖÝØÑ ÀÓ Ö ÊÓÞÛ Þ Ò º Ð ÓÖÝØÑ ÀÓ Ö ÒØ ÊÓÞ Þ Ð Ò ÒØ Ð ÒØ Öµ ß ººº»» ÙÒ Ó ÓÒÙ ÖÓÞ Þ Ð Ò Ö Ñ ÒØÙ Ø Ð Ý A [l], A [l + 1],..., A [r] ÛÞ Ð Ñ Ñ ÒÝ ÛÝ Ö Ò Û Ù Ø ÐÓÒÝ ÔÓ ÛÝÒ Ñ Þ Ò ÙÒ Ø Ò Ð Ñ ÒØÙ ÖÓÞ Þ Ð Ó ÔÓ ÙÑ ÞÞ Ò Ù Ò Û Û ÔÓÞÝ Ð ÒØ ÀÓ Ö ÒØ Ò ÒØ ÒØ Ð ÒØ Öµ ß»» ÛÔ n k k N + ÒØ Ñ Ñ ÊÓÞ Þ Ð Ð Öµ Ö¹Ñ ¹½µ Ö ØÙÖÒ Ñ Ð Ö¹Ñ ¹½µ Ö ØÙÖÒ ÀÓ Ö Ñ ½ Öµ Ð Ö ØÙÖÒ ÀÓ Ö ¹ ֹѵ¹½ Рѹ½µ Ð Ð ØÓÔ ¾¼¼ ËÐ È Û Ê Ñ Ð

34 ÞÑ ÒÒ l Û ÞÝ Ø Ð Ñ ÒØÝ Ø Ð Ý Ò ÔÓÞÝ A[1], A[1],..., A [l 1] Ó Ñ ÒÝ ÑÒ Þ ÈÖÓ Ð Ñ k¹ø Ó Ó Ó Û Ð Ó Ð ÓÖÝØÑ ÀÓ Ö ÔÓ Þ Ù ÛÞ Ð Ñ Ñ ÒÝ Ð ÓÖÝØÑÙ ËÔРغ Æ l = 1 r = n 1 m = 0 Á ÞÒ Þ Ò ÞÑ ÒÒÝ Ò Ù Ý ÞÑ ÒÒ r Û ÞÝ Ø Ð Ñ ÒØÝ Ø Ð Ý Ò ÔÓÞÝ A[r + 1], A [r + 2],..., A [n 1] Û Þ Ó Ñ ÒÝ ÓÔ l < r ÔÓÛØ ÖÞ Ò ØÔÙ Þ Ò ÓÔ r 0 A[r] > A [m] ÞÑÒ Þ r Ó Ò ÓÔ l < r A[l] < A [m] ÞÛ Þ l Ó Ò Ð l < r Þ Ñ A[l] Þ A[r] ÞÑÒ Þ r Ó Ò ÞÛ Þ l Ó Ò Þ Ñ A[m] Þ A[r]º Ð ØÓÔ ¾¼¼ ËÐ È Û Ê Ñ Ð

35 µº ÑÔÐ Ñ ÒØÙ Ð ÓÖÝØÑ ËÔÐ Ø Û Û Ö Ø Ö Ý Ò ÓÖ Þ Ö ÙÖ ÒÝ Ò ÔÖÞ Ø Û Ò ÔÓÖ ÛÒ Ò ÛÝ ÒÓ Ó Ù ÑÔÐ Ñ ÒØ Ð Ó Ø Ø ÞÒ Ù Ó Þ ÓÖÙ ÒÝ ÛÝÒ ÈÖÓ Ð Ñ k¹ø Ó Ó Ó Û Ð Ó Ð ÓÖÝØÑ ÀÓ Ö ÔÓ Þ Ù ÛÞ Ð Ñ Ñ ÒÝ ÈÖÞ Ø Û Þ Ò Ð ÓÖÝØÑÙ ËÔÐ Ø Ð Ò ØÔÙ Ý ÒÝ Û ÓÛÝ Ò º A = [10, 7,6,4,2,11, 16,8, 3,1,9]. ÈÝØ Ò º Â Ø Þ Ó ÓÒÓ Þ ÓÛ Ð ÓÖÝØÑÙ ËÔÐ Ø Û ÔÖÞÝÔ Ù Ö Ò Ñ ÈÝØ Ò º Â Ø Þ Ó ÓÒÓ Þ ÓÛ Ð ÓÖÝØÑÙ ËÔÐ Ø Û ÔÖÞÝÔ Ù Ô ÝÑ ØÝÞÒÝÑ ÈÝØ Ò º Â Ø Þ Ó ÓÒÓ Ô Ñ ÓÛ Ð ÓÖÝØÑÙ ËÔÐ Ø Û ÓÛÝ º Ç Þ Ù ÑÔ ÖÝÞÒ Þ Ó ÓÒÓ Þ ÓÛ Ó Ù ÖÓÞÛ Þ º Ð ØÓÔ ¾¼¼ ËÐ È Û Ê Ñ Ð

36 ÞÑ ÒÒ l Û ÞÝ Ø Ð Ñ ÒØÝ Ø Ð Ý Ò ÔÓÞÝ A[0], A[1],..., A [l] ÑÒ Þ Ó Ñ ÒÝ ÞÑ ÒÒ r Û ÞÝ Ø Ð Ñ ÒØÝ Ø Ð Ý Ò ÔÓÞÝ A[l + 1], A[l + 2],..., A [r 1] Ó Ñ ÒÝ Û Þ Ð A[r] < A [m] Þ Ñ A[l + 1] Þ A[r] ÞÛ Þ l + 1 Ó Ò ÈÖÓ Ð Ñ k¹ø Ó Ó Ó Û Ð Ó Ð ÓÖÝØÑ ÀÓ Ö ÔÓ Þ Ù ÛÞ Ð Ñ Ñ ÒÝ Ð ÓÖÝØÑÙ È ÖØ Ø ÓÒº Æ l = 1 r = 0 m = r 1 Á ÞÒ Þ Ò ÞÑ ÒÒÝ Ò Ù Ý ÓÔ r < m ÔÓÛØ ÖÞ Ò ØÔÙ Þ Ò ÞÛ Þ r Ó Ò Þ Ñ A[m] Þ A[l + 1]º Ð ØÓÔ ¾¼¼ ËÐ È Û Ê Ñ Ð

37 µº ÈÖÞ Ø Û Þ ÑÔÐ Ñ ÒØÙ ÖÓÞ Þ ÖÞÓÒ Û Ö Ð ÓÖÝØÑÙ È ÖØ Ø ÓÒ ÔÓ Þ Ù Ò Ñ ÒÝ ÓÛÓÐÒ n¹ Ð Ñ ÒØÓÛ Ø Ð Ý Ò ØÖÞÝ ÖÓÞ ÞÒ Ö Ñ ÒØÝ ÓÐ ÒÓ ÑÒ Þ ÛÞ Ð Ñ ÈÖÓ Ð Ñ k¹ø Ó Ó Ó Û Ð Ó Ð ÓÖÝØÑ ÀÓ Ö ÔÓ Þ Ù ÛÞ Ð Ñ Ñ ÒÝ ÈÖÞ Ø Û Þ Ò Ð ÓÖÝØÑÙ È ÖØ Ø ÓÒ Ð Ò ØÔÙ Ý ÒÝ Û ÓÛÝ Ò º A = [10, 7,6,4,2,11, 16,8, 3,1,9]. ÈÝØ Ò º Â Ø Þ Ó ÓÒÓ Þ ÓÛ Ð ÓÖÝØÑÙ È ÖØ Ø ÓÒ Û ÔÖÞÝÔ Ù Ö Ò Ñ ÈÝØ Ò º Â Ø Þ Ó ÓÒÓ Þ ÓÛ Ð ÓÖÝØÑÙ È ÖØ Ø ÓÒ Û ÔÖÞÝÔ Ù Ô ÝÑ ØÝÞÒÝÑ ÈÝØ Ò º Â Ø Þ Ó ÓÒÓ Ô Ñ ÓÛ Ð ÓÖÝØÑÙ È ÖØ Ø ÓÒ Ö ÛÒ ÓÖ Þ Û Þ Ó Ñ Òݺ Ð ØÓÔ ¾¼¼ ËÐ È Û Ê Ñ Ð

38 Ô ÝÑ ØÝÞÒݺ Ð Ñ ÒØÝ n¹ Ð Ñ ÒØÓÛ Ø Ð Ý A ÔÓ ÓÖØÓÛ Ò ÖÓ Ò Ó ÞÙ ÑÝ ÈÖÞÝÔ Ô ÖÛ Þ Ó Ó Ó Û Ð Ó ÔÖÓ ÙÖ ÖÓÞ Þ Ð Ò ÞÓ Ø Þ ÑÔÐ Ñ ÒØÓÛ Ò Þ Ó Ò Þ Ð Ñ ÒØÙ Â Ø Ù ÒÝ Û ÓÛÝ Û ÔÖÞÝÔ Ù Ô ÝÑ ØÝÞÒÝÑ Ð Ð ÓÖÝØÑÙ ÀÓ Ö ÈÝØ Ò º ÔÖÓ ÙÖ ÖÓÞ Þ Ð Ò ÞÓ Ø Þ ÑÔÐ Ñ ÒØÓÛ Ò Þ Ó Ò Þ Ñ ØÓ È ÖØ Ø ÓÒ Ð ÈÖÓ Ð Ñ k¹ø Ó Ó Ó Û Ð Ó Ð ÓÖÝØÑ ÀÓ Ö Þ Ó ÓÒÓ Ñ ØÓ ËÔÐ Ø ÛØ Ý W (n) = 0 Ð n = 1 n 1 + W (n Ð 1) n > 1, W (n) = n 1 + W (n 1) = n 1 + n 2 + W (n 2) =... = = n (n 1)... = n 1 + n = = Θ ( n 2). 2 ÞÝÐ Ð ØÓÔ ¾¼¼ ËÐ È Û Ê Ñ Ð

39 Ö Ò º ÊÓÞ Ð Ñ ÒØ Û n¹ Ð Ñ ÒØÓÛ Ø Ð Ý A Ø ÒÓÖÓ ÒÝ ÞÙ ÑÝ ÈÖÞÝÔ k¹ø Ó Ó Ó Û Ð Ó ÔÖÓ ÙÖ ÖÓÞ Þ Ð Ò ÞÓ Ø Þ ÑÔÐ Ñ ÒØÓÛ Ò Þ Ó Ò Þ Ð Ñ ÒØÙ Â Ø Þ Ó ÓÒÓ Ô Ñ ÓÛ Ð ÓÖÝØÑÙ ÀÓ Ö Û ÔÖÞÝÔ Ù Ô ÝÑ ØÝÞÒÝÑ ÈÝØ Ò º ÔÖÞÝÔ Ù Ö Ò Ñ Û µº ÞÝ ÞÑ Ò Þ Ó ÓÒÓ Ð ÓÖÝØÑÙ ÀÓ Ö Ð Þ ÓÔ Ö ÓÑ ÒÙ Ò ÔÖÞ Ø Û Ò Ð Ñ ÒØ Û Ø Ð Ý Û ÓÛ A ÔÖÞÝ Ñ ÑÝ ÈÖÓ Ð Ñ k¹ø Ó Ó Ó Û Ð Ó Ð ÓÖÝØÑ ÀÓ Ö Þ Ó ÓÒÓ A (n, k) = 0 n = 1 Ð n k n n A(n i, k) + A(i 1, k (n Ð i) 1) n > 1, n i=1 i=n k+2 Ñ ØÓ ËÔÐ Ø Ð Ó È ÖØ Ø ÓÒ ÛØ Ý ÞÝÐ A(n, k) = O (n). Ð ØÓÔ ¾¼¼ ËÐ È Û Ê Ñ Ð

40 ÈÖÓ Ð Ñ k¹ø Ó Ó Ó Û Ð Ó Ð ÓÖÝØÑ ÐÙÑ ¹ ÐÓÝ ¹ÈÖ ØØ ¹Ê Ú Ø ¹ÌÖ Ò µ Ð ØÓÔ ¾¼¼ ËÐ ¼ È Û Ê Ñ Ð

41 Ð ÓÖÝØÑÙ ÈÊ̺ ÈÓÛØ ÖÞ Ö ÙÖ ÒÝ Ò Ò ØÔÙ Ý Ñ Ø Þ Ò Þ n Ø Á ØÙ ÐÒ ÖÓÞÛ Ò Ó Ö Ñ ÒØÙ Ø Ð Ý A ÖÓÞÑ Ö Ñ ÔÓ Þ Ð ØÙ ÐÒ ÖÓÞÛ ÒÝ Ö Ñ ÒØ Ø Ð Ý A Ò ÓÐ Ò Ô Ø Ð Ñ ÒØ Û Ö ÙÖ ÒÝ Ò ÛÝ ÓÒ Þ Ò Þ Ó Ò Þ Ð ÓÖÝØÑ Ñ ÀÓ Ö Ð Ð Ñ ÒØÙ Þ Ð Ó A[m]º Ê ÙÖ ÒÝ ÒÝ Ó ÓÖÙ Ñ ÒÝ Û Ö ÒØÙ Ò ÝÑ ÖÓ Ù Þ Ò ÏÒ Ó º Ñ Ø ØÙ ÐÒ ÖÓÞÛ Ò Ó Ö Ñ ÒØÙ Ø Ð Ý A d ÖÓÞÑ ÖÙ d Ó Ò ÑÒ 4 Ð Ñ ÒØÝ Ð Ð ÓÖÝØÑÙ ÈÖÓ Ð Ñ k¹ø Ó Ó Ó Û Ð Ó Ð ÓÖÝØÑ ÐÙÑ ¹ ÐÓÝ ¹ÈÖ ØØ ¹Ê Ú Ø ¹ÌÖ Ò Ð n 5 ØÓ ÔÓ ÓÖØÙ Ö Ñ ÒØ Ø Ð Ý ÛÝ ÖÞ Ð Ñ ÒØ (n (k 1))¹ØÝ Ð n > 5 ØÓ Ö ÙÖ ÒÝ Ò ÛÝ ÞÙ A[m] = m/2 ¹ Ð Ñ ÒØ Þ Ñ Ò ÖÓÞÛ ÒÝ Ô Ø Þ Ø Ð Þ Ô Ø m Ó ÔÓÛ Ò Ó ÑÒ Þ Û Þ Ó Ñ ÒÝ A[m]º Ð ØÓÔ ¾¼¼ ËÐ ½ È Û Ê Ñ Ð

42 Ó ÓÒÓ Þ ÓÛ Ð ÓÖÝØÑÙ ÈÊÌ Û ÔÖÞÝÔ Ù Ô ÝÑ ØÝÞÒÝÑ Ø Ó Ò ÛÝ Øº Ð Ò ÓÛ º Ó ÓÒÓ Þ ÓÛ Û ÔÖÞÝÔ Ù Ô ÝÑ ØÝÞÒÝÑ Ð ÓÖÝØÑÙ ÈÊÌ ÔÖÞ Ø Ý ÖÞ Ù Øº Ý Þ Ñ Ø Ô Ø Ð Ñ ÒØ Û Þ ÑÝ Ò Ð ÞÓÛ Ð ÒÔº ØÖ Ð Ñ ÒØ Ûº Ð Ò ÓÛ Ó Ó ÓÒÓ Þ ÓÛ Û ÔÖÞÝÔ Ù Ô ÝÑ ØÝÞÒÝÑ Ð ÓÖÝØÑÙ ÈÊÌ ÔÖÞ Ø Ý ÖÞ Ù Øº Ý Þ Ñ Ø Ô Ø Ð Ñ ÒØ Û Þ ÑÝ Ò Ð ÞÓÛ Ð l¹ø Ð l Ó Ø Ø ÞÒ Ð Ó nº Ð Ò ÓÛ Ó ÈÖÓ Ð Ñ k¹ø Ó Ó Ó Û Ð Ó Ð ÓÖÝØÑ ÐÙÑ ¹ ÐÓÝ ¹ÈÖ ØØ ¹Ê Ú Ø ¹ÌÖ Ò Øº Ó ÓÒÓ Þ ÓÛ Ð ÓÖÝØÑÙ ÈÊÌ Û ÔÖÞÝÔ Ù Ö Ò Ñ Ø Ó Ò ÛÝ Ð Ò ÓÛ º Ò µº Í ÓÛÓ Ò Þ Ó ÓÒÓ Þ ÓÛ Û ÔÖÞÝÔ Ù Ô ÝÑ ØÝÞÒÝÑ Ð ÓÖÝØÑÙ ÈÊÌ Û Û Ö Ò ØÖ Ð Ñ ÒØ Û Ø ÖÞ Ù Û Þ Ó Ò Ð Ò ÓÛݺ Ç Þ Ù Ø Ò ÖÞ º Ð ØÓÔ ¾¼¼ ËÐ ¾ È Û Ê Ñ Ð

Ð ÓÖÝØÑÝ ØÖÙ ØÙÖÝ ÒÝ Ñ Ø Ö Ý ÛÝ ÓÛ ËØÙ Þ ÓÞÒ ÈÂÏËÌÃ Á ËÌÊÍÃÌÍÊ Æ À Ä ÇÊ ÌÅ ÁÁÁ Ñ Ø Ö Ý ÔÓÑÓÒ Þ µ Ï Ã ÈÖÓ Ð Ñ ÓÖØÓÛ Ò ÈÓÐ Ó Â ÔÓ ÏÝ Þ ËÞ Ó Ì Ò ÃÓÑÔÙØ Ö

Ð ÓÖÝØÑÝ ØÖÙ ØÙÖÝ ÒÝ Ñ Ø Ö Ý ÛÝ ÓÛ ËØÙ Þ ÓÞÒ ÈÂÏËÌÃ Á ËÌÊÍÃÌÍÊ Æ À Ä ÇÊ ÌÅ ÁÁÁ Ñ Ø Ö Ý ÔÓÑÓÒ Þ µ Ï Ã ÈÖÓ Ð Ñ ÓÖØÓÛ Ò ÈÓÐ Ó Â ÔÓ ÏÝ Þ ËÞ Ó Ì Ò ÃÓÑÔÙØ Ö Á ËÌÊÍÃÌÍÊ Æ À Ä ÇÊ ÌÅ ÁÁÁ Ñ Ø Ö Ý ÔÓÑÓÒ Þ µ Ï Ã ÈÖÓ Ð Ñ ÓÖØÓÛ Ò ÈÓÐ Ó Â ÔÓ ÏÝ Þ ËÞ Ó Ì Ò ÃÓÑÔÙØ ÖÓÛÝ Ï Ö Þ Û ½¼ Ð ØÓÔ ¾¼¼ ½¼ Ð ØÓÔ ¾¼¼ ËÐ ½ È Û Ê Ñ Ð Ð ÓÖÝØÑ ÓÖØÓÛ Ò ÔÖÞ Þ Ð Ð ÓÖÝØÑ ÓÖØÓÛ Ò ÔÖÞ Þ Û Ø

Bardziej szczegółowo

Ï ØÔ ÈÖÞÝ Ý Ç ÐÒ Û ÒÓ Ó Þ Ò À Ð ¹ÈÓ Ø ÓÒ Ð Ø ÖÑ Ò Ý Ó ÁÒ Ò Ø Ñ ÖÝ ÃÓÔÞÝ Ï Ö Û ÍÒ Ú Ö ØÝ Û ØÒ ¾¼¼ ÖÝ ÃÓÔÞÝ À Ð ¹ÈÓ Ø ÓÒ Ð Ø ÖÑ Ò Ý Ó ÁÒ Ò Ø Ñ ½» ¼

Ï ØÔ ÈÖÞÝ Ý Ç ÐÒ Û ÒÓ Ó Þ Ò À Ð ¹ÈÓ Ø ÓÒ Ð Ø ÖÑ Ò Ý Ó ÁÒ Ò Ø Ñ ÖÝ ÃÓÔÞÝ Ï Ö Û ÍÒ Ú Ö ØÝ Û ØÒ ¾¼¼ ÖÝ ÃÓÔÞÝ À Ð ¹ÈÓ Ø ÓÒ Ð Ø ÖÑ Ò Ý Ó ÁÒ Ò Ø Ñ ½» ¼ Ï Ö Û ÍÒ Ú Ö ØÝ Û ØÒ ¾¼¼ ½» ¼ ÔÖÞÝ Ö Þ ÛÝÔ Ø Ö Ò Ö Ò Ó ÞÓÒÝ Ò ØÖ Ø ÔÓÞÝÝ ÒÝ Ò ¹ÔÓÞÝÝ ÒÝ Ò Ò ÛÝÒ ¹ ¹ ¾¼ ÑÝ ¹½ ¹½ ¹¾ ½¼ ¹¾ ¹½ ¹¾ ÓÒ ¹½ ¹ ¾» ¼ ÔÖÞÝ Ö Ô ÖÞÝ ØÓ Ö Ò Ó ÞÓÒÝ Ò ØÖ Ø ÔÓÞÝÝ ÒÝ Ò ¹ÔÓÞÝÝ ÒÝ Ò Ò ÛÝÒ

Bardziej szczegółowo

Ð ÓÖÝØÑÝ ØÖÙ ØÙÖÝ ÒÝ Ñ Ø Ö Ý ÛÝ ÓÛ ËØÙ Þ ÓÞÒ ÈÂÏËÌÃ Á ËÌÊÍÃÌÍÊ Æ À Ä ÇÊ ÌÅ ÁÎ Ñ Ø Ö Ý ÔÓÑÓÒ Þ µ Ï Ã ÒÝ ËØÖÙ ØÙÖÝ ÓÛÒ Ð ØÝ ÈÓÐ Ó Â ÔÓ ÏÝ Þ ËÞ Ó Ì Ò ÃÓÑ

Ð ÓÖÝØÑÝ ØÖÙ ØÙÖÝ ÒÝ Ñ Ø Ö Ý ÛÝ ÓÛ ËØÙ Þ ÓÞÒ ÈÂÏËÌÃ Á ËÌÊÍÃÌÍÊ Æ À Ä ÇÊ ÌÅ ÁÎ Ñ Ø Ö Ý ÔÓÑÓÒ Þ µ Ï Ã ÒÝ ËØÖÙ ØÙÖÝ ÓÛÒ Ð ØÝ ÈÓÐ Ó Â ÔÓ ÏÝ Þ ËÞ Ó Ì Ò ÃÓÑ Á ËÌÊÍÃÌÍÊ Æ À Ä ÇÊ ÌÅ ÁÎ Ñ Ø Ö Ý ÔÓÑÓÒ Þ µ Ï Ã ÒÝ ËØÖÙ ØÙÖÝ ÓÛÒ Ð ØÝ ÈÓÐ Ó Â ÔÓ ÏÝ Þ ËÞ Ó Ì Ò ÃÓÑÔÙØ ÖÓÛÝ Ï Ö Þ Û ¾ Ð ØÓÔ ¾¼¼ ¾ Ð ØÓÔ ¾¼¼ ËÐ ½ È Û Ê Ñ Ð ÓÔ Ö Ò Ð Ø Ð ÓÖÝØÑ Ë ÔÖÞ Ó Þ Ò Ö Ù Ð ÓÖÝØÑ Ë ÔÖÞ

Bardziej szczegółowo

ÔÖÓ Ù ÔÖÓ Ù Þ Ø ÑÒ Ñ Ø Ö ÞÔÓð Ö Ò Ø ÞÔÓð Ö Ò Ý Ò Û Ó Þ ÝÛ Ò Å ÔÓ ÞÙ Û Ò Ø ÔÓð Ö Ò Ý Ò Û Ó Þ ÝÛ Ò Ò Ð µ ÔÓ ÞÙ Û Ò ÑÒ Ñ Ø Ö ÈÓ ÞÙ Û Ò Ó ÑÓ ÐÙ ÑÓ Þ ÑÝ ÔÓ

ÔÖÓ Ù ÔÖÓ Ù Þ Ø ÑÒ Ñ Ø Ö ÞÔÓð Ö Ò Ø ÞÔÓð Ö Ò Ý Ò Û Ó Þ ÝÛ Ò Å ÔÓ ÞÙ Û Ò Ø ÔÓð Ö Ò Ý Ò Û Ó Þ ÝÛ Ò Ò Ð µ ÔÓ ÞÙ Û Ò ÑÒ Ñ Ø Ö ÈÓ ÞÙ Û Ò Ó ÑÓ ÐÙ ÑÓ Þ ÑÝ ÔÓ ÈÓð Ö Ò ÔÓ ÞÙ Û Ò ÑÒ Ñ Ø Ö ÔÓÑ ÖÝ ÔÖÓÑ Ò ÓÛ Ò Ó Ñ ÞÒ Ó Ø Ð Ø ÖÒ Þ Ø ØÖÓ ÞÝ ÔÖÓ º Ö º º º ÖÒ Þ Ø Ç Þ ÝÛ ðò ÙÒ Ñ ÒØ ÐÒÝ Á ÏÝ ÎÁÁ æ ÊÅÁ æ È Å Ä æ Å˹¾ ÔÖÓ Ù ÔÖÓ Ù Þ Ø ÑÒ Ñ Ø Ö ÞÔÓð Ö Ò Ø ÞÔÓð Ö Ò Ý Ò Û Ó

Bardziej szczegółowo

Þ Á Ö Ø ØÙÖÝ ÓÑÔÙØ ÖÓÛÝ À Ö Ö ÔÖÓØÓ Ó Û Ð Ù ØÛ Ò ÔÖÓ Ù ÔÖÓ ØÓÛ Ò Û Ô Þ ÒÝ ÓÑÔÙØ ÖÓ¹ ÛÝ ÔÖÞÝ ØÓ Þ Ó Ò ÓÒ ÔÓ Û Ñ Ö ÔÖÓ Ø ØÖÙ ØÙÖ ÐÓ ÞÒ º Ç Ø Ø ÞÒ Þ Ý ÓÛ ÒÓ ÓÑÔÙØ ÖÓÛ Þ ÞÓÖ Ò ÞÓ¹ ÊÝ ÙÒ ½ Ï Ö ØÛÓÛ ØÖÙ ØÙÖ

Bardziej szczegółowo

ÛÙÛÝÑ ÖÓÛÝ ÔÖ Ò ÂÓ ÒÒ ÀÓÖ ÂÓ ÒÒ ÀÓÖ ÛÙÛÝÑ ÖÓÛÝ ÔÖ Ò

ÛÙÛÝÑ ÖÓÛÝ ÔÖ Ò ÂÓ ÒÒ ÀÓÖ ÂÓ ÒÒ ÀÓÖ ÛÙÛÝÑ ÖÓÛÝ ÔÖ Ò ½º Ò ¾º ÈÖÞÝ º Ï ÒÓ Ð ÓÖÝØÑÙ Þ ÒÓ Ù Ý Ó ÛÖ ÐÒ ÔÖÞ ÔÐ Ø Ò Ù ÐÒÓ µ º Ê Ó¹ Ð Û ÐÐ Þ º ÈÖ Ò Ð ÓÖÝØÑ Å º ÏÔÖÓÛ Þ Ò Ó Û ÐÓÛÝÑ ÖÓÛ Ó ÔÖ Ò Ò Ù Ý Ó Ò ÖÓÛ Ò Þ Û ØÓÖ ÐÓ ÓÛ Ó (, ) Ó ÔÓÛ Ò ÔÖ Ý ( ½, ½ ),( ¾, ¾ ),...

Bardziej szczegółowo

f (n) lim n g (n) = a, f g

f (n) lim n g (n) = a, f g Á ËÌÊÍÃÌÍÊ Æ À Ä ÇÊ ÌÅ Á Ñ Ø Ö Ý ÔÓÑÓÒ Þ µ Ï Ã Ï ØÔ ÈÓÐ Ó Â ÔÓ ÏÝ Þ ËÞ Ó Ì Ò ÃÓÑÔÙØ ÖÓÛÝ Ï Ö Þ Û ½¾ Ô õ Þ ÖÒ ¾¼¼ ½¾ Ô õ Þ ÖÒ ¾¼¼ ËÐ ½ È Û Ê Ñ Ð ÛÝ Ù ÈÐ Ò ÒÓØ ÝÑÔØÓØÝÞÒ ÔÓ Ð ÓÖÝØÑÙ Ó ÞØ Ð ÓÖÝØÑÙ Þ Ó ÓÒÓ

Bardziej szczegółowo

ÈÐ Ò ÛÝ Ø Ô Ò ½ ¾ ÃÐ ÝÞÒ Ó Ð Þ Ò ÓÛ ÞØÙÞÒ ÒØ Ð Ò ÅÓ Ð Ó Ð Þ Ò ÓÛ ÞØÙÞÒ ÒØ Ð Ò Ë Ò ÙÖÓÒÓÛ ÏÒ Ó ÓÛ Ò Þ ÐÓ ÖÓÞÑÝØ Ð ÓÖÝØÑÝ ÛÓÐÙÝ Ò ÊÓÞÛ Þ Ò Ý ÖÝ ÓÛ ÝÒ Ñ

ÈÐ Ò ÛÝ Ø Ô Ò ½ ¾ ÃÐ ÝÞÒ Ó Ð Þ Ò ÓÛ ÞØÙÞÒ ÒØ Ð Ò ÅÓ Ð Ó Ð Þ Ò ÓÛ ÞØÙÞÒ ÒØ Ð Ò Ë Ò ÙÖÓÒÓÛ ÏÒ Ó ÓÛ Ò Þ ÐÓ ÖÓÞÑÝØ Ð ÓÖÝØÑÝ ÛÓÐÙÝ Ò ÊÓÞÛ Þ Ò Ý ÖÝ ÓÛ ÝÒ Ñ Ç Ð Þ Ò ÓÛ ÞØÙÞÒ ÒØ Ð Ò Â ÖÓ Û Ö ÈÓÐ Ø Ò Ï Ö Þ Û ÁÒ ØÝØÙØ ËÝ Ø Ñ Û Ð ØÖÓÒ ÞÒÝ Ï ÌÁ ÈÐ Ò ÛÝ Ø Ô Ò ½ ¾ ÃÐ ÝÞÒ Ó Ð Þ Ò ÓÛ ÞØÙÞÒ ÒØ Ð Ò ÅÓ Ð Ó Ð Þ Ò ÓÛ ÞØÙÞÒ ÒØ Ð Ò Ë Ò ÙÖÓÒÓÛ ÏÒ Ó ÓÛ Ò Þ ÐÓ ÖÓÞÑÝØ Ð ÓÖÝØÑÝ

Bardziej szczegółowo

ÔÖÓ Ù ÔÖÓ Ù Þ Ø ÑÒ Ñ Ø Ö ÞÔÓð Ö Ò Ø ÞÔÓð Ö Ò Ý Ò Û Ó Þ ÝÛ Ò Å ÔÓ ÞÙ Û Ò Ø ÔÓð Ö Ò Ý Ò Û Ó Þ ÝÛ Ò Ò Ð µ ÔÓ ÞÙ Û Ò ÑÒ Ñ Ø Ö ÈÓ ÞÙ Û Ò Ó ÑÓ ÐÙ ÑÓ Þ ÑÝ ÔÓ

ÔÖÓ Ù ÔÖÓ Ù Þ Ø ÑÒ Ñ Ø Ö ÞÔÓð Ö Ò Ø ÞÔÓð Ö Ò Ý Ò Û Ó Þ ÝÛ Ò Å ÔÓ ÞÙ Û Ò Ø ÔÓð Ö Ò Ý Ò Û Ó Þ ÝÛ Ò Ò Ð µ ÔÓ ÞÙ Û Ò ÑÒ Ñ Ø Ö ÈÓ ÞÙ Û Ò Ó ÑÓ ÐÙ ÑÓ Þ ÑÝ ÔÓ ÈÓð Ö Ò ÔÓ ÞÙ Û Ò ÑÒ Ñ Ø Ö ÔÓÑ ÖÝ ÔÖÓÑ Ò ÓÛ Ò Ó Ñ ÞÒ Ó Ø Ð Ø ÖÒ Þ Ø ØÖÓ ÞÝ ÔÖÓ º Ö º º º ÖÒ Þ Ø Ç Þ ÝÛ ðò ÙÒ Ñ ÒØ ÐÒÝ Á ÏÝ ÎÁÁ æ ÊÅÁ æ È Å Ä æ Å˹¾ ÔÖÓ Ù ÔÖÓ Ù Þ Ø ÑÒ Ñ Ø Ö ÞÔÓð Ö Ò Ø ÞÔÓð Ö Ò Ý Ò Û Ó

Bardziej szczegółowo

½ ÏÝ Ï Þ ð Û Ø ÛÓÐÙ Þ Ø Ð Ñ ÒØ ÖÒÝ Ï Þ ð Û Ø ÔÖÓ º º º ÖÒ Þ Ø Ç Þ ÝÛ ðò ÙÒ Ñ ÒØ ÐÒÝ ÞÝ Óð Û Þ ÐÒ ÁÒ ØÝØÙØ Þ Ø Ð Ñ ÒØ ÖÒÝ ÏÝ ½ ÛÓÐÙ Ï Þ ð Û Ø ¾ Ñ ¾¼½ æ

½ ÏÝ Ï Þ ð Û Ø ÛÓÐÙ Þ Ø Ð Ñ ÒØ ÖÒÝ Ï Þ ð Û Ø ÔÖÓ º º º ÖÒ Þ Ø Ç Þ ÝÛ ðò ÙÒ Ñ ÒØ ÐÒÝ ÞÝ Óð Û Þ ÐÒ ÁÒ ØÝØÙØ Þ Ø Ð Ñ ÒØ ÖÒÝ ÏÝ ½ ÛÓÐÙ Ï Þ ð Û Ø ¾ Ñ ¾¼½ æ ½ ÏÝ Ï Þ ð Û Ø ÛÓÐÙ Þ Ø Ð Ñ ÒØ ÖÒÝ Ï Þ ð Û Ø ÔÖÓ º º º ÖÒ Þ Ø Ç Þ ÝÛ ðò ÙÒ Ñ ÒØ ÐÒÝ ÞÝ Óð Û Þ ÐÒ ÁÒ ØÝØÙØ Þ Ø Ð Ñ ÒØ ÖÒÝ ÏÝ ½ ÛÓÐÙ Ï Þ ð Û Ø ¾ Ñ ¾¼½ æ Ôº½»¾ Ï Þ ð Û Ø ÛÓÐÙ Ï Þ ð Û Ø ÏÔÖÓÛ Þ Ò Ö Û Ø Ç ÐÒ

Bardziej szczegółowo

ØÖ Ò ÔÓÖØ Û ÖØÓ ÔÖÞ ÛÓ Ò ÐÙ ÔÖÞ ÒÓ Þ Ò Û ÖØÓ Ô Ò ÒÝ ÔÓÞ Ó Ö Ñ Ô Þ ÐÒ ºÓ ÒÓ Ø Ó Ð Þ Ò ÓÛ ÔÖÞÝ Ø Ó Ó Ö Ð Ò Ð Ñ ØÙ ÔÖÞ ÓÛÝÛ ¹ ÒÝ ÐÙ ØÖ Ò ÔÓÖØÓÛ ÒÝ Û ÖØÓ

ØÖ Ò ÔÓÖØ Û ÖØÓ ÔÖÞ ÛÓ Ò ÐÙ ÔÖÞ ÒÓ Þ Ò Û ÖØÓ Ô Ò ÒÝ ÔÓÞ Ó Ö Ñ Ô Þ ÐÒ ºÓ ÒÓ Ø Ó Ð Þ Ò ÓÛ ÔÖÞÝ Ø Ó Ó Ö Ð Ò Ð Ñ ØÙ ÔÖÞ ÓÛÝÛ ¹ ÒÝ ÐÙ ØÖ Ò ÔÓÖØÓÛ ÒÝ Û ÖØÓ ÁÒ ØÖÙ Ó ÔÓ Ö ÓÛ ½ ¹¼ ¹¾¼¼ ½ ÈÓ Ø ÒÓÛ Ò Ó ÐÒ ï½ ÁÒ ØÖÙ Ó Ö Ð Þ Ý Ó ÖÓÒÝ Û ÖØÓ Ô Ò ÒÝ ÔÖÓÛ Þ Ò Ó ÔÓ Ö ÓØ Û Û Ù Ó ÙÑ ÒØÓÛ Ò ÓÔ Ö ÓÛÝ ÈÖÞ Þ Ù ÝØ Û Ò ØÖÙ Ó Ö Ð Ò ÖÓÞÙÑ Ô Þ ÐÒ Ô Þ ÐÒ Ñ Þ Ò ÓÛ È ÓØÖÓÛÓ Þ ÖÞ

Bardziej szczegółowo

ËÞ ÐÓÒÝ ¹ ÔÓÛØ ÖÞ Ò ÈÖÓ Ð ÑÝ ÔÖÞÝ ØÓ ÓÛ Ò Ù Þ ÐÓÒ Û áö Ò Ó Þ Û Ò ÓÛ Ò ÔÖÓ Ö ÑÓÛ Ò Û Èʵ ÏÝ ½¼ ¹ Þ ÐÓÒÝ ÊÓ ÖØ ÆÓÛ ¾¼¼ áö Ò Ó Þ Û Ò ÓÛ Ò ÔÖÓ Ö ÑÓÛ Ò Û È

ËÞ ÐÓÒÝ ¹ ÔÓÛØ ÖÞ Ò ÈÖÓ Ð ÑÝ ÔÖÞÝ ØÓ ÓÛ Ò Ù Þ ÐÓÒ Û áö Ò Ó Þ Û Ò ÓÛ Ò ÔÖÓ Ö ÑÓÛ Ò Û Èʵ ÏÝ ½¼ ¹ Þ ÐÓÒÝ ÊÓ ÖØ ÆÓÛ ¾¼¼ áö Ò Ó Þ Û Ò ÓÛ Ò ÔÖÓ Ö ÑÓÛ Ò Û È áö Ò Ó Þ Û Ò ÓÛ Ò ÔÖÓ Ö ÑÓÛ Ò Û Èʵ ÏÝ ½¼ ¹ Þ ÓÒÝ ÊÓ ÖØ ÆÓÛ ¾¼¼ ½» ÃÓ ÓÖÝØÑÝ ÈÓ Ò Þ Ò Ó ØÝÔÙ Ó ÒÔº ØÝµ ÓÖÝØÑÝ ÒÔº ÞÒ ÓÛ Ò Ò Û Þ Ó Ñ ÒØÙµ Å Ò ÞÑÝ Ñ ÒÙ Ö ÙÒ Ò Ó Ùº Û Ô Ò ÞÓÛ ÛÝ ÓÖÞÝ Ø Ò Þ ÓÒ Û ¾» à ÞÓÛ ÒÙ

Bardziej szczegółowo

ÏÝ Ö Ò ÖÙÒ Û ÛÓÐÙ Ö Ò ÓÛ Â ÖÓ Û Ö ÈÓÐ Ø Ò Ï Ö Þ Û ÁÒ ØÝØÙØ ËÝ Ø Ñ Û Ð ØÖÓÒ ÞÒÝ ¹Ñ Ð Ö Ð ºÔÛº ÙºÔÐ Ñ Ò Ö ÙÑ Ù ÁÒØ Ð ÒØÒÝ ËÝ Ø Ñ Û Ï ÔÓÑ Ò ÝÞ ÈÓÐ Ø Ò ÈÓ

ÏÝ Ö Ò ÖÙÒ Û ÛÓÐÙ Ö Ò ÓÛ Â ÖÓ Û Ö ÈÓÐ Ø Ò Ï Ö Þ Û ÁÒ ØÝØÙØ ËÝ Ø Ñ Û Ð ØÖÓÒ ÞÒÝ ¹Ñ Ð Ö Ð ºÔÛº ÙºÔÐ Ñ Ò Ö ÙÑ Ù ÁÒØ Ð ÒØÒÝ ËÝ Ø Ñ Û Ï ÔÓÑ Ò ÝÞ ÈÓÐ Ø Ò ÈÓ ÏÝ Ö Ò ÖÙÒ Û ÛÓÐÙ Ö Ò ÓÛ Â ÖÓ Û Ö ÈÓÐ Ø Ò Ï Ö Þ Û ÁÒ ØÝØÙØ ËÝ Ø Ñ Û Ð ØÖÓÒ ÞÒÝ ¹Ñ Ð Ö Ð ºÔÛº ÙºÔÐ Ñ Ò Ö ÙÑ Ù ÁÒØ Ð ÒØÒÝ ËÝ Ø Ñ Û Ï ÔÓÑ Ò ÝÞ ÈÓÐ Ø Ò ÈÓÞÒ ¾ º½½º¾¼½¼ ÈÐ Ò ÔÖ Þ ÒØ ½ ¾ Ð ÓÖÝØÑ ÛÓÐÙÝ ÒÝ Ó ÖÓÞ

Bardziej szczegółowo

Number of included frames vs threshold effectiveness Threshold of effectiveness

Number of included frames vs threshold effectiveness Threshold of effectiveness Ò Ð Þ ÒÝ Þ ÒÓÛ Ô Ö ØÙÖÝ Ø Ý Ò È Ó Ø Ë Ý ËÞÝÑÓÒ Å Þ ÞÑ Þ Ñ ÐºÓÑ ØÝÞÒ ¾¼½¾ ËÔ ØÖ ½ Ï ØÔ ½ ¾ ÇÔ Ñ ØÓ Ý ½ ¾º½ Ç Ò Ò Ö ÒÝ ÔÓÑ Ö Û º º º º º º º º º º º º º º º º º º º º º º º º º º º ½ ¾º¾ Ç Ö Ð Ò ØÝÛÒÓ Ð

Bardziej szczegółowo

ÃÓÑÔ Ð ØÖÓÒ ÞÒÝ ÈÓ ÖÞÒ ½º¼ ÏÝ Ò ÖÓÛ ÒÓ ÔÖÞ Þ ÓÜÝ Ò ½º º Ï ÂÙÒ ½½ ¼ ¾¼¼ ËÔ ØÖ ½ ÃÓÑÔ Ð ØÖÓÒ ÞÒÝ ½ ½º½ ÇÔ ÔÖÓ ØÙ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½ ½º¾ Ð Ñ ÒØÝ

Bardziej szczegółowo

ÁÒ ØÝØÙØ ÈÓ Ø Û ÁÒ ÓÖÑ ØÝ ÈÓÐ Ñ Æ Ù Ì ÑÔÓÖ ÐÒ Ô ØÝ ÔÐÓÖ ÒÝ Ñ ØÓ Ý Þ ÓÖ Û ÔÖÞÝ Ð ÓÒÝ ÊÇ ÈÊ Ï ÇÃÌÇÊËÃ ÙØÓÖ Ñ Ö È ÓØÖ ËÝÒ ÈÖÓÑÓØÓÖ ÈÖÓ º Ö º Ò º Ò ÖÞ Ë ÓÛÖÓÒ Ï Ö Þ Û ¾¼¼ Öº ËÔ ØÖ ½ Ï ØÔ ½º½ ÏÔÖÓÛ Þ Ò º º

Bardziej szczegółowo

ÈÖÞ ØÛ ÖÞ Ò Ø ØÙ Û ÈÓÛØ ÖÞ Ò áö Ò Óµ Þ Û Ò ÓÛ Ò Èʵ ÏÝ ¹ ÔÖÞ ØÛ ÖÞ Ò Ø ØÙ ÊÓ ÖØ ÆÓÛ ¾¼¼ áö Ò Óµ Þ Û Ò ÓÛ Ò Èʵ ½»

ÈÖÞ ØÛ ÖÞ Ò Ø ØÙ Û ÈÓÛØ ÖÞ Ò áö Ò Óµ Þ Û Ò ÓÛ Ò Èʵ ÏÝ ¹ ÔÖÞ ØÛ ÖÞ Ò Ø ØÙ ÊÓ ÖØ ÆÓÛ ¾¼¼ áö Ò Óµ Þ Û Ò ÓÛ Ò Èʵ ½» ÏÝ ¹ ÔÖÞ ØÛ ÖÞ Ò Ø ØÙ ÊÓ ÖØ ÆÓÛ ¾¼¼ ½» È Ò ÛÝ Ù Ó ÞÑ ÓÓ Ø Ö Ü ÓÓ Ø ÜÔÖ Ú ÓÓ Ø Ô Ö Ø ÈÖÞÝ ÓÛ Þ Ò Ò ÓÓ Û ÙÑ ¾» ÈÖÞ ØÛ ÖÞ Ò Ø ØÙ Û» ÔÖÞ ØÛ ÖÞ Ò Ø ØÙ ÙÒ ÓÒÛ ÖØÙ Þ ³ ÍØÛÓÖÞ Ò Þ Ý Ò ÔÓ Ø Û Ò Ô Ù ÒÙ Ø ÒØ ØÓ ½¾

Bardziej szczegółowo

ÈÓÔÖ ÛÒ ÛÝ ÓÖÞÝ Ø Ò ÏÞÓÖ ÔÖÓ ØÓÛ áö Ò ÓµÞ Û Ò ÓÛ Ò ÔÖÓ Ö ÑÓÛ Ò Û ÏÝ ¾ ¹ Ø Ó ÛÞÓÖ ÔÖÓ ØÓÛ ÊÓ ÖØ ÆÓÛ ¾¼¼ áö Ò ÓµÞ Û Ò ÓÛ Ò ÔÖÓ Ö ÑÓÛ Ò Û ½»

ÈÓÔÖ ÛÒ ÛÝ ÓÖÞÝ Ø Ò ÏÞÓÖ ÔÖÓ ØÓÛ áö Ò ÓµÞ Û Ò ÓÛ Ò ÔÖÓ Ö ÑÓÛ Ò Û ÏÝ ¾ ¹ Ø Ó ÛÞÓÖ ÔÖÓ ØÓÛ ÊÓ ÖØ ÆÓÛ ¾¼¼ áö Ò ÓµÞ Û Ò ÓÛ Ò ÔÖÓ Ö ÑÓÛ Ò Û ½» ÏÝ ¾ ¹ Ø Ó ÛÞÓÖ ÔÖÓ ØÓÛ ÊÓ ÖØ ÆÓÛ ¾¼¼ ½» ÈÒ ÛÝ Ù ÔÓ Ø ÛÓÛ ÔÓ Û ÔÓÛØ ÖÞ Ò µ Ø Ó ÞÝÞÒ Ó ÞÒ ÔÓÛØ ÖÞ Ò µ Ö Þ Þ Þ Ò ÔÓÛØ ÖÞ Ò µ ÛÞÓÖ ÔÖÓ ØÓÛ Ò ØÓÒ ÔÖÓØÓØÝÔ ¾» Ö Ò Ö ¹ Ý Ò Þ Ô ÛÒ Ò ÞÛ Ó ÒÓ Ó Þ Ó ÜØ ÖÒ ÒØ Ü»»

Bardziej szczegółowo

Þ Á Í Ù ÞÓÖ ÒØÓÛ Ò ÔÓ Þ Ò ÓÛÓ Ù Ù ÞÔÓ Þ Ò ÓÛ Ï Ö ØÛÝ ÑÓ Ó ÖÓÛ Û Ö ØÛÓÑ Ð ÝÑ Ó Ò ÔÓÞ ÓÑ ÛÝ Ù Ù ÞÔÓ Þ Ò ÓÛ Ù Ù ÛÝÑ ÔÓ Þ Ò º Ï Ù Ù ÓÛÝ ÞÓÖ ÒØÓÛ ÒÝ ÔÓ Þ Ò ÓÛÓ Ù ÝØ ÓÛÒ Ù Ù Ò Ô ÖÛ Ù Ø Ð ÔÓ Þ Ò ÔÓØ Ñ ÔÓ Þ Ò

Bardziej szczegółowo

Reguly. Wind = Weak Temp > 20 Outlook Rain PlayTennis = Y es

Reguly. Wind = Weak Temp > 20 Outlook Rain PlayTennis = Y es ËÞØÙÞÒ ÁÒØ Ð Ò ËÝ Ø ÑÝ ÓÖ Þ ½ Ï ÖÙÒ Ð ØÓÖ Û Ý Ð ØÓÖ Ö ÔÖ Þ ÒØÙ Ø Ø Û ÖØÓ ÃÓÒ ÙÒ ØÖÝ ÙØÙ Û ÖÙÒ Ó ÔÓÛ Ó ØÓÑ Ô Ò ÝÑ ÔÓ ÝÒÞ Ó Ð ØÓÖÝ Û ÞÝ Ø ÝÞ Ö Ù ÞÛ Þ Ò Ø Þ Ò ÝÞ Ã Reguly ÔÖÞÝÔ ÝÛ Ò Ó ØÓÑ Ô Ò ÝÑ Û ÖÙÒ Ö Ù

Bardziej szczegółowo

LVI Olimpiada Fizyczna zawody III stopnia

LVI Olimpiada Fizyczna zawody III stopnia LV Olimpiada Fizyczna zawody stopnia Zadanie 1 Piłka uderza w poziomą podłogę pod kątem α z prędkością v 0. Współczynnik tarcia piłki o podłogę jest równy µ. W jakiej odległości od miejsca pierwszego uderzenia

Bardziej szczegółowo

ØÓ ÔÖ Ù Ð ØÖÝÞÒ Ó ÈÖ Ó ÙÒÓ Þ Ò Ó Ò ÓÖ ØÓ ÔÖ Ù Ø Û ØÓÖ Ñ Ø Ö Ó ÖÙÒ ÛÝÞÒ Þ ØÝÞÒ Ó ØÓÖÙ ÔÓÖÙ Þ Ó ÙÒ Ù Ó ØÒ Óº ÛÖÓØ Û ØÓÖ Ó Ö Ð ÙÑÓÛÒ Ó ÖÙÒ ÖÙ Ù ÙÒ Ù Ó ØÒ

ØÓ ÔÖ Ù Ð ØÖÝÞÒ Ó ÈÖ Ó ÙÒÓ Þ Ò Ó Ò ÓÖ ØÓ ÔÖ Ù Ø Û ØÓÖ Ñ Ø Ö Ó ÖÙÒ ÛÝÞÒ Þ ØÝÞÒ Ó ØÓÖÙ ÔÓÖÙ Þ Ó ÙÒ Ù Ó ØÒ Óº ÛÖÓØ Û ØÓÖ Ó Ö Ð ÙÑÓÛÒ Ó ÖÙÒ ÖÙ Ù ÙÒ Ù Ó ØÒ ÈÖ Ð ØÖÝÞÒÝ ÈÓÐ Ñ Ò ØÝÞÒ ½¼»½ Ò ÖÞ Ã Ô ÒÓÛ ØØÔ»»Ù Ö ºÙ º ÙºÔл Ù Ô ÒÓ» ÁÒ ØÝØÙØ ÞÝ ÍÒ Û Ö ÝØ Ø Â ÐÐÓ ÃÖ Û ¾¼½ ÈÖ Ð ØÖÝÞÒÝ Ø ØÓ ÙÔÓÖÞ ÓÛ ÒÝ ÖÙ ÙÒ Û Ð ØÖÝÞÒÝ º ÊÙ ÙÒ Û ÑÓ Ñ Ñ Û ÔÖÞ ÛÓ Ò Û Ô ÛÒÝ Û ÖÙÒ Ö ÛÒ

Bardziej szczegółowo

ÈÖÓÑ Ò ÓÛ Ò Ó Ñ ÞÒ Ï Ð Ô ØÑÓ ÖÝÞÒ º º ÖÒ ÏÝ ½

ÈÖÓÑ Ò ÓÛ Ò Ó Ñ ÞÒ Ï Ð Ô ØÑÓ ÖÝÞÒ º º ÖÒ ÏÝ ½ Þ Ø ØÖÓ ÞÝ ÔÖÓ º Ö º º º ÖÒ Þ Ø Ç Þ ÝÛ ðò ÙÒ Ñ ÒØ ÐÒÝ Á ÏÝ Ô ÖÝÑ ÒØ Í Ê ÈÖÓ Ø Â Å¹ ÍËÇ Ê ÓÛ Ø Ô Û ØÑÓ ÖÝÞÒÝ ÈÖÓÑ Ò ÓÛ Ò Ó Ñ ÞÒ Ï Ð Ô ØÑÓ ÖÝÞÒ º º ÖÒ ÏÝ ½ ÔÖÓÑ Ò ÓÛ Ò Þ Ö Ò ÓÛ ÔÖÞ Þ Ð ØÖÓÒÝ Û Ö Þ Ò Ù ÔÖÓ

Bardziej szczegółowo

Ð Ö Û Ø Ý Ò Û Ö ÞÓ Ò Û Ð Ñ ØÓÔÒ Ù ÔÓ Ð ÓÖ Û Ñ Ø Ö Â Ò Ð Ø Ó ÛÝ ÖÝ Ø Ø ØÖÙ Ò µ Ð Ö Û Ø Ý Ò Ï ÒÓð Ð Ö Û Ø Ý Ò Þ ÓÛÙ ÔÓ Ó Ò Ð Ð ØÖÓÑ Ò ØÝÞÒ ÔÓÖÙ Þ Þ Ø Ñ

Ð Ö Û Ø Ý Ò Û Ö ÞÓ Ò Û Ð Ñ ØÓÔÒ Ù ÔÓ Ð ÓÖ Û Ñ Ø Ö Â Ò Ð Ø Ó ÛÝ ÖÝ Ø Ø ØÖÙ Ò µ Ð Ö Û Ø Ý Ò Ï ÒÓð Ð Ö Û Ø Ý Ò Þ ÓÛÙ ÔÓ Ó Ò Ð Ð ØÖÓÑ Ò ØÝÞÒ ÔÓÖÙ Þ Þ Ø Ñ Þ Ø ØÖÓ ÞÝ ÔÖÓ º Ö º º º ÖÒ Þ Ø Ç Þ ÝÛ ðò ÙÒ Ñ ÒØ ÐÒÝ Á ÏÝ ÁÎ ÈÓ ÞÙ Û Ò Ð Ö Û Ø Ý ÒÝ Ï½ ¼ ½ ÓÐ Ò ÔÖÞÝÔ È Ö Ô ØÝÛÝ ðò Ð Ö Û Ø Ý Ò Û Ö ÞÓ Ò Û Ð Ñ ØÓÔÒ Ù ÔÓ Ð ÓÖ Û Ñ Ø Ö Â Ò Ð Ø Ó ÛÝ ÖÝ Ø Ø ØÖÙ Ò µ Ð Ö Û

Bardziej szczegółowo

Fizyka I (mechanika), rok akad. 2012/2013 Zadania kolokwialne 1

Fizyka I (mechanika), rok akad. 2012/2013 Zadania kolokwialne 1 ÞÝ Á ¾¼½¾»¾¼½ µ ÃÓÐÓ Û ÙÑ ½ º½½º¾¼½¾ Ò Ö ÙÒ ÓÛ ÖÙÔ ÍÛ Ã Þ Ò ÖÓÞÛ ÞÙ ÑÝ Ò Ó Ó Ò ÖØ º ÈÖ ÔÓÛ ÒÒÝ Ý ÞÝØ ÐÒ ÓÐ Ò ÖÓ ÓÔ ØÖÞÓÒ Ø Ñ ÓÑ ÒØ ÖÞ Ñ Ý ØÓ ÖÓÞÙÑÓÛ Ò Ý ÒÝ Ð ÔÖ Û Þ Óº ÊÓÞÛ ÞÙ Þ Ò ÛÝÔÖÓÛ õ ÛÞ Ö Ó ÓÛÝ ÔÖ

Bardziej szczegółowo

A(T)= A(0)=D(0)+E(0).

A(T)= A(0)=D(0)+E(0). 2 ÅÓ Ð ØÖÙ ØÙÖ ÐÒ ÈÓ ØÖÙ ØÙÖ ÐÒ ÓÔ ÖØ Ø Ò ÔÖ Ù ÓÛÝ ÑÓ ÐÙ ÛÝ Ò Ó Þ ÖÞ Ò Ò ÖÙØÛ Û ÔÓÛ Þ Ò Ù Þ Þ Û Ñ Þ Ó Þ ÝÑ Û Ó Ö ÖÓÞ¹ Û Ò ÖÑݺ Å Û Ò ÔÖÓ ÖÝÞÝ Ó Ö Ø ÖÞ Ö ÝØÓÛÝÑ ÛÝÒ Þ Ö Ù ÓØ Û Ò Ö ÙÐÓÛ Ò ÞÓ ÓÛ Þ º ÙÒ ÓÒÓÛ

Bardziej szczegółowo

pomiary teoria #pomiarow N

pomiary teoria #pomiarow N ÞÝ Á Å Ò ÔÖÓ º Ö º Ð Ò Ö Ð Ô ÖÒ Þ Ø Ç Þ ÝÛ ðò ÙÒ Ñ ÒØ ÐÒÝ Á ÏÝ Á Ã Ò Ñ ØÝ ÈÓÑ ÖÝ ÞÝÞÒ Ù ÒÓ Ø ËÁ Ý ÔÓÑ ÖÓÛ Ã Ò Ñ ØÝ ÔÓ ÔÓ Ø ÛÓÛ µ ÔÙÒ Ø Ñ Ø Ö ÐÒÝ Ù Ó Ò Ò Ù Û Ô ÖÞ ÒÝ µ ØÓÖ ÔÖ Óð ð ÔÖÞÝ Ô Þ Ò ÊÙ ÒÓ Ø ÒÝ

Bardziej szczegółowo

ÃÓÒØ Ò ÖÝ Þ ÓÓ Ø ÓÓ Ø Ö Ô Ä Ö ÖÝ ÈÓÛØ ÖÞ Ò áö Ò Ó Þ Û Ò ÓÛ Ò ÔÖÓ Ö ÑÓÛ Ò Û Èʵ ÏÝ ½¾ ¹ ÓÒØ Ò ÖÝ Þ ÓÓ Ø ÊÓ ÖØ ÆÓÛ ¾¼¼ áö Ò Ó Þ Û Ò ÓÛ Ò ÔÖÓ Ö ÑÓÛ Ò Û È

ÃÓÒØ Ò ÖÝ Þ ÓÓ Ø ÓÓ Ø Ö Ô Ä Ö ÖÝ ÈÓÛØ ÖÞ Ò áö Ò Ó Þ Û Ò ÓÛ Ò ÔÖÓ Ö ÑÓÛ Ò Û Èʵ ÏÝ ½¾ ¹ ÓÒØ Ò ÖÝ Þ ÓÓ Ø ÊÓ ÖØ ÆÓÛ ¾¼¼ áö Ò Ó Þ Û Ò ÓÛ Ò ÔÖÓ Ö ÑÓÛ Ò Û È áö Ò Ó Þ Û Ò ÓÛ Ò ÔÖÓ Ö ÑÓÛ Ò Û Èʵ ÏÝ ½¾ ¹ ÓÒØ Ò ÖÝ Þ ÓÓ Ø ÊÓ ÖØ ÆÓÛ ¾¼¼ ½» ½ ËÌÄ ¹ Ø Ò Ö ÓÛ Ð ÓØ Þ ÐÓÒ Û ÓÒØ Ò ÖÝ Ø Ö ØÓÖÝ Ð ÓÖÝØÑÝ ÙÒ ØÓÖÝ Ó º ÙÒ Ý Ò µ ÔØ ÖÝ ÌÛÓÖÞ Ò ÙÒ ØÓÖ Û ÖÞÒ Ò ÔÓ Ø Û ØÒ Ý ÙÒ Ñ

Bardziej szczegółowo

Þ ÑÒ ÑÒ Ñ Ø Ö Ö Å ØØ Ö ¹ ŵ ÓÐ À Å Ñ Å Þ Å Ñ Å Å Å ÛÓÐÙ Ï Þ ð Û Ø Ç Ò ÔÓÛ Þ Ò ÙÞÒ ÒÝÑ ÑÓ Ð Ñ ÛÓÐÙ Ï Þ ð Û Ø Ø ØÞÛº ÑÓ Ð Åº ÓÒ Ï Þ ð Û Ø ÛÝÔ Ò ãþûý ä Ñ

Þ ÑÒ ÑÒ Ñ Ø Ö Ö Å ØØ Ö ¹ ŵ ÓÐ À Å Ñ Å Þ Å Ñ Å Å Å ÛÓÐÙ Ï Þ ð Û Ø Ç Ò ÔÓÛ Þ Ò ÙÞÒ ÒÝÑ ÑÓ Ð Ñ ÛÓÐÙ Ï Þ ð Û Ø Ø ØÞÛº ÑÓ Ð Åº ÓÒ Ï Þ ð Û Ø ÛÝÔ Ò ãþûý ä Ñ Þ Ø ØÖÓ ÞÝ ÔÖÓ º Ö º º º ÖÒ Þ Ø Ç Þ ÝÛ ðò ÙÒ Ñ ÒØ ÐÒÝ Á ÏÝ ÁÎ ÑÒ Ñ Ø Ö Û Ï Þ ð Û È ÖÛÓØÒ ÆÙ Ð Ó ÝÒØ Þ ÊÓØ Ð ØÝ ÓÖÑÓÛ Ò ØÖÙ ØÙÖ Ç Ð ÙÔ ÖÒÓÛ ÖÓÑ ÈÓ ÙÐÐ Ø ÐÙ Ø Öµ Þ ÑÒ ÑÒ Ñ Ø Ö Ö Å ØØ Ö ¹ ŵ ÓÐ À Å Ñ Å Þ

Bardziej szczegółowo

System ALVINN. 30 Output. Units. 4 Hidden. Units. 30x32 Sensor Input Retina. Straight Ahead. Sharp Right. Sharp Left

System ALVINN. 30 Output. Units. 4 Hidden. Units. 30x32 Sensor Input Retina. Straight Ahead. Sharp Right. Sharp Left ËÞØÙÞÒ ÁÒØ Ð Ò ËÝ Ø ÑÝ ÓÖ Þ ½ System ALVINN ÄÎÁÆÆ ÔÖÓÛ Þ ÑÓ ÔÓ ÙØÓ ØÖ Þ Þ ÞÝ Ó ¼ Ñ Ð Ò Ó Þ Ò Sharp Left Straight Ahead Sharp Right 30 Output Units 4 Hidden Units 30x32 Sensor Input Retina ¾ www.wisewire.com,

Bardziej szczegółowo

ÈÖ ÔÖÞ Ð Ñ Ó Ó ÒÝ Ø ÈÓ Ô ÙØÓÖ ÔÖ Ý ÈÖ Ø ÓØÓÛ Ó Ó ÒÝ ÔÖÞ Þ Ö ÒÞ ÒØ Ø ÈÓ Ô ÖÙ Ó ÔÖ

ÈÖ ÔÖÞ Ð Ñ Ó Ó ÒÝ Ø ÈÓ Ô ÙØÓÖ ÔÖ Ý ÈÖ Ø ÓØÓÛ Ó Ó ÒÝ ÔÖÞ Þ Ö ÒÞ ÒØ Ø ÈÓ Ô ÖÙ Ó ÔÖ ÍÒ Û Ö ÝØ Ø Ï Ö Þ Û ÏÝ Þ Ð Å Ø Ñ ØÝ ÁÒ ÓÖÑ ØÝ Å Ò È Û Ð Å Ð ÒÞÙ ÆÖ Ð ÙÑÙ ½ ½ Ò Ð Þ ÑÔÐ Ñ ÒØ Ð Ò ÛÝ ÞÝ ÓÛ ÙÒ Ý ÒÝ ÈÖ Ñ Ø Ö Ò ÖÙÒ Ù ÁÆ ÇÊÅ Ì Ã ÈÖ ÛÝ ÓÒ Ò ÔÓ ÖÙÒ Ñ Ö Ð Ó Ë Ù ÖØ ÁÒ ØÝØÙØ ÁÒ ÓÖÑ ØÝ Ð ÄÓ ËØÓ

Bardziej szczegółowo

Þ ÈÖ ÛÓ ÀÙ Ð ÈÖÞ ÙÒ Ù Þ ÖÛ Ò Â ð Ð ðþö Ó ð Û Ø Ó Ð Ó Ä Ò Û Ð Û Û Ñ Û Þ Ö ÈÃË ½¾ ¾ ¼ ½ Ó ÖÛ ØÓÖ Ò Ø ÔÙ ÛÝ Ù Þ Ò Ð ½ ½ ¼ ½ Þµ ÔÖÞ ÙÒ Ù Þ ÖÛ Ò Ò º ãö Øäµ

Þ ÈÖ ÛÓ ÀÙ Ð ÈÖÞ ÙÒ Ù Þ ÖÛ Ò Â ð Ð ðþö Ó ð Û Ø Ó Ð Ó Ä Ò Û Ð Û Û Ñ Û Þ Ö ÈÃË ½¾ ¾ ¼ ½ Ó ÖÛ ØÓÖ Ò Ø ÔÙ ÛÝ Ù Þ Ò Ð ½ ½ ¼ ½ Þµ ÔÖÞ ÙÒ Ù Þ ÖÛ Ò Ò º ãö Øäµ Þ Ø ØÖÓ ÞÝ ÔÖÓ º Ö º º º ÖÒ Þ Ø Ç Þ ÝÛ ðò ÙÒ Ñ ÒØ ÐÒÝ Á ÏÝ ÁÁÁ Ï Ð ÏÝ Ù ÛÓÐÙ Ï Þ ð Û Ø ÈÖÓÑ Ò ÓÛ Ò Ø ÈÓÑ ÖÝ Ù ØÙ Å Þ ÈÖ ÛÓ ÀÙ Ð ÈÖÞ ÙÒ Ù Þ ÖÛ Ò Â ð Ð ðþö Ó ð Û Ø Ó Ð Ó Ä Ò Û Ð Û Û Ñ Û Þ Ö ÈÃË ½¾ ¾ ¼ ½

Bardziej szczegółowo

Sieci neuronowe: pomysl

Sieci neuronowe: pomysl ËÞØÙÞÒ ÁÒØ Ð Ò ËÝ Ø ÑÝ ÓÖ Þ ½ ØÓ Þ ÞÙÑ ÓÒ Ó õ ØÖ ÒÙ ÔÓÞ ÓÑ ÔÓØ Ò Ù Ð ØÖÝÞÒ Ó ËÝ Ò Ý ÓÑ Ö Sieci neuronowe: pomysl Æ Ð ÓÛ Ò Ñ Þ Ù Þ Ó Ó ÓÑ Ö Ò ÙÖÓÒÓÛÝ Axonal arborization Synapse Axon from another cell Dendrite

Bardziej szczegółowo

Þ Ø Ð Ñ ÒØ ÖÒÝ ÏÝ Ï Ô Þ Ò Ô ÖÝÑ ÒØÝ ¾ Ñ Ö ¾¼½ Ï Þ ð Û Ø µæ Ôº¾»

Þ Ø Ð Ñ ÒØ ÖÒÝ ÏÝ Ï Ô Þ Ò Ô ÖÝÑ ÒØÝ ¾ Ñ Ö ¾¼½ Ï Þ ð Û Ø µæ Ôº¾» ÏÝ Ô ÖÝÑ ÒØÝ Ï Ô Þ Ò Þ Ø Ð Ñ ÒØ ÖÒÝ Ï Þ ð Û Ø ÔÖÓ º º º ÖÒ Þ Ø Ç Þ ÝÛ ðò ÙÒ Ñ ÒØ ÐÒÝ ÁÒ ØÝØÙØ ÞÝ Óð Û Þ ÐÒ Þ Ø Ð Ñ ÒØ ÖÒÝ ÏÝ Ï Ô Þ Ò Ô ÖÝÑ ÒØÝ ¾ Ñ Ö ¾¼½ æ Ôº½» Ï Þ ð Û Ø Þ Ø Ð Ñ ÒØ ÖÒÝ ÏÝ Ï Ô Þ Ò Ô ÖÝÑ

Bardziej szczegółowo

Þ ð ãû Þ ÑÝä Ó Þ ÝÛ Ò Þ Ø Â Þ Ø Ð Ñ ÒØ ÖÒÝ ÏÝ Ï Ô Þ Ò Ô ÖÝÑ ÒØÝ ½ Ð ØÓÔ ¾¼½ Ï Þ ð Û Ø µæ Ôº¾»

Þ ð ãû Þ ÑÝä Ó Þ ÝÛ Ò Þ Ø Â Þ Ø Ð Ñ ÒØ ÖÒÝ ÏÝ Ï Ô Þ Ò Ô ÖÝÑ ÒØÝ ½ Ð ØÓÔ ¾¼½ Ï Þ ð Û Ø µæ Ôº¾» Þ Ø Ð Ñ ÒØ ÖÒÝ Ï Þ ð Û Ø ÙÑ Ò Ø Û Ð ÏÝ Ï Ô Þ Ò Ô ÖÝÑ ÒØÝ ÔÖÓ º º º ÖÒ Þ Ø Ç Þ ÝÛ ðò ÙÒ Ñ ÒØ ÐÒÝ ÁÒ ØÝØÙØ ÞÝ Óð Û Þ ÐÒ Þ Ø Ð Ñ ÒØ ÖÒÝ ÏÝ Ï Ô Þ Ò Ô ÖÝÑ ÒØÝ ½ Ð ØÓÔ ¾¼½ æ Ôº½» Ï Þ ð Û Ø Þ ð ãû Þ ÑÝä Ó Þ ÝÛ

Bardziej szczegółowo

ÏÝ Ô ÖÝÑ ÒØÝ Ï Ô Þ Ò Þ Ø Ð Ñ ÒØ ÖÒÝ Ï Þ ð Û Ø ÔÖÓ º º º ÖÒ Þ Ø Ç Þ ÝÛ ðò ÙÒ Ñ ÒØ ÐÒÝ ÁÒ ØÝØÙØ ÞÝ Óð Û Þ ÐÒ Þ Ø Ð Ñ ÒØ ÖÒÝ ÏÝ Ï Ô Þ Ò Ô ÖÝÑ ÒØÝ ¾ Ñ Ö ¾

ÏÝ Ô ÖÝÑ ÒØÝ Ï Ô Þ Ò Þ Ø Ð Ñ ÒØ ÖÒÝ Ï Þ ð Û Ø ÔÖÓ º º º ÖÒ Þ Ø Ç Þ ÝÛ ðò ÙÒ Ñ ÒØ ÐÒÝ ÁÒ ØÝØÙØ ÞÝ Óð Û Þ ÐÒ Þ Ø Ð Ñ ÒØ ÖÒÝ ÏÝ Ï Ô Þ Ò Ô ÖÝÑ ÒØÝ ¾ Ñ Ö ¾ ÏÝ Ô ÖÝÑ ÒØÝ Ï Ô Þ Ò Þ Ø Ð Ñ ÒØ ÖÒÝ Ï Þ ð Û Ø ÔÖÓ º º º ÖÒ Þ Ø Ç Þ ÝÛ ðò ÙÒ Ñ ÒØ ÐÒÝ ÁÒ ØÝØÙØ ÞÝ Óð Û Þ ÐÒ Þ Ø Ð Ñ ÒØ ÖÒÝ ÏÝ ¾ Ñ Ö ¾¼½ æ Ôº½» Ï Þ ð Û Ø Þ ð ãû Þ ÑÝä Ó Þ ÝÛ Ò Þ Ø Â Þ Ø Ð Ñ ÒØ ÖÒÝ ÏÝ ¾ Ñ

Bardziej szczegółowo

Strategie heurystyczne

Strategie heurystyczne ËÞØÙÞÒ ÁÒØ Ð Ò ËÝ Ø ÑÝ ÓÖ Þ ÔÖÞ ØÖÞ Ò Ø Ò Û Ð ÓÖÝØÑÝ ÈÖÞ ÞÙ Û Ò ÙÖÝ ØÝÞÒ ½ ÙÖÝ ØÝÞÒ ÓÖÞÝ Ø Þ Ó Ø ÓÛ ÙÖÝ ØÝÞÒ ÙÒ Ó ÒÝ ËØÖ Ø ÒÔº Þ Ù Ó ÞØ ÖÓÞÛ Þ Ò Ó Ó Ø ÒÙ Ó ÐÙµ Ø ÒÙ Strategie heurystyczne ÈÖÞ ÞÙ Û Ò Ô

Bardziej szczegółowo

Ö Þ Þ Û ØÔÙ Ó Ñ Ø Ñ ØÝ Â Ò ÃÖ Þ Û ÏÖÓ Û ¾¼¼ ½

Ö Þ Þ Û ØÔÙ Ó Ñ Ø Ñ ØÝ Â Ò ÃÖ Þ Û ÏÖÓ Û ¾¼¼ ½ Ö Þ Þ Û ØÔÙ Ó Ñ Ø Ñ ØÝ Â Ò ÃÖ Þ Û ÏÖÓ Û ¾¼¼ ½ ËÔ ØÖ ÈÖÞ ÑÓÛ ½ Ò ½ ¾ Ï Þ Û Ó Þ ½ Ç ÔÓÛ Þ Ó Þ ¾½ Ð Ó Ö ¼ ¾ ÈÖÞ ÑÓÛ Ï Þ ÓÖ Þ Þ Û ØÔÙ Ó Ñ Ø Ñ ØÝ Þ Ò Þ ÞÛÝÞ Ø ÔÓ ÖÙÔÓÛ Ò Ý ÓØÝÞÝ Ý ÔÓ Þ ÔÓ ÞÞ ÐÒÝ Þ Û ÓÑ Û ÒÝ

Bardziej szczegółowo

ÈÓÞÝØÝÛÒ ÔÖÝÑÓÛ Ò Ñ ÒØÝÞÒ Ó Ò ÖÞ Þ ÓÔØÝÑ Ð Þ ÙØÓÑ ØÝÞÒÝ Ý Ø Ñ Û ÙØÓÖÝÞ Ù ÝØ ÓÛÒ Ê ÈÇÊÌ Ö Å Ö Ù Þ ÍÖ ÄÓ ÃÓ Ò ØÝÛ ØÝ ÁÒ ØÝØÙØ È Ý ÓÐÓ ÍÒ Û Ö ÝØ Ø Ñº º Å

ÈÓÞÝØÝÛÒ ÔÖÝÑÓÛ Ò Ñ ÒØÝÞÒ Ó Ò ÖÞ Þ ÓÔØÝÑ Ð Þ ÙØÓÑ ØÝÞÒÝ Ý Ø Ñ Û ÙØÓÖÝÞ Ù ÝØ ÓÛÒ Ê ÈÇÊÌ Ö Å Ö Ù Þ ÍÖ ÄÓ ÃÓ Ò ØÝÛ ØÝ ÁÒ ØÝØÙØ È Ý ÓÐÓ ÍÒ Û Ö ÝØ Ø Ñº º Å ÈÓÞÝØÝÛÒ ÔÖÝÑÓÛ Ò Ñ ÒØÝÞÒ Ó Ò ÖÞ Þ ÓÔØÝÑ Ð Þ ÙØÓÑ ØÝÞÒÝ Ý Ø Ñ Û ÙØÓÖÝÞ Ù ÝØ ÓÛÒ Ê ÈÇÊÌ Ö Å Ö Ù Þ ÍÖ ÄÓ ÃÓ Ò ØÝÛ ØÝ ÁÒ ØÝØÙØ È Ý ÓÐÓ ÍÒ Û Ö ÝØ Ø Ñº º Å Û Þ Å Ö È Û ÙÔ ÓÛ ÄÓ ÃÓ Ò ØÝÛ ØÝ ÁÒ ØÝØÙØ È Ý ÓÐÓ

Bardziej szczegółowo

ÍÒ Û Ö ÝØ Ø Ï Ö Þ Û ÏÝ Þ Å Ø Ñ ØÝ ÁÒ ÓÖÑ ØÝ Å Ò ËÔ Ý Û õò ÓÛÝ ØÖÙ ØÙÖ ÒÝ ÈÖ Ó ØÓÖ µ Å Ö Ò ÃÙ ÈÖÓÑÓØÓÖ ÔÖÓ º Ö º Â Ò Å Ý ½ ØÝÞÒ ¾¼¼¼

ÍÒ Û Ö ÝØ Ø Ï Ö Þ Û ÏÝ Þ Å Ø Ñ ØÝ ÁÒ ÓÖÑ ØÝ Å Ò ËÔ Ý Û õò ÓÛÝ ØÖÙ ØÙÖ ÒÝ ÈÖ Ó ØÓÖ µ Å Ö Ò ÃÙ ÈÖÓÑÓØÓÖ ÔÖÓ º Ö º Â Ò Å Ý ½ ØÝÞÒ ¾¼¼¼ ÍÒ Û Ö ÝØ Ø Ï Ö Þ Û ÏÝ Þ Å Ø Ñ ØÝ ÁÒ ÓÖÑ ØÝ Å Ò ËÔ Ý Û õò ÓÛÝ ØÖÙ ØÙÖ ÒÝ ÈÖ Ó ØÓÖ µ Å Ö Ò ÃÙ ÈÖÓÑÓØÓÖ ÔÖÓ º Ö º Â Ò Å Ý ½ ØÝÞÒ ¾¼¼¼ ËÔ ØÖ ½ Ï ØÔ ½º½ Ì Þ ÔÖ Ý º º º º º º º º º º º º º º º º º º º º º

Bardziej szczegółowo

LVI OLIMPIADA FIZYCZNA ZADANIA ZAWODÓW I STOPNIA

LVI OLIMPIADA FIZYCZNA ZADANIA ZAWODÓW I STOPNIA http://www.kgof.edu.pl 1 LVI OLIMPIADA FIZYCZNA ZADANIA ZAWODÓW I STOPNIA Rozwiązania zadań I stopnia należy przesyłać do Okręgowych Komitetów Olimpiady Fizycznej w terminach: część I do 5 października

Bardziej szczegółowo

ËÔ ØÖ ½ Ð Þ Ö ÔÖ Ý ¾ ËÝ Ø ÑÝ ÔÐ Û Ý Ø ÑÝ ÓÔ Ö Ý Ò ¾º½ ÊÓÐ Ý Ø Ñ Û ÔÐ Û º º º º º º º º º º º º º º º º º º º º º º ¾º¾ Ê ÒÓÖÓ ÒÓ Ý Ø Ñ Û ÔÐ Û º º º º

ËÔ ØÖ ½ Ð Þ Ö ÔÖ Ý ¾ ËÝ Ø ÑÝ ÔÐ Û Ý Ø ÑÝ ÓÔ Ö Ý Ò ¾º½ ÊÓÐ Ý Ø Ñ Û ÔÐ Û º º º º º º º º º º º º º º º º º º º º º º ¾º¾ Ê ÒÓÖÓ ÒÓ Ý Ø Ñ Û ÔÐ Û º º º º ÊÓÞÛ ÑÔÐ Ñ ÒØ Ý Ø Ñ Û ÔÐ Û ÈÓÐ Ø Ò áð ÙØÓÖ Ò ÖÞ Ö ÞÓÛ ÈÖÓÑÓØÓÖ ÔÖÓ º Ö º Ò º Ò ÖÞ ÖÞÝÛ ÃÓÒ ÙÐØ ÒØ Ñ Ö Ò º È ÓØÖ Ã ÔÖÞÝ Ð ØÓÔ ¾¼¼½ ÖÓ Ù ËÔ ØÖ ½ Ð Þ Ö ÔÖ Ý ¾ ËÝ Ø ÑÝ ÔÐ Û Ý Ø ÑÝ ÓÔ Ö Ý Ò ¾º½ ÊÓÐ Ý Ø Ñ Û

Bardziej szczegółowo

Ç ÐÒ ÒÖ ½ DoCelu Ä ØÓÔ ¾¼¼¾ º º º Ó Þ ÑÝ Û ÞÝ Ý Ó ÒÓ Û ÖÝ ÔÓÞÒ Ò ËÝÒ Ó Ó Ó Ñ Ó ÓÒ Ó ÓÖÓ Ò ÑÝ Ó ÛÝÑ Ö Û Ô Ò ÖÝ ØÙ ÓÛ º º º Â ÞÙ ÞÛÝ Ý ÂÓ ÒÒ Ö ØÓÔ ÐÙÑ Ö

Ç ÐÒ ÒÖ ½ DoCelu Ä ØÓÔ ¾¼¼¾ º º º Ó Þ ÑÝ Û ÞÝ Ý Ó ÒÓ Û ÖÝ ÔÓÞÒ Ò ËÝÒ Ó Ó Ó Ñ Ó ÓÒ Ó ÓÖÓ Ò ÑÝ Ó ÛÝÑ Ö Û Ô Ò ÖÝ ØÙ ÓÛ º º º  ÞÙ ÞÛÝ Ý ÂÓ ÒÒ Ö ØÓÔ ÐÙÑ Ö Ç ÐÒ ÒÖ ½ DoCelu Ä ØÓÔ ¾¼¼¾ º º º Ó Þ ÑÝ Û ÞÝ Ý Ó ÒÓ Û ÖÝ ÔÓÞÒ Ò ËÝÒ Ó Ó Ó Ñ Ó ÓÒ Ó ÓÖÓ Ò ÑÝ Ó ÛÝÑ Ö Û Ô Ò ÖÝ ØÙ ÓÛ º º º  ÞÙ ÞÛÝ Ý ÂÓ ÒÒ Ö ØÓÔ ÐÙÑ Ö Ø Ô ÓÒ Ö Û Ð Ù ÓÛ ÔÖ ÙÖ ÓÖ ÔÓ Ù ÙÛ ÐÒ Ò ½ º¼ º½ ¼

Bardziej szczegółowo

e 2 = 8, 3 e 1 = 5, 1, e 2 = i 3 + i

e 2 = 8, 3 e 1 = 5, 1, e 2 = i 3 + i ÆÓØ Ø Ó Û Þ Þ Ò Ð ÞÝ Ð Öݺ Ä Ê Ò ½ ÞÝ Û ØÓÖ v ÑÓ Ò ÔÖÞ Ø Û Ó ÓÑ Ò Ð Ò ÓÛ Û ØÓÖ Û e e 2 Þ i) v = 2, 4 e = 5, 7 e 2 = 8, 3 6 9 ÓÖ Þ ii) v = 2 3, e = Ç ÔÓÛ õ i) Ø v = 2e e 2 ii) Ò º, e 2 =, Ò ¾ ÞÝ Û ØÓÖÝ

Bardziej szczegółowo

Agnieszka Pr egowska

Agnieszka Pr egowska Á Ò Ø Ý Ø Ù Ø È Ó Ø Û Ó Û Ý È Ö Ó Ð Ñ Û Ì Ò È Ó Ð Ñ Æ Ù Agnieszka Pręgowska È ØÝÛÒ Ø ÖÓÛ Ò Ù Ñ Ñ Ò ÞÒÝÑ Ö ÝÑ ÖØÒ ÖÓÞÔÖ Û Ó ØÓÖ ÔÖÓÑÓØÓÖ Ö º Ò º ÌÓÑ Þ ËÞÓÐ ÔÖÓ º ÁÈÈÌ Ï Ö Þ Û ¾¼½ ËÔ ØÖ ½º Ï ØÔ ½ ¾º Ð Ø

Bardziej szczegółowo

ÈÖ ÔÖÞ Ñ Ó Ó ÒÝ Ø ÈÓ Ô ÙØÓÖ ÔÖ Ý ÈÖ Ø ÓØÓÛ Ó Ó ÒÝ ÔÖÞ Þ Ö ÒÞ ÒØ Ø ÈÓ Ô ÖÙ Ó ÔÖ

ÈÖ ÔÖÞ Ñ Ó Ó ÒÝ Ø ÈÓ Ô ÙØÓÖ ÔÖ Ý ÈÖ Ø ÓØÓÛ Ó Ó ÒÝ ÔÖÞ Þ Ö ÒÞ ÒØ Ø ÈÓ Ô ÖÙ Ó ÔÖ ÍÒ Û Ö ÝØ Ø Ï Ö Þ Û ÏÝ Þ Å Ø Ñ ØÝ ÁÒ ÓÖÑ ØÝ Å Ò Ñ Ã ÙÒ ÆÖ ÙÑÙ ½ ½ Ê ØÓÖÝÞ ÔÖÓ Ö Ñ Û Û ÞÝ Ù Â Ú ÈÖ Ñ Ø Ö Ò ÖÙÒ Ù ÁÆ ÇÊÅ Ì Ã ÈÖ ÛÝ ÓÒ Ò ÔÓ ÖÙÒ Ñ Ö Â Ò ÒÝ Å Ò Ö Þ Û Þ ÁÒ ØÝØÙØ ÁÒ ÓÖÑ ØÝ Ä Ô ¾¼¼½ ÈÖ ÔÖÞ Ñ

Bardziej szczegółowo

Ñ ÒÒ Û È ÖÐÙ Ñ ÒÒ ÌÝÔ Ò ÈÖÞÝ Ò Þ Ò Ë Ð Ö Ð ÈÓ ÝÒÞ Û ÖØÓ Ð Þ ÐÙ Ò Ô µ Ì Ð Ø Ð Ä Ø Û ÖØÓ Ò ÓÛ Ò Ð Þ Ñ À Þ ± ±Þ ÓÖ ÖÙÔ Û ÖØÓ Ò ÓÛ Ò Ò Ô Ñ ÈÖÓ ÙÖ ² ²ÞÖÓ Ö

Ñ ÒÒ Û È ÖÐÙ Ñ ÒÒ ÌÝÔ Ò ÈÖÞÝ Ò Þ Ò Ë Ð Ö Ð ÈÓ ÝÒÞ Û ÖØÓ Ð Þ ÐÙ Ò Ô µ Ì Ð Ø Ð Ä Ø Û ÖØÓ Ò ÓÛ Ò Ð Þ Ñ À Þ ± ±Þ ÓÖ ÖÙÔ Û ÖØÓ Ò ÓÛ Ò Ò Ô Ñ ÈÖÓ ÙÖ ² ²ÞÖÓ Ö È ÊÄ ¹ ÞÝ Ó Ô Ò È ÖÐ ØÓ Ö Ò Ø ÙÑ Þݺ Ð ØÝ Ø ÖÞÝ Ó Þ Ð Û ÐÙ È ÖÐ Ø ÈÖ ØÝÞÒÝÑ ÂÞÝ Ñ Ó ÏÝ Û Ê ÔÓÖØ Û Ò º ÈÖ Ø Ð ÜØÖ Ø ÓÒ Ò Ê ÔÓÖØ Ä Ò Ù µº Â Ò Ð ÔÖ Û Þ ÛÝ Ñ Ó Ò Û È ÖÐ ØÓ È ØÓÐÓ ÞÒ Ð ØÝÞÒ ÊÓ Ø Ä Ò Û ØÝÞÒ

Bardziej szczegółowo

ð Ö ½¼¼ Å Î ¹ Ì Î ½¼ ½ ØÑÓ ÖÝÞÒ Ñ ¾ Ð Ö ØÓÖÓÛ ÖÞ Ù Î ½¼ ¾¼ Æ ÙØÖ Ò ÌÝÔ Ô Ò Ö ËØÖÙÑ ðò ½ Å Î ½¼ ½¼ ½ Ë ÓÒ ÞÒ Ñ ¾ Ò Ñ µ ÔÓÛÝ Þ ½¼ Šε ÖÞ Ù Å Î ½¼ ½ Ê Ø

ð Ö ½¼¼ Å Î ¹ Ì Î ½¼ ½ ØÑÓ ÖÝÞÒ Ñ ¾ Ð Ö ØÓÖÓÛ ÖÞ Ù Î ½¼ ¾¼ Æ ÙØÖ Ò ÌÝÔ Ô Ò Ö ËØÖÙÑ ðò ½ Å Î ½¼ ½¼ ½ Ë ÓÒ ÞÒ Ñ ¾ Ò Ñ µ ÔÓÛÝ Þ ½¼ Šε ÖÞ Ù Å Î ½¼ ½ Ê Ø Þ Ø ØÖÓ ÞÝ ÔÖÓ º Ö º º º ÖÒ Þ Ø Ç Þ ÝÛ ðò ÙÒ Ñ ÒØ ÐÒÝ Á ÏÝ ÁÁ ØÖÓÒÓÑ Ò ÙØÖ Ò µ Ô ÖÝÑ ÒØ Á Ù ÛÓÐÙ Û Þ ð Ö ½¼¼ Å Î ¹ Ì Î ½¼ ½ ØÑÓ ÖÝÞÒ Ñ ¾ Ð Ö ØÓÖÓÛ ÖÞ Ù Î ½¼ ¾¼ Æ ÙØÖ Ò ÌÝÔ Ô Ò Ö ËØÖÙÑ ðò ½ Å Î ½¼ ½¼ ½

Bardziej szczegółowo

ρ h (x 0 ) = M h h 3 ρ(x 0 ) = lim ρ h (x 0 )

ρ h (x 0 ) = M h h 3 ρ(x 0 ) = lim ρ h (x 0 ) ÏÝ ½ ÈÓ Ø ÛÓÛ ÔÓ Ñ Ò Ó ÖÓ Ó ËÔ ØÖ ½ ÏÔÖÓÛ Þ Ò Ó Ø ÓÖ Ó ÖÓ Ó ½ ½º½ ÍÛ Ó ÔÓØ Þ Ó ÖÓ Ó º º º º º º º º º º º º º º º º º º º º º º º ½ ¾ ÈÓ ÖÙ Ù Û Ó ÖÓ Ù ÝÑ ¾ ¾º½ ÇÔ ÖÙ Ù Û ÞÑ ÒÒÝ Ä Ö Ò ³ Û ÞÑ ÒÒÝ ÙÐ Ö º

Bardziej szczegółowo

¾ Å ÑÞ ÈÖ Þ Ó ÓÒÓ Û Ý Ø Ñ Ä Ì º

¾ Å ÑÞ ÈÖ Þ Ó ÓÒÓ Û Ý Ø Ñ Ä Ì º Ç ÖÛ ØÓÖ ÙÑ ØÖÓÒÓÑ ÞÒ ÍÒ Û Ö ÝØ Ø Ñº Ñ Å Û Þ Û ÈÓÞÒ Ò Ù ÇÔØÝÑ Ð Þ Ñ ØÓ Ö Ù Ó ÖÛ ÓØÓÑ ØÖÝÞÒÝ ÈÖ Ñ Ø Ö Å ÑÞ Ã ÖÓÛÒ ÔÖ Ý ÔÖÓ º Ö º Ì Ù Þ Å ÓÛ ÇÔ ÙÒ ÔÖ Ý Ö ÌÓÑ Þ ÃÛ Ø ÓÛ ÈÓÞÒ ½ ¾ Å ÑÞ ÈÖ Þ Ó ÓÒÓ Û Ý Ø Ñ Ä

Bardziej szczegółowo

ÈÖÓÑ Ò ÓØÛ ÖÞÓð ð ÔÖÞ Þ Àº ÕÙ Ö Ð Û ÖÓ Ù ½ º Ç ÖÝØ Æ ÙØÖ Ò ÙÖ ÒÙ Ñ ØÓÛ Ý ÔÖÓÑ Ò ÓÛ Ò Ø Ö Þ ÑÒ Ó Ô ÝØ ÓØÓ Ö ÞÒ º ËÓÐ ¹ Ò ÖÓ ÆÓ Ð ÛÖ Þ Þ ÅºË Ó ÓÛ Èº ÙÖ

ÈÖÓÑ Ò ÓØÛ ÖÞÓð ð ÔÖÞ Þ Àº ÕÙ Ö Ð Û ÖÓ Ù ½ º Ç ÖÝØ Æ ÙØÖ Ò ÙÖ ÒÙ Ñ ØÓÛ Ý ÔÖÓÑ Ò ÓÛ Ò Ø Ö Þ ÑÒ Ó Ô ÝØ ÓØÓ Ö ÞÒ º ËÓÐ ¹ Ò ÖÓ ÆÓ Ð ÛÖ Þ Þ ÅºË Ó ÓÛ Èº ÙÖ ð Ö Ò ÙØÖ Ò Æ ÙØÖ Ò ÔÖÓ º Ö º Ð Ò Ö Ð Ô ÖÒ Þ Ø Ð Ñ ÒØ ÖÒÝ Ï Þ ð Û Ø ÏÝ ½¾ Æ ÙØÖ Ò Û ÒÓð ÈÓÑ ÖÝ Ò ÙØÖ Ò Ç ÝÐ Ò ÙØÖ Ò ÈÖÓÑ Ò ÓØÛ ÖÞÓð ð ÔÖÞ Þ Àº ÕÙ Ö Ð Û ÖÓ Ù ½ º Ç ÖÝØ Æ ÙØÖ Ò ÙÖ ÒÙ Ñ ØÓÛ Ý ÔÖÓÑ Ò ÓÛ Ò

Bardziej szczegółowo

Survival Probability /E. (km/mev)

Survival Probability /E. (km/mev) Þ Ø ØÖÓ ÞÝ ÔÖÓ º Ö º º º ÖÒ Þ Ø Ç Þ ÝÛ ðò ÙÒ Ñ ÒØ ÐÒÝ Á ÏÝ ÁÁ ØÖÓÒÓÑ Ò ÙØÖ Ò µ Ô ÖÝÑ ÒØ Á Ù ÛÓÐÙ Û Þ ð Ö ½¼¼ Å Î ¹ Ì Î ½¼ ½ ØÑÓ ÖÝÞÒ Ñ ¾ Ð Ö ØÓÖÓÛ ÖÞ Ù Î ½¼ ¾¼ Æ ÙØÖ Ò ÌÝÔ Ô Ò Ö ËØÖÙÑ ðò ½ Å Î ½¼ ½¼ ½

Bardziej szczegółowo

ÉÙ ÕÙ ÔÖÙ ÒØ Ö Ø Ö Ô Ò Ñ ÇÛ Ù Þ ½ ½ Ó ÓÐÛ ÖÓ Þ Ö ÖÓÞØÖÓÔÒ Ô ØÖÞ Ó

ÉÙ ÕÙ ÔÖÙ ÒØ Ö Ø Ö Ô Ò Ñ ÇÛ Ù Þ ½ ½ Ó ÓÐÛ ÖÓ Þ Ö ÖÓÞØÖÓÔÒ Ô ØÖÞ Ó ÈÓÐ Ø Ò Ï Ö Þ Û ÏÝ Þ Ð ØÖÓÒ Ì Ò ÁÒ ÓÖÑ Ý ÒÝ ÁÒ ØÝØÙØ ÙØÓÑ ØÝ ÁÒ ÓÖÑ ØÝ ËØÓ ÓÛ Ò È ÓØÖ Ë ÓÛ Þ ÒÙÑ Ö Ð ÙÑÙ ½ ¾ ¼ ÈÖ ÝÔÐÓÑÓÛ Ò ÝÒ Ö ÙØÓÑ ØÝÞÒ Ð Ö Ý Ø ÑÙ ÖÓ ÓØ¹ Ñ Ö ÇÔ ÙÒ ÔÖ Ý ÔÖÓ º ÒÞÛº Ö º Ò º Þ ÖÝ Ð Ï Ö

Bardziej szczegółowo

Janusz Przewocki. Zeroth Milnor-Thurston homology for the Warsaw Circle. Instytut Matematyczny PAN. Praca semestralna nr 3 (semestr zimowy 2010/11)

Janusz Przewocki. Zeroth Milnor-Thurston homology for the Warsaw Circle. Instytut Matematyczny PAN. Praca semestralna nr 3 (semestr zimowy 2010/11) Janusz Przewocki Instytut Matematyczny PAN Zeroth Milnor-Thurston homology for the Warsaw Circle Praca semestralna nr 3 (semestr zimowy 2010/11) Opiekun pracy: Andreas Zastrow ÖÓØ Å ÐÒÓÖ¹Ì ÙÖ ØÓÒ ÓÑÓÐÓ

Bardziej szczegółowo

ËÔ ØÖ ½ Ò Ó Ó ÓÛ ½º½ ÁÑ Ò ÞÛ Ó º º º º º º º º º º º º º º º º º º º º º º º º º º ½º¾ ÈÓ Ò ÝÔÐÓÑÝ ØÓÔÒ Ò Ù ÓÛ º º º º º º º º º º º º º º ½º ÁÒ ÓÖÑ Ó

ËÔ ØÖ ½ Ò Ó Ó ÓÛ ½º½ ÁÑ Ò ÞÛ Ó º º º º º º º º º º º º º º º º º º º º º º º º º º ½º¾ ÈÓ Ò ÝÔÐÓÑÝ ØÓÔÒ Ò Ù ÓÛ º º º º º º º º º º º º º º ½º ÁÒ ÓÖÑ Ó ÙØÓÖ Ö Ø ÁÒÒÓÛ Ý Ò Ñ ØÓ Ý Ò Ð ÞÝ Ò Ð Ò ÓÛÝ ÓÖ Ð ÖÞÝ ÓÛÝ Û Ù Þ Ó ÓÒÝ Ö Â ÒÙ Þ Å Û Þ ÍÒ Û Ö ÝØ Ø ÏÖÓ Û ÁÒ ØÝØÙØ ÞÝ Ì ÓÖ ØÝÞÒ ÏÖÓ Û ¾¼½ ËÔ ØÖ ½ Ò Ó Ó ÓÛ ½º½ ÁÑ Ò ÞÛ Ó º º º º º º º º º º º º º º º º º º º

Bardziej szczegółowo

1. Waciki do czyszczenia optyki 2. Isopropanol 3. SLED 4. Laser diodowy 1550nm 5. Mikroskop 6. Urządzenie do czyszczenia końcówek światłowodów

1. Waciki do czyszczenia optyki 2. Isopropanol 3. SLED 4. Laser diodowy 1550nm 5. Mikroskop 6. Urządzenie do czyszczenia końcówek światłowodów ÁÁ ÈÖ ÓÛÒ ÞÝÞÒ Á Í Ǿ ½ Ǿ ¹ ÇÔØÝÞÒÝ ÛÞÑ Ò Þ Û Ø ÓÛÓ ÓÛÝ Ð Û Þ Ò Û Þ Ò Ø Ô ÖÝÑ ÒØ Ñ Þ Þ Þ ÒÝ ÓØÓÒ ÞÝ Ð Ö Û ÓØÝÞÝ Þ Ò ÓÖ Þ Û ÒÓ¹ Û ÒÓÛÝ Û Ø ÓÛÓ ÓÛÝ µ õö Û Ø º ÈÓ Ø ÛÓÛÝÑ Ð Ñ ÒØ Ñ Ù Ù Ó Û ¹ Þ ÐÒ Ó Ø Û ÒÓ»

Bardziej szczegółowo

Å Ø Ù Þ Ë ÓÖ ËØ ÐÒÓ Ñ Ò ÞÒ Ö ØÝ ÙÒ ÓÒ Ð ÞÓÛ ÒÝ Ò ÒÓÞ Ø Û ÑÓ Ð ÖÙ ÓÞ ÖÒ ØÝ ÈÖÓÑÓØÓÖ ÈÖÓ º Ö º Å Ö ÔÐ ÊÓÞÔÖ Û Ó ØÓÖ ÛÝ ÓÒ Ò Û áöó ÓÛ ÓÛÝÑ Ä ÓÖ ØÓÖ ÙÑ ÞÝ ÓÐÓ ÞÒ ÁÒ ØÝØÙØ ÞÝ È Æ Ï Ö Þ Û ½ Ñ ¾¼½¾ ÈÓ Þ ÓÛ Ò

Bardziej szczegółowo

ËÔ ØÖ ½ ÏÔÖÓÛ Þ Ò ½º½ Ù ÓÛ ÓÑÔÙØ Ö º º º º º º º º º º º º º º º º º º º º º º º º º º º ½º¾ ÈÖÓ Ö Ñ ÓÑÔÙØ ÖÓÛÝ º º º º º º º º º º º º º º º º º º º

ËÔ ØÖ ½ ÏÔÖÓÛ Þ Ò ½º½ Ù ÓÛ ÓÑÔÙØ Ö º º º º º º º º º º º º º º º º º º º º º º º º º º º ½º¾ ÈÖÓ Ö Ñ ÓÑÔÙØ ÖÓÛÝ º º º º º º º º º º º º º º º º º º º Ï ØÔ Ó Ó Ù ÓÑÔÙØ Ö Û ÊÓ ÖØ ÆÓÛ Å Ø Ö Ý ÔÓÑÓÒ Þ Ó Ï Ö ÞØ Ø Û ÁÒ ÓÖÑ ØÝÞÒÝ Û Ö Ñ Å Ó Þ ÓÛ Ñ ÍÑ ØÒÓ ÖÙÔ ½ ¹¾ Ï Ö Þ Û ¾¼¼ ËÔ ØÖ ½ ÏÔÖÓÛ Þ Ò ½º½ Ù ÓÛ ÓÑÔÙØ Ö º º º º º º º º º º º º º º º º º º º º º º º º

Bardziej szczegółowo

ÈÓ Þ ÓÛ Ò ÈÖ Ò Ö ÞÒ ÔÓ Þ ÓÛ È ÒÙ Ö º Ò ÛÓÛ ÃÓÞ Þ ÒÒ ÙÛ ÞÖÓÞÙÑ Ò ÝÞÐ ÛÓ Û ØÖ Ô Ò ÔÖ Ý È ÒÙ Ñ Ö Å ÓÛ Å ØÝ Þ Ð ÞÒ Û Þ Û ÓÑ ÒØ ÖÞ Ø ÖÝÑ Ò Ò Þ ÔÖ Þ Û Þ Þ Ø

ÈÓ Þ ÓÛ Ò ÈÖ Ò Ö ÞÒ ÔÓ Þ ÓÛ È ÒÙ Ö º Ò ÛÓÛ ÃÓÞ Þ ÒÒ ÙÛ ÞÖÓÞÙÑ Ò ÝÞÐ ÛÓ Û ØÖ Ô Ò ÔÖ Ý È ÒÙ Ñ Ö Å ÓÛ Å ØÝ Þ Ð ÞÒ Û Þ Û ÓÑ ÒØ ÖÞ Ø ÖÝÑ Ò Ò Þ ÔÖ Þ Û Þ Þ Ø ÍÒ Û Ö ÝØ Ø ÏÖÓ Û ÏÝ Þ ÞÝ Á ØÖÓÒÓÑ ÁÒ ØÝØÙØ ÞÝ Ì ÓÖ ØÝÞÒ Ë Ø Ò ËÞÞ Ò Ï ÒÓ Ý ÖÓ ÝÒ Ñ ÞÒ ÑÓ ÐÙ ÞÙ ÓÛ Ó ÀȹÁÁÁ ÀÝ ÖÓ ÝÒ Ñ Ó Ø ÀȹÁÁÁ Ð ØØ ÙØÓÑ Ø ÇÔ ÙÒ Ö º º ÃÓÞ ÏÖÓ Û ¾¼¼ ÈÓ Þ ÓÛ Ò ÈÖ Ò Ö ÞÒ ÔÓ Þ ÓÛ È ÒÙ

Bardziej szczegółowo

Lech Banachowski. Rola Uczelni oraz metod i technik e-edukacji w uczeniu się przez całe życie

Lech Banachowski. Rola Uczelni oraz metod i technik e-edukacji w uczeniu się przez całe życie Lech Banachowski Rola Uczelni oraz metod i technik e-edukacji w uczeniu się przez całe życie Notka biograficzna Prof. Lech Banachowski jest kierownikiem Katedry Baz Danych i kierownikiem Studiów Internetowych

Bardziej szczegółowo

ÈÓ Þ ÓÛ Ò Æ Ò Þ Ñ Ø Ö Ý ÔÓÛ Ø Ý Ò ÔÓ Ø Û ÒÓØ Ø Ó ÔÖÓÛ ÞÓÒÝ ÔÖÞ Þ ÑÒ Ò ÔÖÞ ØÖÞ Ò Ð Ù Ð Ø ÛÝ Û Þ Ø ÓÖ ÞÝ Û ÙØÓÑ Ø Û ÓÖ Þ Ù ÓÛÝ ÓÑÔ Ð ØÓÖ Ûº ÝÑ ÓÖ Ó ÔÓ Þ

ÈÓ Þ ÓÛ Ò Æ Ò Þ Ñ Ø Ö Ý ÔÓÛ Ø Ý Ò ÔÓ Ø Û ÒÓØ Ø Ó ÔÖÓÛ ÞÓÒÝ ÔÖÞ Þ ÑÒ Ò ÔÖÞ ØÖÞ Ò Ð Ù Ð Ø ÛÝ Û Þ Ø ÓÖ ÞÝ Û ÙØÓÑ Ø Û ÓÖ Þ Ù ÓÛÝ ÓÑÔ Ð ØÓÖ Ûº ÝÑ ÓÖ Ó ÔÓ Þ ÂÞÝ ÓÖÑ ÐÒ ÙØÓÑ ØÝ Â Å Ö Ò ÃÙ ¹Ñ Ð Ù Ñ ÑÙÛº ÙºÔÐ ¾¼¼ Æ Ò Þ Ñ Ø Ö Ý ÔÓÛ ÒÒÝ Ý Ô ÖÛ ÞÝÑ õö Ñ Ò ÓÖÑ ÓØÝÞ Ý ÔÖÞ ¹ Ñ ÓØÙ ÂÞÝ ÓÖÑ ÐÒ ÙØÓÑ ØÝ  µº ÞÝØ ÐÒ ÓÑ Ø ÖÞÝ ÓÔÖ Þ Ð ØÙÖÝ ØÝ ÒÓØ ¹ Ø Ð Ý Ò Ó ÔÓ ÖÞÒ ÔÓÐ Ñ

Bardziej szczegółowo

ÈÖÓ Ö ÑÓÛ Ò ÔÐ ÓÛÝ ÍÒ Û Ö ÝØ Ø Å Ö ÙÖ ¹Ë Ó ÓÛ ÏÝ Þ Å Ø Ñ ØÝ ÞÝ ÁÒ ÓÖÑ ØÝ ÁÒ ØÝØÙØ ÁÒ ÓÖÑ ØÝ ÈÖÓ Ö ÑÓÛ Ò ÔÐ ÓÛÝ Â ÖÓ Û ÝÐ Ò Å ÓÖÞ Ø Ù Ò Å ÃÐ ÓÛ ÄÙ Ð Ò ¾¼½¾ ÁÒ ØÝØÙØ ÁÒ ÓÖÑ ØÝ ÍÅ Ë ÄÙ Ð Ò ¾¼½¾  ÖÓ Û ÝÐ

Bardziej szczegółowo

Ë Ñ Ö ÞÒ ÔÓ Þ ÓÛ Ò Ð ÈÖÓÑÓØÓÖ ÔÖ Ý ÔÖÓ º Öº º Ò º ÊÝ Þ Ö ÓÖ Þ ÔÓÑÓ ÑÓØÝÛ Ó Ô Ò Ò Ò Þ ÖÓÞÔÖ ÛÝ ¾

Ë Ñ Ö ÞÒ ÔÓ Þ ÓÛ Ò Ð ÈÖÓÑÓØÓÖ ÔÖ Ý ÔÖÓ º Öº º Ò º ÊÝ Þ Ö ÓÖ Þ ÔÓÑÓ ÑÓØÝÛ Ó Ô Ò Ò Ò Þ ÖÓÞÔÖ ÛÝ ¾ ÍÆÁÏ ÊË Ì Ì Ì ÀÆÇÄÇ Á ÆÇ ¹ ÈÊ ÊÇ ÆÁ Ѻ ºº áò Û Ý Ó ÞÞÝ Ï Á Ì Ä ÃÇÅÍÆÁà ÂÁ ÁÆ ÇÊÅ Ì ÃÁ Á Ä ÃÌÊÇÌ ÀÆÁÃÁ Ñ Ö Ò º Å ÖÓ Û Å ÁÒØ Ð ÒØÒÝ ËÝ Ø Ñ ÊÓÞÔÓÞÒ Û Ò ÃÐ Ý ÈÖÞ Ý ÈÓÞØÓÛÝ ÊÓÞÔÖ Û Ó ØÓÖ ÈÖÓÑÓØÓÖ ÔÖÓ º Ö

Bardziej szczegółowo

ÔÓÑÓÒ Þ Ó ÛÝ Ù Å Ø Ö Ý ÔÓ Ø ÛÝ Ø Ò ÔÐÒ Ì ÖÑÓ ÝÒ Ñ ÔÖÓ Ö Ñ Û ÔÓÔÖ Û Ó ÞØ Ò ÓÖ Þ ÓØÛ Ö ÍÒÓÛÓÞ Ò Ò Ô ÐÒÓ Ó ÞÝ Ò ÖÙÒ Ù ÞÝ Û ÍÒ Û Ö ÝØ ÐÓÒÓ Ö Ñ ÒÓÛ ¼ º¼½º¼

ÔÓÑÓÒ Þ Ó ÛÝ Ù Å Ø Ö Ý ÔÓ Ø ÛÝ Ø Ò ÔÐÒ Ì ÖÑÓ ÝÒ Ñ ÔÖÓ Ö Ñ Û ÔÓÔÖ Û Ó ÞØ Ò ÓÖ Þ ÓØÛ Ö ÍÒÓÛÓÞ Ò Ò Ô ÐÒÓ Ó ÞÝ Ò ÖÙÒ Ù ÞÝ Û ÍÒ Û Ö ÝØ ÐÓÒÓ Ö Ñ ÒÓÛ ¼ º¼½º¼ ÔÓÑÓÒ Þ Ó ÛÝ Ù Å Ø Ö Ý ÔÓ Ø ÛÝ Ø Ò ÔÐÒ Ì ÖÑÓ ÝÒ Ñ ÔÖÓ Ö Ñ Û ÔÓÔÖ Û Ó ÞØ Ò ÓÖ Þ ÓØÛ Ö ÍÒÓÛÓÞ Ò Ò Ô ÐÒÓ Ó ÞÝ Ò ÖÙÒ Ù ÞÝ Û ÍÒ Û Ö ÝØ ÐÓÒÓ Ö Ñ ÒÓÛ ¼ º¼½º¼½¹¼¼¹¼ ½»¼ ¹¼¼ ÈÇÃÄ ÇÔ Ö Ý ÒÝ Ã Ô Ø ÄÙ Þ ÈÖÓ Ö Ñ ÏÞÑÓÒ

Bardziej szczegółowo

arxiv: v1 [hep-th] 13 Dec 2007

arxiv: v1 [hep-th] 13 Dec 2007 ÍÒ Û Ö ÝØ Ø Ï Ö Þ Û ÏÝ Þ ÞÝ ÁÒ ØÝØÙØ ÞÝ Ì ÓÖ ØÝÞÒ Ô ÓØÖ Ù ÓÛ arxiv:0712.2173v1 [hep-th] 13 Dec 2007 Ð ¹Ý Ù ÖÝ Ø Ð Ò ØÓÔÓÐÓ Ð ØÖ Ò Ø ÓÖÝ ÖÝ ÞØ Ý Ð ¹Ý Ù Û ØÓÔÓÐÓ ÞÒ Ø ÓÖ ØÖÙÒ ÖÓÞÔÖ Û Ó ØÓÖ Ï Ö Þ Û ¾¼¼ º

Bardziej szczegółowo

Fizyka I (mechanika), rok akad. 2011/2012 Zadania z kolokwium I

Fizyka I (mechanika), rok akad. 2011/2012 Zadania z kolokwium I Fizyka I (echanika), rok akad. 0/0 Zadania z kolokwiu I Zadanie (zadanie doowe, seria II) Masy, i, połączone linkai zawieszone są na bloczkach jak na rysunku. Jakie uszą być spełnione warunki, aby ożliwe

Bardziej szczegółowo

Notka biograficzna Streszczenie

Notka biograficzna Streszczenie Notka biograficzna Dr Mariusz Maciejczak -doktor ekonomii, wykładowca na polskich i zagranicznych uczelniach, uczestnik projektów badawczych i aplikacyjnych, doradca i ekspert organizacji biznesowych,

Bardziej szczegółowo

Talk to Parrot. Buy a Dog. Go To Class. Buy Tuna Fish. Buy Arugula. Buy Milk. Sit Some More. Read A Book

Talk to Parrot. Buy a Dog. Go To Class. Buy Tuna Fish. Buy Arugula. Buy Milk. Sit Some More. Read A Book Þ Ò ÞÒ Ð Þ Ò ÔÐ ÒÙ ÑÓ Ò Ø ÓÖ ØÝÞÒ ÖÓÞÛ ¹ Ã ÔÓ Ù Ù Ò Þ Ñ ØÓ ÔÖÞ ÞÙ Û Ò ÔÖÞ ØÖÞ Ò Þ Â Ø ØÓ Ò Þ ØÓ Ò ÛÝ ÓÒ ÐÒ Û ÔÖ ØÝ Þ Ø Ò Ûº Ò ÓÑÔÐ ÓÛ ÒÝ ÓÔ Ø Ò Û ÛÝ Ó Û Ô ÞÝÒÒ ÛÞ Ð Ù ÈÐ ÒÓÛ Ò ÖÓÞ Þ Ò º ½ ÈÖÞÝ ÔÐ Ò Û Ö

Bardziej szczegółowo

ÈÐ Ò ÔÖ Þ ÒØ ½ ¾ Ò ÔÖÞÝ Þ µº ÇÔ Ó ÔÐÙ Û Ò Û ÔÐ Ó ØÓÛ ÔÖÞÝ ÓØÓÛ Ò Ó Ó ÔÐÙ Û Ò Ø Ï Ê µº Æ ÖÞ Þ Ó ÛÝ ÖÝÛ Ò ÛÝ Û Ô Ñ Û ÔÖÓ Ö Ñ Ó ÔÖÓ ÐÓÛ Ò Ó Ùº ÝÑÓÓÔ ÍÅĺ

ÈÐ Ò ÔÖ Þ ÒØ ½ ¾ Ò ÔÖÞÝ Þ µº ÇÔ Ó ÔÐÙ Û Ò Û ÔÐ Ó ØÓÛ ÔÖÞÝ ÓØÓÛ Ò Ó Ó ÔÐÙ Û Ò Ø Ï Ê µº Æ ÖÞ Þ Ó ÛÝ ÖÝÛ Ò ÛÝ Û Ô Ñ Û ÔÖÓ Ö Ñ Ó ÔÖÓ ÐÓÛ Ò Ó Ùº ÝÑÓÓÔ ÍÅĺ È ÓØÖ ÙÞ Å Ð Ò Ù Ð Ñ Å Û ØÝÞ ¾¼¼ ÈÐ Ò ÔÖ Þ ÒØ ½ ¾ Ò ÔÖÞÝ Þ µº ÇÔ Ó ÔÐÙ Û Ò Û ÔÐ Ó ØÓÛ ÔÖÞÝ ÓØÓÛ Ò Ó Ó ÔÐÙ Û Ò Ø Ï Ê µº Æ ÖÞ Þ Ó ÛÝ ÖÝÛ Ò ÛÝ Û Ô Ñ Û ÔÖÓ Ö Ñ Ó ÔÖÓ ÐÓÛ Ò Ó Ùº ÝÑÓÓÔ ÍÅĺ Ã Ï Ò µº ÈÓ Ø ÛÝ

Bardziej szczegółowo

Ø Ò Þ È ØÖ Û Þ ËÈ ÃÌÊÇËÃÇÈÁ ÊÇÌ ÂÆ Ï Ê Æ À ËÌ Ã Á ÃÇÅÈÄ ÃË Ï ÅÁ ËÌ ÃÇÏ À Ï Æ éïá ÃÇÏ Â ÏÁ ÅÇÄ ÃÍÄ ÊÆ Â ÊÓÞÔÖ Û Ó ØÓÖ Ò Ô Ò Û ÁÒ ØÝØÙ ÞÝ ÈÓÐ Ñ Æ Ù ÔÓ Ö

Ø Ò Þ È ØÖ Û Þ ËÈ ÃÌÊÇËÃÇÈÁ ÊÇÌ ÂÆ Ï Ê Æ À ËÌ Ã Á ÃÇÅÈÄ ÃË Ï ÅÁ ËÌ ÃÇÏ À Ï Æ éïá ÃÇÏ Â ÏÁ ÅÇÄ ÃÍÄ ÊÆ Â ÊÓÞÔÖ Û Ó ØÓÖ Ò Ô Ò Û ÁÒ ØÝØÙ ÞÝ ÈÓÐ Ñ Æ Ù ÔÓ Ö Ø Ò Þ È ØÖ Û Þ ËÈ ÃÌÊÇËÃÇÈÁ ÊÇÌ ÂÆ Ï Ê Æ À ËÌ Ã Á ÃÇÅÈÄ ÃË Ï ÅÁ ËÌ ÃÇÏ À Ï Æ éïá ÃÇÏ Â ÏÁ ÅÇÄ ÃÍÄ ÊÆ Â ÊÓÞÔÖ Û Ó ØÓÖ Ò Ô Ò Û ÁÒ ØÝØÙ ÞÝ ÈÓÐ Ñ Æ Ù ÔÓ ÖÙÒ Ñ Óº Ö º Ò Û Ã Ð Ï Ö Þ Û Ñ ¾¼¼ ÅÓ ÑÙ Ñ ÓÛ ÂÙÖ ÓÛ

Bardziej szczegółowo

N j=1 (η M η j ) Û Ö η 1... η N Ö

N j=1 (η M η j ) Û Ö η 1... η N Ö Ù ÔØ Ð ØÝ ÌÓÔÓÐÓ Ð ØÛ Ø Ñ ÖÑ ÓÒ ÖÓÑ Ù Ò Ô ØÖ Ð ÔÖÓ ØÓÖ Ý ÃÖÞÝ ÞØÓ Ë ÙØ Ò ÖÑ ÒÝ ÆÁ Ñ Å Û Þ ÍÒ Ú Ö ØÝ ÈÓÞÒ ÈÓÐ Ò ÓÐÐ ÓÖ Ø ÓÒ Û Ø Ò Ö Ê ÑÓ Ð Ò Ã ÖÐ Â Ò Ò Ä ÌÌÁ ¾¼½ ½» ¾ ÁÒØÖÓ ÙØ ÓÒ ÌÓÔÓÐÓ Ð ÒÓØ Ö Ð Ò Ò Ø

Bardziej szczegółowo

ÏÔÖÓÛ Þ Ò ÇÔ ÑÓ ÐÙ ÏÝÒ ÝÑÙÐ ÈÓ ÙÑÓÛ Ò Ä Ø Ö ØÙÖ Ë ÙØ ÔÖÞÝ Ø Ô Ò ÈÓÐ Ó ËØÖ Ý ÙÖÓ ÏÝÒ ÝÑÙÐ Ò ÔÓ Ø Û ÝÒ Ñ ÞÒ Ó ÑÓ ÐÙ ÌÓÑ Þ Ö Â Ò À Ñ Ö Æ ÖÓ ÓÛÝ Ò ÈÓÐ Ö À

ÏÔÖÓÛ Þ Ò ÇÔ ÑÓ ÐÙ ÏÝÒ ÝÑÙÐ ÈÓ ÙÑÓÛ Ò Ä Ø Ö ØÙÖ Ë ÙØ ÔÖÞÝ Ø Ô Ò ÈÓÐ Ó ËØÖ Ý ÙÖÓ ÏÝÒ ÝÑÙÐ Ò ÔÓ Ø Û ÝÒ Ñ ÞÒ Ó ÑÓ ÐÙ ÌÓÑ Þ Ö Â Ò À Ñ Ö Æ ÖÓ ÓÛÝ Ò ÈÓÐ Ö À Ò ÔÓ Ø Û ÝÒ Ñ ÞÒ Ó ÑÓ ÐÙ ÌÓÑ Þ Ö Â Ò À Ñ Ö Æ ÖÓ ÓÛÝ Ò ÈÓÐ ÈÐ Ò ÔÖ Þ ÒØ ½ ¾ Ð ÔÖ Ý ÈÖÞ Ð Ð Ø Ö ØÙÖÝ ÈÓ Ø ÛÓÛ Ý ÑÓ ÐÙ Þ ÒÝ ÅÓ Ð ÞÓÛÝ ÊÓÞ Þ ÖÞ Ò ÑÓ ÐÙ ÞÓÛ Ó Ó Ò ÝÑÙÐ Ò Ð Þ ÛÖ Ð ÛÓ ÈÐ Ò ÔÖ Þ ÒØ Ð ÔÖ Ý ÈÖÞ

Bardziej szczegółowo

ÊÇ ÆÁÃ ÄÍ ÍËÃÁ ÌÓÑ ¾ Þº ¾ ¾¼½ ÒÒ ÙÞ ÅÍ Ã Â ÃÇ Æ Ê Á ÃË Ì ÌÇÏ ÆÁ Å áä ÆÁ Å Ì Å Ì Æ Ç Ï ÍÃ ÂÁ Á Ã Ï Û ØÐ Û Ô Þ ÒÝ ÓÒ Ô Ô Ó ÞÒÝ ÛÝ ÓÛ Ò Ø ØÝÞÒ Ñ Ò ÐÙ Û Þ

ÊÇ ÆÁÃ ÄÍ ÍËÃÁ ÌÓÑ ¾ Þº ¾ ¾¼½ ÒÒ ÙÞ ÅÍ Ã Â ÃÇ Æ Ê Á ÃË Ì ÌÇÏ ÆÁ Å áä ÆÁ Å Ì Å Ì Æ Ç Ï ÍÃ ÂÁ Á Ã Ï Û ØÐ Û Ô Þ ÒÝ ÓÒ Ô Ô Ó ÞÒÝ ÛÝ ÓÛ Ò Ø ØÝÞÒ Ñ Ò ÐÙ Û Þ ÊÇ ÆÁÃ ÄÍ ÍËÃÁ ÌÓÑ ¾ Þº ¾ ¾¼½ ÒÒ ÙÞ ÅÍ Ã Â ÃÇ Æ Ê Á ÃË Ì ÌÇÏ ÆÁ Å áä ÆÁ Å Ì Å Ì Æ Ç Ï ÍÃ ÂÁ Á Ã Ï Û ØÐ Û Ô Þ ÒÝ ÓÒ Ô Ô Ó ÞÒÝ ÛÝ ÓÛ Ò Ø ØÝÞÒ Ñ Ò ÐÙ Û Þ ØÖÓÒÒ ÓÖÑÓÛ Ò Ó Ó ÓÛÓ Þ ÓÛ º Â Ó ÒØ Ö ÐÒ Þ Ø ÛÝ ÓÛ

Bardziej szczegółowo

Notka biograficzna Streszczenie

Notka biograficzna Streszczenie Notka biograficzna Mgr inż. Rafał Muniak -absolwent kierunku Ekonomia w Szkole Głównej Gospodarstwa Wiejskiego. Przed podjęciem pracy na PJWSTK pracował w firmie konsultingowej na stanowisku analityka

Bardziej szczegółowo

Notki biograficzne Streszczenie

Notki biograficzne Streszczenie 9 788363 103095 Notki biograficzne Wojciech Borczyk (mgr inż.), absolwent kierunku Informatyka na Politechnice Śląskiej. Napisał doktorat z zakresu syntezy fotorealistycznych obrazów z wykorzystaniem modelu

Bardziej szczegółowo

Spis treści. 1 Wstęp 3

Spis treści. 1 Wstęp 3 Ê ÛÒÓÛ Æ Û Ö ÝÒ Ñ ÞÒÝ ØÒ Ò ÔÖÓ ÝÑ Ù Þ Ð Ù ÊÓÞÔÖ Û Ó ØÓÖ Ò Ô Ò ÔÓ ÖÙÒ Ñ ÔÖÓ º Ö º Ò ÖÞ ÆÓÛ ÈÓÐ Ø Ò ÏÖÓ Û ÁÒ ØÝØÙØ Å Ø Ñ ØÝ ÁÒ ÓÖÑ ØÝ ÏÖÓ Û ¾¼¼ ½ pis treści 1 Wstęp 3 2 Gry stochastyczne wielogeneracyjne

Bardziej szczegółowo

t = pn T = pi ρ dv i dt = ρf i + p , i = 1, 2, 3 µ x i ρ( v i t + v v i div v = 0 ρ v + (v )v = ρf p = 0 j = ρf i p, i = 1, 2, 3 µ

t = pn T = pi ρ dv i dt = ρf i + p , i = 1, 2, 3 µ x i ρ( v i t + v v i div v = 0 ρ v + (v )v = ρf p = 0 j = ρf i p, i = 1, 2, 3 µ ÏÝ Ê ÛÒ Ò ÖÙ Ù ÞÝ Ò Ð Ô À ÒÖÝ ÃÙ Ð ËÔ ØÖ ½ Ê ÛÒ Ò ÙÐ Ö ÖÙ Ù ÞÝ Ò Ð Ô ½ ½º½ Ê ÛÒ Ò ÖÙ Ù ÞÝ Ò ÐÔ Û ÓÖÑ ÖÓÑ ¹Ä Ñ º º º º º º º º º ½º¾ Ê ÛÒ Ò À ÐÑ ÓÐÞ ØÖ Ò ÔÓÖØÙ Û ÖÓÛÓ Ð Ô ÝÒÙ Ò Ð Ô Ó º º º º º º ½º ÓÑÔÓÞÝ

Bardziej szczegółowo

ÈÓ Þ ÓÛ Ò ÈÖ Ò Þ Ó Ý Ö ÞÒ ÔÓ Þ ÓÛ Ò Û ÞÝ Ø Ñ Ó Ó ÓÑ Ø Ö ÛÓ Ñ ÒÒÝÑ ÙÛ Ñ ÔÖÞÝÞÝÒ Ý Ó Ö Ð Þ Ò Ò Þ ÖÓÞÔÖ Ûݺ ËÞÞ ÐÒ ÔÖ Ò ÔÓ¹ Þ ÓÛ ÔÖÓÑÓØÓÖÓÛ ÔÖÓ º Ï ØÓÐ Ó

ÈÓ Þ ÓÛ Ò ÈÖ Ò Þ Ó Ý Ö ÞÒ ÔÓ Þ ÓÛ Ò Û ÞÝ Ø Ñ Ó Ó ÓÑ Ø Ö ÛÓ Ñ ÒÒÝÑ ÙÛ Ñ ÔÖÞÝÞÝÒ Ý Ó Ö Ð Þ Ò Ò Þ ÖÓÞÔÖ Ûݺ ËÞÞ ÐÒ ÔÖ Ò ÔÓ¹ Þ ÓÛ ÔÖÓÑÓØÓÖÓÛ ÔÖÓ º Ï ØÓÐ Ó ÁÒ ØÝØÙØ ÈÓ Ø ÛÓÛÝ ÈÖÓ Ð Ñ Û Ì Ò ÈÓÐ Ñ Æ Ù ÃÐ Ý Ò ØÖÙÑ ÒØ Û ØÖÙÒÓÛÝ Û ÑÙÐØ Ñ ÐÒÝ Þ ÒÝ Þ ÞÞ ÐÒÝÑ ÙÛÞ Ð Ò Ò Ñ ÖØÝ ÙÐ Ô ÞÞ ØÓ Ñ Ö ÃÖÞÝ ÞØÓ ÌÝ ÙÖ ÊÓÞÔÖ Û Ó ØÓÖ Ò Ô Ò ÔÓ ÖÙÒ Ñ ÔÖÓ º Öº º Ï ØÓÐ ÃÓ Ó Ï Ö Þ Û

Bardziej szczegółowo

ÈÇÄÁÌ ÀÆÁà ÏÊÇ ÏËÃ Ï Á Ä ÃÌÊÇÆÁÃÁ à ÖÙÒ ËÔ ÐÒÓ ÙØÓÑ ØÝ ÊÓ ÓØÝ ÊÓ ÓØÝ ÈÊ ÈÄÇÅÇÏ Å ÁËÌ ÊËà ÁÑÔÐ Ñ ÒØ Þ ÓÛ Û Ø ÖÓÛÒ Ù Ñ Ó ÖÓ ÓØ ÑÓ ÐÒ Ó ÁÑÔÐ Ñ Ø Ø ÓÒ Ó Ú ÓÖ ÓÒ Ñ ÐÐ ÑÓ Ð ÖÓ ÓØ³ ÓÒØÖÓÐ Ö ÙØÓÖ Ö Ù Þ Å Ø Ö ÈÖÓÛ

Bardziej szczegółowo

ÊÓÞÔÓÞÒ Û Ò Ð ØÖÓÒ Û Ñ ÞÓÒ Û π 0 ÔÖÞÝ Ò Ù Ó Þ ÝÛ Ò ÙØÖ Ò Û Þ ØÓ ÓÛ Ò Ù Ó Ø ØÓÖ Û Ó¹ Ö ÓÒÓÛÝ ÓÖ Þ Ð Ó Ø ØÓÖ Ô ÖÝÑ ÒØÙ Ì¾Ã ÌÓÑ Þ Ï ÁÒ ØÝØÙØ ÞÝ Â ÖÓÛ Ñº

ÊÓÞÔÓÞÒ Û Ò Ð ØÖÓÒ Û Ñ ÞÓÒ Û π 0 ÔÖÞÝ Ò Ù Ó Þ ÝÛ Ò ÙØÖ Ò Û Þ ØÓ ÓÛ Ò Ù Ó Ø ØÓÖ Û Ó¹ Ö ÓÒÓÛÝ ÓÖ Þ Ð Ó Ø ØÓÖ Ô ÖÝÑ ÒØÙ Ì¾Ã ÌÓÑ Þ Ï ÁÒ ØÝØÙØ ÞÝ Â ÖÓÛ Ñº ÊÓÞÔÓÞÒ Û Ò Ð ØÖÓÒ Û Ñ ÞÓÒ Û π ÔÖÞÝ Ò Ù Ó Þ ÝÛ Ò ÙØÖ Ò Û Þ ØÓ ÓÛ Ò Ù Ó Ø ØÓÖ Û Ó¹ Ö ÓÒÓÛÝ ÓÖ Þ Ð Ó Ø ØÓÖ Ô ÖÝÑ ÒØÙ Ì¾Ã ÌÓÑ Þ Ï ÁÒ ØÝØÙØ ÞÝ Â ÖÓÛ Ñº À ÒÖÝ Æ ÛÓ Ò Þ Ó ÈÓÐ Ñ Æ Ù ÊÓÞÔÖ Û Ó ØÓÖ ÔÖÞÝ ÓØÓÛ Ò

Bardziej szczegółowo

¾

¾ ÞÝ Û ÓÒÓÑ Ñ ØÓ Ý ÑÓ Ð ÃÖÞÝ ÞØÓ ÓÑ ÒÓ ÈÓÐ Ø Ò áð  ÖÞÝ ÍÒ Û Ö ÝØ Ø áð à ØÓÛ ¾¼½ ¾ ËÔ ØÖ ½ ÈÖÓÐÓ ¾ Å ØÓ Ý ÔÖ ØÝÞÒ ¾º½ Ï ØÔ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ¾º½º½ Ä Ø Ö ØÙÖ º

Bardziej szczegółowo

Ã Ø ÖÞÝÒ Â ÑÖÓÞ ÊÇ ÆÁà ÄÍ ÍËÃÁ ÌÓÑ ¾ Þº ¾ ¾¼½ ÏÈÁË ÆÁ Ï ÃÊ ÂÇ Ê Æ ÍÃÇÏ Á ÄÇÆÇ ÊËÃÁ ËÌÍ Á Á ÄÁÇÌ ÃÇ Æ Ï À ØÓÖ ÏÓ Û Þ Å Ð ÓØ ÈÙ Ð ÞÒ Ï Å Èµ Ѻ ݹ ÔÖ Ò Æ

Ã Ø ÖÞÝÒ Â ÑÖÓÞ ÊÇ ÆÁà ÄÍ ÍËÃÁ ÌÓÑ ¾ Þº ¾ ¾¼½ ÏÈÁË ÆÁ Ï ÃÊ ÂÇ Ê Æ ÍÃÇÏ Á ÄÇÆÇ ÊËÃÁ ËÌÍ Á Á ÄÁÇÌ ÃÇ Æ Ï À ØÓÖ ÏÓ Û Þ Å Ð ÓØ ÈÙ Ð ÞÒ Ï Å Èµ Ѻ ݹ ÔÖ Ò Æ Ã Ø ÖÞÝÒ Â ÑÖÓÞ ÊÇ ÆÁà ÄÍ ÍËÃÁ ÌÓÑ ¾ Þº ¾ ¾¼½ ÏÈÁË ÆÁ Ï ÃÊ ÂÇ Ê Æ ÍÃÇÏ Á ÄÇÆÇ ÊËÃÁ ËÌÍ Á Á ÄÁÇÌ ÃÇ Æ Ï À ØÓÖ ÏÓ Û Þ Å Ð ÓØ ÈÙ Ð ÞÒ Ï Å Èµ Ѻ ݹ ÔÖ Ò ÆÓÖÛ Û ÐÓÒ ÖÞ ½ Öº Ý Û Ñ ÓØÛ ÖØÓ Ô ÖÛ Þ ÔÙ Ð ÞÒ ÛÝÔÓ

Bardziej szczegółowo

ÃÓ Ý ÀÙ Ñ Ð ÓÖÝØÑÝ Þ Ò Ð ÓÖÝØÑÝ Þ Ò º º Ð ÓÖÝØÑ Ñ ¹Ñ Ü ÖÝ ØÝÔÙ ÛÝ Ö»ÔÖÞ Ö ÖÞ Û Æ ¹ÇÊ ÏÝ ÞÙ Û ÛÞÓÖ Û Ð ÓÖÝØÑ ÃÒÙØ ¹ÅÓÖÖ ¹ÈÖ ØØ ÈÖÞ ÞÙ Û Ö Û ÈÖÓ ÙÖÝ Ù Ó

ÃÓ Ý ÀÙ Ñ Ð ÓÖÝØÑÝ Þ Ò Ð ÓÖÝØÑÝ Þ Ò º º Ð ÓÖÝØÑ Ñ ¹Ñ Ü ÖÝ ØÝÔÙ ÛÝ Ö»ÔÖÞ Ö ÖÞ Û Æ ¹ÇÊ ÏÝ ÞÙ Û ÛÞÓÖ Û Ð ÓÖÝØÑ ÃÒÙØ ¹ÅÓÖÖ ¹ÈÖ ØØ ÈÖÞ ÞÙ Û Ö Û ÈÖÓ ÙÖÝ Ù Ó Ï ØÔ Ó ÔÖÓ Ö ÑÓÛ Å ØÓ Ý ÔÖÓ Ö ÑÓÛ ÔÓØÓ ÙÒ Ýݵ Å Ö ÃÙ ¾¼¼»¾¼½¼ ËÔ ØÖ Ï ØÔ ÈÓ Ø ÛÝ ÞÝ ÔÖÓ Ö ÑÓÛ ½ ÓÑÔÓÞÝ ÔÖÓ Ð ÑÙ Û ÖÝ ÖÓÞÛ Þ ¾ ËØÖÙ ØÙÖÝ Ý Ù ÓÛ ØÖ Þ ÔÓÑÓ Ý ÈÖÓ ÙÖÝ ÛÝ ÞÝ ÖÞ Û Ó ØÖ ÓÒ ØÖÙ ÔÖÓ Ö Ñ ØÝÞÒÝ ÅÓ

Bardziej szczegółowo

Ã Þ Ñ ÖÞ Åº ÓÖ ÓÛ Ê ÓÛ ÒØ Ö ÖÓÑ ØÖ Û Ð Ó ÞÓÛ ÎÄ Áµ ÌÓÖÙ ½

Ã Þ Ñ ÖÞ Åº ÓÖ ÓÛ Ê ÓÛ ÒØ Ö ÖÓÑ ØÖ Û Ð Ó ÞÓÛ ÎÄ Áµ ÌÓÖÙ ½ Ã Þ Ñ ÖÞ Åº ÓÖ ÓÛ Ê ÓÛ ÒØ Ö ÖÓÑ ØÖ Û Ð Ó ÞÓÛ ÎÄ Áµ ÌÓÖÙ ½ ÍÆÁÏ ÊË Ì Ì ÅÁÃÇ Â ÃÇÈ ÊÆÁÃ Ã Þ Ñ ÖÞ Åº ÓÖ ÓÛ Ê ÓÛ ÒØ Ö ÖÓÑ ØÖ Û Ð Ó ÞÓÛ ÎÄ Áµ ÌÓÖÙ ½ Ê ÒÞ Ò ÈÖÓ º Ö º Ò ÖÞ ÃÙ ÈÖÓ º Ö º Â Þ Å ÓÛ ÓÔÝÖ Ø Ý ÏÝ ÛÒ

Bardziej szczegółowo

x = x 1 e 1 +x 2 e 2 +x 3 e 3

x = x 1 e 1 +x 2 e 2 +x 3 e 3 ÏÝ ¼ ÏÔÖÓÛ Þ Ò Ó Ö ÙÒ Ù Û ØÓÖÓÛ Ó À ÒÖÝ ÃÙ Ð ËÔ ØÖ ½ ÈÖÞ ØÖÞ Ù Ð ÓÛ ¹ Û ØÓÖ ÔÓ Ó Ò ½ ¾ Ì Ò ÓÖÝ ÖÞ Ù ÖÙ Ó ¾º½ Ê ÔÖ Þ ÒØ Ø Ò ÓÖ ÖÞ Ù ÖÙ Ó Û ÔÖÓ ØÓ ØÒÝÑ Ù Þ ÖØ Þ Ñ ¾º¾ ÈÖÞÝ Ý Ø Ò ÓÖ Û ÖÞ Ù ÖÙ Ó º º º º º

Bardziej szczegółowo

µ(p q) ( q p) µa B B c A c

µ(p q) ( q p) µa B B c A c Ä Ø ¼ Û ØÔ Ó ÑØÑØÝ ½ ¼º½º ËÔÖÛõ ÞÝ Ò ØÔÙ ÞÒ ÐÓÞÒ ØÙØÓÐÓÑ (p q) ( p q) (p q) ( p q) (p q) ( q p) [(p q) p] qº ¼º¾º ÍÞ Ò ÙÒØÓÖÝ ÐØÖÒØÝÛÝ ÓÒÙÒ Ñ Û ÒÓ ÞÒÓ ÓÖÞ ÔÖÞÑÒÒÓº ÞÝ Ø Ø Û ÔÖÞÝÔÙ ÙÒØÓÖ ÑÔÐ ¼º º ÈÖÞÝ ÔÓÑÓÝ

Bardziej szczegółowo

N + R C. A T A 1 A 2 I I n. [a;b] (a;b] [a;b) m,n m,n = {m,m + 1,...,n 1,n}

N + R C. A T A 1 A 2 I I n. [a;b] (a;b] [a;b) m,n m,n = {m,m + 1,...,n 1,n} ÏÝ Þ ÁÒ ÓÖÑ ØÝ ÈÓРӹ ÔÓ ÏÝ Þ ËÞ Ó Ì Ò ÃÓÑÔÙØ ÖÓÛÝ ØÓ ÓÛ Ò Ý Ö ØÒ Ó ÓÖØÓ ÓÒ ÐÒ Ó ÓÔ Ö ØÓÖ ÀÙÖÛ ØÞ ¹Ê ÓÒ Û ÓÑÔÖ Ö ÓÒ ØÖÙ ÓÒØÙÖ Û Ó Ö Þ Û ÑÓÒÓ ÖÓÑ ØÝÞÒÝ Ñ Ö Ö Ù Þ Â Þ ÊÓÞÔÖ Û Ó ØÓÖ Ò Ô Ò ÔÓ ÖÙÒ Ñ ÔÖÓ º

Bardziej szczegółowo

ÊÇ ÆÁÃ ÄÍ ÍËÃÁ ÌÓÑ ¾ Þº ¾ ¾¼½ ÒÒ ÑÖ ÈÊ ÃÊÇ Ê ÆÁ ÅÇÆËÌÊÍÅ Ê ÆÃ ÆËÌ ÁÆ ÈÇÏÁ á Á Å Ê ÏÇÄÄËÌÇÆ Ê Ì ËÀ ÄÄ ÊÙ Þ º... ÌÓ Ý ½ ÙÒØ ÔÖÞ Û Ó Æ ØÙÖÞ Â ÒÝÑ Þ Ó Û Þ

ÊÇ ÆÁà ÄÍ ÍËÃÁ ÌÓÑ ¾ Þº ¾ ¾¼½ ÒÒ ÑÖ ÈÊ ÃÊÇ Ê ÆÁ ÅÇÆËÌÊÍÅ Ê ÆÃ ÆËÌ ÁÆ ÈÇÏÁ á Á Å Ê ÏÇÄÄËÌÇÆ Ê Ì ËÀ ÄÄ ÊÙ Þ º... ÌÓ Ý ½ ÙÒØ ÔÖÞ Û Ó Æ ØÙÖÞ Â ÒÝÑ Þ Ó Û Þ ÊÇ ÆÁà ÄÍ ÍËÃÁ ÌÓÑ ¾ Þº ¾ ¾¼½ ÒÒ ÑÖ ÈÊ ÃÊÇ Ê ÆÁ ÅÇÆËÌÊÍÅ Ê ÆÃ ÆËÌ ÁÆ ÈÇÏÁ á Á Å Ê ÏÇÄÄËÌÇÆ Ê Ì ËÀ ÄÄ ÊÙ Þ º... ÌÓ Ý ½ ÙÒØ ÔÖÞ Û Ó Æ ØÙÖÞ Â ÒÝÑ Þ Ó Û ÞÒÝ ÔÖ Ò Þ ÓÛ Ø ÙÛÓÐÒ Ò Ó Ý Ø ØÙ Ò ØÙÖݺ ÏÝÖ ÓÒÓ Ò Ö

Bardziej szczegółowo

ROCZNIK LUBUSKI Tom 35, część 2

ROCZNIK LUBUSKI Tom 35, część 2 ROCZNIK LUBUSKI LUBUSKIE TOWARZYSTWO NAUKOWE ROCZNIK LUBUSKI Tom 35, część 2 WSPÓŁCZESNA WIZJA MIASTA W TEORII I PRAKTYCE SPOŁECZNEJ Pod redakcją Żywii Leszkowicz-Baczyńskiej Justyny Nyćkowiak Zielona

Bardziej szczegółowo

ÑÒ Ñ Ø Ö Ò Ð Å ÈÓ ÞÙ Û Ò Ý Ò Û Ò Ð Å Û Û ÞÝ Ø ÑÓ ÞÐ ÛÝ Ò ÔÖÓÑ Ò ÓÛ Ò ÑÑ ÔÓÞÝØÓÒÝ ÒØÝÔÖÓØÓÒÝ ººº µ ÑÓ Þ ÑÝ Ø Þ ÞÙ ð Ò ÙØÖ Ò º º ÖÒ ÏÝ ÁÁ ½

ÑÒ Ñ Ø Ö Ò Ð Å ÈÓ ÞÙ Û Ò Ý Ò Û Ò Ð Å Û Û ÞÝ Ø ÑÓ ÞÐ ÛÝ Ò ÔÖÓÑ Ò ÓÛ Ò ÑÑ ÔÓÞÝØÓÒÝ ÒØÝÔÖÓØÓÒÝ ººº µ ÑÓ Þ ÑÝ Ø Þ ÞÙ ð Ò ÙØÖ Ò º º ÖÒ ÏÝ ÁÁ ½ Þ Ø ØÖÓ ÞÝ ÔÖÓ º Ö º º º ÖÒ Þ Ø Ç Þ ÝÛ ðò ÙÒ Ñ ÒØ ÐÒÝ Á ÏÝ ÁÁ Æ ÙØÖ Ò Û ÒÓð ËÙÔ Ö Ã Ñ Ó Ò Á Ù ÑÒ Ñ Ø Ö Ò Ð Å ÈÓ ÞÙ Û Ò Ý Ò Û Ò Ð Å Û Û ÞÝ Ø ÑÓ ÞÐ ÛÝ Ò ÔÖÓÑ Ò ÓÛ Ò ÑÑ ÔÓÞÝØÓÒÝ ÒØÝÔÖÓØÓÒÝ ººº µ ÑÓ Þ ÑÝ Ø

Bardziej szczegółowo

Â Ù Ä ÔÓÐÓÒÝ ÑÓ Ð ÒÙѹ ÓÖ ÓÒ ÑÓ Ð ÔÓ Ö ÛÒ ÊÓÞÔÖ Û Ó ØÓÖ ÔÖÞÝ ÓØÓÛ Ò ÔÓ ÖÙÒ Ñ ÔÖÓ º À ÒÖÝ ÖÓ Þ ÃÖ Û Ñ ¾¼½¼

Â Ù Ä ÔÓÐÓÒÝ ÑÓ Ð ÒÙѹ ÓÖ ÓÒ ÑÓ Ð ÔÓ Ö ÛÒ ÊÓÞÔÖ Û Ó ØÓÖ ÔÖÞÝ ÓØÓÛ Ò ÔÓ ÖÙÒ Ñ ÔÖÓ º À ÒÖÝ ÖÓ Þ ÃÖ Û Ñ ¾¼½¼ Â Ù Ä ÔÓÐÓÒÝ ÑÓ Ð ÒÙѹ ÓÖ ÓÒ ÑÓ Ð ÔÓ Ö ÛÒ ÊÓÞÔÖ Û Ó ØÓÖ ÔÖÞÝ ÓØÓÛ Ò ÔÓ ÖÙÒ Ñ ÔÖÓ º À ÒÖÝ ÖÓ Þ ÃÖ Û Ñ ¾¼½¼ Ö ÞÓ Ö ÞÒ Þ Ù ÑÓ ÑÙ ÔÖÓÑÓØÓÖÓÛ ÔÖÓ ÓÖÓÛ À ÒÖÝ ÓÛ ÖÓ Þ ÓÛ Þ Þ Ñ ÔÓ Û ÓÒÝ Þ ÒÒ Ö Ý ÝÞÐ Û ÙÛ º Þ

Bardziej szczegółowo

Ë Ñ Ö ÞÒ ÔÓ Þ ÓÛ Ò È ÒÙ ÈÖÓ ÓÖÓÛ ÊÝ Þ Ö ÓÛ È ÖÞÝ ÑÙ Þ Ó Þ Ò ÝÞÐ ÛÓ ÓÖ Þ Û Þ Û Ù Þ ÐÓÒ Ñ ÔÓ Þ Ô Ò ÔÖ Ý

Ë Ñ Ö ÞÒ ÔÓ Þ ÓÛ Ò È ÒÙ ÈÖÓ ÓÖÓÛ ÊÝ Þ Ö ÓÛ È ÖÞÝ ÑÙ Þ Ó Þ Ò ÝÞÐ ÛÓ ÓÖ Þ Û Þ Û Ù Þ ÐÓÒ Ñ ÔÓ Þ Ô Ò ÔÖ Ý ÍÒ Û Ö ÝØ Ø Ñº Ñ Å Û Þ Û ÈÓÞÒ Ò Ù ÏÝ Þ ÞÝ Å Ö ÒØ Ê ÞÓÒ Ò Û ÐÓ ÓØÓÒÓÛÝ Û Ù ØÖ ÔÓÞ ÓÑÓÛÝ ÈÖ Ó ØÓÖ Ò Ô Ò ÔÓ ÖÙÒ Ñ ÔÖÓ º Öº º ÊÝ Þ Ö È ÖÞÝ Ó ÈÓÞÒ ¾¼½¾ Ë Ñ Ö ÞÒ ÔÓ Þ ÓÛ Ò È ÒÙ ÈÖÓ ÓÖÓÛ ÊÝ Þ Ö ÓÛ È ÖÞÝ ÑÙ Þ

Bardziej szczegółowo

ROCZNIK LUBUSKI Tom 30, część 2

ROCZNIK LUBUSKI Tom 30, część 2 ROCZNIK LUBUSKI LUBUSKIE TOWARZYSTWO NAUKOWE ROCZNIK LUBUSKI Tom 30, część 2 RÓŻNORODNOŚĆ KAPITAŁÓW W NOWEJ RZECZYWISTOŚCI SPOŁECZNEJ Z DOROBKU ZIELONOGÓRSKIEGO ŚRODOWISKA SOCJOLOGICZNEGO Pod redakcją

Bardziej szczegółowo

º º ÖÒ ÏÝ Á ½

º º ÖÒ ÏÝ Á ½ ÏÔÖÓÛ Þ Ò ÛÝ Ù Ð Ø Ö ØÙÖ Þ Ñ Ò ØÔº ÔÐ Ò Þ Ø ØÖÓ ÞÝ ÔÖÓ º Ö º º º ÖÒ Þ Ø Ç Þ ÝÛ ðò ÙÒ Ñ ÒØ ÐÒÝ Á ÏÝ Á ÃÖ Ø ØÓÖ ÖÓÞÛÓ Ù ÞÝ Þ Ø ÅÓ Ð ËØ Ò Ö ÓÛÝ ¾¼½ Ï Þ ØÙ ÐÒ ÔÝØ Ò Ò Ø Ö ÅÓ Ð ËØ Ò Ö ÓÛÝ Ò Ò Ñ Ó ÔÓÛ Þ º º

Bardziej szczegółowo

Ç ÐÒ ÒÖ ½ DoCelu Ä ØÓÔ ¾¼¼½ º º º Ó Þ ÑÝ Û ÞÝ Ý Ó ÒÓ Û ÖÝ ÔÓÞÒ Ò ËÝÒ Ó Ó Ó Ñ Ó ÓÒ Ó ÓÖÓ Ò ÑÝ Ó ÛÝÑ Ö Û Ô Ò ÖÝ ØÙ ÓÛ º º º ÓÖ Þ Ð ÐÙ Á ÞÒ Ò Ó Ù ÝÙ Ò Û

Ç ÐÒ ÒÖ ½ DoCelu Ä ØÓÔ ¾¼¼½ º º º Ó Þ ÑÝ Û ÞÝ Ý Ó ÒÓ Û ÖÝ ÔÓÞÒ Ò ËÝÒ Ó Ó Ó Ñ Ó ÓÒ Ó ÓÖÓ Ò ÑÝ Ó ÛÝÑ Ö Û Ô Ò ÖÝ ØÙ ÓÛ º º º ÓÖ Þ Ð ÐÙ Á ÞÒ Ò Ó Ù ÝÙ Ò Û Ç ÐÒ ÒÖ ½ DoCelu Ä ØÓÔ ¾¼¼½ º º º Ó Þ ÑÝ Û ÞÝ Ý Ó ÒÓ Û ÖÝ ÔÓÞÒ Ò ËÝÒ Ó Ó Ó Ñ Ó ÓÒ Ó ÓÖÓ Ò ÑÝ Ó ÛÝÑ Ö Û Ô Ò ÖÝ ØÙ ÓÛ º º º ÓÖ Þ Ð ÐÙ Á ÞÒ Ò Ó Ù ÝÙ Ò Û Þ Ò Þ Ñ Ð ÞÖ ÒÝ Ò ÖÓ Û Ý Þ ÙÞÝ ÑÓ¹ ÖÞ Ð º º º Ý ØÓ

Bardziej szczegółowo

KAPITAŁ LUDZKI NARODOWA STRATEGIA SPÓJNOŚCI UNIA EUROPEJSKA EUROPEJSKI FUNDUSZ SPOŁECZNY

KAPITAŁ LUDZKI NARODOWA STRATEGIA SPÓJNOŚCI UNIA EUROPEJSKA EUROPEJSKI FUNDUSZ SPOŁECZNY KAPITAŁ LUDZKI NARODOWA STRATEGIA SPÓJNOŚCI UNIA EUROPEJSKA EUROPEJSKI FUNDUSZ SPOŁECZNY ÈÖÓ Ø ÔÒº ÏÞÑÓÒ Ò ÔÓØ Ò Ù Ý ØÝÞÒ Ó ÍÅÃ Û ÌÓÖÙÒ Ù Û Þ Þ Ò Ñ Ø Ñ ØÝÞÒÓ¹ÔÖÞÝÖÓ Ò ÞÝ Ö Ð ÞÓÛ ÒÝ Û Ö Ñ ÈÓ Þ Ò º½º½ ÈÖÓ

Bardziej szczegółowo

S V. ω = yzdx+(xz +z 2 )dy +yzdz, (T, S) (p,v) = 1. = a V, = 3bT2. k T 1 V. α p 1 V V,N U,N U,V V,N S,N S,V

S V. ω = yzdx+(xz +z 2 )dy +yzdz, (T, S) (p,v) = 1. = a V, = 3bT2. k T 1 V. α p 1 V V,N U,N U,V V,N S,N S,V Ì ÊÅÇ Æ ÅÁà Á Á à ËÌ Ì ËÌ Æ ÈÖÓ Ð ÑÝ Ó ÓÑÙ Ò ÓÐÓ Û Þ Ñ Ò ÈÖÓ Ð Ñ Ìº¼ ÈÓ Þ Ð ÔÓ Ó Ò ÒØÖÓÔ S = S(U,V,N Ö ÛÒ ( S = 1 ( S U T, = p ( S V T, N V,N U,N U,V = µ T, ØÓ ÔÓ Ó ÒÝÑ Ò Ö Û ÛÒØÖÞÒ U = U(S,V,N ( ( U U

Bardziej szczegółowo

Notka biograficzna Streszczenie

Notka biograficzna Streszczenie Notka biograficzna Dr Mariusz Maciejczak -doktor ekonomii, wykładowca na polskich i zagranicznych uczelniach, uczestnik projektów badawczych i aplikacyjnych, doradca i ekspert organizacji biznesowych,

Bardziej szczegółowo

Ç Û Þ Ò ÙØÓÖ ÖÓÞÔÖ ÛÝ Ç Û Þ Ñ Ò Ò Þ ÖÓÞÔÖ Û ÞÓ Ø Ò Ô Ò ÔÖÞ Þ ÑÒ ÑÓ Þ ÐÒ º Ø ÈÓ Ô ÙØÓÖ ÖÓÞÔÖ ÛÝ Ç Û Þ Ò ÔÖÓÑÓØÓÖ ÖÓÞÔÖ ÛÝ Æ Ò ÞÝÑ Ó Û Þ Ñ ÖÓÞÔÖ Û Ø ÓØÓ

Ç Û Þ Ò ÙØÓÖ ÖÓÞÔÖ ÛÝ Ç Û Þ Ñ Ò Ò Þ ÖÓÞÔÖ Û ÞÓ Ø Ò Ô Ò ÔÖÞ Þ ÑÒ ÑÓ Þ ÐÒ º Ø ÈÓ Ô ÙØÓÖ ÖÓÞÔÖ ÛÝ Ç Û Þ Ò ÔÖÓÑÓØÓÖ ÖÓÞÔÖ ÛÝ Æ Ò ÞÝÑ Ó Û Þ Ñ ÖÓÞÔÖ Û Ø ÓØÓ ÍÒ Û Ö ÝØ Ø Ï Ö Þ Û ÏÝ Þ Å Ø Ñ ØÝ ÁÒ ÓÖÑ ØÝ Å Ò Ø Â ÒÓÛ Ò ÖÓÛ Ò ÙØÓÑ Ø Û Þ ÓÛÝ Ð Ý Ø Ñ Û Þ Ù ÖÞ ÞÝÛ Ø Ó ÊÓÞÔÖ Û Ó ØÓÖ ÈÖÓÑÓØÓÖ ÖÓÞÔÖ ÛÝ Óº Ö º ÏÓ È ÒÞ ÁÒ ØÝØÙØ ÈÓ Ø Û ÁÒ ÓÖÑ ØÝ ÈÓÐ Ñ Æ Ù Ñ ¾¼¼ Ç Û Þ Ò

Bardziej szczegółowo

x a lim (x n) 2 = lim x n sgn(x) =

x a lim (x n) 2 = lim x n sgn(x) = ½ ÙÒ Ö Ò Ý Ó Ö Ö ÙÑ ÒØ Û Þ Ö Û ÖØÓ ÑÓÒÓØÓÒ ÞÒÓ ÙÒ Ó ÛÖÓØÒ ÙÒ Ð ¹ Ò ÓÛ Û Ö ØÓÛ Û ÐÓÑ ÒÝ ÙÒ ÛÝÑ ÖÒ ÙÒ ØÖÝ ÓÒÓÑ ØÖÝÞÒ Ó ¹ ÛÖÓØÒÓ ÙÒ ÛÝ Ò Þ ÐÓ ÖÝØÑ ÞÒ º ½º½ ½º½º½ ÙÒ ÛÝ Ò Þ Ð ÓÔÓÛ Þ Ï ÖØÓ ÙÒ ÛÝ Ò Þ Ð Ö ÙÑ

Bardziej szczegółowo