N j=1 (η M η j ) Û Ö η 1... η N Ö

Wielkość: px
Rozpocząć pokaz od strony:

Download "N j=1 (η M η j ) Û Ö η 1... η N Ö"

Transkrypt

1 Ù ÔØ Ð ØÝ ÌÓÔÓÐÓ Ð ØÛ Ø Ñ ÖÑ ÓÒ ÖÓÑ Ù Ò Ô ØÖ Ð ÔÖÓ ØÓÖ Ý ÃÖÞÝ ÞØÓ Ë ÙØ Ò ÖÑ ÒÝ ÆÁ Ñ Å Û Þ ÍÒ Ú Ö ØÝ ÈÓÞÒ ÈÓÐ Ò ÓÐÐ ÓÖ Ø ÓÒ Û Ø Ò Ö Ê ÑÓ Ð Ò Ã ÖÐ Â Ò Ò Ä ÌÌÁ ¾¼½ ½» ¾

2 ÁÒØÖÓ ÙØ ÓÒ ÌÓÔÓÐÓ Ð ÒÓØ Ö Ð Ò Ò Ø ÓÒ ÖÓÑ Ò ØÝ Ò ÓÖÖ Ð ØÓÖ Ù Ø º º ÊÓ Åº Ì Ø ¾¼¼ ź Ä Ö ¾¼¼ ĺ Ô ØÖ Ð ÔÖÓ ØÓÖ Ù Ø Ó Ø Ø Ð Ù Ò Ù Ø Åº Ä Ö ¾¼¼ ź Ä Ö º È ÐÓÑ ¾¼½¼ ĺ ÌÓÔÓÐÓ Ð Ù ÔØ Ð ØÝ Ø ØÓÔÓÐÓ Ð Ù ÔØ Ð ØÝ ÜÔÖ ÙØÙ Ø ÓÒ Ó Ø ØÓÔÓÐÓ Ð Ù ÔØ Ð ØÝ ÓÙØÐ Ò ÈÖ ÒØ Ø ÓÒ Ö Ù Ø Ö ÒÓÒ¹ØÖ Ú Ð ØÓÔÓÐÓ Ð ÔÖÓÔ ÖØ Ó Ø ÙÒ ÖÐÝ Ò ÔÖÓ ØÓÖ ËÔ ØÖ Ð Ö ÌÓÔÓÐÓ Ð Ù ÔØ Ð ØÝ Ò ØÙÔ Ë ÑÙÐ Ø ÓÒ Ò Ñ Ð N Ê ÙÐØ f = 2 N Ò f = ÕÙ ÒØÙÑ Ú ÙÙÑ Ù ÔÖÓÔ ÖØ Ú Ö¹Ö Ò Ô ÒÓÑ ÒÓÐÓ Ð ÑÔÐ Ø ÓÒ Ø ÑÓ Ø ÔÖÓÑ Ò ÒØ Ü ÑÔÐ ÚÓÙÖ¹ Ò Ð Ø Ô Ù Ó Ð Ö η Ñ ÓÒ Ï ØØ Ò¹Î Ò Þ ÒÓ Ö Ð Ø ÓÒ Ê ÙÐØ ÕÙ Ò ËÙÑÑ ÖÝ Ò Ø ÓÒ Ò ÓÑÔÙØ Ø ÓÒ ÓÒ Ø Ð ØØ ÒÓØÓÖ ÓÙ ÐÝ ÙÐØ ÐÓÒ Ø Ò Ø Ð Ø Ö ØÙÖ ÓÙØ Ø Ú Ð ØÝ Ó Ö ÒØ ÔÔÖÓ Ð Ò Ò Ø ÓÒ Ò Ü Ó ÓÚ ÖÐ Ô Ö ÓÔ Ö ØÓÖ Ú ÖÝ Ó ØÐÝ Ä ÌÌÁ ¾¼½ ¾» ¾

3 ÁÒØÖÓ ÙØ ÓÒ ÌÓÔÓÐÓ Ð ÈÖ ÒØ Ø ÓÒ ÓÙØÐ Ò Ù ÔØ Ð ØÝ ÓÙØÐ Ò ÈÖ ÒØ Ø ÓÒ Ì ÓÖ Ø Ð ÒØÖÓ ÙØ ÓÒ ½º Ô ØÖ Ð ÔÖÓ ØÓÖ ØÓÔÓÐÓ Ð Ù ÔØ Ð ØÝ Z P /Z S ÔÖÓ ØÓÖ ËÔ ØÖ Ð Ö ÌÓÔÓÐÓ Ð Ù ÔØ Ð ØÝ Ò ØÙÔ Ë ÑÙÐ Ø ÓÒ Ò Ñ Ð N Ê ÙÐØ f = 2 N Ò f = ¾º Ë ÑÙÐ Ø ÓÒ ØÙÔ Ê ÙÐØ ÓÖ N º f = Ò 2 N f = Ö Ð Ø Ó ØÓÔÓÐÓ Ð Ù ÔØ Ð ØÝ Ö Ð ÓÒ Ò Ø Ê ÙÐØ ÕÙ Ò ËÙÑÑ ÖÝ Ê ÙÐØ Ò Ø ÕÙ Ò N º f µ = Ï ØØ Ò¹Î Ò Þ ÒÓ ÓÖÑÙÐ º ËÙÑÑ ÖÝ Ä ÌÌÁ ¾¼½» ¾

4 È M Û ÒÓØ Ø Ý Ê M º ËÔ ØÖ Ð ÔÖÓ ØÓÖ ÁÒØÖÓ Ù Ò Äº Ù Ø Åº Ä Ö ¾¼¼ Ö Ø ÔÔÐ Ø ÓÒ ÓÖ Ø ÓÑÔÙØ Ø ÓÒ Ó Ø ØÓÔÓÐÓ Ð Ù ÔØ Ð ØÝ ÕÙ Ò µ ź Ä Ö º È ÐÓÑ ¾¼½¼ È M Ô ØÖ Ð ÔÖÓ ØÓÖ Ø Ð Ý º Ö Ê ÑÓ ÌÖÈ M Ò Ö ÔÖ ÒØ ØÓ Ø ÐÐÝ Ý ÌÖÈ M = 1 N N j=1 (η M η j ) Û Ö η 1... η N Ö j,è Ð ØÓ Ø Ø ÓÖݺ Ô Ù Ó¹ ÖÑ ÓÒ ÇÒ Ò Ð Ó Ú ÐÙ Ø ÓØ Ö ØÖ Ó Ø Ò º º ÌÖγ 5 È M º ÁÒ ÔÖ Ø ÓÒ ÓÒ ØÖÙØ Ò ÔÔÖÓÜ Ñ Ø ÓÒ ØÓ Ø ÔÖÓ ØÓÖ Ä ÌÌÁ ¾¼½» ¾

5 Ì Ö ÒÓÖÑ Ð Þ Ø ÓÒ ÓÒ Ø ÒØ Ö Ø Ó Z P /Z S Ø Ò Ó Ò Ò ÙÐ Ö Ø Ò Ø Ò Ø ÓÒ Ò Ò ÖÖ ÖÓÑ Ò ØÝ ÓÖØ¹ Ø Ò ÓÖ Ò Ô Ö ¹Ï Ð ÓÒ ÖÑ ÓÒ Tr {γ 5 È M } = Q top ÌÓÔÓÐÓ Ð Ö Ò Ù ÔØ Ð ØÝ º Ì ØÓÔÓÐÓ Ð Ù ÔØ Ð ØÝ Ò Ò Ö Ð Ú Ò Ý χ = Q2 top V º À Ò χ = Z2 S Z 2 P Tr{γ 2 5 M }Tr{γ 2 M } Ê. 5Ê V Ò ÓÖÖ Ð ØÓÖ º Ä ÌÌÁ ¾¼½» ¾

6 ÓÑÔÙØ Ø ÓÒ Ó ØÓÔÓÐÓ Ð Ù ÔØ Ð ØÝ ÁÒØÖÓ ÙØ ÓÒ ÌÓÔÓÐÓ Ð Ù ÔØ Ð ØÝ ÓÙØÐ Ò ÈÖ ÒØ Ø ÓÒ ÔÖÓ ØÓÖ ËÔ ØÖ Ð Ö ÌÓÔÓÐÓ Ð Ù ÔØ Ð ØÝ Ò ØÙÔ Ë ÑÙÐ Ø ÓÒ ÁÒØÖÓ Ù Ø ÓÐÐÓÛ Ò Ó ÖÚ Ð Åº Ä Ö º È ÐÓÑ ¾¼½¼ NX `Ê2 M η k,ê 2 Mη k, A = 1 N k=1 B = 1 N NX (Ê M γ 5 Ê M η k,ê M γ 5 Ê M η k ), Ò Ñ Ð N Ê ÙÐØ f = 2 N Ò f = k=1 = 1 N NX (Ê M η k, γ 5 Ê M η k ), k=1 Ê ÙÐØ ÕÙ Ò ËÙÑÑ ÖÝ χ = Z2 S Z 2 P 2 B N V χ = Q2 top V ÌÓÔÓÐÓ Ð Ù ÔØ Ð ØÝ Z 2 S Z 2 P Z P /Z S = A B Ø Ñ ØÓÖ Ó ØÓÔÓÐÓ Ð Ö ÜÔ Ø = ÓÖ ÐÓÒ ÒÓÙ Å ØÓÖÝ Ù Ò ØÖ ÙØ ØÖ ÙØ ÓÒ Û Ø χ Ò Ø Ú Ñ ÙÖ Ó ÙØÓÓÖÖ Ð Ø ÓÒ Ö Þ Ò Ó ØÓÔÓÐÓ Ð Ö ÓÖ ÒÖ Ò β Ä ÌÌÁ ¾¼½» ¾

7 Ï Ð ÓÒ ØÛ Ø Ñ ÖÑ ÓÒ Ø ÓÒ ÓÖ Ø Ð Ø ØÓÖ Ö ÞÞÓØØ Èº º Ö º º ÊÓ Ëº Ë ÒØ Ⱥ Ï Þ ¾¼¼¼¹¾¼¼ ʺ χ h = (χ c, χ s m ),h Ö ÙÒØÛ Ø ÚÝ ÕÙ Ö Ñ µ σ Ö ØÛ Ø Ñ Û Ø Ø ØÛ Ø ÐÓÒ τ Ø 1 µ Ö Ø ÓÒ δ Ñ ÔÐ ØØ Ò ÐÓÒ Ø τ 3 Ø Ø Ñ Ø ØÖ Ò Ò ÖÑ ÕÙ Ö Ö Ø ÓÒ Ï ÝÒ Ñ Ð Ñ Ò Ö Ø Ý ÌÅ Ù ØÛ Ø ÓÒ ÙÖ Ø ÓÒ N f Ø Ðº ¾¼¼ ¾¼¼ ʺ ÖÓÒ Ø Ðº ¾¼¼ = 2 Ⱥ ÓÙ Ù N f = 2 ʺ ÖÓÒ Ø Ðº ¾¼½¼ ¾¼½½ º N Ï Ð Ó Ò Ö Ø f = ÓÒ ÙÖ Ø ÓÒ º Ù Ø ÓÒ SG [U] = β X X b Ê ÌÖ`1 P 1 1 X x;µ,ν + b1 ÌÖ`1 Ê Px;µ,ν 1 2, 3 x µ,ν=1 µ ν Ë ÑÙÐ Ø ÓÒ ØÙÔ N f = ØÖ ¹Ð Ú Ð ËÝÑ ÒÞ ÑÔÖÓÚ Ø ÓÒ Èº Ï Þ ½ ¾ º º 2 b 1 = 1 12 N f = º N Ò f = ÁÛ Ø ÓÒ º ÁÛ ½ º º b = b = 1 8b 1 S l [ψ, ψ, U] = a 4 X x χ l (x)`d W + m,l + iµ l γ 5 τ 3 χl (x), χ l = (χ u, χ d ) m,l Ò µ l Ö Ø Ö ÙÒØÛ Ø Ò ØÛ Ø Ð Ø ÕÙ Ö Ñ º ÌÛ Ø Ñ Ø ÓÒ ÓÖ Ø ÚÝ ÓÙ Ð Ø Êº Ö ÞÞÓØØ º º ÊÓ ¾¼¼ ¾¼¼ S h [ψ, ψ, U] = a 4 X x χ h (x)`d W + m,h + iµ σ γ 5 τ 1 + µ δ τ 3 χh (x), ÒÓÒ¹ Ò Ö Ø º Ñ ØÖ Ò Ò ÖÑ ÕÙ Ö Ñ m s,c R Ê ÒÓÖÑ Ð Þ = Z 1 P (µ σ (Z P /Z S )µ δ )º Ä ÌÌÁ ¾¼½» ¾

8 Ò Ñ Ð β Ð ØØ aµ l µ l,r κ c Ä Ñ Ñ Å Î ½º ¼ ¼º¼¼ ¼ ½ ¼º½ ¾ ¾ ¾º º¼ ¼º¼ ¼º ½ µ º¾ ½ µ ¼º ¾ ½º ¼ ¼º¼¼ ¼ ½ ¼º½ ¾ ¼ ½º º¼ ¼º¼ ¼º ½ µ º¾ ½ µ ¼º¾¼ ½º ¼ 24 3 ¼º¼¼ ¼ ½ ¼º½ ¾ ¼ ¾º½ º ¼º¼ ¼º ½ µ º¾ ½ µ ¼º¾ ½º ¼ ¼º¼¼ ¼ ½ ¼º½ ¾ ¼ ¾º º ¼º¼ ¼º ½ µ º¾ ½ µ ¼º ¾ ½º ¼ ¼º¼¼ ¼ ¾¾ ¼º½ ¾ ¾º º½ ¼º¼ ¼º ½ µ º¾ ½ µ ¼º ¾ ½º ¼ 24 3 ¼º¼¼ ¼ ¾ ¼º½ ¾ ¾º½ º¾ ¼º¼ ¼º ½ µ º¾ ½ µ ¼º¾ ½º ¼ 24 3 ¼º¼¼ ¼ ¼º½ ¾ ¼ ¾º½ º ¼º¼ ¼º ½ µ º¾ ½ µ ¼º¾ ½º ¼º¼¼¾ ½ ¼º½ ½¾ ¼ ¾º º ¼º¼ ¼º µ º ½¼ ½µ ¾ º ¾ ½º ¼º¼¼ ½ ¼º½ ½¾ ¼ ¾º º¼ ¼º¼ ¼º µ º ½¼ ½µ º ¾ ½º ¼º¼¼ ¾ ¼º½ ½¾ ¾º º¼ ¼º¼ ¼º µ º ½¼ ½µ º ¾ ½º ¼º¼¼ ¼º½ ½¾ ¾ ¾º º ¼º¼ ¼º µ º ½¼ ½µ º ¾ ½º 24 3 ¼º¼¼ ¼º½ ½¾ ½ ½º º ¼º¼ ¼º µ º ½¼ ½µ º¾ ¾º½¼ 3 96 ¼º¼¼¾¼ ½¾ ¼º½ ¾º º ¼º¼ ¼ ¼º ¼ µ º µ ¾¼º ¾º½¼ 3 96 ¼º¼¼ ¼ ½ ¼º½ ¾º º ¼º¼ ¼ ¼º ¼ µ º µ ¼º ¾º½¼ ¼º¼¼ ¾ ¼º½ ½ ½º º ¼º¼ ¼ ¼º ¼ µ º µ º ¾ m π L Z P /Z S r /a Ò Ñ Ð Ù º ¼ ¼º¼¼ ¾½ ¼º½ ¼ ½º ¾º ¼º¼ ¼º ¼ ¾µ º µ 32 º ¼ ¼º¼¼ ¾½ ¼º½ ¼ ½º ¾º ¼º¼ ¼º ¼ ¾µ º µ 4 º ¼ ¼º¼¼ ¾½ ¼º½ ¼ ¾º¼ º ¼º¼ ¼º ¼ ¾µ º µ º ¼ ¼º¼¼ ¾½ ¼º½ ¼ ¾º º ¼º¼ ¼º ¼ ¾µ º µ 64 º ¼ ¼º¼¼ ¼º½ ¼ ¾º¼ º½ ¼º¼ ¼º ¼ ¾µ º µ º ¼ ¼º¼¼ ¼º½ ¼ ¾º¼ º ¼º¼ ¼º ¼ ¾µ º µ º¼ ¼º¼¼ ½ ¼º½ ¼½¼ ½º ¾º ¼º¼ ¼º ¾¼ ¾ µ º ½ µ 4 º¾¼ ¼º¼¼¾ ½ ¼º½ ¼ ½º ¾º ¼º¼ ¼º ½ ¼ ¾ µ º µ º ¼º¼¼½ ½ ¼º½ ½ ¼ ½º ¾º ¼º¼ ¾ ¼º µ º µ 64 Z P /Z S ÖÓÑ º Ð Ü Ò ÖÓÙ Ø Ðº ¾¼½¾ ú Ý Ãº Â Ò Ò Èº ÃÓÖÝÐ ¾¼½¾ º È Ð Ó ÔÖ Ú Ø ÓÑÑÙÒ Ø ÓÒ Ä ÌÌÁ ¾¼½» ¾

9 Ò Ñ Ð β Ð ØØ aµ l µ l,r κ c Ä Ñ Ñ Å Î ½º ¼ ¼º¼¼ ¼ ½ ¼º½ ¾ ¾ ¾º º¼ ¼º¼ ¼º ½ µ º¾ ½ µ ¼º ¾ ½º ¼ ¼º¼¼ ¼ ½ ¼º½ ¾ ¼ ½º º¼ ¼º¼ ¼º ½ µ º¾ ½ µ ¼º¾¼ ½º ¼ 24 3 ¼º¼¼ ¼ ½ ¼º½ ¾ ¼ ¾º½ º ¼º¼ ¼º ½ µ º¾ ½ µ ¼º¾ ½º ¼ ¼º¼¼ ¼ ½ ¼º½ ¾ ¼ ¾º º ¼º¼ ¼º ½ µ º¾ ½ µ ¼º ¾ ½º ¼ ¼º¼¼ ¼ ¾¾ ¼º½ ¾ ¾º º½ ¼º¼ ¼º ½ µ º¾ ½ µ ¼º ¾ ½º ¼ 24 3 ¼º¼¼ ¼ ¾ ¼º½ ¾ ¾º½ º¾ ¼º¼ ¼º ½ µ º¾ ½ µ ¼º¾ ½º ¼ 24 3 ¼º¼¼ ¼ ¼º½ ¾ ¼ ¾º½ º ¼º¼ ¼º ½ µ º¾ ½ µ ¼º¾ ½º ¼º¼¼¾ ½ ¼º½ ½¾ ¼ ¾º º ¼º¼ ¼º µ º ½¼ ½µ ¾ º ¾ ½º ¼º¼¼ ½ ¼º½ ½¾ ¼ ¾º º¼ ¼º¼ ¼º µ º ½¼ ½µ º ¾ ½º ¼º¼¼ ¾ ¼º½ ½¾ ¾º º¼ ¼º¼ ¼º µ º ½¼ ½µ º ¾ ½º ¼º¼¼ ¼º½ ½¾ ¾ ¾º º ¼º¼ ¼º µ º ½¼ ½µ º ¾ ½º 24 3 ¼º¼¼ ¼º½ ½¾ ½ ½º º ¼º¼ ¼º µ º ½¼ ½µ º¾ ¾º½¼ 3 96 ¼º¼¼¾¼ ½¾ ¼º½ ¾º º ¼º¼ ¼ ¼º ¼ µ º µ ¾¼º ¾º½¼ 3 96 ¼º¼¼ ¼ ½ ¼º½ ¾º º ¼º¼ ¼ ¼º ¼ µ º µ ¼º ¾º½¼ ¼º¼¼ ¾ ¼º½ ½ ½º º ¼º¼ ¼ ¼º ¼ µ º µ º ¾ m π L Z P /Z S r /a Ò Ñ Ð Ù Î º ¼ ¼º¼¼ ¾½ ¼º½ ¼ ½º ¾º ¼º¼ ¼º ¼ ¾µ º µ 32 º ¼ ¼º¼¼ ¾½ ¼º½ ¼ ½º ¾º ¼º¼ ¼º ¼ ¾µ º µ 4 º ¼ ¼º¼¼ ¾½ ¼º½ ¼ ¾º¼ º ¼º¼ ¼º ¼ ¾µ º µ º ¼ ¼º¼¼ ¾½ ¼º½ ¼ ¾º º ¼º¼ ¼º ¼ ¾µ º µ 64 º ¼ ¼º¼¼ ¼º½ ¼ ¾º¼ º½ ¼º¼ ¼º ¼ ¾µ º µ º ¼ ¼º¼¼ ¼º½ ¼ ¾º¼ º ¼º¼ ¼º ¼ ¾µ º µ º¼ ¼º¼¼ ½ ¼º½ ¼½¼ ½º ¾º ¼º¼ ¼º ¾¼ ¾ µ º ½ µ 4 º¾¼ ¼º¼¼¾ ½ ¼º½ ¼ ½º ¾º ¼º¼ ¼º ½ ¼ ¾ µ º µ º ¼º¼¼½ ½ ¼º½ ½ ¼ ½º ¾º ¼º¼ ¾ ¼º µ º µ 64 Z P /Z S ÖÓÑ º Ð Ü Ò ÖÓÙ Ø Ðº ¾¼½¾ ú Ý Ãº Â Ò Ò Èº ÃÓÖÝÐ ¾¼½¾ º È Ð Ó ÔÖ Ú Ø ÓÑÑÙÒ Ø ÓÒ Ä ÌÌÁ ¾¼½» ¾

10 Ò Ñ Ð β Ð ØØ aµ l µ l,r κ c Ä Ñ Ñ Å Î ½º ¼ ¼º¼¼ ¼ ½ ¼º½ ¾ ¾ ¾º º¼ ¼º¼ ¼º ½ µ º¾ ½ µ ¼º ¾ ½º ¼ ¼º¼¼ ¼ ½ ¼º½ ¾ ¼ ½º º¼ ¼º¼ ¼º ½ µ º¾ ½ µ ¼º¾¼ ½º ¼ 24 3 ¼º¼¼ ¼ ½ ¼º½ ¾ ¼ ¾º½ º ¼º¼ ¼º ½ µ º¾ ½ µ ¼º¾ ½º ¼ ¼º¼¼ ¼ ½ ¼º½ ¾ ¼ ¾º º ¼º¼ ¼º ½ µ º¾ ½ µ ¼º ¾ ½º ¼ ¼º¼¼ ¼ ¾¾ ¼º½ ¾ ¾º º½ ¼º¼ ¼º ½ µ º¾ ½ µ ¼º ¾ ½º ¼ 24 3 ¼º¼¼ ¼ ¾ ¼º½ ¾ ¾º½ º¾ ¼º¼ ¼º ½ µ º¾ ½ µ ¼º¾ ½º ¼ 24 3 ¼º¼¼ ¼ ¼º½ ¾ ¼ ¾º½ º ¼º¼ ¼º ½ µ º¾ ½ µ ¼º¾ ½º ¼º¼¼¾ ½ ¼º½ ½¾ ¼ ¾º º ¼º¼ ¼º µ º ½¼ ½µ ¾ º ¾ ½º ¼º¼¼ ½ ¼º½ ½¾ ¼ ¾º º¼ ¼º¼ ¼º µ º ½¼ ½µ º ¾ ½º ¼º¼¼ ¾ ¼º½ ½¾ ¾º º¼ ¼º¼ ¼º µ º ½¼ ½µ º ¾ ½º ¼º¼¼ ¼º½ ½¾ ¾ ¾º º ¼º¼ ¼º µ º ½¼ ½µ º ¾ ½º 24 3 ¼º¼¼ ¼º½ ½¾ ½ ½º º ¼º¼ ¼º µ º ½¼ ½µ º¾ ¾º½¼ 3 96 ¼º¼¼¾¼ ½¾ ¼º½ ¾º º ¼º¼ ¼ ¼º ¼ µ º µ ¾¼º ¾º½¼ 3 96 ¼º¼¼ ¼ ½ ¼º½ ¾º º ¼º¼ ¼ ¼º ¼ µ º µ ¼º ¾º½¼ ¼º¼¼ ¾ ¼º½ ½ ½º º ¼º¼ ¼ ¼º ¼ µ º µ º ¾ m π L Z P /Z S r /a Ò Ñ Ð Ù Ñ Ô Ò Ò º º º ¼ ¼º¼¼ ¾½ ¼º½ ¼ ½º ¾º ¼º¼ ¼º ¼ ¾µ º µ 32 º ¼ ¼º¼¼ ¾½ ¼º½ ¼ ½º ¾º ¼º¼ ¼º ¼ ¾µ º µ 4 º ¼ ¼º¼¼ ¾½ ¼º½ ¼ ¾º¼ º ¼º¼ ¼º ¼ ¾µ º µ º ¼ ¼º¼¼ ¾½ ¼º½ ¼ ¾º º ¼º¼ ¼º ¼ ¾µ º µ 64 º ¼ ¼º¼¼ ¼º½ ¼ ¾º¼ º½ ¼º¼ ¼º ¼ ¾µ º µ º ¼ ¼º¼¼ ¼º½ ¼ ¾º¼ º ¼º¼ ¼º ¼ ¾µ º µ º¼ ¼º¼¼ ½ ¼º½ ¼½¼ ½º ¾º ¼º¼ ¼º ¾¼ ¾ µ º ½ µ 4 º¾¼ ¼º¼¼¾ ½ ¼º½ ¼ ½º ¾º ¼º¼ ¼º ½ ¼ ¾ µ º µ º ¼º¼¼½ ½ ¼º½ ½ ¼ ½º ¾º ¼º¼ ¾ ¼º µ º µ 64 Z P /Z S ÖÓÑ º Ð Ü Ò ÖÓÙ Ø Ðº ¾¼½¾ ú Ý Ãº Â Ò Ò Èº ÃÓÖÝÐ ¾¼½¾ º È Ð Ó ÔÖ Ú Ø ÓÑÑÙÒ Ø ÓÒ Ä ÌÌÁ ¾¼½ ½¼» ¾

11 Ò Ñ Ð β Ð ØØ aµ l µ l,r κ c Ä ½º ¼ ¼º¼¼ ¼ ½ ¼º½ ¾ ¾ ¾º º¼ ¼º¼ ¼º ½ µ º¾ ½ µ ¼º ¾ ½º ¼ ¼º¼¼ ¼ ½ ¼º½ ¾ ¼ ½º º¼ ¼º¼ ¼º ½ µ º¾ ½ µ ¼º¾¼ ½º ¼ 24 3 ¼º¼¼ ¼ ½ ¼º½ ¾ ¼ ¾º½ º ¼º¼ ¼º ½ µ º¾ ½ µ ¼º¾ ½º ¼ ¼º¼¼ ¼ ½ ¼º½ ¾ ¼ ¾º º ¼º¼ ¼º ½ µ º¾ ½ µ ¼º ¾ ½º ¼ ¼º¼¼ ¼ ¾¾ ¼º½ ¾ ¾º º½ ¼º¼ ¼º ½ µ º¾ ½ µ ¼º ¾ ½º ¼ 24 3 ¼º¼¼ ¼ ¾ ¼º½ ¾ ¾º½ º¾ ¼º¼ ¼º ½ µ º¾ ½ µ ¼º¾ ½º ¼ 24 3 ¼º¼¼ ¼ ¼º½ ¾ ¼ ¾º½ º ¼º¼ ¼º ½ µ º¾ ½ µ ¼º¾ ½º ¼º¼¼¾ ½ ¼º½ ½¾ ¼ ¾º º ¼º¼ ¼º µ º ½¼ ½µ ¾ º ¾ ½º ¼º¼¼ ½ ¼º½ ½¾ ¼ ¾º º¼ ¼º¼ ¼º µ º ½¼ ½µ º ¾ ½º ¼º¼¼ ¾ ¼º½ ½¾ ¾º º¼ ¼º¼ ¼º µ º ½¼ ½µ º ¾ ½º ¼º¼¼ ¼º½ ½¾ ¾ ¾º º ¼º¼ ¼º µ º ½¼ ½µ º ¾ ½º 24 3 ¼º¼¼ ¼º½ ½¾ ½ ½º º ¼º¼ ¼º µ º ½¼ ½µ º¾ ¾º½¼ 3 96 ¼º¼¼¾¼ ½¾ ¼º½ ¾º º ¼º¼ ¼ ¼º ¼ µ º µ ¾¼º ¾º½¼ 3 96 ¼º¼¼ ¼ ½ ¼º½ ¾º º ¼º¼ ¼ ¼º ¼ µ º µ ¼º m π L Z P /Z S r /a Ò Ñ Ð Ù Ð ØØ Ô Ò Å Î Ñ Ñ ¾º½¼ ¼º¼¼ ¾ ¼º½ ½ ½º º ¼º¼ ¼ ¼º ¼ µ º µ º ¾ º ¼ ¼º¼¼ ¾½ ¼º½ ¼ ½º ¾º ¼º¼ ¼º ¼ ¾µ º µ 32 º ¼ ¼º¼¼ ¾½ ¼º½ ¼ ½º ¾º ¼º¼ ¼º ¼ ¾µ º µ 4 º ¼ ¼º¼¼ ¾½ ¼º½ ¼ ¾º¼ º ¼º¼ ¼º ¼ ¾µ º µ º ¼ ¼º¼¼ ¾½ ¼º½ ¼ ¾º º ¼º¼ ¼º ¼ ¾µ º µ 64 º ¼ ¼º¼¼ ¼º½ ¼ ¾º¼ º½ ¼º¼ ¼º ¼ ¾µ º µ º ¼ ¼º¼¼ ¼º½ ¼ ¾º¼ º ¼º¼ ¼º ¼ ¾µ º µ º¼ ¼º¼¼ ½ ¼º½ ¼½¼ ½º ¾º ¼º¼ ¼º ¾¼ ¾ µ º ½ µ 4 º¾¼ ¼º¼¼¾ ½ ¼º½ ¼ ½º ¾º ¼º¼ ¼º ½ ¼ ¾ µ º µ º ¼º¼¼½ ½ ¼º½ ½ ¼ ½º ¾º ¼º¼ ¾ ¼º µ º µ 64 Z P /Z S ÖÓÑ º Ð Ü Ò ÖÓÙ Ø Ðº ¾¼½¾ ú Ý Ãº Â Ò Ò Èº ÃÓÖÝÐ ¾¼½¾ º È Ð Ó ÔÖ Ú Ø ÓÑÑÙÒ Ø ÓÒ Ä ÌÌÁ ¾¼½ ½½» ¾

12 ÁÒØÖÓ ÙØ ÓÒ N Ê ÙÐØ f = 2 N Ò f = Ü ÑÔÐ Ñ ÉÙ Ö N Ô Ò Ò f 2 = β = 3.9 Ø ÓÖ ÐÐ N f = Ù Ò ÐÐ Ø Ø ÜÐÙ Ò Ô ÓÒ Ø Ê ÙÐØ N f = 2 Ò N f = Ñ ¼¼ Å Î Ê ÙÐØ ÕÙ Ò ËÙÑÑ ÖÝ Ä ÌÌÁ ¾¼½ ½¾» ¾

13 1 5 β = 18 <>=.753 f()=n*exp(-(-<>) 2 /2σ aµ =.55 ¾¼ ØÖ º ØÛ Ò Ñ ÙÖ Ñ ÒØ ½¾ ÓÒ ) 16 <>= < 2 >=σ 2 = <B>/N= a 4 χ=4.4235e-6 (a 4 χ)=5.155e-7 12 Ü ÑÔÐ N f = β = 1.95 number of confs M time.75 ½ ØÖ º ØÛ Ò β Ñ ÙÖ Ñ ÒØ = ¾¼½ aµ ÓÒ = 1 6 <>= f()=n*exp(-(-<>) 2 /2σ 2 ) 8 <>= < 2 >=σ 2 = <B>/N= a 4 χ= e-6 4 (a 4 χ)=1.9532e number of confs M time Ä ÌÌÁ ¾¼½ ½» ¾

14 ÁÒØÖÓ ÙØ ÓÒ N Ê ÙÐØ f = 2 N Ò f = ØÖ ¹Ð Ú Ð ÓÖÑÙÐ Ó χèì r 4 χ = r3 Σ r µ R 2 ÉÙ Ö Ñ Ô Ò Ò N f = 2 β = 3.9 Ü ÑÔÐ Ñ ÉÙ Ö N Ô Ò Ò f 2 = β = 3.9 Ø ÓÖ ÐÐ N f = Ù Ò ÐÐ Ø Ø ÜÐÙ Ò Ô ÓÒ Ø Ñ ¼¼ Å Î r Σ 1/3 =.65(2) Ê ÙÐØ ÕÙ Ò ËÙÑÑ ÖÝ r Σ 1/3 β=3.9 =.696(2) r Σ 1/3 cont =.689(33) ÓÑÔ Ö ØÓ Ö Ø Ø ÖÑ Ò Ø ÓÒ Ø Ð Ý º Ö Ê ÑÓ Ä ÌÌÁ ¾¼½ ½» ¾

15 ÐÐ Ø ÓÖ N f = ÁÒØÖÓ ÙØ ÓÒ N Ê ÙÐØ f = 2 N Ò f = Ü ÑÔÐ Ñ ÉÙ Ö N Ô Ò Ò f 2 = β = 3.9 Ø ÓÖ ÐÐ N f = Ù Ò ÐÐ Ø Ø ÜÐÙ Ò Ô ÓÒ Ø Ñ ¼¼ Å Î Ê ÙÐØ ÕÙ Ò ËÙÑÑ ÖÝ Ä ÌÌÁ ¾¼½ ½» ¾

16 ÁÒØÖÓ ÙØ ÓÒ N Ê ÙÐØ f = 2 N Ò f = Ø Ù Ò ÐÐ Ø ØÖ ¹Ð Ú Ð ÓÖÑÙÐ Ó χèì r 4 χ = r3 Σ r µ R 2 Ü ÑÔÐ Ñ ÉÙ Ö N Ô Ò Ò f 2 = β = 3.9 Ø ÓÖ ÐÐ N f = Ù Ò ÐÐ Ø Ø ÜÐÙ Ò Ô ÓÒ Ø Ñ ¼¼ Å Î Ê ÙÐØ ÕÙ Ò ËÙÑÑ ÖÝ r Σ 1/3 =.74(52) ÓÑÔ Ö ØÓ Ö Ø Ø ÖÑ Ò Ø ÓÒ Ø Ð Ý º Ö Ê ÑÓ r Σ 1/3 cont,n f =2+1+1 =.68(29) Ä ÌÌÁ ¾¼½ ½» ¾

17 ÁÒØÖÓ ÙØ ÓÒ N Ê ÙÐØ f = 2 N Ò f = ØÖ ¹Ð Ú Ð ÓÖÑÙÐ Ó χèì r 4 χ = r3 Σ r µ R 2 Ø ÜÐÙ Ò Ô ÓÒ Ñ ¼¼ Å Î Ü ÑÔÐ Ñ ÉÙ Ö N Ô Ò Ò f 2 = β = 3.9 Ø ÓÖ ÐÐ N f = Ù Ò ÐÐ Ø Ø ÜÐÙ Ò Ô ÓÒ Ø Ñ ¼¼ Å Î Ê ÙÐØ ÕÙ Ò ËÙÑÑ ÖÝ r Σ 1/3 =.721(53) ÓÑÔ Ö ØÓ Ö Ø Ø ÖÑ Ò Ø ÓÒ Ø Ð Ý º Ö Ê ÑÓ r Σ 1/3 cont,n f =2+1+1 =.68(29) Ä ÌÌÁ ¾¼½ ½» ¾

18 ÁÒØÖÓ ÙØ ÓÒ N Ê ÙÐØ f = 2 N Ò f = ÕÙ Ò Ê ÙÐØ Z P /Z S M R ÓÖ ¹ Ô Ò Ò N f = 2 Z P /Z S M R ÓÖ ¹ Ô Ò Ò N f = N Ê ÙÐØ f = Ï ØØ Ò¹Î Ò Þ ÒÓ Ê ÙÐØ ÕÙ Ò ÓÖÑÙÐ ØÓÖ Å À ØÓ Ö Ñ β κ c (L/a) 3 T/a aµ r /a Рغ Ô º [ Ñ] ËÙÑÑ ÖÝ ¼º½ ¼º¼¼ º µ ¼º½ ¾º ¼º½ ¾ 24 3 ¼º¼¼ º¾ µ ¼º½½ ¾º ¼º½ ¼¾ ¼º¼¼ º ½ ¾µ ¼º¼ ¾º ¼º½ ½ ¼ ¼º¼¼ º¾ ¼ µ ¼º¼ ¾º N f = ÓÒ ÙÖ Ø ÓÒ Ò Ö Ø Û Ø Ø ÁÛ Ù Ø ÓÒ Ä ÌÌÁ ¾¼½ ½» ¾

19 Ö ÙÐØ β = 3.9, 4.5, 4.2µ º Ð Ü Ò ÖÓÙ Ø Ðº ¾¼½¾ ÊÁ¹ÅÇÅ Ö ÙÐØ β = 4.35µ ú Ý Ãº Â Ò Ò Èº ÃÓÖÝÐ ¾¼½¾ ¹ Ô Z P /Z S M R ¹ Ô Ò Ò ÓÖ N f = Z P /Z S (spectral proj) β=3.9, L/a=16, aµ=.4 Z P /Z S =.639(3) β=4.5, L/a=2, aµ=.3 Z P /Z S =.682(2) β=4.2, L/a=24, aµ=.2 Z P /Z S =.713(3) β=4.35, L/a=32, aµ=.175 X-space Z P /Z S =.7398(33) M R (MeV) Ä ÌÌÁ ¾¼½ ½» ¾

20 Z P /Z S M R ¹ Ô Ò Ò ÓÖ N f = ÁÒØÖÓ ÙØ ÓÒ N Ê ÙÐØ f = 2 N Ò f = ÕÙ Ò Ê ÙÐØ Z P /Z S M R ÓÖ ¹ Ô Ò Ò N f = 2 Z P /Z S M R ÓÖ ¹ Ô Ò Ò N f = N Ê ÙÐØ f = Ï ØØ Ò¹Î Ò Þ ÒÓ ÓÖÑÙÐ ØÓÖ Å À ØÓ Ö Ñ ËÙÑÑ ÖÝ Ä ÌÌÁ ¾¼½ ¾¼» ¾

21 ÓÖÑÙÐ ØÓÖ Å Z P /Z S M R ¹ Ô Ò Ò ÓÖ N f = ÁÒØÖÓ ÙØ ÓÒ N Ê ÙÐØ f = 2 N Ò f = ÕÙ Ò Ê ÙÐØ Z P /Z S M R ÓÖ ¹ Ô Ò Ò N f = 2 Z P /Z S M R ÓÖ ¹ Ô Ò Ò N f = N Ê ÙÐØ f = Ï ØØ Ò¹Î Ò Þ ÒÓ À ØÓ Ö Ñ ËÙÑÑ ÖÝ Ä ÌÌÁ ¾¼½ ¾½» ¾

22 N Ê ÙÐØ f = 2 N Ò f = µ ¾º º½ µ ¹ º µ ¼º ¼µ ¼º¼¾ ½ µ ½¼µ ¾ µ β a 4 χ r /a Z P /Z S r 4χ Ø Øºµ r /aµ Z P /Z S Ê ÙÐØ N f = ÁÒØÖÓ ÙØ ÓÒ º ¾ µ ¹ º¾ µ ¼º ¼½ ½ µ ¼º¼¾ ½ µ ½ µ ½½µ ¾º ¾º¼ ½ µ ¹ º ½ ¾µ ¼º µ ¼º¼ ¾ µ µ µ ¾º ÕÙ Ò Ê ÙÐØ Z P /Z S M R ÓÖ ¹ Ô Ò Ò N f = 2 Z P /Z S M R ÓÖ ¹ Ô Ò Ò N f = N Ê ÙÐØ f = Ï ØØ Ò¹Î Ò Þ ÒÓ.6.5 r 4 χ =.(7) ¾º ½º½¼ ½ µ ¹ º¾ ¼ µ ¼º µ ¼º¼ ¼ ½µ ½ µ ½¼µ ÓÖÑÙÐ ØÓÖ Å À ØÓ Ö Ñ.4 ËÙÑÑ ÖÝ r 4 χ N f = 4 cont.limit r χ=.(7) (a/r ) 2 Ä ÌÌÁ ¾¼½ ¾¾» ¾

23 ÓÖÑÙÐ ØÓÖ Å ÓÖÑÙÐ º Ï ØØ Ò ½ º Î Ò Þ ÒÓ ½ Ï ØØ Ò¹Î Ò Þ ÒÓ Ø ÓÖ Ò Ó Ø Ñ Ó Ø η Ñ ÓÒ ÒÓÒ¹Þ ÖÓ Ò Ø Ö Ð Ð Ñ Øµ ÜÔÐ Ò Ï ØØ Ò¹Î Ò Þ ÒÓ ÓÖÑÙÐ ÁÒØÖÓ ÙØ ÓÒ N Ê ÙÐØ f = 2 N Ò f = Ù Ò r =.5 Ñ χ = (185 ± 7 MeV) 4 Ò Ð Ö ÙÐØ r 4 χ =.(7) ÕÙ Ò Ê ÙÐØ Z P /Z S M R ÓÖ ¹ Ô Ò Ò N f = 2 Z P /Z S M R ÓÖ ¹ Ô Ò Ò N f = N Ê ÙÐØ f = Ï ØØ Ò¹Î Ò Þ ÒÓ ØÓ rχ 4 = ĺ Ð Ó Äº Ù Ø º È ¾¼¼ ÓÑÔ Ö.59(3) Ù Ò r f K Ø Ð χ = (191 ± 5 MeV) 4 Ø ØÓ ÓÖ Ù Ò r =.5 Ñ χ = (194.5 ± 2.4 MeV) 4 r 4 χ =.61(6) ź Ä Ö º È ÐÓÑ ¾¼½¼ Ù Ò r =.5 Ñ χ = (196.5 ± 5.1 MeV) 4 À ØÓ Ö Ñ ËÙÑÑ ÖÝ f 2 π 6 ( m 2 η + m 2 η ) 2m2 K = χ Ö Ð¹ÛÓÖÐ m η = (24) Å Î ÓÖ Ö Ò ³Ø ÀÓÓ Ø³ Ð Ö ¹N Ð Ò c N Ð Ñ Ø c g λ = g 2 N c Ü µ ÓÑÔÙØ Ò ÙÐÐ É ÜÔ Ö Ñ ÒØ Ð (18 Å Î) 4 ÄÀË ÊÀË ÓÑÔÙØ Ò Ø ÕÙ Ò ÔÔÖÓÜ Ñ Ø ÓÒ Ä ÌÌÁ ¾¼½ ¾» ¾

24 ÓÒ ØÖ º ÓÒ ½¼¼ ½¼¼ 2. ØÖ º.2(2).41(22) β = 2 β = = τ int =.5 = τ int =.7 15 ÙØÓÓÖÖ Ð Ø ÓÒ M time β 2.67 ½ ÓÒ ½¼¼ ØÖ º = M time β = 2.85 ¾ ½ ÓÒ ½¼¼ ØÖ º 5 =.8(4) τ int = 2.3 = 6.2(2.5) τ int = M time M time Ä ÌÌÁ ¾¼½ ¾» ¾

25 ÙØÓÓÖÖ Ð Ø ÓÒ M time M time 2.85 ¾ ½ ½¼¼ 2.85 ¾ ÓÒ ÓÒ ØÖ º ¼¼ ØÖ º 6.2(2.5) 1.1(7) β = β = = τ int = 4.6 = τ int = 3.6 Ä ÌÌÁ ¾¼½ ¾» ¾

26 number of confs β = 14 <>= f()=n*exp(-(-<>) 2 /2σ aµ =.87 ÓÒ ) <>= < 2 >=σ 2 = <B>/N= a 4 χ= e-5 1 (a 4 χ)=6.5157e À ØÓ Ö Ñ Ó ØÓÔÓÐÓ Ð Ö number of confs β = <>= aµ =.74 ÓÒ f()=n*exp(-(-<>) 2 /2σ 2 ) <>= < 2 >=σ 2 = <B>/N= a 4 χ= e-5 (a 4 χ)= e β = aµ = ½ ÓÒ <>= f()=n*exp(-(-<>) 2 /2σ 2 ) <>= < 2 >=σ 2 =46.65 <B>/N= a 4 χ= e-5 (a 4 χ)= e β 2.85 = aµ.43 ¾ ÓÒ = <>= <>= < 2 >=σ 2 = <B>/N= a 4 χ=9.72e-6 (a 4 χ)=1.5732e-6 f()=n*exp(-(-<>) 2 /2σ 2 ) number of confs 15 1 number of confs Ä ÌÌÁ ¾¼½ ¾» ¾

27 ÓÒÐÙ ÓÒ ÓÑÔÙØ Ò Ø ØÓÔÓÐÓ Ð Ù ÔØ Ð ØÝ ÓÖ ÝÒ Ñ Ð ÑÙÐ Ø ÓÒ Ú ÖÝ ÙÐØ ØÓ ÑÔÐ ÔÖÓÔ ÖÐÝ Ø ØÓÔÓÐÓ Ð Ö ØÖ ÙØ ÓÒ Ù Ø Ø ÓÒ ÓÒ Ù Ò ØÖ ÙØ ÓÒ Ò Q Ó Ø Ò top = ÐÓÒ ÙØÓÓÖÖ Ð Ø ÓÒ Ø Ñ ÐÐ Ð ØØ Ô Ò Ô ØÖ Ð ÔÖÓ ØÓÖ Ø Ø Ø Ó O(2) ÓÒ Ú Ø Ø Ø Ð ÖÖÓÖ Ó Û Ø O(1 2)± ÓÖ Ø ÓÒÐÝ Σ O(1 2)±µ ËØ ÐÐ Ø Ô ØÖ Ð ÔÖÓ ØÓÖ Ñ Ø Ó Ñ ØÓ Ú ÖÝ ÔÖÓÑ Ò ÔÔÖÓ Ô ÐÐÝ ÓÒ Ò ÓÖ ÐÓÒ Ö ÖÙÒ ÑÙ Ô Ö Ø Ò Ø Ò Ü Ñ Ø Ó Ò ÓØ Ö Ñ Ø Ó Ú Ø ÓÖ Ø Ð ÔÖÓ Ð Ñ º º ÐÙÓÒ Ò Ø ÓÒ Ó Q top µ Σ ÜØÖ Ø ÖÓÑ χ Ú º µ Ô Ò Ò Ö Û Ø Ø ÓÒ ÖÓÑ Ö Ø ÐÙÐ Ø ÓÒ ÙØ Ö Ø Ö Ð Ö ÖÖÓÖ Ò Ò Ð Ø Ò Ö ÓÖ Ö Ó χèìµ ÉÙ Ò χ Ö Û Ø ÖÐ Ö Ø ÖÑ Ò Ø ÓÒ ÓÓ Ö Ñ ÒØ Û Ø Ø Ï ØØ Ò¹Î Ò Þ ÒÓ Ö Ð Ø ÓÒ Ä ÌÌÁ ¾¼½ ¾» ¾ Ì Ò ÝÓÙ ÓÖ ØØ ÒØ ÓÒ

Janusz Przewocki. Zeroth Milnor-Thurston homology for the Warsaw Circle. Instytut Matematyczny PAN. Praca semestralna nr 3 (semestr zimowy 2010/11)

Janusz Przewocki. Zeroth Milnor-Thurston homology for the Warsaw Circle. Instytut Matematyczny PAN. Praca semestralna nr 3 (semestr zimowy 2010/11) Janusz Przewocki Instytut Matematyczny PAN Zeroth Milnor-Thurston homology for the Warsaw Circle Praca semestralna nr 3 (semestr zimowy 2010/11) Opiekun pracy: Andreas Zastrow ÖÓØ Å ÐÒÓÖ¹Ì ÙÖ ØÓÒ ÓÑÓÐÓ

Bardziej szczegółowo

ÈÐ Ò ÛÝ Ø Ô Ò ½ ¾ ÃÐ ÝÞÒ Ó Ð Þ Ò ÓÛ ÞØÙÞÒ ÒØ Ð Ò ÅÓ Ð Ó Ð Þ Ò ÓÛ ÞØÙÞÒ ÒØ Ð Ò Ë Ò ÙÖÓÒÓÛ ÏÒ Ó ÓÛ Ò Þ ÐÓ ÖÓÞÑÝØ Ð ÓÖÝØÑÝ ÛÓÐÙÝ Ò ÊÓÞÛ Þ Ò Ý ÖÝ ÓÛ ÝÒ Ñ

ÈÐ Ò ÛÝ Ø Ô Ò ½ ¾ ÃÐ ÝÞÒ Ó Ð Þ Ò ÓÛ ÞØÙÞÒ ÒØ Ð Ò ÅÓ Ð Ó Ð Þ Ò ÓÛ ÞØÙÞÒ ÒØ Ð Ò Ë Ò ÙÖÓÒÓÛ ÏÒ Ó ÓÛ Ò Þ ÐÓ ÖÓÞÑÝØ Ð ÓÖÝØÑÝ ÛÓÐÙÝ Ò ÊÓÞÛ Þ Ò Ý ÖÝ ÓÛ ÝÒ Ñ Ç Ð Þ Ò ÓÛ ÞØÙÞÒ ÒØ Ð Ò Â ÖÓ Û Ö ÈÓÐ Ø Ò Ï Ö Þ Û ÁÒ ØÝØÙØ ËÝ Ø Ñ Û Ð ØÖÓÒ ÞÒÝ Ï ÌÁ ÈÐ Ò ÛÝ Ø Ô Ò ½ ¾ ÃÐ ÝÞÒ Ó Ð Þ Ò ÓÛ ÞØÙÞÒ ÒØ Ð Ò ÅÓ Ð Ó Ð Þ Ò ÓÛ ÞØÙÞÒ ÒØ Ð Ò Ë Ò ÙÖÓÒÓÛ ÏÒ Ó ÓÛ Ò Þ ÐÓ ÖÓÞÑÝØ Ð ÓÖÝØÑÝ

Bardziej szczegółowo

Ì À ÒÖÝ Æ ÛÓ Ò Þ ÁÆËÌÁÌÍÌ Ç ÆÍ Ä Ê ÈÀ ËÁ Ë ÈÓÐ ÑÝ Ó Ë Ò Ùк Ê Þ ÓÛ Ó ½¹ ¾ ÃÖ Û ÈÓÐ Ò ÛÛÛº º ÙºÔлÔÙ Ð»Ö ÔÓÖØ»¾¼¼» ÃÖ Û Ñ Ö ¾¼¼ Ê ÈÇÊÌ ÆÓº ¾¼½»ÈÄ º ÜÔ

Ì À ÒÖÝ Æ ÛÓ Ò Þ ÁÆËÌÁÌÍÌ Ç ÆÍ Ä Ê ÈÀ ËÁ Ë ÈÓÐ ÑÝ Ó Ë Ò Ùк Ê Þ ÓÛ Ó ½¹ ¾ ÃÖ Û ÈÓÐ Ò ÛÛÛº º ÙºÔлÔÙ Ð»Ö ÔÓÖØ»¾¼¼» ÃÖ Û Ñ Ö ¾¼¼ Ê ÈÇÊÌ ÆÓº ¾¼½»ÈÄ º ÜÔ Ì À ÒÖÝ Æ ÛÓ Ò Þ ÁÆËÌÁÌÍÌ Ç ÆÍ Ä Ê ÈÀ ËÁ Ë ÈÓÐ ÑÝ Ó Ë Ò Ùк Ê Þ ÓÛ Ó ½¹ ¾ ÃÖ Û ÈÓÐ Ò ÛÛÛº º ÙºÔлÔÙ Ð»Ö ÔÓÖØ»¾¼¼» ÃÖ Û Ñ Ö ¾¼¼ Ê ÈÇÊÌ ÆÓº ¾¼½»ÈÄ º ÜÔ Ö Ñ ÒØ Ð Ö ÓÖ ÙÔ Ö ÚÝ Ð Ñ ÒØ Ò ÖÞ Ï ÐÓ À Ð Ø Ø ÓÒ Ø

Bardziej szczegółowo

Þ Á Ö Ø ØÙÖÝ ÓÑÔÙØ ÖÓÛÝ À Ö Ö ÔÖÓØÓ Ó Û Ð Ù ØÛ Ò ÔÖÓ Ù ÔÖÓ ØÓÛ Ò Û Ô Þ ÒÝ ÓÑÔÙØ ÖÓ¹ ÛÝ ÔÖÞÝ ØÓ Þ Ó Ò ÓÒ ÔÓ Û Ñ Ö ÔÖÓ Ø ØÖÙ ØÙÖ ÐÓ ÞÒ º Ç Ø Ø ÞÒ Þ Ý ÓÛ ÒÓ ÓÑÔÙØ ÖÓÛ Þ ÞÓÖ Ò ÞÓ¹ ÊÝ ÙÒ ½ Ï Ö ØÛÓÛ ØÖÙ ØÙÖ

Bardziej szczegółowo

ÔÖÓ Ù ÔÖÓ Ù Þ Ø ÑÒ Ñ Ø Ö ÞÔÓð Ö Ò Ø ÞÔÓð Ö Ò Ý Ò Û Ó Þ ÝÛ Ò Å ÔÓ ÞÙ Û Ò Ø ÔÓð Ö Ò Ý Ò Û Ó Þ ÝÛ Ò Ò Ð µ ÔÓ ÞÙ Û Ò ÑÒ Ñ Ø Ö ÈÓ ÞÙ Û Ò Ó ÑÓ ÐÙ ÑÓ Þ ÑÝ ÔÓ

ÔÖÓ Ù ÔÖÓ Ù Þ Ø ÑÒ Ñ Ø Ö ÞÔÓð Ö Ò Ø ÞÔÓð Ö Ò Ý Ò Û Ó Þ ÝÛ Ò Å ÔÓ ÞÙ Û Ò Ø ÔÓð Ö Ò Ý Ò Û Ó Þ ÝÛ Ò Ò Ð µ ÔÓ ÞÙ Û Ò ÑÒ Ñ Ø Ö ÈÓ ÞÙ Û Ò Ó ÑÓ ÐÙ ÑÓ Þ ÑÝ ÔÓ ÈÓð Ö Ò ÔÓ ÞÙ Û Ò ÑÒ Ñ Ø Ö ÔÓÑ ÖÝ ÔÖÓÑ Ò ÓÛ Ò Ó Ñ ÞÒ Ó Ø Ð Ø ÖÒ Þ Ø ØÖÓ ÞÝ ÔÖÓ º Ö º º º ÖÒ Þ Ø Ç Þ ÝÛ ðò ÙÒ Ñ ÒØ ÐÒÝ Á ÏÝ ÎÁÁ æ ÊÅÁ æ È Å Ä æ Å˹¾ ÔÖÓ Ù ÔÖÓ Ù Þ Ø ÑÒ Ñ Ø Ö ÞÔÓð Ö Ò Ø ÞÔÓð Ö Ò Ý Ò Û Ó

Bardziej szczegółowo

ÛÙÛÝÑ ÖÓÛÝ ÔÖ Ò ÂÓ ÒÒ ÀÓÖ ÂÓ ÒÒ ÀÓÖ ÛÙÛÝÑ ÖÓÛÝ ÔÖ Ò

ÛÙÛÝÑ ÖÓÛÝ ÔÖ Ò ÂÓ ÒÒ ÀÓÖ ÂÓ ÒÒ ÀÓÖ ÛÙÛÝÑ ÖÓÛÝ ÔÖ Ò ½º Ò ¾º ÈÖÞÝ º Ï ÒÓ Ð ÓÖÝØÑÙ Þ ÒÓ Ù Ý Ó ÛÖ ÐÒ ÔÖÞ ÔÐ Ø Ò Ù ÐÒÓ µ º Ê Ó¹ Ð Û ÐÐ Þ º ÈÖ Ò Ð ÓÖÝØÑ Å º ÏÔÖÓÛ Þ Ò Ó Û ÐÓÛÝÑ ÖÓÛ Ó ÔÖ Ò Ò Ù Ý Ó Ò ÖÓÛ Ò Þ Û ØÓÖ ÐÓ ÓÛ Ó (, ) Ó ÔÓÛ Ò ÔÖ Ý ( ½, ½ ),( ¾, ¾ ),...

Bardziej szczegółowo

Ð ÓÖÝØÑÝ ØÖÙ ØÙÖÝ ÒÝ Ñ Ø Ö Ý ÛÝ ÓÛ ËØÙ Þ ÓÞÒ ÈÂÏËÌÃ Á ËÌÊÍÃÌÍÊ Æ À Ä ÇÊ ÌÅ ÁÁ Ñ Ø Ö Ý ÔÓÑÓÒ Þ µ Ï Ã ÈÖÓ Ð Ñ ÛÝ ÞÙ Ò ÈÓÐ Ó Â ÔÓ ÏÝ Þ ËÞ Ó Ì Ò ÃÓÑÔÙØ ÖÓ

Ð ÓÖÝØÑÝ ØÖÙ ØÙÖÝ ÒÝ Ñ Ø Ö Ý ÛÝ ÓÛ ËØÙ Þ ÓÞÒ ÈÂÏËÌÃ Á ËÌÊÍÃÌÍÊ Æ À Ä ÇÊ ÌÅ ÁÁ Ñ Ø Ö Ý ÔÓÑÓÒ Þ µ Ï Ã ÈÖÓ Ð Ñ ÛÝ ÞÙ Ò ÈÓÐ Ó Â ÔÓ ÏÝ Þ ËÞ Ó Ì Ò ÃÓÑÔÙØ ÖÓ Á ËÌÊÍÃÌÍÊ Æ À Ä ÇÊ ÌÅ ÁÁ Ñ Ø Ö Ý ÔÓÑÓÒ Þ µ Ï Ã ÈÖÓ Ð Ñ ÛÝ ÞÙ Ò ÈÓÐ Ó Â ÔÓ ÏÝ Þ ËÞ Ó Ì Ò ÃÓÑÔÙØ ÖÓÛÝ Ï Ö Þ Û Ð ØÓÔ ¾¼¼ Ð ØÓÔ ¾¼¼ ËÐ ½ È Û Ê Ñ Ð Ð ÓÖÝØÑ Û ÒÝ ÒÝ Ð ÓÖÝØÑ ØÙÖÒ Ð ÔÖÓ Ð ÑÙ ¾¹ Ó Ó Ó Û Ð Ó Ð

Bardziej szczegółowo

Ï ØÔ ÈÖÞÝ Ý Ç ÐÒ Û ÒÓ Ó Þ Ò À Ð ¹ÈÓ Ø ÓÒ Ð Ø ÖÑ Ò Ý Ó ÁÒ Ò Ø Ñ ÖÝ ÃÓÔÞÝ Ï Ö Û ÍÒ Ú Ö ØÝ Û ØÒ ¾¼¼ ÖÝ ÃÓÔÞÝ À Ð ¹ÈÓ Ø ÓÒ Ð Ø ÖÑ Ò Ý Ó ÁÒ Ò Ø Ñ ½» ¼

Ï ØÔ ÈÖÞÝ Ý Ç ÐÒ Û ÒÓ Ó Þ Ò À Ð ¹ÈÓ Ø ÓÒ Ð Ø ÖÑ Ò Ý Ó ÁÒ Ò Ø Ñ ÖÝ ÃÓÔÞÝ Ï Ö Û ÍÒ Ú Ö ØÝ Û ØÒ ¾¼¼ ÖÝ ÃÓÔÞÝ À Ð ¹ÈÓ Ø ÓÒ Ð Ø ÖÑ Ò Ý Ó ÁÒ Ò Ø Ñ ½» ¼ Ï Ö Û ÍÒ Ú Ö ØÝ Û ØÒ ¾¼¼ ½» ¼ ÔÖÞÝ Ö Þ ÛÝÔ Ø Ö Ò Ö Ò Ó ÞÓÒÝ Ò ØÖ Ø ÔÓÞÝÝ ÒÝ Ò ¹ÔÓÞÝÝ ÒÝ Ò Ò ÛÝÒ ¹ ¹ ¾¼ ÑÝ ¹½ ¹½ ¹¾ ½¼ ¹¾ ¹½ ¹¾ ÓÒ ¹½ ¹ ¾» ¼ ÔÖÞÝ Ö Ô ÖÞÝ ØÓ Ö Ò Ó ÞÓÒÝ Ò ØÖ Ø ÔÓÞÝÝ ÒÝ Ò ¹ÔÓÞÝÝ ÒÝ Ò Ò ÛÝÒ

Bardziej szczegółowo

ÃÓÑÔ Ð ØÖÓÒ ÞÒÝ ÈÓ ÖÞÒ ½º¼ ÏÝ Ò ÖÓÛ ÒÓ ÔÖÞ Þ ÓÜÝ Ò ½º º Ï ÂÙÒ ½½ ¼ ¾¼¼ ËÔ ØÖ ½ ÃÓÑÔ Ð ØÖÓÒ ÞÒÝ ½ ½º½ ÇÔ ÔÖÓ ØÙ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½ ½º¾ Ð Ñ ÒØÝ

Bardziej szczegółowo

½ ÏÝ Ï Þ ð Û Ø ÛÓÐÙ Þ Ø Ð Ñ ÒØ ÖÒÝ Ï Þ ð Û Ø ÔÖÓ º º º ÖÒ Þ Ø Ç Þ ÝÛ ðò ÙÒ Ñ ÒØ ÐÒÝ ÞÝ Óð Û Þ ÐÒ ÁÒ ØÝØÙØ Þ Ø Ð Ñ ÒØ ÖÒÝ ÏÝ ½ ÛÓÐÙ Ï Þ ð Û Ø ¾ Ñ ¾¼½ æ

½ ÏÝ Ï Þ ð Û Ø ÛÓÐÙ Þ Ø Ð Ñ ÒØ ÖÒÝ Ï Þ ð Û Ø ÔÖÓ º º º ÖÒ Þ Ø Ç Þ ÝÛ ðò ÙÒ Ñ ÒØ ÐÒÝ ÞÝ Óð Û Þ ÐÒ ÁÒ ØÝØÙØ Þ Ø Ð Ñ ÒØ ÖÒÝ ÏÝ ½ ÛÓÐÙ Ï Þ ð Û Ø ¾ Ñ ¾¼½ æ ½ ÏÝ Ï Þ ð Û Ø ÛÓÐÙ Þ Ø Ð Ñ ÒØ ÖÒÝ Ï Þ ð Û Ø ÔÖÓ º º º ÖÒ Þ Ø Ç Þ ÝÛ ðò ÙÒ Ñ ÒØ ÐÒÝ ÞÝ Óð Û Þ ÐÒ ÁÒ ØÝØÙØ Þ Ø Ð Ñ ÒØ ÖÒÝ ÏÝ ½ ÛÓÐÙ Ï Þ ð Û Ø ¾ Ñ ¾¼½ æ Ôº½»¾ Ï Þ ð Û Ø ÛÓÐÙ Ï Þ ð Û Ø ÏÔÖÓÛ Þ Ò Ö Û Ø Ç ÐÒ

Bardziej szczegółowo

Þ Á Í Ù ÞÓÖ ÒØÓÛ Ò ÔÓ Þ Ò ÓÛÓ Ù Ù ÞÔÓ Þ Ò ÓÛ Ï Ö ØÛÝ ÑÓ Ó ÖÓÛ Û Ö ØÛÓÑ Ð ÝÑ Ó Ò ÔÓÞ ÓÑ ÛÝ Ù Ù ÞÔÓ Þ Ò ÓÛ Ù Ù ÛÝÑ ÔÓ Þ Ò º Ï Ù Ù ÓÛÝ ÞÓÖ ÒØÓÛ ÒÝ ÔÓ Þ Ò ÓÛÓ Ù ÝØ ÓÛÒ Ù Ù Ò Ô ÖÛ Ù Ø Ð ÔÓ Þ Ò ÔÓØ Ñ ÔÓ Þ Ò

Bardziej szczegółowo

ÔÖÓ Ù ÔÖÓ Ù Þ Ø ÑÒ Ñ Ø Ö ÞÔÓð Ö Ò Ø ÞÔÓð Ö Ò Ý Ò Û Ó Þ ÝÛ Ò Å ÔÓ ÞÙ Û Ò Ø ÔÓð Ö Ò Ý Ò Û Ó Þ ÝÛ Ò Ò Ð µ ÔÓ ÞÙ Û Ò ÑÒ Ñ Ø Ö ÈÓ ÞÙ Û Ò Ó ÑÓ ÐÙ ÑÓ Þ ÑÝ ÔÓ

ÔÖÓ Ù ÔÖÓ Ù Þ Ø ÑÒ Ñ Ø Ö ÞÔÓð Ö Ò Ø ÞÔÓð Ö Ò Ý Ò Û Ó Þ ÝÛ Ò Å ÔÓ ÞÙ Û Ò Ø ÔÓð Ö Ò Ý Ò Û Ó Þ ÝÛ Ò Ò Ð µ ÔÓ ÞÙ Û Ò ÑÒ Ñ Ø Ö ÈÓ ÞÙ Û Ò Ó ÑÓ ÐÙ ÑÓ Þ ÑÝ ÔÓ ÈÓð Ö Ò ÔÓ ÞÙ Û Ò ÑÒ Ñ Ø Ö ÔÓÑ ÖÝ ÔÖÓÑ Ò ÓÛ Ò Ó Ñ ÞÒ Ó Ø Ð Ø ÖÒ Þ Ø ØÖÓ ÞÝ ÔÖÓ º Ö º º º ÖÒ Þ Ø Ç Þ ÝÛ ðò ÙÒ Ñ ÒØ ÐÒÝ Á ÏÝ ÎÁÁ æ ÊÅÁ æ È Å Ä æ Å˹¾ ÔÖÓ Ù ÔÖÓ Ù Þ Ø ÑÒ Ñ Ø Ö ÞÔÓð Ö Ò Ø ÞÔÓð Ö Ò Ý Ò Û Ó

Bardziej szczegółowo

Ð ÓÖÝØÑÝ ØÖÙ ØÙÖÝ ÒÝ Ñ Ø Ö Ý ÛÝ ÓÛ ËØÙ Þ ÓÞÒ ÈÂÏËÌÃ Á ËÌÊÍÃÌÍÊ Æ À Ä ÇÊ ÌÅ ÁÁÁ Ñ Ø Ö Ý ÔÓÑÓÒ Þ µ Ï Ã ÈÖÓ Ð Ñ ÓÖØÓÛ Ò ÈÓÐ Ó Â ÔÓ ÏÝ Þ ËÞ Ó Ì Ò ÃÓÑÔÙØ Ö

Ð ÓÖÝØÑÝ ØÖÙ ØÙÖÝ ÒÝ Ñ Ø Ö Ý ÛÝ ÓÛ ËØÙ Þ ÓÞÒ ÈÂÏËÌÃ Á ËÌÊÍÃÌÍÊ Æ À Ä ÇÊ ÌÅ ÁÁÁ Ñ Ø Ö Ý ÔÓÑÓÒ Þ µ Ï Ã ÈÖÓ Ð Ñ ÓÖØÓÛ Ò ÈÓÐ Ó Â ÔÓ ÏÝ Þ ËÞ Ó Ì Ò ÃÓÑÔÙØ Ö Á ËÌÊÍÃÌÍÊ Æ À Ä ÇÊ ÌÅ ÁÁÁ Ñ Ø Ö Ý ÔÓÑÓÒ Þ µ Ï Ã ÈÖÓ Ð Ñ ÓÖØÓÛ Ò ÈÓÐ Ó Â ÔÓ ÏÝ Þ ËÞ Ó Ì Ò ÃÓÑÔÙØ ÖÓÛÝ Ï Ö Þ Û ½¼ Ð ØÓÔ ¾¼¼ ½¼ Ð ØÓÔ ¾¼¼ ËÐ ½ È Û Ê Ñ Ð Ð ÓÖÝØÑ ÓÖØÓÛ Ò ÔÖÞ Þ Ð Ð ÓÖÝØÑ ÓÖØÓÛ Ò ÔÖÞ Þ Û Ø

Bardziej szczegółowo

WEAPONRY OF SOCIETIES OF THE NORTHERN PONTIC CULTURE CIRCLE: BC. Viktor I. Klochko

WEAPONRY OF SOCIETIES OF THE NORTHERN PONTIC CULTURE CIRCLE: BC. Viktor I. Klochko WEAPONRY OF SOCIETIES OF THE NORTHERN PONTIC CULTURE CIRCLE: 5000-700 BC Viktor I. Klochko ½ V O L U M E 10 2001 BALTIC-PONTIC STUDIES 61-809 Poznań (Poland) Św. Marcin 78 Tel. (061) 8294799; 8294800,

Bardziej szczegółowo

ÏÝ Ö Ò ÖÙÒ Û ÛÓÐÙ Ö Ò ÓÛ Â ÖÓ Û Ö ÈÓÐ Ø Ò Ï Ö Þ Û ÁÒ ØÝØÙØ ËÝ Ø Ñ Û Ð ØÖÓÒ ÞÒÝ ¹Ñ Ð Ö Ð ºÔÛº ÙºÔÐ Ñ Ò Ö ÙÑ Ù ÁÒØ Ð ÒØÒÝ ËÝ Ø Ñ Û Ï ÔÓÑ Ò ÝÞ ÈÓÐ Ø Ò ÈÓ

ÏÝ Ö Ò ÖÙÒ Û ÛÓÐÙ Ö Ò ÓÛ Â ÖÓ Û Ö ÈÓÐ Ø Ò Ï Ö Þ Û ÁÒ ØÝØÙØ ËÝ Ø Ñ Û Ð ØÖÓÒ ÞÒÝ ¹Ñ Ð Ö Ð ºÔÛº ÙºÔÐ Ñ Ò Ö ÙÑ Ù ÁÒØ Ð ÒØÒÝ ËÝ Ø Ñ Û Ï ÔÓÑ Ò ÝÞ ÈÓÐ Ø Ò ÈÓ ÏÝ Ö Ò ÖÙÒ Û ÛÓÐÙ Ö Ò ÓÛ Â ÖÓ Û Ö ÈÓÐ Ø Ò Ï Ö Þ Û ÁÒ ØÝØÙØ ËÝ Ø Ñ Û Ð ØÖÓÒ ÞÒÝ ¹Ñ Ð Ö Ð ºÔÛº ÙºÔÐ Ñ Ò Ö ÙÑ Ù ÁÒØ Ð ÒØÒÝ ËÝ Ø Ñ Û Ï ÔÓÑ Ò ÝÞ ÈÓÐ Ø Ò ÈÓÞÒ ¾ º½½º¾¼½¼ ÈÐ Ò ÔÖ Þ ÒØ ½ ¾ Ð ÓÖÝØÑ ÛÓÐÙÝ ÒÝ Ó ÖÓÞ

Bardziej szczegółowo

ÁÒ ØÝØÙØ ÈÓ Ø Û ÁÒ ÓÖÑ ØÝ ÈÓÐ Ñ Æ Ù Ì ÑÔÓÖ ÐÒ Ô ØÝ ÔÐÓÖ ÒÝ Ñ ØÓ Ý Þ ÓÖ Û ÔÖÞÝ Ð ÓÒÝ ÊÇ ÈÊ Ï ÇÃÌÇÊËÃ ÙØÓÖ Ñ Ö È ÓØÖ ËÝÒ ÈÖÓÑÓØÓÖ ÈÖÓ º Ö º Ò º Ò ÖÞ Ë ÓÛÖÓÒ Ï Ö Þ Û ¾¼¼ Öº ËÔ ØÖ ½ Ï ØÔ ½º½ ÏÔÖÓÛ Þ Ò º º

Bardziej szczegółowo

ØÖ Ò ÔÓÖØ Û ÖØÓ ÔÖÞ ÛÓ Ò ÐÙ ÔÖÞ ÒÓ Þ Ò Û ÖØÓ Ô Ò ÒÝ ÔÓÞ Ó Ö Ñ Ô Þ ÐÒ ºÓ ÒÓ Ø Ó Ð Þ Ò ÓÛ ÔÖÞÝ Ø Ó Ó Ö Ð Ò Ð Ñ ØÙ ÔÖÞ ÓÛÝÛ ¹ ÒÝ ÐÙ ØÖ Ò ÔÓÖØÓÛ ÒÝ Û ÖØÓ

ØÖ Ò ÔÓÖØ Û ÖØÓ ÔÖÞ ÛÓ Ò ÐÙ ÔÖÞ ÒÓ Þ Ò Û ÖØÓ Ô Ò ÒÝ ÔÓÞ Ó Ö Ñ Ô Þ ÐÒ ºÓ ÒÓ Ø Ó Ð Þ Ò ÓÛ ÔÖÞÝ Ø Ó Ó Ö Ð Ò Ð Ñ ØÙ ÔÖÞ ÓÛÝÛ ¹ ÒÝ ÐÙ ØÖ Ò ÔÓÖØÓÛ ÒÝ Û ÖØÓ ÁÒ ØÖÙ Ó ÔÓ Ö ÓÛ ½ ¹¼ ¹¾¼¼ ½ ÈÓ Ø ÒÓÛ Ò Ó ÐÒ ï½ ÁÒ ØÖÙ Ó Ö Ð Þ Ý Ó ÖÓÒÝ Û ÖØÓ Ô Ò ÒÝ ÔÖÓÛ Þ Ò Ó ÔÓ Ö ÓØ Û Û Ù Ó ÙÑ ÒØÓÛ Ò ÓÔ Ö ÓÛÝ ÈÖÞ Þ Ù ÝØ Û Ò ØÖÙ Ó Ö Ð Ò ÖÓÞÙÑ Ô Þ ÐÒ Ô Þ ÐÒ Ñ Þ Ò ÓÛ È ÓØÖÓÛÓ Þ ÖÞ

Bardziej szczegółowo

ÈÖÞ ØÛ ÖÞ Ò Ø ØÙ Û ÈÓÛØ ÖÞ Ò áö Ò Óµ Þ Û Ò ÓÛ Ò Èʵ ÏÝ ¹ ÔÖÞ ØÛ ÖÞ Ò Ø ØÙ ÊÓ ÖØ ÆÓÛ ¾¼¼ áö Ò Óµ Þ Û Ò ÓÛ Ò Èʵ ½»

ÈÖÞ ØÛ ÖÞ Ò Ø ØÙ Û ÈÓÛØ ÖÞ Ò áö Ò Óµ Þ Û Ò ÓÛ Ò Èʵ ÏÝ ¹ ÔÖÞ ØÛ ÖÞ Ò Ø ØÙ ÊÓ ÖØ ÆÓÛ ¾¼¼ áö Ò Óµ Þ Û Ò ÓÛ Ò Èʵ ½» ÏÝ ¹ ÔÖÞ ØÛ ÖÞ Ò Ø ØÙ ÊÓ ÖØ ÆÓÛ ¾¼¼ ½» È Ò ÛÝ Ù Ó ÞÑ ÓÓ Ø Ö Ü ÓÓ Ø ÜÔÖ Ú ÓÓ Ø Ô Ö Ø ÈÖÞÝ ÓÛ Þ Ò Ò ÓÓ Û ÙÑ ¾» ÈÖÞ ØÛ ÖÞ Ò Ø ØÙ Û» ÔÖÞ ØÛ ÖÞ Ò Ø ØÙ ÙÒ ÓÒÛ ÖØÙ Þ ³ ÍØÛÓÖÞ Ò Þ Ý Ò ÔÓ Ø Û Ò Ô Ù ÒÙ Ø ÒØ ØÓ ½¾

Bardziej szczegółowo

ÈÖÓÑ Ò ÓÛ Ò Ó Ñ ÞÒ Ï Ð Ô ØÑÓ ÖÝÞÒ º º ÖÒ ÏÝ ½

ÈÖÓÑ Ò ÓÛ Ò Ó Ñ ÞÒ Ï Ð Ô ØÑÓ ÖÝÞÒ º º ÖÒ ÏÝ ½ Þ Ø ØÖÓ ÞÝ ÔÖÓ º Ö º º º ÖÒ Þ Ø Ç Þ ÝÛ ðò ÙÒ Ñ ÒØ ÐÒÝ Á ÏÝ Ô ÖÝÑ ÒØ Í Ê ÈÖÓ Ø Â Å¹ ÍËÇ Ê ÓÛ Ø Ô Û ØÑÓ ÖÝÞÒÝ ÈÖÓÑ Ò ÓÛ Ò Ó Ñ ÞÒ Ï Ð Ô ØÑÓ ÖÝÞÒ º º ÖÒ ÏÝ ½ ÔÖÓÑ Ò ÓÛ Ò Þ Ö Ò ÓÛ ÔÖÞ Þ Ð ØÖÓÒÝ Û Ö Þ Ò Ù ÔÖÓ

Bardziej szczegółowo

ËÞ ÐÓÒÝ ¹ ÔÓÛØ ÖÞ Ò ÈÖÓ Ð ÑÝ ÔÖÞÝ ØÓ ÓÛ Ò Ù Þ ÐÓÒ Û áö Ò Ó Þ Û Ò ÓÛ Ò ÔÖÓ Ö ÑÓÛ Ò Û Èʵ ÏÝ ½¼ ¹ Þ ÐÓÒÝ ÊÓ ÖØ ÆÓÛ ¾¼¼ áö Ò Ó Þ Û Ò ÓÛ Ò ÔÖÓ Ö ÑÓÛ Ò Û È

ËÞ ÐÓÒÝ ¹ ÔÓÛØ ÖÞ Ò ÈÖÓ Ð ÑÝ ÔÖÞÝ ØÓ ÓÛ Ò Ù Þ ÐÓÒ Û áö Ò Ó Þ Û Ò ÓÛ Ò ÔÖÓ Ö ÑÓÛ Ò Û Èʵ ÏÝ ½¼ ¹ Þ ÐÓÒÝ ÊÓ ÖØ ÆÓÛ ¾¼¼ áö Ò Ó Þ Û Ò ÓÛ Ò ÔÖÓ Ö ÑÓÛ Ò Û È áö Ò Ó Þ Û Ò ÓÛ Ò ÔÖÓ Ö ÑÓÛ Ò Û Èʵ ÏÝ ½¼ ¹ Þ ÓÒÝ ÊÓ ÖØ ÆÓÛ ¾¼¼ ½» ÃÓ ÓÖÝØÑÝ ÈÓ Ò Þ Ò Ó ØÝÔÙ Ó ÒÔº ØÝµ ÓÖÝØÑÝ ÒÔº ÞÒ ÓÛ Ò Ò Û Þ Ó Ñ ÒØÙµ Å Ò ÞÑÝ Ñ ÒÙ Ö ÙÒ Ò Ó Ùº Û Ô Ò ÞÓÛ ÛÝ ÓÖÞÝ Ø Ò Þ ÓÒ Û ¾» à ÞÓÛ ÒÙ

Bardziej szczegółowo

Wprowadzenie do grafiki maszynowej. Wprowadenie do teksturowania

Wprowadzenie do grafiki maszynowej. Wprowadenie do teksturowania Wprowadzenie do grafiki maszynowej. Wprowadenie do teksturowania Aleksander Denisiuk Uniwersytet Warmińsko-Mazurski Olsztyn, ul. Słoneczna 54 denisjuk@matman.uwm.edu.pl 1 / 19 Wprowadenie do teksturowania

Bardziej szczegółowo

Reguly. Wind = Weak Temp > 20 Outlook Rain PlayTennis = Y es

Reguly. Wind = Weak Temp > 20 Outlook Rain PlayTennis = Y es ËÞØÙÞÒ ÁÒØ Ð Ò ËÝ Ø ÑÝ ÓÖ Þ ½ Ï ÖÙÒ Ð ØÓÖ Û Ý Ð ØÓÖ Ö ÔÖ Þ ÒØÙ Ø Ø Û ÖØÓ ÃÓÒ ÙÒ ØÖÝ ÙØÙ Û ÖÙÒ Ó ÔÓÛ Ó ØÓÑ Ô Ò ÝÑ ÔÓ ÝÒÞ Ó Ð ØÓÖÝ Û ÞÝ Ø ÝÞ Ö Ù ÞÛ Þ Ò Ø Þ Ò ÝÞ Ã Reguly ÔÖÞÝÔ ÝÛ Ò Ó ØÓÑ Ô Ò ÝÑ Û ÖÙÒ Ö Ù

Bardziej szczegółowo

ÈÓÔÖ ÛÒ ÛÝ ÓÖÞÝ Ø Ò ÏÞÓÖ ÔÖÓ ØÓÛ áö Ò ÓµÞ Û Ò ÓÛ Ò ÔÖÓ Ö ÑÓÛ Ò Û ÏÝ ¾ ¹ Ø Ó ÛÞÓÖ ÔÖÓ ØÓÛ ÊÓ ÖØ ÆÓÛ ¾¼¼ áö Ò ÓµÞ Û Ò ÓÛ Ò ÔÖÓ Ö ÑÓÛ Ò Û ½»

ÈÓÔÖ ÛÒ ÛÝ ÓÖÞÝ Ø Ò ÏÞÓÖ ÔÖÓ ØÓÛ áö Ò ÓµÞ Û Ò ÓÛ Ò ÔÖÓ Ö ÑÓÛ Ò Û ÏÝ ¾ ¹ Ø Ó ÛÞÓÖ ÔÖÓ ØÓÛ ÊÓ ÖØ ÆÓÛ ¾¼¼ áö Ò ÓµÞ Û Ò ÓÛ Ò ÔÖÓ Ö ÑÓÛ Ò Û ½» ÏÝ ¾ ¹ Ø Ó ÛÞÓÖ ÔÖÓ ØÓÛ ÊÓ ÖØ ÆÓÛ ¾¼¼ ½» ÈÒ ÛÝ Ù ÔÓ Ø ÛÓÛ ÔÓ Û ÔÓÛØ ÖÞ Ò µ Ø Ó ÞÝÞÒ Ó ÞÒ ÔÓÛØ ÖÞ Ò µ Ö Þ Þ Þ Ò ÔÓÛØ ÖÞ Ò µ ÛÞÓÖ ÔÖÓ ØÓÛ Ò ØÓÒ ÔÖÓØÓØÝÔ ¾» Ö Ò Ö ¹ Ý Ò Þ Ô ÛÒ Ò ÞÛ Ó ÒÓ Ó Þ Ó ÜØ ÖÒ ÒØ Ü»»

Bardziej szczegółowo

Grafika Komputerowa. Teksturowanie

Grafika Komputerowa. Teksturowanie Grafika Komputerowa. Teksturowanie Aleksander Denisiuk Polsko-Japońska Akademia Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045 Gdańsk Ò Ù Ô º ÙºÔÐ 1 / 19 Teksturowanie Najnowsza

Bardziej szczegółowo

System ALVINN. 30 Output. Units. 4 Hidden. Units. 30x32 Sensor Input Retina. Straight Ahead. Sharp Right. Sharp Left

System ALVINN. 30 Output. Units. 4 Hidden. Units. 30x32 Sensor Input Retina. Straight Ahead. Sharp Right. Sharp Left ËÞØÙÞÒ ÁÒØ Ð Ò ËÝ Ø ÑÝ ÓÖ Þ ½ System ALVINN ÄÎÁÆÆ ÔÖÓÛ Þ ÑÓ ÔÓ ÙØÓ ØÖ Þ Þ ÞÝ Ó ¼ Ñ Ð Ò Ó Þ Ò Sharp Left Straight Ahead Sharp Right 30 Output Units 4 Hidden Units 30x32 Sensor Input Retina ¾ www.wisewire.com,

Bardziej szczegółowo

Sieci neuronowe: pomysl

Sieci neuronowe: pomysl ËÞØÙÞÒ ÁÒØ Ð Ò ËÝ Ø ÑÝ ÓÖ Þ ½ ØÓ Þ ÞÙÑ ÓÒ Ó õ ØÖ ÒÙ ÔÓÞ ÓÑ ÔÓØ Ò Ù Ð ØÖÝÞÒ Ó ËÝ Ò Ý ÓÑ Ö Sieci neuronowe: pomysl Æ Ð ÓÛ Ò Ñ Þ Ù Þ Ó Ó ÓÑ Ö Ò ÙÖÓÒÓÛÝ Axonal arborization Synapse Axon from another cell Dendrite

Bardziej szczegółowo

f (n) lim n g (n) = a, f g

f (n) lim n g (n) = a, f g Á ËÌÊÍÃÌÍÊ Æ À Ä ÇÊ ÌÅ Á Ñ Ø Ö Ý ÔÓÑÓÒ Þ µ Ï Ã Ï ØÔ ÈÓÐ Ó Â ÔÓ ÏÝ Þ ËÞ Ó Ì Ò ÃÓÑÔÙØ ÖÓÛÝ Ï Ö Þ Û ½¾ Ô õ Þ ÖÒ ¾¼¼ ½¾ Ô õ Þ ÖÒ ¾¼¼ ËÐ ½ È Û Ê Ñ Ð ÛÝ Ù ÈÐ Ò ÒÓØ ÝÑÔØÓØÝÞÒ ÔÓ Ð ÓÖÝØÑÙ Ó ÞØ Ð ÓÖÝØÑÙ Þ Ó ÓÒÓ

Bardziej szczegółowo

ÈÖÓÑ Ò ÓØÛ ÖÞÓð ð ÔÖÞ Þ Àº ÕÙ Ö Ð Û ÖÓ Ù ½ º Ç ÖÝØ Æ ÙØÖ Ò ÙÖ ÒÙ Ñ ØÓÛ Ý ÔÖÓÑ Ò ÓÛ Ò Ø Ö Þ ÑÒ Ó Ô ÝØ ÓØÓ Ö ÞÒ º ËÓÐ ¹ Ò ÖÓ ÆÓ Ð ÛÖ Þ Þ ÅºË Ó ÓÛ Èº ÙÖ

ÈÖÓÑ Ò ÓØÛ ÖÞÓð ð ÔÖÞ Þ Àº ÕÙ Ö Ð Û ÖÓ Ù ½ º Ç ÖÝØ Æ ÙØÖ Ò ÙÖ ÒÙ Ñ ØÓÛ Ý ÔÖÓÑ Ò ÓÛ Ò Ø Ö Þ ÑÒ Ó Ô ÝØ ÓØÓ Ö ÞÒ º ËÓÐ ¹ Ò ÖÓ ÆÓ Ð ÛÖ Þ Þ ÅºË Ó ÓÛ Èº ÙÖ ð Ö Ò ÙØÖ Ò Æ ÙØÖ Ò ÔÖÓ º Ö º Ð Ò Ö Ð Ô ÖÒ Þ Ø Ð Ñ ÒØ ÖÒÝ Ï Þ ð Û Ø ÏÝ ½¾ Æ ÙØÖ Ò Û ÒÓð ÈÓÑ ÖÝ Ò ÙØÖ Ò Ç ÝÐ Ò ÙØÖ Ò ÈÖÓÑ Ò ÓØÛ ÖÞÓð ð ÔÖÞ Þ Àº ÕÙ Ö Ð Û ÖÓ Ù ½ º Ç ÖÝØ Æ ÙØÖ Ò ÙÖ ÒÙ Ñ ØÓÛ Ý ÔÖÓÑ Ò ÓÛ Ò

Bardziej szczegółowo

Ð ÓÖÝØÑÝ ØÖÙ ØÙÖÝ ÒÝ Ñ Ø Ö Ý ÛÝ ÓÛ ËØÙ Þ ÓÞÒ ÈÂÏËÌÃ Á ËÌÊÍÃÌÍÊ Æ À Ä ÇÊ ÌÅ ÁÎ Ñ Ø Ö Ý ÔÓÑÓÒ Þ µ Ï Ã ÒÝ ËØÖÙ ØÙÖÝ ÓÛÒ Ð ØÝ ÈÓÐ Ó Â ÔÓ ÏÝ Þ ËÞ Ó Ì Ò ÃÓÑ

Ð ÓÖÝØÑÝ ØÖÙ ØÙÖÝ ÒÝ Ñ Ø Ö Ý ÛÝ ÓÛ ËØÙ Þ ÓÞÒ ÈÂÏËÌÃ Á ËÌÊÍÃÌÍÊ Æ À Ä ÇÊ ÌÅ ÁÎ Ñ Ø Ö Ý ÔÓÑÓÒ Þ µ Ï Ã ÒÝ ËØÖÙ ØÙÖÝ ÓÛÒ Ð ØÝ ÈÓÐ Ó Â ÔÓ ÏÝ Þ ËÞ Ó Ì Ò ÃÓÑ Á ËÌÊÍÃÌÍÊ Æ À Ä ÇÊ ÌÅ ÁÎ Ñ Ø Ö Ý ÔÓÑÓÒ Þ µ Ï Ã ÒÝ ËØÖÙ ØÙÖÝ ÓÛÒ Ð ØÝ ÈÓÐ Ó Â ÔÓ ÏÝ Þ ËÞ Ó Ì Ò ÃÓÑÔÙØ ÖÓÛÝ Ï Ö Þ Û ¾ Ð ØÓÔ ¾¼¼ ¾ Ð ØÓÔ ¾¼¼ ËÐ ½ È Û Ê Ñ Ð ÓÔ Ö Ò Ð Ø Ð ÓÖÝØÑ Ë ÔÖÞ Ó Þ Ò Ö Ù Ð ÓÖÝØÑ Ë ÔÖÞ

Bardziej szczegółowo

arxiv: v1 [hep-th] 13 Dec 2007

arxiv: v1 [hep-th] 13 Dec 2007 ÍÒ Û Ö ÝØ Ø Ï Ö Þ Û ÏÝ Þ ÞÝ ÁÒ ØÝØÙØ ÞÝ Ì ÓÖ ØÝÞÒ Ô ÓØÖ Ù ÓÛ arxiv:0712.2173v1 [hep-th] 13 Dec 2007 Ð ¹Ý Ù ÖÝ Ø Ð Ò ØÓÔÓÐÓ Ð ØÖ Ò Ø ÓÖÝ ÖÝ ÞØ Ý Ð ¹Ý Ù Û ØÓÔÓÐÓ ÞÒ Ø ÓÖ ØÖÙÒ ÖÓÞÔÖ Û Ó ØÓÖ Ï Ö Þ Û ¾¼¼ º

Bardziej szczegółowo

µ(p q) ( q p) µa B B c A c

µ(p q) ( q p) µa B B c A c Ä Ø ¼ Û ØÔ Ó ÑØÑØÝ ½ ¼º½º ËÔÖÛõ ÞÝ Ò ØÔÙ ÞÒ ÐÓÞÒ ØÙØÓÐÓÑ (p q) ( p q) (p q) ( p q) (p q) ( q p) [(p q) p] qº ¼º¾º ÍÞ Ò ÙÒØÓÖÝ ÐØÖÒØÝÛÝ ÓÒÙÒ Ñ Û ÒÓ ÞÒÓ ÓÖÞ ÔÖÞÑÒÒÓº ÞÝ Ø Ø Û ÔÖÞÝÔÙ ÙÒØÓÖ ÑÔÐ ¼º º ÈÖÞÝ ÔÓÑÓÝ

Bardziej szczegółowo

Þ ÑÒ ÑÒ Ñ Ø Ö Ö Å ØØ Ö ¹ ŵ ÓÐ À Å Ñ Å Þ Å Ñ Å Å Å ÛÓÐÙ Ï Þ ð Û Ø Ç Ò ÔÓÛ Þ Ò ÙÞÒ ÒÝÑ ÑÓ Ð Ñ ÛÓÐÙ Ï Þ ð Û Ø Ø ØÞÛº ÑÓ Ð Åº ÓÒ Ï Þ ð Û Ø ÛÝÔ Ò ãþûý ä Ñ

Þ ÑÒ ÑÒ Ñ Ø Ö Ö Å ØØ Ö ¹ ŵ ÓÐ À Å Ñ Å Þ Å Ñ Å Å Å ÛÓÐÙ Ï Þ ð Û Ø Ç Ò ÔÓÛ Þ Ò ÙÞÒ ÒÝÑ ÑÓ Ð Ñ ÛÓÐÙ Ï Þ ð Û Ø Ø ØÞÛº ÑÓ Ð Åº ÓÒ Ï Þ ð Û Ø ÛÝÔ Ò ãþûý ä Ñ Þ Ø ØÖÓ ÞÝ ÔÖÓ º Ö º º º ÖÒ Þ Ø Ç Þ ÝÛ ðò ÙÒ Ñ ÒØ ÐÒÝ Á ÏÝ ÁÎ ÑÒ Ñ Ø Ö Û Ï Þ ð Û È ÖÛÓØÒ ÆÙ Ð Ó ÝÒØ Þ ÊÓØ Ð ØÝ ÓÖÑÓÛ Ò ØÖÙ ØÙÖ Ç Ð ÙÔ ÖÒÓÛ ÖÓÑ ÈÓ ÙÐÐ Ø ÐÙ Ø Öµ Þ ÑÒ ÑÒ Ñ Ø Ö Ö Å ØØ Ö ¹ ŵ ÓÐ À Å Ñ Å Þ

Bardziej szczegółowo

ÃÓÒØ Ò ÖÝ Þ ÓÓ Ø ÓÓ Ø Ö Ô Ä Ö ÖÝ ÈÓÛØ ÖÞ Ò áö Ò Ó Þ Û Ò ÓÛ Ò ÔÖÓ Ö ÑÓÛ Ò Û Èʵ ÏÝ ½¾ ¹ ÓÒØ Ò ÖÝ Þ ÓÓ Ø ÊÓ ÖØ ÆÓÛ ¾¼¼ áö Ò Ó Þ Û Ò ÓÛ Ò ÔÖÓ Ö ÑÓÛ Ò Û È

ÃÓÒØ Ò ÖÝ Þ ÓÓ Ø ÓÓ Ø Ö Ô Ä Ö ÖÝ ÈÓÛØ ÖÞ Ò áö Ò Ó Þ Û Ò ÓÛ Ò ÔÖÓ Ö ÑÓÛ Ò Û Èʵ ÏÝ ½¾ ¹ ÓÒØ Ò ÖÝ Þ ÓÓ Ø ÊÓ ÖØ ÆÓÛ ¾¼¼ áö Ò Ó Þ Û Ò ÓÛ Ò ÔÖÓ Ö ÑÓÛ Ò Û È áö Ò Ó Þ Û Ò ÓÛ Ò ÔÖÓ Ö ÑÓÛ Ò Û Èʵ ÏÝ ½¾ ¹ ÓÒØ Ò ÖÝ Þ ÓÓ Ø ÊÓ ÖØ ÆÓÛ ¾¼¼ ½» ½ ËÌÄ ¹ Ø Ò Ö ÓÛ Ð ÓØ Þ ÐÓÒ Û ÓÒØ Ò ÖÝ Ø Ö ØÓÖÝ Ð ÓÖÝØÑÝ ÙÒ ØÓÖÝ Ó º ÙÒ Ý Ò µ ÔØ ÖÝ ÌÛÓÖÞ Ò ÙÒ ØÓÖ Û ÖÞÒ Ò ÔÓ Ø Û ØÒ Ý ÙÒ Ñ

Bardziej szczegółowo

Fizyka I (mechanika), rok akad. 2012/2013 Zadania kolokwialne 1

Fizyka I (mechanika), rok akad. 2012/2013 Zadania kolokwialne 1 ÞÝ Á ¾¼½¾»¾¼½ µ ÃÓÐÓ Û ÙÑ ½ º½½º¾¼½¾ Ò Ö ÙÒ ÓÛ ÖÙÔ ÍÛ Ã Þ Ò ÖÓÞÛ ÞÙ ÑÝ Ò Ó Ó Ò ÖØ º ÈÖ ÔÓÛ ÒÒÝ Ý ÞÝØ ÐÒ ÓÐ Ò ÖÓ ÓÔ ØÖÞÓÒ Ø Ñ ÓÑ ÒØ ÖÞ Ñ Ý ØÓ ÖÓÞÙÑÓÛ Ò Ý ÒÝ Ð ÔÖ Û Þ Óº ÊÓÞÛ ÞÙ Þ Ò ÛÝÔÖÓÛ õ ÛÞ Ö Ó ÓÛÝ ÔÖ

Bardziej szczegółowo

Ð Ö Û Ø Ý Ò Û Ö ÞÓ Ò Û Ð Ñ ØÓÔÒ Ù ÔÓ Ð ÓÖ Û Ñ Ø Ö Â Ò Ð Ø Ó ÛÝ ÖÝ Ø Ø ØÖÙ Ò µ Ð Ö Û Ø Ý Ò Ï ÒÓð Ð Ö Û Ø Ý Ò Þ ÓÛÙ ÔÓ Ó Ò Ð Ð ØÖÓÑ Ò ØÝÞÒ ÔÓÖÙ Þ Þ Ø Ñ

Ð Ö Û Ø Ý Ò Û Ö ÞÓ Ò Û Ð Ñ ØÓÔÒ Ù ÔÓ Ð ÓÖ Û Ñ Ø Ö Â Ò Ð Ø Ó ÛÝ ÖÝ Ø Ø ØÖÙ Ò µ Ð Ö Û Ø Ý Ò Ï ÒÓð Ð Ö Û Ø Ý Ò Þ ÓÛÙ ÔÓ Ó Ò Ð Ð ØÖÓÑ Ò ØÝÞÒ ÔÓÖÙ Þ Þ Ø Ñ Þ Ø ØÖÓ ÞÝ ÔÖÓ º Ö º º º ÖÒ Þ Ø Ç Þ ÝÛ ðò ÙÒ Ñ ÒØ ÐÒÝ Á ÏÝ ÁÎ ÈÓ ÞÙ Û Ò Ð Ö Û Ø Ý ÒÝ Ï½ ¼ ½ ÓÐ Ò ÔÖÞÝÔ È Ö Ô ØÝÛÝ ðò Ð Ö Û Ø Ý Ò Û Ö ÞÓ Ò Û Ð Ñ ØÓÔÒ Ù ÔÓ Ð ÓÖ Û Ñ Ø Ö Â Ò Ð Ø Ó ÛÝ ÖÝ Ø Ø ØÖÙ Ò µ Ð Ö Û

Bardziej szczegółowo

ØÓ ÔÖ Ù Ð ØÖÝÞÒ Ó ÈÖ Ó ÙÒÓ Þ Ò Ó Ò ÓÖ ØÓ ÔÖ Ù Ø Û ØÓÖ Ñ Ø Ö Ó ÖÙÒ ÛÝÞÒ Þ ØÝÞÒ Ó ØÓÖÙ ÔÓÖÙ Þ Ó ÙÒ Ù Ó ØÒ Óº ÛÖÓØ Û ØÓÖ Ó Ö Ð ÙÑÓÛÒ Ó ÖÙÒ ÖÙ Ù ÙÒ Ù Ó ØÒ

ØÓ ÔÖ Ù Ð ØÖÝÞÒ Ó ÈÖ Ó ÙÒÓ Þ Ò Ó Ò ÓÖ ØÓ ÔÖ Ù Ø Û ØÓÖ Ñ Ø Ö Ó ÖÙÒ ÛÝÞÒ Þ ØÝÞÒ Ó ØÓÖÙ ÔÓÖÙ Þ Ó ÙÒ Ù Ó ØÒ Óº ÛÖÓØ Û ØÓÖ Ó Ö Ð ÙÑÓÛÒ Ó ÖÙÒ ÖÙ Ù ÙÒ Ù Ó ØÒ ÈÖ Ð ØÖÝÞÒÝ ÈÓÐ Ñ Ò ØÝÞÒ ½¼»½ Ò ÖÞ Ã Ô ÒÓÛ ØØÔ»»Ù Ö ºÙ º ÙºÔл Ù Ô ÒÓ» ÁÒ ØÝØÙØ ÞÝ ÍÒ Û Ö ÝØ Ø Â ÐÐÓ ÃÖ Û ¾¼½ ÈÖ Ð ØÖÝÞÒÝ Ø ØÓ ÙÔÓÖÞ ÓÛ ÒÝ ÖÙ ÙÒ Û Ð ØÖÝÞÒÝ º ÊÙ ÙÒ Û ÑÓ Ñ Ñ Û ÔÖÞ ÛÓ Ò Û Ô ÛÒÝ Û ÖÙÒ Ö ÛÒ

Bardziej szczegółowo

Þ ÈÖ ÛÓ ÀÙ Ð ÈÖÞ ÙÒ Ù Þ ÖÛ Ò Â ð Ð ðþö Ó ð Û Ø Ó Ð Ó Ä Ò Û Ð Û Û Ñ Û Þ Ö ÈÃË ½¾ ¾ ¼ ½ Ó ÖÛ ØÓÖ Ò Ø ÔÙ ÛÝ Ù Þ Ò Ð ½ ½ ¼ ½ Þµ ÔÖÞ ÙÒ Ù Þ ÖÛ Ò Ò º ãö Øäµ

Þ ÈÖ ÛÓ ÀÙ Ð ÈÖÞ ÙÒ Ù Þ ÖÛ Ò Â ð Ð ðþö Ó ð Û Ø Ó Ð Ó Ä Ò Û Ð Û Û Ñ Û Þ Ö ÈÃË ½¾ ¾ ¼ ½ Ó ÖÛ ØÓÖ Ò Ø ÔÙ ÛÝ Ù Þ Ò Ð ½ ½ ¼ ½ Þµ ÔÖÞ ÙÒ Ù Þ ÖÛ Ò Ò º ãö Øäµ Þ Ø ØÖÓ ÞÝ ÔÖÓ º Ö º º º ÖÒ Þ Ø Ç Þ ÝÛ ðò ÙÒ Ñ ÒØ ÐÒÝ Á ÏÝ ÁÁÁ Ï Ð ÏÝ Ù ÛÓÐÙ Ï Þ ð Û Ø ÈÖÓÑ Ò ÓÛ Ò Ø ÈÓÑ ÖÝ Ù ØÙ Å Þ ÈÖ ÛÓ ÀÙ Ð ÈÖÞ ÙÒ Ù Þ ÖÛ Ò Â ð Ð ðþö Ó ð Û Ø Ó Ð Ó Ä Ò Û Ð Û Û Ñ Û Þ Ö ÈÃË ½¾ ¾ ¼ ½

Bardziej szczegółowo

Þ Ø Ð Ñ ÒØ ÖÒÝ ÏÝ Ï Ô Þ Ò Ô ÖÝÑ ÒØÝ ¾ Ñ Ö ¾¼½ Ï Þ ð Û Ø µæ Ôº¾»

Þ Ø Ð Ñ ÒØ ÖÒÝ ÏÝ Ï Ô Þ Ò Ô ÖÝÑ ÒØÝ ¾ Ñ Ö ¾¼½ Ï Þ ð Û Ø µæ Ôº¾» ÏÝ Ô ÖÝÑ ÒØÝ Ï Ô Þ Ò Þ Ø Ð Ñ ÒØ ÖÒÝ Ï Þ ð Û Ø ÔÖÓ º º º ÖÒ Þ Ø Ç Þ ÝÛ ðò ÙÒ Ñ ÒØ ÐÒÝ ÁÒ ØÝØÙØ ÞÝ Óð Û Þ ÐÒ Þ Ø Ð Ñ ÒØ ÖÒÝ ÏÝ Ï Ô Þ Ò Ô ÖÝÑ ÒØÝ ¾ Ñ Ö ¾¼½ æ Ôº½» Ï Þ ð Û Ø Þ Ø Ð Ñ ÒØ ÖÒÝ ÏÝ Ï Ô Þ Ò Ô ÖÝÑ

Bardziej szczegółowo

ÏÝ Ô ÖÝÑ ÒØÝ Ï Ô Þ Ò Þ Ø Ð Ñ ÒØ ÖÒÝ Ï Þ ð Û Ø ÔÖÓ º º º ÖÒ Þ Ø Ç Þ ÝÛ ðò ÙÒ Ñ ÒØ ÐÒÝ ÁÒ ØÝØÙØ ÞÝ Óð Û Þ ÐÒ Þ Ø Ð Ñ ÒØ ÖÒÝ ÏÝ Ï Ô Þ Ò Ô ÖÝÑ ÒØÝ ¾ Ñ Ö ¾

ÏÝ Ô ÖÝÑ ÒØÝ Ï Ô Þ Ò Þ Ø Ð Ñ ÒØ ÖÒÝ Ï Þ ð Û Ø ÔÖÓ º º º ÖÒ Þ Ø Ç Þ ÝÛ ðò ÙÒ Ñ ÒØ ÐÒÝ ÁÒ ØÝØÙØ ÞÝ Óð Û Þ ÐÒ Þ Ø Ð Ñ ÒØ ÖÒÝ ÏÝ Ï Ô Þ Ò Ô ÖÝÑ ÒØÝ ¾ Ñ Ö ¾ ÏÝ Ô ÖÝÑ ÒØÝ Ï Ô Þ Ò Þ Ø Ð Ñ ÒØ ÖÒÝ Ï Þ ð Û Ø ÔÖÓ º º º ÖÒ Þ Ø Ç Þ ÝÛ ðò ÙÒ Ñ ÒØ ÐÒÝ ÁÒ ØÝØÙØ ÞÝ Óð Û Þ ÐÒ Þ Ø Ð Ñ ÒØ ÖÒÝ ÏÝ ¾ Ñ Ö ¾¼½ æ Ôº½» Ï Þ ð Û Ø Þ ð ãû Þ ÑÝä Ó Þ ÝÛ Ò Þ Ø Â Þ Ø Ð Ñ ÒØ ÖÒÝ ÏÝ ¾ Ñ

Bardziej szczegółowo

Lech Banachowski. Rola Uczelni oraz metod i technik e-edukacji w uczeniu się przez całe życie

Lech Banachowski. Rola Uczelni oraz metod i technik e-edukacji w uczeniu się przez całe życie Lech Banachowski Rola Uczelni oraz metod i technik e-edukacji w uczeniu się przez całe życie Notka biograficzna Prof. Lech Banachowski jest kierownikiem Katedry Baz Danych i kierownikiem Studiów Internetowych

Bardziej szczegółowo

Number of included frames vs threshold effectiveness Threshold of effectiveness

Number of included frames vs threshold effectiveness Threshold of effectiveness Ò Ð Þ ÒÝ Þ ÒÓÛ Ô Ö ØÙÖÝ Ø Ý Ò È Ó Ø Ë Ý ËÞÝÑÓÒ Å Þ ÞÑ Þ Ñ ÐºÓÑ ØÝÞÒ ¾¼½¾ ËÔ ØÖ ½ Ï ØÔ ½ ¾ ÇÔ Ñ ØÓ Ý ½ ¾º½ Ç Ò Ò Ö ÒÝ ÔÓÑ Ö Û º º º º º º º º º º º º º º º º º º º º º º º º º º º ½ ¾º¾ Ç Ö Ð Ò ØÝÛÒÓ Ð

Bardziej szczegółowo

pomiary teoria #pomiarow N

pomiary teoria #pomiarow N ÞÝ Á Å Ò ÔÖÓ º Ö º Ð Ò Ö Ð Ô ÖÒ Þ Ø Ç Þ ÝÛ ðò ÙÒ Ñ ÒØ ÐÒÝ Á ÏÝ Á Ã Ò Ñ ØÝ ÈÓÑ ÖÝ ÞÝÞÒ Ù ÒÓ Ø ËÁ Ý ÔÓÑ ÖÓÛ Ã Ò Ñ ØÝ ÔÓ ÔÓ Ø ÛÓÛ µ ÔÙÒ Ø Ñ Ø Ö ÐÒÝ Ù Ó Ò Ò Ù Û Ô ÖÞ ÒÝ µ ØÓÖ ÔÖ Óð ð ÔÖÞÝ Ô Þ Ò ÊÙ ÒÓ Ø ÒÝ

Bardziej szczegółowo

Studia z Kognitywistyki i Filozofii Umysłu

Studia z Kognitywistyki i Filozofii Umysłu Studia z Kognitywistyki i Filozofii Umysłu Tom 7/Nr 2 Poznań 2013 ISSN 2082-7083 Studia z Kognitywistyki i Filozofii Umysłu Tom 7/Nr 2 Poznań 2013 REDAKCJA Redaktor naczelny: Andrzej Klawiter Z-ca red.

Bardziej szczegółowo

ÁÒ ØÝØÙØ Æ Ì ÑÔ Ö ØÙÖ ËØÖÙ ØÙÖ ÐÒÝ È Æ ÏÖÓ Û ¾¼½ º½½ ¼ ÄÁËÌ ËÌÇÈÆÁ ÇÃÌÇÊ Æ Æ À ÈÊ Ê Æ ÍÃÇÏ ÁÆËÌ ÌÍÌÍ ÄÁËÌ Ó Ç ÌÇÊ Ê Ë ÇÆ ÊÊ Ý Ø Ë Á ÆÌÁ Á ÇÍÆ ÁÄ Ó Ø Á

ÁÒ ØÝØÙØ Æ Ì ÑÔ Ö ØÙÖ ËØÖÙ ØÙÖ ÐÒÝ È Æ ÏÖÓ Û ¾¼½ º½½ ¼ ÄÁËÌ ËÌÇÈÆÁ ÇÃÌÇÊ Æ Æ À ÈÊ Ê Æ ÍÃÇÏ ÁÆËÌ ÌÍÌÍ ÄÁËÌ Ó Ç ÌÇÊ Ê Ë ÇÆ ÊÊ Ý Ø Ë Á ÆÌÁ Á ÇÍÆ ÁÄ Ó Ø Á ÁÒ ØÝØÙØ Æ Ì ÑÔ Ö ØÙÖ ËØÖÙ ØÙÖ ÐÒÝ È Æ ÏÖÓ Û ¾¼½ º½½ ¼ ÄÁËÌ ËÌÇÈÆÁ ÇÃÌÇÊ Æ Æ À ÈÊ Ê Æ ÍÃÇÏ ÁÆËÌ ÌÍÌÍ ÄÁËÌ Ó Ç ÌÇÊ Ê Ë ÇÆ ÊÊ Ý Ø Ë Á ÆÌÁ Á ÇÍÆ ÁÄ Ó Ø ÁÆËÌÁÌÍÌ Ê Æ Ù ÓÛ Ñ ÙÔÖ ÛÒ Ò Ó Ò Û Ò ØÓÔÒ Ò Ù ÓÛ Ó Ó

Bardziej szczegółowo

LVI Olimpiada Fizyczna zawody III stopnia

LVI Olimpiada Fizyczna zawody III stopnia LV Olimpiada Fizyczna zawody stopnia Zadanie 1 Piłka uderza w poziomą podłogę pod kątem α z prędkością v 0. Współczynnik tarcia piłki o podłogę jest równy µ. W jakiej odległości od miejsca pierwszego uderzenia

Bardziej szczegółowo

ð Ö ½¼¼ Å Î ¹ Ì Î ½¼ ½ ØÑÓ ÖÝÞÒ Ñ ¾ Ð Ö ØÓÖÓÛ ÖÞ Ù Î ½¼ ¾¼ Æ ÙØÖ Ò ÌÝÔ Ô Ò Ö ËØÖÙÑ ðò ½ Å Î ½¼ ½¼ ½ Ë ÓÒ ÞÒ Ñ ¾ Ò Ñ µ ÔÓÛÝ Þ ½¼ Šε ÖÞ Ù Å Î ½¼ ½ Ê Ø

ð Ö ½¼¼ Å Î ¹ Ì Î ½¼ ½ ØÑÓ ÖÝÞÒ Ñ ¾ Ð Ö ØÓÖÓÛ ÖÞ Ù Î ½¼ ¾¼ Æ ÙØÖ Ò ÌÝÔ Ô Ò Ö ËØÖÙÑ ðò ½ Å Î ½¼ ½¼ ½ Ë ÓÒ ÞÒ Ñ ¾ Ò Ñ µ ÔÓÛÝ Þ ½¼ Šε ÖÞ Ù Å Î ½¼ ½ Ê Ø Þ Ø ØÖÓ ÞÝ ÔÖÓ º Ö º º º ÖÒ Þ Ø Ç Þ ÝÛ ðò ÙÒ Ñ ÒØ ÐÒÝ Á ÏÝ ÁÁ ØÖÓÒÓÑ Ò ÙØÖ Ò µ Ô ÖÝÑ ÒØ Á Ù ÛÓÐÙ Û Þ ð Ö ½¼¼ Å Î ¹ Ì Î ½¼ ½ ØÑÓ ÖÝÞÒ Ñ ¾ Ð Ö ØÓÖÓÛ ÖÞ Ù Î ½¼ ¾¼ Æ ÙØÖ Ò ÌÝÔ Ô Ò Ö ËØÖÙÑ ðò ½ Å Î ½¼ ½¼ ½

Bardziej szczegółowo

Þ ð ãû Þ ÑÝä Ó Þ ÝÛ Ò Þ Ø Â Þ Ø Ð Ñ ÒØ ÖÒÝ ÏÝ Ï Ô Þ Ò Ô ÖÝÑ ÒØÝ ½ Ð ØÓÔ ¾¼½ Ï Þ ð Û Ø µæ Ôº¾»

Þ ð ãû Þ ÑÝä Ó Þ ÝÛ Ò Þ Ø Â Þ Ø Ð Ñ ÒØ ÖÒÝ ÏÝ Ï Ô Þ Ò Ô ÖÝÑ ÒØÝ ½ Ð ØÓÔ ¾¼½ Ï Þ ð Û Ø µæ Ôº¾» Þ Ø Ð Ñ ÒØ ÖÒÝ Ï Þ ð Û Ø ÙÑ Ò Ø Û Ð ÏÝ Ï Ô Þ Ò Ô ÖÝÑ ÒØÝ ÔÖÓ º º º ÖÒ Þ Ø Ç Þ ÝÛ ðò ÙÒ Ñ ÒØ ÐÒÝ ÁÒ ØÝØÙØ ÞÝ Óð Û Þ ÐÒ Þ Ø Ð Ñ ÒØ ÖÒÝ ÏÝ Ï Ô Þ Ò Ô ÖÝÑ ÒØÝ ½ Ð ØÓÔ ¾¼½ æ Ôº½» Ï Þ ð Û Ø Þ ð ãû Þ ÑÝä Ó Þ ÝÛ

Bardziej szczegółowo

www.anilrana13014.weebly.com www.k8449.weebly.com r r r r r r r P r r r P r r r P r r r P r r P r r P P r r s r r r r r r r r r r r r r r r r r r r r r r r r r r r r r P P P P qt qt1234 56 810❶❷❶ ❸10❶❷❶

Bardziej szczegółowo

Grafika Komputerowa. Krzywe B-sklejane. Alexander Denisjuk.

Grafika Komputerowa. Krzywe B-sklejane. Alexander Denisjuk. Grafika Komputerowa Krzywe B-sklejane Alexander Denisjuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych zamiejscowy ośrodek dydaktyczny w Gdańsku ul. Brzegi 55 80-045 Gdańsk

Bardziej szczegółowo

e 2 = 8, 3 e 1 = 5, 1, e 2 = i 3 + i

e 2 = 8, 3 e 1 = 5, 1, e 2 = i 3 + i ÆÓØ Ø Ó Û Þ Þ Ò Ð ÞÝ Ð Öݺ Ä Ê Ò ½ ÞÝ Û ØÓÖ v ÑÓ Ò ÔÖÞ Ø Û Ó ÓÑ Ò Ð Ò ÓÛ Û ØÓÖ Û e e 2 Þ i) v = 2, 4 e = 5, 7 e 2 = 8, 3 6 9 ÓÖ Þ ii) v = 2 3, e = Ç ÔÓÛ õ i) Ø v = 2e e 2 ii) Ò º, e 2 =, Ò ¾ ÞÝ Û ØÓÖÝ

Bardziej szczegółowo

Å Ø Ù Þ Ë ÓÖ ËØ ÐÒÓ Ñ Ò ÞÒ Ö ØÝ ÙÒ ÓÒ Ð ÞÓÛ ÒÝ Ò ÒÓÞ Ø Û ÑÓ Ð ÖÙ ÓÞ ÖÒ ØÝ ÈÖÓÑÓØÓÖ ÈÖÓ º Ö º Å Ö ÔÐ ÊÓÞÔÖ Û Ó ØÓÖ ÛÝ ÓÒ Ò Û áöó ÓÛ ÓÛÝÑ Ä ÓÖ ØÓÖ ÙÑ ÞÝ ÓÐÓ ÞÒ ÁÒ ØÝØÙØ ÞÝ È Æ Ï Ö Þ Û ½ Ñ ¾¼½¾ ÈÓ Þ ÓÛ Ò

Bardziej szczegółowo

ÊÓÞÔÓÞÒ Û Ò Ð ØÖÓÒ Û Ñ ÞÓÒ Û π 0 ÔÖÞÝ Ò Ù Ó Þ ÝÛ Ò ÙØÖ Ò Û Þ ØÓ ÓÛ Ò Ù Ó Ø ØÓÖ Û Ó¹ Ö ÓÒÓÛÝ ÓÖ Þ Ð Ó Ø ØÓÖ Ô ÖÝÑ ÒØÙ Ì¾Ã ÌÓÑ Þ Ï ÁÒ ØÝØÙØ ÞÝ Â ÖÓÛ Ñº

ÊÓÞÔÓÞÒ Û Ò Ð ØÖÓÒ Û Ñ ÞÓÒ Û π 0 ÔÖÞÝ Ò Ù Ó Þ ÝÛ Ò ÙØÖ Ò Û Þ ØÓ ÓÛ Ò Ù Ó Ø ØÓÖ Û Ó¹ Ö ÓÒÓÛÝ ÓÖ Þ Ð Ó Ø ØÓÖ Ô ÖÝÑ ÒØÙ Ì¾Ã ÌÓÑ Þ Ï ÁÒ ØÝØÙØ ÞÝ Â ÖÓÛ Ñº ÊÓÞÔÓÞÒ Û Ò Ð ØÖÓÒ Û Ñ ÞÓÒ Û π ÔÖÞÝ Ò Ù Ó Þ ÝÛ Ò ÙØÖ Ò Û Þ ØÓ ÓÛ Ò Ù Ó Ø ØÓÖ Û Ó¹ Ö ÓÒÓÛÝ ÓÖ Þ Ð Ó Ø ØÓÖ Ô ÖÝÑ ÒØÙ Ì¾Ã ÌÓÑ Þ Ï ÁÒ ØÝØÙØ ÞÝ Â ÖÓÛ Ñº À ÒÖÝ Æ ÛÓ Ò Þ Ó ÈÓÐ Ñ Æ Ù ÊÓÞÔÖ Û Ó ØÓÖ ÔÖÞÝ ÓØÓÛ Ò

Bardziej szczegółowo

1. Waciki do czyszczenia optyki 2. Isopropanol 3. SLED 4. Laser diodowy 1550nm 5. Mikroskop 6. Urządzenie do czyszczenia końcówek światłowodów

1. Waciki do czyszczenia optyki 2. Isopropanol 3. SLED 4. Laser diodowy 1550nm 5. Mikroskop 6. Urządzenie do czyszczenia końcówek światłowodów ÁÁ ÈÖ ÓÛÒ ÞÝÞÒ Á Í Ǿ ½ Ǿ ¹ ÇÔØÝÞÒÝ ÛÞÑ Ò Þ Û Ø ÓÛÓ ÓÛÝ Ð Û Þ Ò Û Þ Ò Ø Ô ÖÝÑ ÒØ Ñ Þ Þ Þ ÒÝ ÓØÓÒ ÞÝ Ð Ö Û ÓØÝÞÝ Þ Ò ÓÖ Þ Û ÒÓ¹ Û ÒÓÛÝ Û Ø ÓÛÓ ÓÛÝ µ õö Û Ø º ÈÓ Ø ÛÓÛÝÑ Ð Ñ ÒØ Ñ Ù Ù Ó Û ¹ Þ ÐÒ Ó Ø Û ÒÓ»

Bardziej szczegółowo

ËÔ ØÖ ½ Ð Þ Ö ÔÖ Ý ¾ ËÝ Ø ÑÝ ÔÐ Û Ý Ø ÑÝ ÓÔ Ö Ý Ò ¾º½ ÊÓÐ Ý Ø Ñ Û ÔÐ Û º º º º º º º º º º º º º º º º º º º º º º ¾º¾ Ê ÒÓÖÓ ÒÓ Ý Ø Ñ Û ÔÐ Û º º º º

ËÔ ØÖ ½ Ð Þ Ö ÔÖ Ý ¾ ËÝ Ø ÑÝ ÔÐ Û Ý Ø ÑÝ ÓÔ Ö Ý Ò ¾º½ ÊÓÐ Ý Ø Ñ Û ÔÐ Û º º º º º º º º º º º º º º º º º º º º º º ¾º¾ Ê ÒÓÖÓ ÒÓ Ý Ø Ñ Û ÔÐ Û º º º º ÊÓÞÛ ÑÔÐ Ñ ÒØ Ý Ø Ñ Û ÔÐ Û ÈÓÐ Ø Ò áð ÙØÓÖ Ò ÖÞ Ö ÞÓÛ ÈÖÓÑÓØÓÖ ÔÖÓ º Ö º Ò º Ò ÖÞ ÖÞÝÛ ÃÓÒ ÙÐØ ÒØ Ñ Ö Ò º È ÓØÖ Ã ÔÖÞÝ Ð ØÓÔ ¾¼¼½ ÖÓ Ù ËÔ ØÖ ½ Ð Þ Ö ÔÖ Ý ¾ ËÝ Ø ÑÝ ÔÐ Û Ý Ø ÑÝ ÓÔ Ö Ý Ò ¾º½ ÊÓÐ Ý Ø Ñ Û

Bardziej szczegółowo

ÏÔÖÓÛ Þ Ò ÇÔ ÑÓ ÐÙ ÏÝÒ ÝÑÙÐ ÈÓ ÙÑÓÛ Ò Ä Ø Ö ØÙÖ Ë ÙØ ÔÖÞÝ Ø Ô Ò ÈÓÐ Ó ËØÖ Ý ÙÖÓ ÏÝÒ ÝÑÙÐ Ò ÔÓ Ø Û ÝÒ Ñ ÞÒ Ó ÑÓ ÐÙ ÌÓÑ Þ Ö Â Ò À Ñ Ö Æ ÖÓ ÓÛÝ Ò ÈÓÐ Ö À

ÏÔÖÓÛ Þ Ò ÇÔ ÑÓ ÐÙ ÏÝÒ ÝÑÙÐ ÈÓ ÙÑÓÛ Ò Ä Ø Ö ØÙÖ Ë ÙØ ÔÖÞÝ Ø Ô Ò ÈÓÐ Ó ËØÖ Ý ÙÖÓ ÏÝÒ ÝÑÙÐ Ò ÔÓ Ø Û ÝÒ Ñ ÞÒ Ó ÑÓ ÐÙ ÌÓÑ Þ Ö Â Ò À Ñ Ö Æ ÖÓ ÓÛÝ Ò ÈÓÐ Ö À Ò ÔÓ Ø Û ÝÒ Ñ ÞÒ Ó ÑÓ ÐÙ ÌÓÑ Þ Ö Â Ò À Ñ Ö Æ ÖÓ ÓÛÝ Ò ÈÓÐ ÈÐ Ò ÔÖ Þ ÒØ ½ ¾ Ð ÔÖ Ý ÈÖÞ Ð Ð Ø Ö ØÙÖÝ ÈÓ Ø ÛÓÛ Ý ÑÓ ÐÙ Þ ÒÝ ÅÓ Ð ÞÓÛÝ ÊÓÞ Þ ÖÞ Ò ÑÓ ÐÙ ÞÓÛ Ó Ó Ò ÝÑÙÐ Ò Ð Þ ÛÖ Ð ÛÓ ÈÐ Ò ÔÖ Þ ÒØ Ð ÔÖ Ý ÈÖÞ

Bardziej szczegółowo

Survival Probability /E. (km/mev)

Survival Probability /E. (km/mev) Þ Ø ØÖÓ ÞÝ ÔÖÓ º Ö º º º ÖÒ Þ Ø Ç Þ ÝÛ ðò ÙÒ Ñ ÒØ ÐÒÝ Á ÏÝ ÁÁ ØÖÓÒÓÑ Ò ÙØÖ Ò µ Ô ÖÝÑ ÒØ Á Ù ÛÓÐÙ Û Þ ð Ö ½¼¼ Å Î ¹ Ì Î ½¼ ½ ØÑÓ ÖÝÞÒ Ñ ¾ Ð Ö ØÓÖÓÛ ÖÞ Ù Î ½¼ ¾¼ Æ ÙØÖ Ò ÌÝÔ Ô Ò Ö ËØÖÙÑ ðò ½ Å Î ½¼ ½¼ ½

Bardziej szczegółowo

ÈÖ ÔÖÞ Ð Ñ Ó Ó ÒÝ Ø ÈÓ Ô ÙØÓÖ ÔÖ Ý ÈÖ Ø ÓØÓÛ Ó Ó ÒÝ ÔÖÞ Þ Ö ÒÞ ÒØ Ø ÈÓ Ô ÖÙ Ó ÔÖ

ÈÖ ÔÖÞ Ð Ñ Ó Ó ÒÝ Ø ÈÓ Ô ÙØÓÖ ÔÖ Ý ÈÖ Ø ÓØÓÛ Ó Ó ÒÝ ÔÖÞ Þ Ö ÒÞ ÒØ Ø ÈÓ Ô ÖÙ Ó ÔÖ ÍÒ Û Ö ÝØ Ø Ï Ö Þ Û ÏÝ Þ Ð Å Ø Ñ ØÝ ÁÒ ÓÖÑ ØÝ Å Ò È Û Ð Å Ð ÒÞÙ ÆÖ Ð ÙÑÙ ½ ½ Ò Ð Þ ÑÔÐ Ñ ÒØ Ð Ò ÛÝ ÞÝ ÓÛ ÙÒ Ý ÒÝ ÈÖ Ñ Ø Ö Ò ÖÙÒ Ù ÁÆ ÇÊÅ Ì Ã ÈÖ ÛÝ ÓÒ Ò ÔÓ ÖÙÒ Ñ Ö Ð Ó Ë Ù ÖØ ÁÒ ØÝØÙØ ÁÒ ÓÖÑ ØÝ Ð ÄÓ ËØÓ

Bardziej szczegółowo

A(T)= A(0)=D(0)+E(0).

A(T)= A(0)=D(0)+E(0). 2 ÅÓ Ð ØÖÙ ØÙÖ ÐÒ ÈÓ ØÖÙ ØÙÖ ÐÒ ÓÔ ÖØ Ø Ò ÔÖ Ù ÓÛÝ ÑÓ ÐÙ ÛÝ Ò Ó Þ ÖÞ Ò Ò ÖÙØÛ Û ÔÓÛ Þ Ò Ù Þ Þ Û Ñ Þ Ó Þ ÝÑ Û Ó Ö ÖÓÞ¹ Û Ò ÖÑݺ Å Û Ò ÔÖÓ ÖÝÞÝ Ó Ö Ø ÖÞ Ö ÝØÓÛÝÑ ÛÝÒ Þ Ö Ù ÓØ Û Ò Ö ÙÐÓÛ Ò ÞÓ ÓÛ Þ º ÙÒ ÓÒÓÛ

Bardziej szczegółowo

Ñ ÒÒ Û È ÖÐÙ Ñ ÒÒ ÌÝÔ Ò ÈÖÞÝ Ò Þ Ò Ë Ð Ö Ð ÈÓ ÝÒÞ Û ÖØÓ Ð Þ ÐÙ Ò Ô µ Ì Ð Ø Ð Ä Ø Û ÖØÓ Ò ÓÛ Ò Ð Þ Ñ À Þ ± ±Þ ÓÖ ÖÙÔ Û ÖØÓ Ò ÓÛ Ò Ò Ô Ñ ÈÖÓ ÙÖ ² ²ÞÖÓ Ö

Ñ ÒÒ Û È ÖÐÙ Ñ ÒÒ ÌÝÔ Ò ÈÖÞÝ Ò Þ Ò Ë Ð Ö Ð ÈÓ ÝÒÞ Û ÖØÓ Ð Þ ÐÙ Ò Ô µ Ì Ð Ø Ð Ä Ø Û ÖØÓ Ò ÓÛ Ò Ð Þ Ñ À Þ ± ±Þ ÓÖ ÖÙÔ Û ÖØÓ Ò ÓÛ Ò Ò Ô Ñ ÈÖÓ ÙÖ ² ²ÞÖÓ Ö È ÊÄ ¹ ÞÝ Ó Ô Ò È ÖÐ ØÓ Ö Ò Ø ÙÑ Þݺ Ð ØÝ Ø ÖÞÝ Ó Þ Ð Û ÐÙ È ÖÐ Ø ÈÖ ØÝÞÒÝÑ ÂÞÝ Ñ Ó ÏÝ Û Ê ÔÓÖØ Û Ò º ÈÖ Ø Ð ÜØÖ Ø ÓÒ Ò Ê ÔÓÖØ Ä Ò Ù µº Â Ò Ð ÔÖ Û Þ ÛÝ Ñ Ó Ò Û È ÖÐ ØÓ È ØÓÐÓ ÞÒ Ð ØÝÞÒ ÊÓ Ø Ä Ò Û ØÝÞÒ

Bardziej szczegółowo

Spis treści. 1 Wstęp 3

Spis treści. 1 Wstęp 3 Ê ÛÒÓÛ Æ Û Ö ÝÒ Ñ ÞÒÝ ØÒ Ò ÔÖÓ ÝÑ Ù Þ Ð Ù ÊÓÞÔÖ Û Ó ØÓÖ Ò Ô Ò ÔÓ ÖÙÒ Ñ ÔÖÓ º Ö º Ò ÖÞ ÆÓÛ ÈÓÐ Ø Ò ÏÖÓ Û ÁÒ ØÝØÙØ Å Ø Ñ ØÝ ÁÒ ÓÖÑ ØÝ ÏÖÓ Û ¾¼¼ ½ pis treści 1 Wstęp 3 2 Gry stochastyczne wielogeneracyjne

Bardziej szczegółowo

Elementy grafiki komputerowej. Elementy krzywych Béziera

Elementy grafiki komputerowej. Elementy krzywych Béziera Elementy grafiki komputerowej. Elementy krzywych Aleksander Denisiuk Uniwersytet Warmińsko-Mazurski Olsztyn, ul. Słoneczna 54 denisjuk@matman.uwm.edu.pl 1 / 36 Elementy krzywych Najnowsza wersja tego dokumentu

Bardziej szczegółowo

LVI OLIMPIADA FIZYCZNA ZADANIA ZAWODÓW I STOPNIA

LVI OLIMPIADA FIZYCZNA ZADANIA ZAWODÓW I STOPNIA http://www.kgof.edu.pl 1 LVI OLIMPIADA FIZYCZNA ZADANIA ZAWODÓW I STOPNIA Rozwiązania zadań I stopnia należy przesyłać do Okręgowych Komitetów Olimpiady Fizycznej w terminach: część I do 5 października

Bardziej szczegółowo

Strategie heurystyczne

Strategie heurystyczne ËÞØÙÞÒ ÁÒØ Ð Ò ËÝ Ø ÑÝ ÓÖ Þ ÔÖÞ ØÖÞ Ò Ø Ò Û Ð ÓÖÝØÑÝ ÈÖÞ ÞÙ Û Ò ÙÖÝ ØÝÞÒ ½ ÙÖÝ ØÝÞÒ ÓÖÞÝ Ø Þ Ó Ø ÓÛ ÙÖÝ ØÝÞÒ ÙÒ Ó ÒÝ ËØÖ Ø ÒÔº Þ Ù Ó ÞØ ÖÓÞÛ Þ Ò Ó Ó Ø ÒÙ Ó ÐÙµ Ø ÒÙ Strategie heurystyczne ÈÖÞ ÞÙ Û Ò Ô

Bardziej szczegółowo

x = x 1 e 1 +x 2 e 2 +x 3 e 3

x = x 1 e 1 +x 2 e 2 +x 3 e 3 ÏÝ ¼ ÏÔÖÓÛ Þ Ò Ó Ö ÙÒ Ù Û ØÓÖÓÛ Ó À ÒÖÝ ÃÙ Ð ËÔ ØÖ ½ ÈÖÞ ØÖÞ Ù Ð ÓÛ ¹ Û ØÓÖ ÔÓ Ó Ò ½ ¾ Ì Ò ÓÖÝ ÖÞ Ù ÖÙ Ó ¾º½ Ê ÔÖ Þ ÒØ Ø Ò ÓÖ ÖÞ Ù ÖÙ Ó Û ÔÖÓ ØÓ ØÒÝÑ Ù Þ ÖØ Þ Ñ ¾º¾ ÈÖÞÝ Ý Ø Ò ÓÖ Û ÖÞ Ù ÖÙ Ó º º º º º

Bardziej szczegółowo

Ö Þ Þ Û ØÔÙ Ó Ñ Ø Ñ ØÝ Â Ò ÃÖ Þ Û ÏÖÓ Û ¾¼¼ ½

Ö Þ Þ Û ØÔÙ Ó Ñ Ø Ñ ØÝ Â Ò ÃÖ Þ Û ÏÖÓ Û ¾¼¼ ½ Ö Þ Þ Û ØÔÙ Ó Ñ Ø Ñ ØÝ Â Ò ÃÖ Þ Û ÏÖÓ Û ¾¼¼ ½ ËÔ ØÖ ÈÖÞ ÑÓÛ ½ Ò ½ ¾ Ï Þ Û Ó Þ ½ Ç ÔÓÛ Þ Ó Þ ¾½ Ð Ó Ö ¼ ¾ ÈÖÞ ÑÓÛ Ï Þ ÓÖ Þ Þ Û ØÔÙ Ó Ñ Ø Ñ ØÝ Þ Ò Þ ÞÛÝÞ Ø ÔÓ ÖÙÔÓÛ Ò Ý ÓØÝÞÝ Ý ÔÓ Þ ÔÓ ÞÞ ÐÒÝ Þ Û ÓÑ Û ÒÝ

Bardziej szczegółowo

ÑÒ Ñ Ø Ö Ò Ð Å ÈÓ ÞÙ Û Ò Ý Ò Û Ò Ð Å Û Û ÞÝ Ø ÑÓ ÞÐ ÛÝ Ò ÔÖÓÑ Ò ÓÛ Ò ÑÑ ÔÓÞÝØÓÒÝ ÒØÝÔÖÓØÓÒÝ ººº µ ÑÓ Þ ÑÝ Ø Þ ÞÙ ð Ò ÙØÖ Ò º º ÖÒ ÏÝ ÁÁ ½

ÑÒ Ñ Ø Ö Ò Ð Å ÈÓ ÞÙ Û Ò Ý Ò Û Ò Ð Å Û Û ÞÝ Ø ÑÓ ÞÐ ÛÝ Ò ÔÖÓÑ Ò ÓÛ Ò ÑÑ ÔÓÞÝØÓÒÝ ÒØÝÔÖÓØÓÒÝ ººº µ ÑÓ Þ ÑÝ Ø Þ ÞÙ ð Ò ÙØÖ Ò º º ÖÒ ÏÝ ÁÁ ½ Þ Ø ØÖÓ ÞÝ ÔÖÓ º Ö º º º ÖÒ Þ Ø Ç Þ ÝÛ ðò ÙÒ Ñ ÒØ ÐÒÝ Á ÏÝ ÁÁ Æ ÙØÖ Ò Û ÒÓð ËÙÔ Ö Ã Ñ Ó Ò Á Ù ÑÒ Ñ Ø Ö Ò Ð Å ÈÓ ÞÙ Û Ò Ý Ò Û Ò Ð Å Û Û ÞÝ Ø ÑÓ ÞÐ ÛÝ Ò ÔÖÓÑ Ò ÓÛ Ò ÑÑ ÔÓÞÝØÓÒÝ ÒØÝÔÖÓØÓÒÝ ººº µ ÑÓ Þ ÑÝ Ø

Bardziej szczegółowo

Talk to Parrot. Buy a Dog. Go To Class. Buy Tuna Fish. Buy Arugula. Buy Milk. Sit Some More. Read A Book

Talk to Parrot. Buy a Dog. Go To Class. Buy Tuna Fish. Buy Arugula. Buy Milk. Sit Some More. Read A Book Þ Ò ÞÒ Ð Þ Ò ÔÐ ÒÙ ÑÓ Ò Ø ÓÖ ØÝÞÒ ÖÓÞÛ ¹ Ã ÔÓ Ù Ù Ò Þ Ñ ØÓ ÔÖÞ ÞÙ Û Ò ÔÖÞ ØÖÞ Ò Þ Â Ø ØÓ Ò Þ ØÓ Ò ÛÝ ÓÒ ÐÒ Û ÔÖ ØÝ Þ Ø Ò Ûº Ò ÓÑÔÐ ÓÛ ÒÝ ÓÔ Ø Ò Û ÛÝ Ó Û Ô ÞÝÒÒ ÛÞ Ð Ù ÈÐ ÒÓÛ Ò ÖÓÞ Þ Ò º ½ ÈÖÞÝ ÔÐ Ò Û Ö

Bardziej szczegółowo

ÊÇ ÆÁÃ ÄÍ ÍËÃÁ ÌÓÑ ¾ Þº ¾ ¾¼½ ÒÒ ÑÖ ÈÊ ÃÊÇ Ê ÆÁ ÅÇÆËÌÊÍÅ Ê ÆÃ ÆËÌ ÁÆ ÈÇÏÁ á Á Å Ê ÏÇÄÄËÌÇÆ Ê Ì ËÀ ÄÄ ÊÙ Þ º... ÌÓ Ý ½ ÙÒØ ÔÖÞ Û Ó Æ ØÙÖÞ Â ÒÝÑ Þ Ó Û Þ

ÊÇ ÆÁà ÄÍ ÍËÃÁ ÌÓÑ ¾ Þº ¾ ¾¼½ ÒÒ ÑÖ ÈÊ ÃÊÇ Ê ÆÁ ÅÇÆËÌÊÍÅ Ê ÆÃ ÆËÌ ÁÆ ÈÇÏÁ á Á Å Ê ÏÇÄÄËÌÇÆ Ê Ì ËÀ ÄÄ ÊÙ Þ º... ÌÓ Ý ½ ÙÒØ ÔÖÞ Û Ó Æ ØÙÖÞ Â ÒÝÑ Þ Ó Û Þ ÊÇ ÆÁà ÄÍ ÍËÃÁ ÌÓÑ ¾ Þº ¾ ¾¼½ ÒÒ ÑÖ ÈÊ ÃÊÇ Ê ÆÁ ÅÇÆËÌÊÍÅ Ê ÆÃ ÆËÌ ÁÆ ÈÇÏÁ á Á Å Ê ÏÇÄÄËÌÇÆ Ê Ì ËÀ ÄÄ ÊÙ Þ º... ÌÓ Ý ½ ÙÒØ ÔÖÞ Û Ó Æ ØÙÖÞ Â ÒÝÑ Þ Ó Û ÞÒÝ ÔÖ Ò Þ ÓÛ Ø ÙÛÓÐÒ Ò Ó Ý Ø ØÙ Ò ØÙÖݺ ÏÝÖ ÓÒÓ Ò Ö

Bardziej szczegółowo

ÍÒ Û Ö ÝØ Ø Ï Ö Þ Û ÏÝ Þ Å Ø Ñ ØÝ ÁÒ ÓÖÑ ØÝ Å Ò ËÔ Ý Û õò ÓÛÝ ØÖÙ ØÙÖ ÒÝ ÈÖ Ó ØÓÖ µ Å Ö Ò ÃÙ ÈÖÓÑÓØÓÖ ÔÖÓ º Ö º Â Ò Å Ý ½ ØÝÞÒ ¾¼¼¼

ÍÒ Û Ö ÝØ Ø Ï Ö Þ Û ÏÝ Þ Å Ø Ñ ØÝ ÁÒ ÓÖÑ ØÝ Å Ò ËÔ Ý Û õò ÓÛÝ ØÖÙ ØÙÖ ÒÝ ÈÖ Ó ØÓÖ µ Å Ö Ò ÃÙ ÈÖÓÑÓØÓÖ ÔÖÓ º Ö º Â Ò Å Ý ½ ØÝÞÒ ¾¼¼¼ ÍÒ Û Ö ÝØ Ø Ï Ö Þ Û ÏÝ Þ Å Ø Ñ ØÝ ÁÒ ÓÖÑ ØÝ Å Ò ËÔ Ý Û õò ÓÛÝ ØÖÙ ØÙÖ ÒÝ ÈÖ Ó ØÓÖ µ Å Ö Ò ÃÙ ÈÖÓÑÓØÓÖ ÔÖÓ º Ö º Â Ò Å Ý ½ ØÝÞÒ ¾¼¼¼ ËÔ ØÖ ½ Ï ØÔ ½º½ Ì Þ ÔÖ Ý º º º º º º º º º º º º º º º º º º º º º

Bardziej szczegółowo

º º ÖÒ ÏÝ Á ½

º º ÖÒ ÏÝ Á ½ ÏÔÖÓÛ Þ Ò ÛÝ Ù Ð Ø Ö ØÙÖ Þ Ñ Ò ØÔº ÔÐ Ò Þ Ø ØÖÓ ÞÝ ÔÖÓ º Ö º º º ÖÒ Þ Ø Ç Þ ÝÛ ðò ÙÒ Ñ ÒØ ÐÒÝ Á ÏÝ Á ÃÖ Ø ØÓÖ ÖÓÞÛÓ Ù ÞÝ Þ Ø ÅÓ Ð ËØ Ò Ö ÓÛÝ ¾¼½ Ï Þ ØÙ ÐÒ ÔÝØ Ò Ò Ø Ö ÅÓ Ð ËØ Ò Ö ÓÛÝ Ò Ò Ñ Ó ÔÓÛ Þ º º

Bardziej szczegółowo

faza nadkrytyczna ciecz cia³o sta³e punkt krytyczny gaz punkt potrójny

faza nadkrytyczna ciecz cia³o sta³e punkt krytyczny gaz punkt potrójny Á à ËÃÇÆ ÆËÇÏ Æ Â Ñ Ø Ö Ý Ó ÛÝ Ù Ì Ù Þ Ð ÖÞ Ì Ù Þ Ð ÖÞ ¹Ñ Ð Ø Ð ÖÞ ÙÒ ºÐÓ ÞºÔÐ ØØÔ»»ÛÛÛºÛ ºÙÒ ºÐÓ ÞºÔл»ÞØ»Ì È»Ì º ØÑ Ã Ø Ö ÞÝ ËØ Ó ÏÝ Þ ÞÝ ÁÒ ÓÖÑ ØÝ ËØÓ ÓÛ Ò ÍÒ Û Ö ÝØ Ø Þ Ê Ø Ò ÞÒ Ó ÖÞÝ õ ¾¼½½ ËÈÁË ÌÊ

Bardziej szczegółowo

¾ Å ÑÞ ÈÖ Þ Ó ÓÒÓ Û Ý Ø Ñ Ä Ì º

¾ Å ÑÞ ÈÖ Þ Ó ÓÒÓ Û Ý Ø Ñ Ä Ì º Ç ÖÛ ØÓÖ ÙÑ ØÖÓÒÓÑ ÞÒ ÍÒ Û Ö ÝØ Ø Ñº Ñ Å Û Þ Û ÈÓÞÒ Ò Ù ÇÔØÝÑ Ð Þ Ñ ØÓ Ö Ù Ó ÖÛ ÓØÓÑ ØÖÝÞÒÝ ÈÖ Ñ Ø Ö Å ÑÞ Ã ÖÓÛÒ ÔÖ Ý ÔÖÓ º Ö º Ì Ù Þ Å ÓÛ ÇÔ ÙÒ ÔÖ Ý Ö ÌÓÑ Þ ÃÛ Ø ÓÛ ÈÓÞÒ ½ ¾ Å ÑÞ ÈÖ Þ Ó ÓÒÓ Û Ý Ø Ñ Ä

Bardziej szczegółowo

Fizyka I (mechanika), rok akad. 2011/2012 Zadania z kolokwium I

Fizyka I (mechanika), rok akad. 2011/2012 Zadania z kolokwium I Fizyka I (echanika), rok akad. 0/0 Zadania z kolokwiu I Zadanie (zadanie doowe, seria II) Masy, i, połączone linkai zawieszone są na bloczkach jak na rysunku. Jakie uszą być spełnione warunki, aby ożliwe

Bardziej szczegółowo

º Ä Ê Á ÇÅ ÌÊ ¼¼ µ ¼¼¼ß¼¼¼ Ë ½¼ ¹ ½½ µ¼¼¼¼¹¼ Ê Ä ÁÎ ÈÍÄĹ ÃË Æ Ë Ì ÆËÁÇÆ Ê Æ Æ À ËË ÌÌ Æ Ë Æ ÇÊ Âº ÃÇÎ Ë ØÖ Ø Ï ÔÖÓÚ Ø Ø Î Û ³ ÑÓ ÙÐ ÙÒØÓÖ Ó Ø Ð ÙÖ Ð

º Ä Ê Á ÇÅ ÌÊ ¼¼ µ ¼¼¼ß¼¼¼ Ë ½¼ ¹ ½½ µ¼¼¼¼¹¼ Ê Ä ÁÎ ÈÍÄĹ ÃË Æ Ë Ì ÆËÁÇÆ Ê Æ Æ À ËË ÌÌ Æ Ë Æ ÇÊ Âº ÃÇÎ Ë ØÖ Ø Ï ÔÖÓÚ Ø Ø Î Û ³ ÑÓ ÙÐ ÙÒØÓÖ Ó Ø Ð ÙÖ Ð Âº ÄÊÁ ÇÅÌÊ ¼¼ µ ¼¼¼ß¼¼¼ Ë ½¼¹ ½½ µ¼¼¼¼¹¼ ÊÄÁÎ ÈÍÄĹÃË Æ Ë ÌÆËÁÇÆ ÊÆÆ ÀËËÌÌ Æ ËÆÇÊ Âº ÃÇÎË ØÖØ Ï ÔÖÓÚ ØØ ÎÛ³ ÑÓÙÐ ÙÒØÓÖ Ó ØÐ ÙÖ ÐÓÐÐÝ ÐÓ º ½º ÁÒØÖÓÙØÓÒ Ì ÑÓÙÐ ØÓÖÝ Ó ÙÖÚ Ò ØÙ ÜØÒ ÚÐÝ Ò Ø Ô Ø Û º ÚÖÝ ÑÔÓÖØÒØ

Bardziej szczegółowo

ROCZNIK LUBUSKI Tom 30, część 2

ROCZNIK LUBUSKI Tom 30, część 2 ROCZNIK LUBUSKI LUBUSKIE TOWARZYSTWO NAUKOWE ROCZNIK LUBUSKI Tom 30, część 2 RÓŻNORODNOŚĆ KAPITAŁÓW W NOWEJ RZECZYWISTOŚCI SPOŁECZNEJ Z DOROBKU ZIELONOGÓRSKIEGO ŚRODOWISKA SOCJOLOGICZNEGO Pod redakcją

Bardziej szczegółowo

ÈÇÄÁÌ ÀÆÁà ÏÊÇ ÏËÃ Ï Á Ä ÃÌÊÇÆÁÃÁ à ÖÙÒ ËÔ ÐÒÓ ÙØÓÑ ØÝ ÊÓ ÓØÝ ÊÓ ÓØÝ ÈÊ ÈÄÇÅÇÏ Å ÁËÌ ÊËà ÁÑÔÐ Ñ ÒØ Þ ÓÛ Û Ø ÖÓÛÒ Ù Ñ Ó ÖÓ ÓØ ÑÓ ÐÒ Ó ÁÑÔÐ Ñ Ø Ø ÓÒ Ó Ú ÓÖ ÓÒ Ñ ÐÐ ÑÓ Ð ÖÓ ÓØ³ ÓÒØÖÓÐ Ö ÙØÓÖ Ö Ù Þ Å Ø Ö ÈÖÓÛ

Bardziej szczegółowo

Ø Ò Þ È ØÖ Û Þ ËÈ ÃÌÊÇËÃÇÈÁ ÊÇÌ ÂÆ Ï Ê Æ À ËÌ Ã Á ÃÇÅÈÄ ÃË Ï ÅÁ ËÌ ÃÇÏ À Ï Æ éïá ÃÇÏ Â ÏÁ ÅÇÄ ÃÍÄ ÊÆ Â ÊÓÞÔÖ Û Ó ØÓÖ Ò Ô Ò Û ÁÒ ØÝØÙ ÞÝ ÈÓÐ Ñ Æ Ù ÔÓ Ö

Ø Ò Þ È ØÖ Û Þ ËÈ ÃÌÊÇËÃÇÈÁ ÊÇÌ ÂÆ Ï Ê Æ À ËÌ Ã Á ÃÇÅÈÄ ÃË Ï ÅÁ ËÌ ÃÇÏ À Ï Æ éïá ÃÇÏ Â ÏÁ ÅÇÄ ÃÍÄ ÊÆ Â ÊÓÞÔÖ Û Ó ØÓÖ Ò Ô Ò Û ÁÒ ØÝØÙ ÞÝ ÈÓÐ Ñ Æ Ù ÔÓ Ö Ø Ò Þ È ØÖ Û Þ ËÈ ÃÌÊÇËÃÇÈÁ ÊÇÌ ÂÆ Ï Ê Æ À ËÌ Ã Á ÃÇÅÈÄ ÃË Ï ÅÁ ËÌ ÃÇÏ À Ï Æ éïá ÃÇÏ Â ÏÁ ÅÇÄ ÃÍÄ ÊÆ Â ÊÓÞÔÖ Û Ó ØÓÖ Ò Ô Ò Û ÁÒ ØÝØÙ ÞÝ ÈÓÐ Ñ Æ Ù ÔÓ ÖÙÒ Ñ Óº Ö º Ò Û Ã Ð Ï Ö Þ Û Ñ ¾¼¼ ÅÓ ÑÙ Ñ ÓÛ ÂÙÖ ÓÛ

Bardziej szczegółowo

ÈÓÞÝØÝÛÒ ÔÖÝÑÓÛ Ò Ñ ÒØÝÞÒ Ó Ò ÖÞ Þ ÓÔØÝÑ Ð Þ ÙØÓÑ ØÝÞÒÝ Ý Ø Ñ Û ÙØÓÖÝÞ Ù ÝØ ÓÛÒ Ê ÈÇÊÌ Ö Å Ö Ù Þ ÍÖ ÄÓ ÃÓ Ò ØÝÛ ØÝ ÁÒ ØÝØÙØ È Ý ÓÐÓ ÍÒ Û Ö ÝØ Ø Ñº º Å

ÈÓÞÝØÝÛÒ ÔÖÝÑÓÛ Ò Ñ ÒØÝÞÒ Ó Ò ÖÞ Þ ÓÔØÝÑ Ð Þ ÙØÓÑ ØÝÞÒÝ Ý Ø Ñ Û ÙØÓÖÝÞ Ù ÝØ ÓÛÒ Ê ÈÇÊÌ Ö Å Ö Ù Þ ÍÖ ÄÓ ÃÓ Ò ØÝÛ ØÝ ÁÒ ØÝØÙØ È Ý ÓÐÓ ÍÒ Û Ö ÝØ Ø Ñº º Å ÈÓÞÝØÝÛÒ ÔÖÝÑÓÛ Ò Ñ ÒØÝÞÒ Ó Ò ÖÞ Þ ÓÔØÝÑ Ð Þ ÙØÓÑ ØÝÞÒÝ Ý Ø Ñ Û ÙØÓÖÝÞ Ù ÝØ ÓÛÒ Ê ÈÇÊÌ Ö Å Ö Ù Þ ÍÖ ÄÓ ÃÓ Ò ØÝÛ ØÝ ÁÒ ØÝØÙØ È Ý ÓÐÓ ÍÒ Û Ö ÝØ Ø Ñº º Å Û Þ Å Ö È Û ÙÔ ÓÛ ÄÓ ÃÓ Ò ØÝÛ ØÝ ÁÒ ØÝØÙØ È Ý ÓÐÓ

Bardziej szczegółowo

Poniżej 14 r.ż. 1 (0,5%) 1 (0,9%) r.ż. 11 (6,0%) 21 (18,9%) r.ż. 59 (32,2%) 44 (39,6%) r.ż. 38 (20,8%) 15 (13,5%) Powyżej 25 r.ż.

Poniżej 14 r.ż. 1 (0,5%) 1 (0,9%) r.ż. 11 (6,0%) 21 (18,9%) r.ż. 59 (32,2%) 44 (39,6%) r.ż. 38 (20,8%) 15 (13,5%) Powyżej 25 r.ż. ! " # $ % &! ' $ ( ) * # +, $ - *. /, 0 # 1!. 0, * 2 0 '! 3! 1 ) 4 $ % 5. ) (! +, ) 0 6 ). 7 1 $ 8, 9 : ; < = >? < ; @ = A B C D E F G @ H < I J K L D M N = A D M O E L D H B P ; A Q H < O R S G @ ; P

Bardziej szczegółowo

ÈÖÓ Ö ÑÓÛ Ò ÔÐ ÓÛÝ ÍÒ Û Ö ÝØ Ø Å Ö ÙÖ ¹Ë Ó ÓÛ ÏÝ Þ Å Ø Ñ ØÝ ÞÝ ÁÒ ÓÖÑ ØÝ ÁÒ ØÝØÙØ ÁÒ ÓÖÑ ØÝ ÈÖÓ Ö ÑÓÛ Ò ÔÐ ÓÛÝ Â ÖÓ Û ÝÐ Ò Å ÓÖÞ Ø Ù Ò Å ÃÐ ÓÛ ÄÙ Ð Ò ¾¼½¾ ÁÒ ØÝØÙØ ÁÒ ÓÖÑ ØÝ ÍÅ Ë ÄÙ Ð Ò ¾¼½¾  ÖÓ Û ÝÐ

Bardziej szczegółowo

Ç Û Þ Ò ÙØÓÖ ÖÓÞÔÖ ÛÝ Ç Û Þ Ñ Ò Ò Þ ÖÓÞÔÖ Û ÞÓ Ø Ò Ô Ò ÔÖÞ Þ ÑÒ ÑÓ Þ ÐÒ º Ø ÈÓ Ô ÙØÓÖ ÖÓÞÔÖ ÛÝ Ç Û Þ Ò ÔÖÓÑÓØÓÖ ÖÓÞÔÖ ÛÝ Æ Ò ÞÝÑ Ó Û Þ Ñ ÖÓÞÔÖ Û Ø ÓØÓ

Ç Û Þ Ò ÙØÓÖ ÖÓÞÔÖ ÛÝ Ç Û Þ Ñ Ò Ò Þ ÖÓÞÔÖ Û ÞÓ Ø Ò Ô Ò ÔÖÞ Þ ÑÒ ÑÓ Þ ÐÒ º Ø ÈÓ Ô ÙØÓÖ ÖÓÞÔÖ ÛÝ Ç Û Þ Ò ÔÖÓÑÓØÓÖ ÖÓÞÔÖ ÛÝ Æ Ò ÞÝÑ Ó Û Þ Ñ ÖÓÞÔÖ Û Ø ÓØÓ ÍÒ Û Ö ÝØ Ø Ï Ö Þ Û ÏÝ Þ Å Ø Ñ ØÝ ÁÒ ÓÖÑ ØÝ Å Ò Ø Â ÒÓÛ Ò ÖÓÛ Ò ÙØÓÑ Ø Û Þ ÓÛÝ Ð Ý Ø Ñ Û Þ Ù ÖÞ ÞÝÛ Ø Ó ÊÓÞÔÖ Û Ó ØÓÖ ÈÖÓÑÓØÓÖ ÖÓÞÔÖ ÛÝ Óº Ö º ÏÓ È ÒÞ ÁÒ ØÝØÙØ ÈÓ Ø Û ÁÒ ÓÖÑ ØÝ ÈÓÐ Ñ Æ Ù Ñ ¾¼¼ Ç Û Þ Ò

Bardziej szczegółowo

Þ Þ ÐÒ Ô Ð Ò ÕÜ Û Ñ Õ Û ÜØ Þ Ö ØÝ ¾¼½ lresisi Õ ÕÜ Ü Ð ¾¼¼ ¼½½½ mikab4 ÓÛÜ Û Ò ¾¼½ ÙÜÒ ¾ Ñ Ô ÔÖ Ó Þ Ò I Ñ Þ Þ Ü ÝÛ Þ Ö ØÝ ÞÒ ÝÒ II Ó Ò ÜÒ Ð Ó Ò ÜÒ Ð Ñ Ô ÞÔ Õ III º º º º º º º º º º º º º º º º º º º º

Bardziej szczegółowo

ÈÐ Ò ÔÖ Þ ÒØ ½ ¾ Ò ÔÖÞÝ Þ µº ÇÔ Ó ÔÐÙ Û Ò Û ÔÐ Ó ØÓÛ ÔÖÞÝ ÓØÓÛ Ò Ó Ó ÔÐÙ Û Ò Ø Ï Ê µº Æ ÖÞ Þ Ó ÛÝ ÖÝÛ Ò ÛÝ Û Ô Ñ Û ÔÖÓ Ö Ñ Ó ÔÖÓ ÐÓÛ Ò Ó Ùº ÝÑÓÓÔ ÍÅĺ

ÈÐ Ò ÔÖ Þ ÒØ ½ ¾ Ò ÔÖÞÝ Þ µº ÇÔ Ó ÔÐÙ Û Ò Û ÔÐ Ó ØÓÛ ÔÖÞÝ ÓØÓÛ Ò Ó Ó ÔÐÙ Û Ò Ø Ï Ê µº Æ ÖÞ Þ Ó ÛÝ ÖÝÛ Ò ÛÝ Û Ô Ñ Û ÔÖÓ Ö Ñ Ó ÔÖÓ ÐÓÛ Ò Ó Ùº ÝÑÓÓÔ ÍÅĺ È ÓØÖ ÙÞ Å Ð Ò Ù Ð Ñ Å Û ØÝÞ ¾¼¼ ÈÐ Ò ÔÖ Þ ÒØ ½ ¾ Ò ÔÖÞÝ Þ µº ÇÔ Ó ÔÐÙ Û Ò Û ÔÐ Ó ØÓÛ ÔÖÞÝ ÓØÓÛ Ò Ó Ó ÔÐÙ Û Ò Ø Ï Ê µº Æ ÖÞ Þ Ó ÛÝ ÖÝÛ Ò ÛÝ Û Ô Ñ Û ÔÖÓ Ö Ñ Ó ÔÖÓ ÐÓÛ Ò Ó Ùº ÝÑÓÓÔ ÍÅĺ Ã Ï Ò µº ÈÓ Ø ÛÝ

Bardziej szczegółowo

¾

¾ ÞÝ Û ÓÒÓÑ Ñ ØÓ Ý ÑÓ Ð ÃÖÞÝ ÞØÓ ÓÑ ÒÓ ÈÓÐ Ø Ò áð  ÖÞÝ ÍÒ Û Ö ÝØ Ø áð à ØÓÛ ¾¼½ ¾ ËÔ ØÖ ½ ÈÖÓÐÓ ¾ Å ØÓ Ý ÔÖ ØÝÞÒ ¾º½ Ï ØÔ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ¾º½º½ Ä Ø Ö ØÙÖ º

Bardziej szczegółowo

Â Ù Ä ÔÓÐÓÒÝ ÑÓ Ð ÒÙѹ ÓÖ ÓÒ ÑÓ Ð ÔÓ Ö ÛÒ ÊÓÞÔÖ Û Ó ØÓÖ ÔÖÞÝ ÓØÓÛ Ò ÔÓ ÖÙÒ Ñ ÔÖÓ º À ÒÖÝ ÖÓ Þ ÃÖ Û Ñ ¾¼½¼

Â Ù Ä ÔÓÐÓÒÝ ÑÓ Ð ÒÙѹ ÓÖ ÓÒ ÑÓ Ð ÔÓ Ö ÛÒ ÊÓÞÔÖ Û Ó ØÓÖ ÔÖÞÝ ÓØÓÛ Ò ÔÓ ÖÙÒ Ñ ÔÖÓ º À ÒÖÝ ÖÓ Þ ÃÖ Û Ñ ¾¼½¼ Â Ù Ä ÔÓÐÓÒÝ ÑÓ Ð ÒÙѹ ÓÖ ÓÒ ÑÓ Ð ÔÓ Ö ÛÒ ÊÓÞÔÖ Û Ó ØÓÖ ÔÖÞÝ ÓØÓÛ Ò ÔÓ ÖÙÒ Ñ ÔÖÓ º À ÒÖÝ ÖÓ Þ ÃÖ Û Ñ ¾¼½¼ Ö ÞÓ Ö ÞÒ Þ Ù ÑÓ ÑÙ ÔÖÓÑÓØÓÖÓÛ ÔÖÓ ÓÖÓÛ À ÒÖÝ ÓÛ ÖÓ Þ ÓÛ Þ Þ Ñ ÔÓ Û ÓÒÝ Þ ÒÒ Ö Ý ÝÞÐ Û ÙÛ º Þ

Bardziej szczegółowo

Í ń ę ń Í ę ź ę ń ľ ń ć ę ę ľ ń ę ľ ć

Í ń ę ń Í ę ź ę ń ľ ń ć ę ę ľ ń ę ľ ć ń Í ń ę ń Í ę ź ę ń ľ ń ć ę ę ľ ń ę ľ ć Í ń Ó Ń Ń Ń Ó ľ ęż Ń Á ęż Ń Ą ę Ż ć ę ę Ż ć ę ć Ś ę ę Ś Ż Ż Ż Ż ę ę Ż ń Ż ń ę ę ć Ś ę Ż ć Ż ć Ż Ż ć ń Ż ľ ę ę ę ę Ś ę ę ľ ę Ę Ĺ Í ľ ď ý Ę ń ľ ę ń Ó Ń ć Í ô Ó ľ ü

Bardziej szczegółowo

/ ( ) / 2008 9 / ( ) / 1. 2. 3. 3.1 3.2 3.3 3.4 4. ( ) 4.1 4.2 4.3 4.4 5. 5.1 5.2 5.3 5.4 6. 6.1 () 6.2 6.3 6.4 6.5 / 6.6 6.7 6.8 6.9 T5 1. 2007 ( ) (RPE) / / / 2. 1) / / / 2) TCP T5 3) / / / 1) 2) 3)

Bardziej szczegółowo

ÈÓ Þ ÓÛ Ò Æ Ò Þ Ñ Ø Ö Ý ÔÓÛ Ø Ý Ò ÔÓ Ø Û ÒÓØ Ø Ó ÔÖÓÛ ÞÓÒÝ ÔÖÞ Þ ÑÒ Ò ÔÖÞ ØÖÞ Ò Ð Ù Ð Ø ÛÝ Û Þ Ø ÓÖ ÞÝ Û ÙØÓÑ Ø Û ÓÖ Þ Ù ÓÛÝ ÓÑÔ Ð ØÓÖ Ûº ÝÑ ÓÖ Ó ÔÓ Þ

ÈÓ Þ ÓÛ Ò Æ Ò Þ Ñ Ø Ö Ý ÔÓÛ Ø Ý Ò ÔÓ Ø Û ÒÓØ Ø Ó ÔÖÓÛ ÞÓÒÝ ÔÖÞ Þ ÑÒ Ò ÔÖÞ ØÖÞ Ò Ð Ù Ð Ø ÛÝ Û Þ Ø ÓÖ ÞÝ Û ÙØÓÑ Ø Û ÓÖ Þ Ù ÓÛÝ ÓÑÔ Ð ØÓÖ Ûº ÝÑ ÓÖ Ó ÔÓ Þ ÂÞÝ ÓÖÑ ÐÒ ÙØÓÑ ØÝ Â Å Ö Ò ÃÙ ¹Ñ Ð Ù Ñ ÑÙÛº ÙºÔÐ ¾¼¼ Æ Ò Þ Ñ Ø Ö Ý ÔÓÛ ÒÒÝ Ý Ô ÖÛ ÞÝÑ õö Ñ Ò ÓÖÑ ÓØÝÞ Ý ÔÖÞ ¹ Ñ ÓØÙ ÂÞÝ ÓÖÑ ÐÒ ÙØÓÑ ØÝ  µº ÞÝØ ÐÒ ÓÑ Ø ÖÞÝ ÓÔÖ Þ Ð ØÙÖÝ ØÝ ÒÓØ ¹ Ø Ð Ý Ò Ó ÔÓ ÖÞÒ ÔÓÐ Ñ

Bardziej szczegółowo

Å Ø Ñ Ø Ø ÓÓÐ ØÓ Ý Ò ØÓÑÓÖÖÓÛ Ð Ë ÔØ Ñ Ö ½½ ¹ ½ ¾¼¼ Ø Ø È Ó Ð ÙÐØÝ Ó Ø ÓÐ ÍÒ Ú Ö ØÝ Ò ÊÙöÓÑ ÖÓ ÓÔÝÖ Ø Ý Ø È Ó Ð ÙÐØÝ Ó Ø ÓÐ ÍÒ Ú Ö ØÝ Ò ÊÙöÓÑ ÖÓ ¾¼¼ Þ

Å Ø Ñ Ø Ø ÓÓÐ ØÓ Ý Ò ØÓÑÓÖÖÓÛ Ð Ë ÔØ Ñ Ö ½½ ¹ ½ ¾¼¼ Ø Ø È Ó Ð ÙÐØÝ Ó Ø ÓÐ ÍÒ Ú Ö ØÝ Ò ÊÙöÓÑ ÖÓ ÓÔÝÖ Ø Ý Ø È Ó Ð ÙÐØÝ Ó Ø ÓÐ ÍÒ Ú Ö ØÝ Ò ÊÙöÓÑ ÖÓ ¾¼¼ Þ Ã ÌÇÄ Ã ÍÆÁÎ Ê ÁÌ Î ÊÍêÇÅ ÊÃÍ È Ç Á Ãý ÃÍÄÌ º ÖÓ Ò ÃÇÆ Ê Æ Á ÓÖ Ò ÞÓÚ Ò ÔÓ ÔÓÖÓÙ ÙÖ Ô Ó Ó ÐÒ Ó ÓÒ Ù Å Ø Ñ Ø Ú ÓÐ Ò Þ ØÖ ÓÖÒ ÔÖ Ô Ú ÓÚ ÊÙöÓÑ ÖÓ ½½º ¹ ½ º ÔØ Ñ Ö ¾¼¼ Å Ø Ñ Ø Ø ÓÓÐ ØÓ Ý Ò ØÓÑÓÖÖÓÛ Ð Ë ÔØ

Bardziej szczegółowo

Ë Ñ Ö ÞÒ ÔÓ Þ ÓÛ Ò È ÒÙ ÈÖÓ ÓÖÓÛ ÊÝ Þ Ö ÓÛ È ÖÞÝ ÑÙ Þ Ó Þ Ò ÝÞÐ ÛÓ ÓÖ Þ Û Þ Û Ù Þ ÐÓÒ Ñ ÔÓ Þ Ô Ò ÔÖ Ý

Ë Ñ Ö ÞÒ ÔÓ Þ ÓÛ Ò È ÒÙ ÈÖÓ ÓÖÓÛ ÊÝ Þ Ö ÓÛ È ÖÞÝ ÑÙ Þ Ó Þ Ò ÝÞÐ ÛÓ ÓÖ Þ Û Þ Û Ù Þ ÐÓÒ Ñ ÔÓ Þ Ô Ò ÔÖ Ý ÍÒ Û Ö ÝØ Ø Ñº Ñ Å Û Þ Û ÈÓÞÒ Ò Ù ÏÝ Þ ÞÝ Å Ö ÒØ Ê ÞÓÒ Ò Û ÐÓ ÓØÓÒÓÛÝ Û Ù ØÖ ÔÓÞ ÓÑÓÛÝ ÈÖ Ó ØÓÖ Ò Ô Ò ÔÓ ÖÙÒ Ñ ÔÖÓ º Öº º ÊÝ Þ Ö È ÖÞÝ Ó ÈÓÞÒ ¾¼½¾ Ë Ñ Ö ÞÒ ÔÓ Þ ÓÛ Ò È ÒÙ ÈÖÓ ÓÖÓÛ ÊÝ Þ Ö ÓÛ È ÖÞÝ ÑÙ Þ

Bardziej szczegółowo

Modelowanie i wizualizowanie 3W-grafiki. Transformacje. Aleksander Denisiuk. denisjuk@matman.uwm.edu.pl

Modelowanie i wizualizowanie 3W-grafiki. Transformacje. Aleksander Denisiuk. denisjuk@matman.uwm.edu.pl Modelowanie i wizualizowanie 3W-grafiki Transformacje Aleksander Denisiuk denisjuk@matman.uwm.edu.pl Uniwersytet Warmińsko-Mazurski w Olsztynie Wydział Matematyki i Informatyki ul. Słoneczna 54 10-561

Bardziej szczegółowo

ÈÓ Þ ÓÛ Ò ÈÖ Ò Þ Ó Ý Ö ÞÒ ÔÓ Þ ÓÛ Ò Û ÞÝ Ø Ñ Ó Ó ÓÑ Ø Ö ÛÓ Ñ ÒÒÝÑ ÙÛ Ñ ÔÖÞÝÞÝÒ Ý Ó Ö Ð Þ Ò Ò Þ ÖÓÞÔÖ Ûݺ ËÞÞ ÐÒ ÔÖ Ò ÔÓ¹ Þ ÓÛ ÔÖÓÑÓØÓÖÓÛ ÔÖÓ º Ï ØÓÐ Ó

ÈÓ Þ ÓÛ Ò ÈÖ Ò Þ Ó Ý Ö ÞÒ ÔÓ Þ ÓÛ Ò Û ÞÝ Ø Ñ Ó Ó ÓÑ Ø Ö ÛÓ Ñ ÒÒÝÑ ÙÛ Ñ ÔÖÞÝÞÝÒ Ý Ó Ö Ð Þ Ò Ò Þ ÖÓÞÔÖ Ûݺ ËÞÞ ÐÒ ÔÖ Ò ÔÓ¹ Þ ÓÛ ÔÖÓÑÓØÓÖÓÛ ÔÖÓ º Ï ØÓÐ Ó ÁÒ ØÝØÙØ ÈÓ Ø ÛÓÛÝ ÈÖÓ Ð Ñ Û Ì Ò ÈÓÐ Ñ Æ Ù ÃÐ Ý Ò ØÖÙÑ ÒØ Û ØÖÙÒÓÛÝ Û ÑÙÐØ Ñ ÐÒÝ Þ ÒÝ Þ ÞÞ ÐÒÝÑ ÙÛÞ Ð Ò Ò Ñ ÖØÝ ÙÐ Ô ÞÞ ØÓ Ñ Ö ÃÖÞÝ ÞØÓ ÌÝ ÙÖ ÊÓÞÔÖ Û Ó ØÓÖ Ò Ô Ò ÔÓ ÖÙÒ Ñ ÔÖÓ º Öº º Ï ØÓÐ ÃÓ Ó Ï Ö Þ Û

Bardziej szczegółowo

ρ h (x 0 ) = M h h 3 ρ(x 0 ) = lim ρ h (x 0 )

ρ h (x 0 ) = M h h 3 ρ(x 0 ) = lim ρ h (x 0 ) ÏÝ ½ ÈÓ Ø ÛÓÛ ÔÓ Ñ Ò Ó ÖÓ Ó ËÔ ØÖ ½ ÏÔÖÓÛ Þ Ò Ó Ø ÓÖ Ó ÖÓ Ó ½ ½º½ ÍÛ Ó ÔÓØ Þ Ó ÖÓ Ó º º º º º º º º º º º º º º º º º º º º º º º ½ ¾ ÈÓ ÖÙ Ù Û Ó ÖÓ Ù ÝÑ ¾ ¾º½ ÇÔ ÖÙ Ù Û ÞÑ ÒÒÝ Ä Ö Ò ³ Û ÞÑ ÒÒÝ ÙÐ Ö º

Bardziej szczegółowo

ÊÇ ÆÁÃ ÄÍ ÍËÃÁ ÌÓÑ ¾ Þº ¾ ¾¼½ ÒÒ ÙÞ ÅÍ Ã Â ÃÇ Æ Ê Á ÃË Ì ÌÇÏ ÆÁ Å áä ÆÁ Å Ì Å Ì Æ Ç Ï ÍÃ ÂÁ Á Ã Ï Û ØÐ Û Ô Þ ÒÝ ÓÒ Ô Ô Ó ÞÒÝ ÛÝ ÓÛ Ò Ø ØÝÞÒ Ñ Ò ÐÙ Û Þ

ÊÇ ÆÁÃ ÄÍ ÍËÃÁ ÌÓÑ ¾ Þº ¾ ¾¼½ ÒÒ ÙÞ ÅÍ Ã Â ÃÇ Æ Ê Á ÃË Ì ÌÇÏ ÆÁ Å áä ÆÁ Å Ì Å Ì Æ Ç Ï ÍÃ ÂÁ Á Ã Ï Û ØÐ Û Ô Þ ÒÝ ÓÒ Ô Ô Ó ÞÒÝ ÛÝ ÓÛ Ò Ø ØÝÞÒ Ñ Ò ÐÙ Û Þ ÊÇ ÆÁÃ ÄÍ ÍËÃÁ ÌÓÑ ¾ Þº ¾ ¾¼½ ÒÒ ÙÞ ÅÍ Ã Â ÃÇ Æ Ê Á ÃË Ì ÌÇÏ ÆÁ Å áä ÆÁ Å Ì Å Ì Æ Ç Ï ÍÃ ÂÁ Á Ã Ï Û ØÐ Û Ô Þ ÒÝ ÓÒ Ô Ô Ó ÞÒÝ ÛÝ ÓÛ Ò Ø ØÝÞÒ Ñ Ò ÐÙ Û Þ ØÖÓÒÒ ÓÖÑÓÛ Ò Ó Ó ÓÛÓ Þ ÓÛ º Â Ó ÒØ Ö ÐÒ Þ Ø ÛÝ ÓÛ

Bardziej szczegółowo

Ã Ø ÖÞÝÒ Â ÑÖÓÞ ÊÇ ÆÁà ÄÍ ÍËÃÁ ÌÓÑ ¾ Þº ¾ ¾¼½ ÏÈÁË ÆÁ Ï ÃÊ ÂÇ Ê Æ ÍÃÇÏ Á ÄÇÆÇ ÊËÃÁ ËÌÍ Á Á ÄÁÇÌ ÃÇ Æ Ï À ØÓÖ ÏÓ Û Þ Å Ð ÓØ ÈÙ Ð ÞÒ Ï Å Èµ Ѻ ݹ ÔÖ Ò Æ

Ã Ø ÖÞÝÒ Â ÑÖÓÞ ÊÇ ÆÁà ÄÍ ÍËÃÁ ÌÓÑ ¾ Þº ¾ ¾¼½ ÏÈÁË ÆÁ Ï ÃÊ ÂÇ Ê Æ ÍÃÇÏ Á ÄÇÆÇ ÊËÃÁ ËÌÍ Á Á ÄÁÇÌ ÃÇ Æ Ï À ØÓÖ ÏÓ Û Þ Å Ð ÓØ ÈÙ Ð ÞÒ Ï Å Èµ Ѻ ݹ ÔÖ Ò Æ Ã Ø ÖÞÝÒ Â ÑÖÓÞ ÊÇ ÆÁà ÄÍ ÍËÃÁ ÌÓÑ ¾ Þº ¾ ¾¼½ ÏÈÁË ÆÁ Ï ÃÊ ÂÇ Ê Æ ÍÃÇÏ Á ÄÇÆÇ ÊËÃÁ ËÌÍ Á Á ÄÁÇÌ ÃÇ Æ Ï À ØÓÖ ÏÓ Û Þ Å Ð ÓØ ÈÙ Ð ÞÒ Ï Å Èµ Ѻ ݹ ÔÖ Ò ÆÓÖÛ Û ÐÓÒ ÖÞ ½ Öº Ý Û Ñ ÓØÛ ÖØÓ Ô ÖÛ Þ ÔÙ Ð ÞÒ ÛÝÔÓ

Bardziej szczegółowo

Grafika Komputerowa. Metoda śledzenia promieni

Grafika Komputerowa. Metoda śledzenia promieni Grafika Komputerowa. Metoda śledzenia promieni Aleksander Denisiuk Polsko-Japońska Akademia Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045 Gdańsk Ò Ù Ô º ÙºÔÐ 1 / 30 Metoda śledzenia

Bardziej szczegółowo

t = pn T = pi ρ dv i dt = ρf i + p , i = 1, 2, 3 µ x i ρ( v i t + v v i div v = 0 ρ v + (v )v = ρf p = 0 j = ρf i p, i = 1, 2, 3 µ

t = pn T = pi ρ dv i dt = ρf i + p , i = 1, 2, 3 µ x i ρ( v i t + v v i div v = 0 ρ v + (v )v = ρf p = 0 j = ρf i p, i = 1, 2, 3 µ ÏÝ Ê ÛÒ Ò ÖÙ Ù ÞÝ Ò Ð Ô À ÒÖÝ ÃÙ Ð ËÔ ØÖ ½ Ê ÛÒ Ò ÙÐ Ö ÖÙ Ù ÞÝ Ò Ð Ô ½ ½º½ Ê ÛÒ Ò ÖÙ Ù ÞÝ Ò ÐÔ Û ÓÖÑ ÖÓÑ ¹Ä Ñ º º º º º º º º º ½º¾ Ê ÛÒ Ò À ÐÑ ÓÐÞ ØÖ Ò ÔÓÖØÙ Û ÖÓÛÓ Ð Ô ÝÒÙ Ò Ð Ô Ó º º º º º º ½º ÓÑÔÓÞÝ

Bardziej szczegółowo

Agnieszka Pr egowska

Agnieszka Pr egowska Á Ò Ø Ý Ø Ù Ø È Ó Ø Û Ó Û Ý È Ö Ó Ð Ñ Û Ì Ò È Ó Ð Ñ Æ Ù Agnieszka Pręgowska È ØÝÛÒ Ø ÖÓÛ Ò Ù Ñ Ñ Ò ÞÒÝÑ Ö ÝÑ ÖØÒ ÖÓÞÔÖ Û Ó ØÓÖ ÔÖÓÑÓØÓÖ Ö º Ò º ÌÓÑ Þ ËÞÓÐ ÔÖÓ º ÁÈÈÌ Ï Ö Þ Û ¾¼½ ËÔ ØÖ ½º Ï ØÔ ½ ¾º Ð Ø

Bardziej szczegółowo

(i) ν( ) = 0 E n ) = n

(i) ν( ) = 0 E n ) = n ÂôÖÑ Rado - Nikodym Ö ÈÖÓ Ñ ÑÒ ÑØÖ ÈÖÑ º½ Ò (X, S) Ò ÑØÖ ÑÓ ÕôÖÓ ½ µ 1, µ 2 Ò ÔÔÖ ÑÒ ÑØÖ ØÒ S ÔÒ ν : S R : µ 1 () µ 2 () ÒÓÔÓ Ø Õ (i) ν( ) = 0 (ii) Ò S Ò ÜÒ Ò Ó ØØ ν( ) = ν( ) ½µ ÈÖÑ º¾ Ò (X, S, µ) Ò ÕôÖÓ

Bardziej szczegółowo

ÃÓ Ý ÀÙ Ñ Ð ÓÖÝØÑÝ Þ Ò Ð ÓÖÝØÑÝ Þ Ò º º Ð ÓÖÝØÑ Ñ ¹Ñ Ü ÖÝ ØÝÔÙ ÛÝ Ö»ÔÖÞ Ö ÖÞ Û Æ ¹ÇÊ ÏÝ ÞÙ Û ÛÞÓÖ Û Ð ÓÖÝØÑ ÃÒÙØ ¹ÅÓÖÖ ¹ÈÖ ØØ ÈÖÞ ÞÙ Û Ö Û ÈÖÓ ÙÖÝ Ù Ó

ÃÓ Ý ÀÙ Ñ Ð ÓÖÝØÑÝ Þ Ò Ð ÓÖÝØÑÝ Þ Ò º º Ð ÓÖÝØÑ Ñ ¹Ñ Ü ÖÝ ØÝÔÙ ÛÝ Ö»ÔÖÞ Ö ÖÞ Û Æ ¹ÇÊ ÏÝ ÞÙ Û ÛÞÓÖ Û Ð ÓÖÝØÑ ÃÒÙØ ¹ÅÓÖÖ ¹ÈÖ ØØ ÈÖÞ ÞÙ Û Ö Û ÈÖÓ ÙÖÝ Ù Ó Ï ØÔ Ó ÔÖÓ Ö ÑÓÛ Å ØÓ Ý ÔÖÓ Ö ÑÓÛ ÔÓØÓ ÙÒ Ýݵ Å Ö ÃÙ ¾¼¼»¾¼½¼ ËÔ ØÖ Ï ØÔ ÈÓ Ø ÛÝ ÞÝ ÔÖÓ Ö ÑÓÛ ½ ÓÑÔÓÞÝ ÔÖÓ Ð ÑÙ Û ÖÝ ÖÓÞÛ Þ ¾ ËØÖÙ ØÙÖÝ Ý Ù ÓÛ ØÖ Þ ÔÓÑÓ Ý ÈÖÓ ÙÖÝ ÛÝ ÞÝ ÖÞ Û Ó ØÖ ÓÒ ØÖÙ ÔÖÓ Ö Ñ ØÝÞÒÝ ÅÓ

Bardziej szczegółowo