Politechnika Wrocławska Plan wykładu 1. 2D Kryształy Fotoniczne opis teoretyczny 2. Podstawowe informacje 3. Rys historyczny 4. Opis teoretyczny - optyka vs. elektronika - równania Maxwella Wydział Elektroniki Mikrosystemów i Fotoniki - krystalografia - diagramy pasmowe - metody obliczeniowe http://www-old.wemif.pwr.wroc.pl/photonicsgroup/ http://slis-wemif.blogspot.com/ 5. 2D kryształ fotoniczy 6. Kryształ fotoniczny 1D Podstawowy cel fotoniki: kontrola rozchodzenia się światła, w jednym lub więcej kierunkach, przez najdłuŝszy moŝliwy okres czasu np. światłowód włóknisty Cel wyznaczony na dzisiaj: umoŝliwienie przetwarzania danych w kompaktowych systemach przy niskich poborach mocy układy optyki zintegrowanej Kryształ fotoniczny posiada cechy, przy pomocy których moŝliwa jest realizacja postawionych zadań tranzystor optyki Kryształ fotoniczny 2D Kryształ fotoniczny 3D 1
Rys historyczny Opis teoretyczny 215 BC zniszczenie Rzymskiej floty w trakcie obrony Syrakuzy, za pomocą zwierciadeł wklesłych skupiających promienie słoneczne 1873 sformułowanie równań Maxwella 1887 praca nad strukturami periodycznymi w jednym kierunku Lord Rayleigh zwierciadło Braga Metody opisu: - algebra liniowa - równania Maxwella - twierdzenie Blocha - krystalografia - metody numeryczne (np. FDTD) 1928 twierdzenie Blocha na temat propagacji fali w periodycznym ośrodku 1970-80 początek badań nad strukturami dwuwymiarowymi 1987 Eli Yablonovitch i Sajeev John pierwsze 3D kryształy fotoniczne Optyczne zjawiska: - kryształ fotoniczny z przerwą energetyczną - super dyfrakcja - mechanizm pułapkowania optycznego Pomoce KsiąŜki: - J. D. Joannopoulos, Photonic Crystals: Molding the Flow of Light - T. Inui, Group Theory and Its Applications in Physics - M. Tinkham, Group Theory and Quantum Mechanics Programy komputerowe: - MPB - The MIT Photonic-Bands - MEEP - Maxwell's Equations for Every Person Źródła: http://ab-initio.mit.edu/ dla szerokiego spektrum wartości λ, fala jest propagowana przez kryształ bez rozpraszania rozpraszanie jest usuwane przez zjawisko interferencji jednak dla pewnych λ (~2a), światło się nie propaguje Zagadka 19-tego wieku Zagadka 19-tego wieku 2
Rozwiązanie tajemnicy Elektronika vs. Optyka elektrony to fale fale w periodycznym medium mogą rozchodzić się bez rozpraszania! rozwiązanie równania Schrödingera dla periodycznego ośrodka - twierdzenie Blocha powyŝsze załoŝenie są niezaleŝne ze względu na wybór długości fali Opis teoretyczny tzw. problem własny Równanie podstawowe : Aby wyznaczyć rozchodzenie się fali elektromagnetycznej w krysztale fotonicznym, wystarczy rozwiązać równanie podstawowe dla danego kryształu fotonicznego ε(x,y,z). W rezultacie otrzymamy rozkład pola H(x,y,z) dla określonej częstotliwości, aby wyznaczyć pole E(x,y,z) korzystamy z poniŝszego równania: Opis teoretyczny Operator własny jest operatorem hermitowskim Równania Maxwella są równaniami bezwymiarowymi. Czyli nasze równanie podstawowe jest niezaleŝne od wybranych rozmiarów. W rezultacie kiedy: ω 1 ω 2 dla H 1 i H 2 mody ortogonalne ω 1 = ω 2 dla H 1 i H 2 mody zdegenerowane! ZałóŜmy, Ŝe dla pewnego ośrodka o rozkładzie stałej dielektrycznej ε(r), znamy rozkład pola H(r) o częstotliwości ω. Jednak interesuje nas rozkład modu w ośrodku ε (r), który jest rozciągnięty lub skompresowany w stosunku do ε(r) o stałą wielkość s, czyli ε(r):ε (r)=ε(r/s). 3
Pole modu i jego częstotliwość w przeskalowanym ośrodku równe jest polu i częstotliwości w pierwotnym ośrodku przeskalowanym o parametr s Układy periodyczne Rozwiązanie równania podstawowego dla danego układu, determinuje rozwiązania dla układów przeskalowanych. Sieć odwrotna Strefa Brillouina 4
Strefa Brillouina Diagramy pasmowe Kiedy stała dielektryczna jest funkcją periodyczną, rozwiązanie równania podstawowego przyjmuje postać: W tym układzie wartością własną równania podstawowego jest dyskretna funkcja ω zaleŝna od wektora falowego:! Diagramy pasmowe JeŜeli struktura jest periodyczna we wszystkich kierunkach, czyli komórka elementarna ma skończone wymiary to operator własny jest funkcją dyskretną numerowaną kolejnymi liczbami n = 1, 2, 3... Wszystkie operatory własne ω n (k) są funkcjami ciągłymi zaleŝnymi od k tworząc tzw. strukturę pasmową struktury. Diagramy pasmowe Metody obliczeniowe Metody obliczeniowe 5
2D Kryształ Fotoniczny Jak to działa? Dlaczego 2D: - 1D najlepsze parametry osiągane tylko dla ściśle określonych kątów, - 3D oferują całkowitą przerwę energetyczną, jednak struktury bardzo skomplikowane technologicznie występuje w przyrodzie. Całkowite wewnętrzne odbicie w osi Z n w > n b - 2D to kompromis wykorzystanie technologii planarnej, ale zjawiska kryształu fotonicznego występują w 2 dwóch krytycznych kierunkach, trzeci zapewnia tylko propagację światła. Całkowite Odbicie Wewnętrzne (ang. TIR) lub 2.5D Kryształy Fotoniczne. Z X Y efekty kryształu fotonicznego w płaszczyźnie XY Dlaczego PhC? Dlaczego PhC? Kryształ Fotoniczny umoŝliwia kontrole modów optycznych, w małych objętościach V, w długim okresie czasu τ. Współczynnik F jest miarą właściwości modu określającą jak długo τ pole E-M pozostaje pod kontrolą. Dotychczas kontrola rozchodzenia się światła odbywała się przy pomocy całkowitego wewnętrznego odbicia. λ długość światła w próŝni T period oscylacji Q współczynnika dobroci modu Krystał Fotoniczny umoŝliwia projektowania układów bazujących na zupełnie innych zjawiskach. Punkty pracy Linia światła Dwa główne mody pracy: - PBG optyczna przerwa wzbroniona w kilku kierunkach - PBE slow light punkt płaskich charakterystyk, kiedy prędkość grupowa jest bliska zero 6
Wnęka defekt punktowy Światłowód Przyrządy Przyrządy PoniŜej liniiświatła PowyŜej linii światła PBG Mikro-wnęki (QED) Mikro-lasery Światłowody Filtry typu Add-drop Filtry typu drop PBE Kierunkowe filtry typu drop Mikro-lasery Super pryzmat Układy regeneracji impulsu Kompaktowe zwierciadła W pełni optyczne przełączniki Mikro lasery powierzchniowe Na następnym wykładzie Na wykładzie zostały przedstawione: opis teoretyczny propagacji światła w ośrodkach periodycznych wraz z narzędziami do analizy numerycznej powyŝszego zadania, Technologia: - elektronolitografia - holografia - nano-imprinting ( litografia miękka ) - trawienie suche RIE/ICP - trawienie jonowe FIB punkty pracy i przykładowe przyrządy bazujące na krysztale fotonicznym pracujące w określonych obszarach diagramu pasmowego. Pomiary - transmisyjne - odbiciowe Zastosowania Propozycje tematów prac dyplomowych 7