Człowiek najlepsza inwestycja FENIKS

Podobne dokumenty
4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2)

LABORATORIUM Z FIZYKI Ć W I C Z E N I E N R 2 ULTRADZWIĘKOWE FALE STOJACE - WYZNACZANIE DŁUGOŚCI FAL

Wykład FIZYKA I. 11. Fale mechaniczne. Dr hab. inż. Władysław Artur Woźniak

POMIAR PRĘDKOŚCI DŹWIĘKU METODĄ REZONANSU I METODĄ SKŁADANIA DRGAŃ WZAJEMNIE PROSTOPADŁYCH

Fal podłużna. Polaryzacja fali podłużnej

WYDZIAŁ EKOLOGII LABORATORIUM FIZYCZNE

Wyznaczanie prędkości dźwięku w powietrzu

5.1. Powstawanie i rozchodzenie się fal mechanicznych.

Imię i nazwisko ucznia Data... Klasa...

Dźwięk. Cechy dźwięku, natura światła

LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych

LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej

Podstawy fizyki wykład 7

Wyznaczanie współczynnika sprężystości sprężyn i ich układów

Badanie widma fali akustycznej

Drgania i fale sprężyste. 1/24

POMIARY OSCYLOSKOPOWE. Instrukcja wykonawcza

ZADANIE 104 WYZNACZANIE PRĘDKOŚCI DZWIĘKU METODĄ CZASU PRZELOTU

Krzysztof Łapsa Wyznaczenie prędkości fal ultradźwiękowych metodami interferencyjnymi

WYZNACZANIE PRĘDKOŚCI DŹWIĘKU METODĄ QUINCKEGO I KUNDTA

Wykład 9: Fale cz. 1. dr inż. Zbigniew Szklarski

BADANIE PODŁUŻNYCH FAL DŹWIĘKOWYCH W PRĘTACH

Wykład 9: Fale cz. 1. dr inż. Zbigniew Szklarski

Podstawy Akustyki. Drgania normalne a fale stojące Składanie fal harmonicznych: Fale akustyczne w powietrzu Efekt Dopplera

Przykładowe poziomy natężenia dźwięków występujących w środowisku człowieka: 0 db - próg słyszalności 10 db - szept 35 db - cicha muzyka 45 db -

Drania i fale. Przykład drgań. Drgająca linijka, ciało zawieszone na sprężynie, wahadło matematyczne.

Człowiek najlepsza inwestycja FENIKS

Wyznaczanie prędkości rozchodzenia się dźwięku w powietrzu i w ciele stałym

Aby nie uszkodzić głowicy dźwiękowej, nie wolno stosować amplitudy większej niż 2000 mv.

Rodzaje fal. 1. Fale mechaniczne. 2. Fale elektromagnetyczne. 3. Fale materii. dyfrakcja elektronów

Defektoskop ultradźwiękowy

TEMAT: OBSERWACJA ZJAWISKA DUDNIEŃ FAL AKUSTYCZNYCH

Fale akustyczne. Jako lokalne zaburzenie gęstości lub ciśnienia w ośrodkach posiadających gęstość i sprężystość. ciśnienie atmosferyczne

ANALIZA HARMONICZNA DŹWIĘKU SKŁADANIE DRGAŃ AKUSTYCZNYCH DUDNIENIA.

Fizyka 12. Janusz Andrzejewski

4.4 Wyznaczanie prędkości dźwięku w cieczach metodą fali biegnącej(f6)

4.4 Wyznaczanie prędkości dźwięku w cieczach metodą fali biegnącej(f6)

obszary o większej wartości zaburzenia mają ciemny odcień, a

Badanie efektu Dopplera metodą fali ultradźwiękowej

Bierne układy różniczkujące i całkujące typu RC

INSTRUKCJA LABORATORIUM Metrologia techniczna i systemy pomiarowe.

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.

Fale dźwiękowe i zjawisko dudnień. IV. Wprowadzenie.

Badanie wzmacniacza niskiej częstotliwości

BADANIE INTERFERENCJI MIKROFAL PRZY UŻYCIU INTERFEROMETRU MICHELSONA

Ćwiczenie 25. Interferencja fal akustycznych

LABORATORIUM ELEKTROTECHNIKI POMIAR PRZESUNIĘCIA FAZOWEGO

O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego

Drgania i fale zadania. Zadanie 1. Zadanie 2. Zadanie 3

Projekt efizyka. Multimedialne środowisko nauczania fizyki dla szkół ponadgimnazjalnych. Rura Kundta. Ćwiczenie wirtualne. Marcin Zaremba

1. Jeśli częstotliwość drgań ciała wynosi 10 Hz, to jego okres jest równy: 20 s, 10 s, 5 s, 0,1 s.

AKUSTYKA. Matura 2007

Mierzymy długość i szybkość fali dźwiękowej. rezonans w rurze.

Podstawy Akustyki. Drgania normalne a fale stojące Składanie fal harmonicznych: Fale akustyczne w powietrzu Efekt Dopplera.

Fale w przyrodzie - dźwięk

Celem ćwiczenia jest badanie zjawiska Dopplera dla fal dźwiękowych oraz wykorzystanie tego zjawiska do wyznaczania prędkości dźwięku w powietrzu.

E107. Bezpromieniste sprzężenie obwodów RLC

POMIARY OSCYLOSKOPOWE

SCENARIUSZ LEKCJI Z FIZYKI DLA KLASY III GIMNAZJUM. Temat lekcji: Co wiemy o drganiach i falach mechanicznych powtórzenie wiadomości.

Ć W I C Z E N I E N R M-7

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 25: Interferencja fal akustycznych. Prędkość dźwięku.

LIGA klasa 2 - styczeń 2017

Człowiek najlepsza inwestycja FENIKS

LASERY I ICH ZASTOSOWANIE

Fale dźwiękowe. Jak człowiek ocenia natężenie bodźców słuchowych? dr inż. Romuald Kędzierski

Ruch falowy. Parametry: Długość Częstotliwość Prędkość. Częstotliwość i częstość kołowa MICHAŁ MARZANTOWICZ

Podstawy fizyki sezon 1 VIII. Ruch falowy

Paweł Turkowski Zakład Fizyki, Uniwersytet Rolniczy w Krakowie Do użytku wewnętrznego ĆWICZENIE 10 POMIAR PRĘDKOŚCI DŹWIĘKU W POWIETRZU

PL B1. Sposób badania przyczepności materiałów do podłoża i układ do badania przyczepności materiałów do podłoża

4.2 Analiza fourierowska(f1)

Prowadzący: Kamil Fedus pokój nr 569 lub 2.20 COK konsultacje: środy

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego

Ćw. 20. Pomiary współczynnika załamania światła z pomiarów kąta załamania oraz kąta granicznego

Testy Która kombinacja jednostek odpowiada paskalowi? N/m, N/m s 2, kg/m s 2,N/s, kg m/s 2

I. Pomiary charakterystyk głośników

Własności dynamiczne przetworników pierwszego rzędu

Szczegółowy rozkład materiału z fizyki dla klasy II gimnazjum zgodny z nową podstawą programową.

4. Ultradźwięki Instrukcja

Imię i nazwisko ucznia Klasa Data

Fala na sprężynie. Projekt: na ZMN060G CMA Coach Projects\PTSN Coach 6\ Dźwięk\Fala na sprężynie.cma Przykład wyników: Fala na sprężynie.

Fale dźwiękowe - ich właściwości i klasyfikacja ze względu na ich częstotliwość. dr inż. Romuald Kędzierski

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 2 Badanie funkcji korelacji w przebiegach elektrycznych.

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu

LIV OLIMPIADA FIZYCZNA 2004/2005 Zawody II stopnia

Karta pracy do doświadczeń

Ćw. nr 31. Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2

Państwowa Wyższa Szkoła Zawodowa w Kaliszu

Pomiar podstawowych parametrów liniowych układów scalonych

4.7 Pomiar prędkości dźwięku w metalach metodą echa ultradźwiękowego(f9)

Podstawy fizyki sezon 1 VII. Ruch drgający

- podaje warunki konieczne do tego, by w sensie fizycznym była wykonywana praca

Zagadnienia: równanie soczewki, ogniskowa soczewki, powiększenie, geometryczna konstrukcja obrazu, działanie prostych przyrządów optycznych.

Ruch drgający. Ruch harmoniczny prosty, tłumiony i wymuszony

W tym module rozpoczniemy poznawanie właściwości fal powstających w ośrodkach sprężystych (takich jak fale dźwiękowe),

FALE W OŚRODKACH SPRĘZYSTYCH

Ć W I C Z E N I E N R M-2

SCENARIUSZ ZAJĘĆ SZKOLNEGO KOŁA NAUKOWEGO Z PRZEDMIOTU FIZYKA PROWADZONEGO W RAMACH PROJEKTU AKADEMIA UCZNIOWSKA

Rozważania rozpoczniemy od fal elektromagnetycznych w próżni. Dla próżni równania Maxwella w tzw. postaci różniczkowej są następujące:

Ćwiczenie nr 25: Interferencja fal akustycznych

Komplet Leybold do pokazu zjawiska powstawania fal

Transkrypt:

FENIKS - długofalowy program odbudowy, popularyzacji i wspomagania fizyki w szkołach w celu rozwijania podstawowych kompetencji naukowo-technicznych, matematycznych i informatycznych uczniów Pracownia Fizyczna ćwiczenie PF-5 Wyznaczanie prędkości dźwięku metodą fali biegnącej dr Monika Marzec Instytut Fizyki im. Mariana Smoluchowskiego Uniwersytet Jagielloński Wersja 1.06.2009 Zawarte w tym opracowaniu materiały przeznaczone są do wspomagania pracy nauczycieli i uczniów w czasie zajęć pozalekcyjnych w szkołach biorących udział w projekcie edukacyjnym FENIKS. Mają na celu ułatwienie przygotowania do zajęć laboratoryjnych w I Pracowni Fizycznej IF UJ. http://feniks.ujk.kielce.pl/ feniks@th.if.uj.edu.pl

PF-5 Wyznaczanie prędkości dźwięku metodą fali biegnącej Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z obsługą oscyloskopu i wyznaczenie prędkości dźwięku w wodzie metodą fali biegnącej. Zagadnienia do przygotowania fale w ośrodkach sprężystych; fale dźwiękowe fale poprzeczne i podłużne drgania harmoniczne, składanie drgań harmonicznych - krzywe Lissajous pomiar prędkości dźwięku metodą fali biegnącej zasada działania i obsługa oscyloskopu Wprowadzenie Fale biegnące w ośrodku sprężystym W wyniku wychylenia jakiegoś elementu objętości ośrodka sprężystego z położenia równowagi następują jego drgania (harmoniczne) wokół tego położenia. Dzięki sprężystym właściwościom ośrodka drgania te przekazywane są do dalszych jego części. Falą biegnącą nazywamy podłużną falę zagęszczeń i rozrzedzeń ośrodka, mogącą się rozchodzić w ciałach stałych, ciekłych i gazowych. Taką falę opisuje równanie: y = A cos (t kx) (1) gdzie = 2 f jest tzw. częstością kołową a f częstością, natomiast k nazywane liczba falową definiuje się poprzez długość fali : k = 2 / (2) Prędkość rozchodzenia się fali w danym ośrodku u zależy od własności ośrodka, w którym rozchodzi się fala i związana jest następującym wzorem z jej długością fali oraz częstością f: u = f (3) Częstość fali f zadawana jest przez wytwarzające falę źródło i równa jest odwrotności jej okresu T: f = 1/T (4) Z rozchodzeniem się fali w ośrodku sprężystym wiąże się przenoszenie energii przez drgające cząstki (dzięki propagacji zaburzenia w materii), nie powodując jednakże ruchu postępowego ośrodka, w którym rozchodzi się fala. Fale poprzeczne i podłużne Rodzaj fal rozchodzących się w danym ośrodku zależy od jego właściwości sprężystych, gdyż rozchodzą się tylko te drgania, które wywołują sprężyste odkształcenia ośrodka. Gdy cząstki ośrodka wykonują drgania w kierunku zgodnym z kierunkiem rozchodzenia się fali mówimy,

że w ośrodku rozchodzi się fala podłużna, a gdy cząstki ośrodka wykonują drgania w kierunkach prostopadłych do kierunku rozchodzenia się fali mówimy o fali poprzecznej. W ośrodkach wykazujących jedynie sprężystość objętości (gazy i większość cieczy), mogą rozchodzić się tylko fale podłużne. Natomiast w ośrodkach ulegających zarówno odkształceniu objętościowemu, jak i odkształceniu postaci, a takie właściwości mają ciała stałe, mogą rozchodzić się zarówno fale podłużne, jak i poprzeczne. Fala dźwiękowa i ultradźwięki Fala dźwiękowa jest podłużną falą mechaniczną o częstotliwości z zakresu słyszalnego przez człowieka tj. od ok. 20 Hz do ok. 20 khz. Fale o częstotliwości wyższej nazywamy ultradźwiękami, a niższej infradźwiękami. Prędkość rozchodzenia się fal mechanicznych w cieczach Prędkość rozchodzenia się fal mechanicznych w cieczach zależy od ciśnienia, temperatury i gęstości ośrodka. Dla większości cieczy czystych zależność prędkości rozchodzenia się w nich ultradźwięków od temperatury i ciśnienia jest z dobrym przybliżeniem liniowa. W przypadku roztworów i mieszanin, prędkość rozchodzenia się w nich fali ultradźwiękowej jest zależna od stężenia. Dla małych stężeń soli (do ok. 25%) zależność ta jest liniowa. W przypadku wodnych roztworów kwasów zakres liniowości jest ograniczony do znacznie niższych stężeń. Przetworniki ultradźwiękowe Przetworniki ultradźwiękowe przetwarzają energię elektryczną, świetlną lub mechaniczną na energię fali ultradźwiękowej lub odwrotnie, mogą więc służyć zarówno do generowania jak i detekcji ultradźwięków. Najwygodniejsze w użyciu i najbardziej efektywne są ultradźwiękowe przetworniki piezoelektryczne, w których wykorzystywane jest zjawisko piezoelektryczne, polegające na tym, że pewne kryształy umieszczone w polu elektrycznym doznają odkształceń mechanicznych zależnych od kierunku pola elektrycznego. Z kolei odkształcenie mechaniczne takiego kryształu powoduje wytworzenie na jego powierzchni ładunku elektrycznego. Najbardziej znanym kryształem piezoelektrycznym jest kwarc. Stosowane są również przetworniki magnetostrykcyjne, elektromechaniczne i mechaniczne. Oscyloskop Oscyloskop jest jednym z podstawowych przyrządów diagnostycznych i pomiarowych. Można go spotkać nie tylko w laboratoriach badawczych fizyków, chemików czy biologów, ale także w szpitalach i przychodniach. Znajduje zastosowanie wszędzie tam, gdzie zachodzi potrzeba pomiaru czy kontroli przebiegu napięć elektrycznych w czasie. Dzięki istnieniu tzw. przetworników, czyli urządzeń przetwarzających mierzone wielkości fizyczne (np. ciśnienie czy temperaturę) na napięcie, zakres zastosowań oscyloskopu jest bardzo szeroki. Jest on podstawowym wyposażeniem większości laboratoriów. Podstawową funkcją oscyloskopu jest wyświetlanie na ekranie zależności napięcia sygnału elektrycznego od czasu. W typowym zastosowaniu pozioma oś X reprezentuje czas (t), a pionowa oś Y reprezentuje napięcie (V) jest to obserwacja pojedynczego przebiegu. Można także jednocześnie prowadzić obserwację, porównywać oraz dodawać lub odejmować dwa niezależne sygnały podawane na kanały 1 i 2 jest to obserwacja dwu przebiegów, przy wykorzystaniu dwu kanałów. Inny tryb

pracy oscyloskopu, wykorzystujący dwa kanały, pozwala na obserwację krzywych Lissajous jest to tryb pracy X-Y, w którym generator sygnału podstawy czasu jest nieużywany. Opis zasady działania oscyloskopu oraz wygląd jego płyty czołowej, zainteresowani mogą znaleźć w dodatku do ćwiczenia. Krzywe Lissajous Krzywe Lissajous, zwane też figurami Lissajous, są krzywymi matematycznymi opisanymi równaniami parametrycznymi: x(t) = Asin(t) (5) y(t) = Bsin(t + ) (6) Równania te opisują drgania harmoniczne. Kształt krzywych Lissajous zależy od stosunku / oraz wartości. W ogólnym przypadku dla / = 1 otrzymamy elipsę, która dla =0 przechodzi w odcinek, natomiast dla A=B i =/2 w koło. Przy innej wartości współczynnika / otrzymuje się bardziej złożone figury, które są krzywymi zamkniętymi dla stosunku / będącego liczba wymierną. Przykładowe krzywe Lissajous przedstawione są w Tabeli poniżej. Krzywe Lissajous / 1 /2, 3/2 1 0,, 2 1/2 3/2 3/4 0, /2,, 3/2, 2 0, /2,, 3/2, 2 0, /2,, 3/2, 2 Krzywe Lissajous można obserwować na oscyloskopie podając na płytki odchylania poziomego X drganie harmoniczne opisane równaniem (5) a na płytki odchylania pionowego Y drganie opisane równaniem (6). Metoda pomiarowa W warunkach laboratoryjnych, pomiaru prędkości rozchodzenia się fali akustycznej w płynie (gazie lub cieczy) dokonać można metodą fali biegnącej. Schemat układu do pomiaru prędkości dźwięku metodą fali biegnącej przedstawiony jest na rys. 1. Sygnał z generatora akustycznego podawany jest na płytki odchylania poziomego oscyloskopu oraz na głośnik.

Emitowaną przez głośnik falę dźwiękową mikrofon przetwarza na sygnał elektryczny, który po wzmocnieniu podawany jest na płytki odchylania pionowego oscyloskopu. Odległość mikrofon-głośnik można zmieniać przesuwając mikrofon. głowica odbiorcza głowica nadawcza Rys. 1. Schemat układu do pomiaru prędkości dźwięku metodą fali biegnącej. Zmieniając położenie mikrofonu zmieniamy różnicę faz tych sygnałów. Na ekranie oscyloskopu obserwować będziemy zmianę kształtu krzywej Lissajous, która powstaje w wyniku złożenia w/w sygnałów (rys. 2). Rys. 2. Krzywe Lissajous obserwowane na ekranie oscyloskopu w zależności od odległości głośnik-mikrofon. Różnica faz pomiędzy dwoma skrajnymi odcinkami wynosi, co odpowiada różnicy długości fali /2. Przy przesuwaniu mikrofonu o jedną długość fali elipsa dwukrotnie degeneruje się do odcinka (różnica faz sygnałów składowych wynosi wtedy 0 lub π, co odpowiada różnicy długości fali lub /2). Pozwala to na wyznaczenie długości badanej fali dźwiękowej. Układ pomiarowy do pomiaru prędkości dźwięku w wodzie W skład układu doświadczalnego wchodzą: - generator ultradźwięków - przetworniki ultradźwiękowe - oscyloskop - śruba mikrometryczna - woda destylowana Schemat układu do pomiaru prędkości dźwięku metodą fali biegnącej przedstawiony jest na rys. 1 (rolę głośnika i mikrofonu pełnią przetworniki ultradźwiękowe: głowica nadawcza i odbiorcza). Głowicę odbiorczą przesuwa się za pomocą śruby mikrometrycznej. Metoda posługiwania się śrubą mikrometryczną jest opisana w dodatku do ćwiczenia.

Przebieg doświadczenia 1. Zapoznaj się z oscyloskopem. 2. Podłącz sygnał z generatora ultradźwięków na jedno z wejść oscyloskopu. 3. Odczytaj przy różnych wzmocnieniach amplitudę A obserwowanego na oscyloskopie sygnału. Zwróć uwagę na dokładność odczytu. 4. Odczytaj przy różnych podstawach czasu okres T obserwowanego na oscyloskopie sygnału. Zwróć uwagę na dokładność odczytu. 5. Zapoznaj się z zestawem eksperymentalnym i parametrami poszczególnych przyrządów. Zapoznaj się z działaniem śruby mikrometrycznej (patrz dodatek do ćwiczenia). 6. Połącz obwód eksperymentalny zgodnie ze schematem (rys. 1). 7. Naczyńko nad przetwornikiem napełnij wodą destylowaną. 8. Częstość generatora ultradźwięków wybierz z zakresu 1.0-2.5 MHz. Odczytaj okres sygnału z generatora ultradźwięków na oscyloskopie. 9. Przy pomocy śruby mikrometrycznej przesuwaj górny przetwornik tak, aby uzyskane na ekranie oscyloskopu krzywe Lissajous były odcinkami. Odczytaj i zapisz te położenia śruby mikrometrycznej. Pomiary wykonaj kilkukrotnie, wybierając inne częstości z zakresu 1 2.5 MHz. Wskazówki do opracowania wyników 1. Na podstawie wykonanych pomiarów położeń mikrofonu wyznacz długości badanych fal dźwiękowych. 2. Oszacuj niepewności pomiarowe wyznaczenia długości i okresu badanych fal dźwiękowych. 3. Wykonaj wykres T i metodą regresji liniowej wyznacz wartość prędkości dźwięku w wodzie oraz jej niepewność. 4. Zgodnie z wzorami (3) i (4) długość fali wiąże się z jej okresem przez równanie: = u/f = ut. 5. Porównaj uzyskany wynik z dostępnymi danymi literaturowymi (u = 1490 m/s w temperaturze 20 C, przy ciśnieniu normalnym 1 atm. =101325 Pa) LITERATURA: [1] Dodatek do ćwiczenia [2] David Holliday, Robert Resnick: Fizyka tom I ( 15,19,20) [3] Tadeusz Dryński: Ćwiczenia laboratoryjne z fizyki. [4] Henryk Szydłowski: Pracownia fizyczna 18.0-18.1A, Wydawnictwo Naukowe PWN, Warszawa 1997 lub 1999