Wnioskowanie_Statystyczne_-_wykład Spis treści 1 Centralne Twierdzenie Graniczne 1.1 Twierdzenie Lindeberga Levy'ego 1.2 Dowód 1.2.1 funkcja tworząca sumy zmiennych niezależnych 1.2.2 pochodna funkcji tworzącej 1.2.3 związek pochodnej funkcji tworzącej z momentami zmiennej losowej 1.2.4 transformata Fouriera funkcji Gaussa 1.2.5 Wróćmy do dowodu Centralne Twierdzenie Graniczne Rozkład Gaussa pełni w statystyce bardzo znaczącą rolę ze względu na Centralne Twierdzenie Graniczne, według którego rozkład sumy dużej liczby zmiennych losowych o podobnych wielkościach [1] dąży (przy liczbie sumowanych zmiennych dążących do nieskończoności) do rozkładu Gaussa. Poniżej przytoczymy dowód tego twierdzenia dla uproszczonego przypadku sumy zmiennych pochodzących z tego samego rozkładu. [2] Twierdzenie Lindeberga Levy'ego Zakładamy, że są niezależnymi zmiennymi podlegającymi (dowolnemu) rozkładowi o skończonej wartości oczekiwanej i wariancji. Dla, wielkość podlega rozkładowi normalnemu o wartości średniej 0 i wariancji 1. Dowód W dowodzie skorzystamy z pojęcia funkcji tworzącej (charakterystycznej) rozkładu. Dla zmiennej losowej jest to wartość oczekiwana wyrażenia, gdzie. Dla rozkładów ciągłych jest to transformata Fouriera funkcji gęstości prawdopodobieństwa : Użyteczne będą poniższe związki, które wyprowadzić można bezpośrednio z definicji:
funkcja tworząca sumy zmiennych niezależnych Dla niezależnych zmiennych i : Dowód: pochodna funkcji tworzącej Bezpośrednio z definicji (różniczkujemy po, więc przy każdym różniczkowaniu spada nam z wykładnika, zostaje pod całką a jako stała wychodzi przed całkę) widać, że: związek pochodnej funkcji tworzącej z momentami zmiennej losowej -ta pochodna funkcji tworzącej w zerze (czyli dla ) wynosi transformata Fouriera funkcji Gaussa Funkcja tworząca rozkładu normalnego o wartości oczekiwanej 0 i jednostkowej wariancji będzie miała postać ponieważ funkcja jest antysymetryczna, druga całka znika. Dostajemy
Dla części symetrycznej znajdujemy w tablicach całkę oznaczoną po wymnożeniu przez 2 i podstawieniu i dostajemy czyli W analizie sygnałów wynik ten będzie oznaczał, że transformacja Fouriera funkcji Gaussa jest funkcją Gaussa. Wróćmy do dowodu interesuje nas suma zmiennych o wartości oczekiwanej i wariancji. Funkcję tworzącą dla jednej zmiennej możemy rozwinąć w szereg Taylora wokół. Rozpatrzmy zmienną przesuniętą względem o i przeskalowaną czynnikiem : Pzypomnijmy (4) ; wynika stąd, że,, a, czyli funkcja tworząca rozwinięta w szereg Taylora (5) będzie miała postać
Korzystając ze wzoru (2) możemy przedstawić pierwsze wyrazy rozwinięcia Taylora sumy, odpowiadającej transformacji (1) z dowodzonego twierdzenia, jako iloczyn funkcji tworzących (6): Przy przejściu z dostajemy do nieskończoności (i konsekwentnym pomijaniu wyrazów wyższego rzędu) czyli funkcję tworzącą rozkładu normalnego, bo Ilustracja działania Centralnego Twierdzenia Granicznego. Zmienną bierzemy z rozkładu równomiernego, kolejne histogramy przedstawiają sumę 2, 3 i 4 zmiennych dla \mbox{10 000} losowań. Widać dużą zgodność z dopasowanym rozkładem normalnym (ciągła linia) już dla niewielu sumowanych zmiennych. Rysunek 1 ilustruje powyższe twierdzenie dla przypadku sumy zmiennych pochodzących z rozkładu równomiernego. Jak widać, już dla sumy 3 zmiennych rozkład wydaje się bardzo podobny do normalnego. Niestety, często istotne bywają różnice w,,ogonach, czyli dla wartości bardzo dużych lub bardzo małych. Otóż według wzoru wartości gęstości prawdopodobieństwa rozkładu normalnego dążą do zera dla dużych wartości bezwzględnych zmiennej asymptotycznie, lecz zera faktycznie nie osiągają. Inaczej mówiąc, prawdopodobieństwo wylosowania dowolnie dużej wartości z rozkładu Gaussa będzie małe, ale nie zerowe. Za to suma np. czterech zmiennych z rozkładu równomiernego od zera do jedynki (prawy dolny wykres rys. 1) nie przekroczy nigdy wartości 4, czyli prawdopodobieństwo dla będzie dokładnie zerem. I choć w skali rysunku 1 efekt ten jest
prawie niewidoczny, warto pamiętać, że testy oparte na założeniu normalności rozkładów często operują właśnie w okolicach tych "ogonów", gdzie przybliżenie rozkładu normalnego, uzyskane za pomocą tej prostej procedury, zawodzi. 1. Chodzi o to, aby żadna ze zmiennych w tej sumie nie dominowała nad innymi. 2. Dokładniejsze sformułowania Twierdzenia można znaleźć np. w książce "Probabilistyka. Rachunek Prawdopodobieństwa. Statystyka matematyczna. Procesy stochastyczne" Agnieszki i Edmunda Plucińskich.