Doc. dr inż. Jacek Jarnicki Niezawodność diagnostyka systemów laboratorium 1. Zajęcia wprowadzające treść ćwiczenia Informacje wstępne, cel zajęć, organizacja zajęć, materiały dydaktyczne, sprawozdania, kryteria zaliczenia. Krótkie szkolenie BHP. System Matlab ogólna charakterystyka, prezentacja możliwości. Napisanie prostego programu (rysowanie wykresu funkcji). Elementarne informacje o pakiecie statystycznym. 2. Najprostszy program rysujący wykres funkcji jednej zmiennej Uruchomić system Matlab. Wybrać folder, w którym zapisywane będą tworzone programy. Wykonać sekwencję poleceń File, New, M-file (otwarte zostanie w ten sposób okno edytora programu). Skopiować do okna edytora niżej podany przykładowy program. Wykonując polecenie SaveAs zapisać program pod unikalną nazwą (w wybranym uprzednio folderze powstanie w ten sposób plik tekstowy wybrana_nazaw.m) Zminimalizować okno edytora. W oknie głównym systemu Matlab wpisać nazwę utworzonego programu (pominąć rozszerzenie.m) i nacisnąć klawisz Enter
Przykładowy program: x = 0: 0.05: 5; % Utworzenie tablicy liczb o nazwie x w postaci % [0.0, 0.05, 0.1,..., 4.95, 5.00 ](liczby od 0 do % 5.00 narastające z krokiem 0.05) y = sin(x.^2); % Utworzenie tablicy liczb y, której elementami są % kwadraty sinusów liczb z tablicy x plot(x,y); % Narysowanie wykresu reprezentującego zbiór punktów % o współrzędnych opisanych parami liczb z tablic x i y Uruchomić program i zaobserwować efekt jego działania. Dokonać kilku drobnych modyfikacji programu i sprawdzić ich rezultaty: o Usunąć średniki kończące linie programu. o W tablicy x zmienić krok (0.05) na inny i sprawdzić jak wtedy wygląda wykres funkcji. o Zmienić funkcję sin(x 2 ) na inną (można skorzystać z pliku pomocy). o Odszukać w pliku pomocy opis funkcji plot(x,y) i spróbować zmodyfikować wykres np. przez zmianę koloru linii. o Zwrócić uwagę na znaczenie notacji x.^2, występującej w argumencie funkcji sinus. 3. Pakiet funkcji statystycznych ( Statistics toolbox ) Pakiet zawiera różne funkcj przydatne w analizie statystycznej. Pogrupowane zostały one następująco:
The Statistics Toolbox s Main Categories of Functions Probability Descriptive Plots SPC Probability distribution functions. Descriptive statistics for data samples. Statistical plots. Statistical Process Control. est s Analysis Grouping items with similar characteristics into clusters. Linear Nonlinear DOE PCA Hypotheses File I/O Demos Data Fitting linear models to data. Fitting nonlinear regression models. Design of Experiments. Principal Components Analysis. Statistical test of hypotheses. Reading data from and writing data to operating-system files. Demonstrations. Data for examples. Dla przykładu, w pierwszej grupie funkcji Probability distribution functions, czyli funkcje rozkładów prawdopodobieństwa, znajdują się między innymi funkcje służące do obliczania wartości rozkładu gęstości prawdopodobieństwa, dla różnych znanych z literatury rozkładów: Probability Density Functions (pdf) betapdf binopdf chi2pdf exppdf fpdf gampdf geopdf hygepdf Beta pdf. Binomial pdf. Chi-square pdf. Exponential pdf. F pdf. Gamma pdf. Geometric pdf. Hypergeometric pdf.
normpdf lognpdf nbinpdf ncfpdf nctpdf ncx2pdf pdf Normal (Gaussian) pdf. Lognormal pdf. Negative binomial pdf. Noncentral F pdf. Noncentral t pdf. Noncentral Chi-square pdf. Parameterized pdf routine. poisspdf Poisson pdf. raylpdf tpdf unidpdf unifpdf weibpdf Rayleigh pdf. Student's t pdf. Discrete uniform pdf. Continuous uniform pdf. Weibull pdf. 4. Przykłady zastosowania funkcji statystycznych z pakietu Statistics toolbox Przykład 1 Należy napisać program rysujący wykres funkcji gęstości rozkładu normalnego opisanej wzorem y 1 f ( x µ, σ ) = exp σ 2π 2 ( x µ ) = 2 2σ dla parametrów µ = 0 i σ = 1. Program można napisać używając bezpośrednio języka systemu Matlab przy pomocy elementarnych funkcji matematycznych dostępnych w pakiecie, bądź z
wykorzystaniem funkcji pakietu statystycznego. W drugim przypadku program przyjmuje postać: x = -5: 0.05: 5; % Utworzenie tablicy liczb o nazwie x liczby od -5.0 do % 5.00 narastające z krokiem 0.05). y = normpdf( x, 0, 1); % Utworzenie tablicy liczb y, której elementami są % wartości funkcji gęstości rozkładu normalnego dla % argumentów z tablicy x. % Funkcja normpdf( x, mu, sigma) oblicza wartość gęstości % w punkcie x dla parametrów µ i σ. plot(x,y); % Narysowanie wykresu reprezentującego zbiór punktów % o współrzędnych opisanych parami liczb z tablic x i y Przykład 2 Trzeba przy pomocy odpowiedniego generatora liczb losowych, wygenerować 100 liczb będących realizacjami zmiennej losowej o rozkładzie normalnym z parametrami µ = 0 i σ = 1, a następnie przedstawić otrzymane dane na wykresie zwanym histogramem. Program, który realizuje to zadanie wygląda tak: x = normrnd(0, 1, 1, 100); % Wylosowanie 100 liczb i utworzenie tablicy o nazwie % x zawierającej wyniki losowania % Funkcja normrnd( mu, sigma, n, m) jest generatorem % zmiennej losowej o rozkładzie normalnym hist(x); % Narysowanie histogramu dla danych umieszczonych % w tablicy x Przeprowadzić prosty eksperyment polegający na zmianie liczby wylosowanych danych (ostatni argument funkcji normrnd( ), patrz system Help) i zmianie liczby słupków histogramu (dodatkowy parametr w funkcji hist( ), patrz system Help).
Narysować histogram danych posługując się regułą : gdzie k = m k liczba słupków histogramu, m liczba prezentowanych danych Sprawdzić jak wygląda histogram, gdy zastosuje się inny generator liczb losowych, na przykład generator zmiennej losowej o rozkładzie wykładniczym, czy Weibulla.