author: Andrzej Dudek

Wielkość: px
Rozpocząć pokaz od strony:

Download "author: Andrzej Dudek"

Transkrypt

1 Edytor wprowadzone polecenia zostają w oknie edytora I mogą być uruchamiana poprzez CTRL+R lub Run (tylko zaznaczone linie, z wyświetlaniem wykonywanych linii kodu) lub poprzez Source (zawsze całość, bez wyświetlania linii kodu, jedynie wyświetlane są informacje wprost określone przez funkcję print) Środowisko zmienne, w których pamiętane są dane podczas pracy, polecenie dostosowanego importu Wiersz poleceń polecenia wydawane w tym oknie znikają (powrót do nich jest możliwy poprzez nawigację strzałkami góra i dół). To okno przypomina czyste środowisko R Narzędzie (zainstalowane pakiety, przeglądanie I ładowanie plików, wykresy, okienko pomocy) 1

2 Zainstaluj programy R I R Studio RCMDR (R na skróty ) 1. Zainstaluj przy pomocy RStudio pakiet clustersim 2. Wykonaj polecenia: library(clustersim) windows() plot(cluster.gen(numobjects = 50,model=4)$data,col=rep(rainbow(3),each=50)) Obejrzyj wyniki działania poleceń 3. Zainstaluj i uruchom nakładkę RCMDR 4. Załaduj dane Salaries z pakietu car 1

3 5. Obejrzyj zbiór danych, przejdź do edycji (nie zapisując zmian) 6. Stwórz histogram zmiennej salary 2

4 Co możemy powiedzić o rozkładzie zmiennej? 7. Stwórz wykres rozrzutu (punktowy) zmiennych salary i yrs.service 8. Zmień ręcznie długość osi x od 0 do (xlim) 9. Zmień ręcznie długość osi y od 10 do 30 (ylim) zwóć uwagę, że wykres się nie mieści 10. Zmień kolor, symbol punktów i rozmiar (col, pch,cex) 11. Ustal inne parametry wykresu poprzez okno konfiguracyjne, włącz identyfikację punktów 3

5 12. Utwórz wykres punktowy macierzowy dla wszystkich trzech zmiennych metrycznych, określ, dla których z nich wykres wskazuje na wysoką wartość współczynnika korelacji 13. Zwróć uwagę, że każdemu poleceniu odpowiadają instrukcje języka R 14. Z modyfikuj polecenie, żeby każdy punt wykresu był narysowany innym kolorem plot(as.matrix(cbind(salaries$salary,salaries$yrs.service,salaries$yrs.since.phd)), reg.line=false, smooth=false, spread=false, span=0.5, ellipse=false, levels=c(.5,.9), id.n=0, col=rainbow(100)) 15. Stwórz wykres słupkowy wg stanowisk i wykres kołowy wg płci 16. Oblicz podstawowe statystyki dla zbiory poprzez dane podsumowania, podsumowania numeryczne (z opcjami kurtoza i skośność). Zinterpetuj wyniki 17. Pokaż średnią pensję w zależności od płci (Statystyki podsumowania, tabela statystyk). Zwróć uwagę na zapis polecenia obliczenia statystyk w rozbiciu na grupy w języku R 18. Oblicz wspóczynniki korelacji pomiędzy salary, yrs.service, yrs.since.phd, porównaj wyniki z wnioskami z punktu Zbadaj normalność każdej ze zmiennych, zinterpretuj p-wartości testu Shapiro-Wilka 20. Stwórz tablicę kontyngencji płci z rodzajem pracy badawczej oraz płci ze stanowiskiem, ziterpretuj p-wartości testu chi-kwadrat 21. Przeprowadź test t-studenta niezależnych prób dla zmiennych płeć i wynagrodzenie, zinterpretuj wyniki 22. Zwróć uwagi że zmiennej stopień (rank) nie było na liście do wyboru testu niezależnych prób (dlaczego?) Przeprowadź dla tej zmiennej i zmiennej salary analizę wariancji (ANOVA) 23. Stwórz model regresji zmiennej salary w zależności od pozostałych zmiennych, zinterpretuj wyniki Zaimportuj plik tekstowy innowacyjnoscue_rcmd.csv jako nowy plik danych pakietu RCMDR - obejrzyj dane 4

6 - oblicz podstawowe statystyki dla wszystkich zmiennych: średnie, odchylenie standardowe, błąd standardowy średniej, rozstęp ćwiartkowy, kurtozę i kwartyle - oblicz macierz korelacji Pearson a i Spearmana pomiędzy poszczególnymi zmiennymi - zbadaj testem Shapiro Wilka normalność rozkładu pierwszej zmiennej - stwórz trzy dowolne wykresy dla tego zbioru danych - podziel zbiór innowacyjnoscue na trzy klasy metodą k-średnich. 25. Zobacz spróbuj uruchomić przykłady dotyczące serwera shiny 26. Rozpakuj plik mds-opt.zip, zobacz strukturę katalogów oraz ich zawartość Rozpakuj archiwum z pliku mapy.zip (plik na stronie wgrit.ae.jgora.pl/ad). Uruchom plik wybory2015 z wynikami wyborów Uruchom plik dolnoslskie.r, zobacz średnią liczbę zachorowań na choroby serca na 100 osób Uruchom plik 5 powiatów, zobacz samą mapę powiatu śremskiego i okolic, Stwórz mapę swojej okolicy Wyświetl dane dotyczące rozwodów na mapie Polski Wyświetl dowolne dane z BDL na poziomie powiatów dla wybranego województwa Zobacz spróbuj uruchomić przykłady dotyczące Jeżeli starczy czasu dodatkowe pliki do ćwiczeń znajdują się na stronie wgrit.ae.jgora.pl/ad 5

author: Andrzej Dudek

author: Andrzej Dudek Edytor wprowadzone polecenia zostają w oknie edytora I mogą być uruchamiana poprzez CTRL+R lub Run (tylko zaznaczone linie, z wyświetlaniem wykonywanych linii kodu) lub poprzez Source (zawsze całość, bez

Bardziej szczegółowo

Testowanie hipotez dla dwóch zmiennych zależnych. Moc testu. Minimalna liczność próby; Regresja prosta; Korelacja Pearsona;

Testowanie hipotez dla dwóch zmiennych zależnych. Moc testu. Minimalna liczność próby; Regresja prosta; Korelacja Pearsona; LABORATORIUM 4 Testowanie hipotez dla dwóch zmiennych zależnych. Moc testu. Minimalna liczność próby; Regresja prosta; Korelacja Pearsona; dwie zmienne zależne mierzalne małe próby duże próby rozkład normalny

Bardziej szczegółowo

2. Wprowadzenie do oprogramowania gretl. Podstawowe operacje na danych.

2. Wprowadzenie do oprogramowania gretl. Podstawowe operacje na danych. Laboratorium z ekonometrii (GRETL) 2. Wprowadzenie do oprogramowania gretl. Podstawowe operacje na danych. 2.1 Zaimportuj dane z pliku zatrudnienie.csv z przecinkiem jako separatorem danych i kropką jako

Bardziej szczegółowo

Jak sprawdzić normalność rozkładu w teście dla prób zależnych?

Jak sprawdzić normalność rozkładu w teście dla prób zależnych? Jak sprawdzić normalność rozkładu w teście dla prób zależnych? W pliku zalezne_10.sta znajdują się dwie zmienne: czasu biegu przed rozpoczęciem cyklu treningowego (zmienna 1) oraz czasu biegu po zakończeniu

Bardziej szczegółowo

INFORMATYKA W SELEKCJI

INFORMATYKA W SELEKCJI INFORMATYKA W SELEKCJI INFORMATYKA W SELEKCJI - zagadnienia 1. Dane w pracy hodowlanej praca z dużym zbiorem danych (Excel) 2. Podstawy pracy z relacyjną bazą danych w programie MS Access 3. Systemy statystyczne

Bardziej szczegółowo

Badanie zależności skala nominalna

Badanie zależności skala nominalna Badanie zależności skala nominalna I. Jak kształtuje się zależność miedzy płcią a wykształceniem? II. Jak kształtuje się zależność między płcią a otyłością (opis BMI)? III. Jak kształtuje się zależność

Bardziej szczegółowo

Stochastyczne Metody Analizy Danych. PROJEKT: Analiza kluczowych parametrów turbin wiatrowych

Stochastyczne Metody Analizy Danych. PROJEKT: Analiza kluczowych parametrów turbin wiatrowych PROJEKT: Analiza kluczowych parametrów turbin wiatrowych Projekt jest wykonywany z wykorzystaniem pakietu statystycznego STATISTICA. Praca odbywa się w grupach 2-3 osobowych. Aby zaliczyć projekt, należy

Bardziej szczegółowo

Podstawy statystyki matematycznej w programie R

Podstawy statystyki matematycznej w programie R Podstawy statystyki matematycznej w programie R Piotr Ćwiakowski Wydział Fizyki Uniwersytetu Warszawskiego Zajęcia 1. Wprowadzenie 1 marca 2017 r. Program R Wprowadzenie do R i badań statystycznych podstawowe

Bardziej szczegółowo

Ankieta. Informacje o uczestniku. Imię i nazwisko: Stanowisko : Warsztat Innowacyjne metody dydaktyczne (np. learning by doing, design thinking)

Ankieta. Informacje o uczestniku. Imię i nazwisko: Stanowisko : Warsztat Innowacyjne metody dydaktyczne (np. learning by doing, design thinking) Szanowni Państwo, w związku z uruchomieniem szkoleń w ramach projektu Rozwój kompetencji kadry akademickiej Wyższej Szkoły Menedżerskiej zwracamy się z prośbą o wypełnienie niniejszej ankiety. Ankieta

Bardziej szczegółowo

LABORATORIUM 3. Jeśli p α, to hipotezę zerową odrzucamy Jeśli p > α, to nie mamy podstaw do odrzucenia hipotezy zerowej

LABORATORIUM 3. Jeśli p α, to hipotezę zerową odrzucamy Jeśli p > α, to nie mamy podstaw do odrzucenia hipotezy zerowej LABORATORIUM 3 Przygotowanie pliku (nazwy zmiennych, export plików.xlsx, selekcja przypadków); Graficzna prezentacja danych: Histogramy (skategoryzowane) i 3-wymiarowe; Wykresy ramka wąsy; Wykresy powierzchniowe;

Bardziej szczegółowo

ZARZĄDZANIE DANYMI W STATISTICA

ZARZĄDZANIE DANYMI W STATISTICA Wprowadzenie do STATISTICA Krzysztof Regulski AGH, WIMiIP ZARZĄDZANIE DANYMI W STATISTICA 1) Zastosowanie: STATISTICA umożliwia w zakresie zarządzania danymi m.in.: scalanie plików sprawdzanie danych sortowanie

Bardziej szczegółowo

STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE

STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE 1 W trakcie badania obliczono wartości średniej (15,4), mediany (13,6) oraz dominanty (10,0). Określ typ asymetrii rozkładu. 2 Wymień 3 cechy rozkładu Gauss

Bardziej szczegółowo

Metody eksploracji danych Laboratorium 1. Weka + Python + regresja

Metody eksploracji danych Laboratorium 1. Weka + Python + regresja Metody eksploracji danych Laboratorium 1 Weka + Python + regresja Zasoby Cel Metody eksploracji danych Weka (gdzieś na dysku) Środowisko dla języka Python (Spyder, Jupyter, gdzieś na dysku) Zbiory danych

Bardziej szczegółowo

Statystyki opisowe i szeregi rozdzielcze

Statystyki opisowe i szeregi rozdzielcze Statystyki opisowe i szeregi rozdzielcze - ćwiczenia ĆWICZENIA Piotr Ciskowski ramka-wąsy przykład 1. krwinki czerwone Stanisz W eksperymencie farmakologicznym analizowano oddziaływanie pewnego preparatu

Bardziej szczegółowo

Ćwiczenie: Wybrane zagadnienia z korelacji i regresji.

Ćwiczenie: Wybrane zagadnienia z korelacji i regresji. Ćwiczenie: Wybrane zagadnienia z korelacji i regresji. W statystyce stopień zależności między cechami można wyrazić wg następującej skali: Skala Guillforda Przedział Zależność Współczynnik [0,00±0,20)

Bardziej szczegółowo

1. Wprowadzenie do oprogramowania gretl. Wprowadzanie danych.

1. Wprowadzenie do oprogramowania gretl. Wprowadzanie danych. Laboratorium z ekonometrii (GRETL) 1. Wprowadzenie do oprogramowania gretl. Wprowadzanie danych. Okno startowe: Póki nie wczytamy jakiejś bazy danych (lub nie stworzymy własnej), mamy dostęp tylko do dwóch

Bardziej szczegółowo

SZKOLENIE WPROWADZENIE DO R UNIWERSYTET SZCZECIŃSKI al. Papieża Jana Pawła II nr 22a Szczecin

SZKOLENIE WPROWADZENIE DO R UNIWERSYTET SZCZECIŃSKI al. Papieża Jana Pawła II nr 22a Szczecin SZKOLENIE WPROWADZENIE DO R UNIWERSYTET SZCZECIŃSKI al. Papieża Jana Pawła II nr 22a 70-453 Szczecin 2 Lp. Temat Numer części materiałów 1 Język R oraz środowisko RStudio 1 2 Składnia języka 3 3 Podstawowe

Bardziej szczegółowo

ZJAZD 4. gdzie E(x) jest wartością oczekiwaną x

ZJAZD 4. gdzie E(x) jest wartością oczekiwaną x ZJAZD 4 KORELACJA, BADANIE NIEZALEŻNOŚCI, ANALIZA REGRESJI Analiza korelacji i regresji jest działem statystyki zajmującym się badaniem zależności i związków pomiędzy rozkładami dwu lub więcej badanych

Bardziej szczegółowo

Xi B ni B

Xi B ni B Zadania ze statystyki cz.2 I rok Socjologii lic. Zadanie 1 Ustal dla danych zawartych w tabelach poniżej, prezentujących rozkład liczebności (ni) różnej wielkości gospodarstw domowych w dwóch populacjach,

Bardziej szczegółowo

Satysfakcja z życia rodziców dzieci niepełnosprawnych intelektualnie

Satysfakcja z życia rodziców dzieci niepełnosprawnych intelektualnie Satysfakcja z życia rodziców dzieci niepełnosprawnych intelektualnie Zadanie Zbadano satysfakcję z życia w skali 1 do 10 w dwóch grupach rodziców: a) Rodzice dzieci zdrowych oraz b) Rodzice dzieci z niepełnosprawnością

Bardziej szczegółowo

Wprowadzenie do analizy dyskryminacyjnej

Wprowadzenie do analizy dyskryminacyjnej Wprowadzenie do analizy dyskryminacyjnej Analiza dyskryminacyjna to zespół metod statystycznych używanych w celu znalezienia funkcji dyskryminacyjnej, która możliwie najlepiej charakteryzuje bądź rozdziela

Bardziej szczegółowo

Webowy interfejs - Shiny

Webowy interfejs - Shiny Webowy interfejs - Shiny Przygotowanie danych 1. Uruchom RStudio. 2. Ustaw swój Working Directory używając polecenia setwd(. setwd("f:/inazwisko" 3. Wykorzystaj dane, które zostały przygotowane w podobny

Bardziej szczegółowo

Otwórz R. Zmień katalog roboczy za pomocą File/Change Dir. Wczytaj plik przypisując go obiektowi o nazwie students:

Otwórz R. Zmień katalog roboczy za pomocą File/Change Dir. Wczytaj plik przypisując go obiektowi o nazwie students: 1. Wczytywanie danych do programu R Otwórz R. Zmień katalog roboczy za pomocą File/Change Dir. Wczytaj plik przypisując go obiektowi o nazwie students: > students

Bardziej szczegółowo

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie:

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie: ma postać y = ax + b Równanie regresji liniowej By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : xy b = a = b lub x Gdzie: xy = też a = x = ( b ) i to dane empiryczne, a ilość

Bardziej szczegółowo

Spis treści. Księgarnia PWN: Bruce M. King, Edward W. Minium - Statystyka dla psychologów i pedagogów. Wstęp Wprowadzenie...

Spis treści. Księgarnia PWN: Bruce M. King, Edward W. Minium - Statystyka dla psychologów i pedagogów. Wstęp Wprowadzenie... Księgarnia PWN: Bruce M. King, Edward W. Minium - Statystyka dla psychologów i pedagogów Wstęp... 13 1. Wprowadzenie... 19 1.1. Statystyka opisowa.................................. 21 1.2. Wnioskowanie

Bardziej szczegółowo

Założenia do analizy wariancji. dr Anna Rajfura Kat. Doświadczalnictwa i Bioinformatyki SGGW

Założenia do analizy wariancji. dr Anna Rajfura Kat. Doświadczalnictwa i Bioinformatyki SGGW Założenia do analizy wariancji dr Anna Rajfura Kat. Doświadczalnictwa i Bioinformatyki SGGW anna_rajfura@sggw.pl Zagadnienia 1. Normalność rozkładu cechy Testy: chi-kwadrat zgodności, Shapiro-Wilka, Kołmogorowa-Smirnowa

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

Podstawowe operacje i rodzaje analiz dostępne w pakiecie Statistica

Podstawowe operacje i rodzaje analiz dostępne w pakiecie Statistica Podstawowe operacje i rodzaje analiz dostępne w pakiecie Statistica 1. Zarządzanie danymi. Pierwszą czynnością w pracy z pakietem Statistica jest zazwyczaj wprowadzenie danych do arkusza. Oprócz możliwości

Bardziej szczegółowo

Ekonometria. Regresja liniowa, współczynnik zmienności, współczynnik korelacji liniowej, współczynnik korelacji wielorakiej

Ekonometria. Regresja liniowa, współczynnik zmienności, współczynnik korelacji liniowej, współczynnik korelacji wielorakiej Regresja liniowa, współczynnik zmienności, współczynnik korelacji liniowej, współczynnik korelacji wielorakiej Paweł Cibis pawel@cibis.pl 23 lutego 2007 1 Regresja liniowa 2 wzory funkcje 3 Korelacja liniowa

Bardziej szczegółowo

Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski

Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Zadanie 1 Eksploracja (EXAMINE) Informacja o analizowanych danych Obserwacje Uwzględnione Wykluczone Ogółem

Bardziej szczegółowo

Analiza Statystyczna

Analiza Statystyczna Lekcja 5. Strona 1 z 12 Analiza Statystyczna Do analizy statystycznej wykorzystać można wbudowany w MS Excel pakiet Analysis Toolpak. Jest on instalowany w programie Excel jako pakiet dodatkowy. Oznacza

Bardziej szczegółowo

Inżynieria biomedyczna, I rok, semestr letni 2014/2015 Analiza danych pomiarowych. Laboratorium VIII: Analiza kanoniczna

Inżynieria biomedyczna, I rok, semestr letni 2014/2015 Analiza danych pomiarowych. Laboratorium VIII: Analiza kanoniczna 1 Laboratorium VIII: Analiza kanoniczna Spis treści Laboratorium VIII: Analiza kanoniczna... 1 Wiadomości ogólne... 2 1. Wstęp teoretyczny.... 2 Przykład... 2 Podstawowe pojęcia... 2 Założenia analizy

Bardziej szczegółowo

Jest to program stworzony z myślą o nauczycielach, wykładowcach, trenerach i prezenterach.

Jest to program stworzony z myślą o nauczycielach, wykładowcach, trenerach i prezenterach. Czym jest system InteractivOS? Jest to program stworzony z myślą o nauczycielach, wykładowcach, trenerach i prezenterach. Aplikacja ta pozwala na szybkie zebranie opinii uczestników lekcji, wykładu prezentacji

Bardziej szczegółowo

e) Oszacuj parametry modelu za pomocą MNK. Zapisz postać modelu po oszacowaniu wraz z błędami szacunku.

e) Oszacuj parametry modelu za pomocą MNK. Zapisz postać modelu po oszacowaniu wraz z błędami szacunku. Zajęcia 4. Estymacja i weryfikacja modelu model potęgowy Wersja rozszerzona W pliku Funkcja produkcji.xls zostały przygotowane przykładowe dane o produkcji, kapitale i zatrudnieniu dla 27 przedsiębiorstw

Bardziej szczegółowo

W statystyce stopień zależności między cechami można wyrazić wg następującej skali: n 1

W statystyce stopień zależności między cechami można wyrazić wg następującej skali: n 1 Temat: Wybrane zagadnienia z korelacji i regresji W statystyce stopień zależności między cechami można wyrazić wg następującej skali: Skala Guillforda Przedział Zależność Współczynnik [0,00 0,20) Słaba

Bardziej szczegółowo

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...

Bardziej szczegółowo

I jest narzędziem służącym do porównywania rozproszenia dwóch zmiennych. Używamy go tylko, gdy pomiędzy zmiennymi istnieje logiczny związek

I jest narzędziem służącym do porównywania rozproszenia dwóch zmiennych. Używamy go tylko, gdy pomiędzy zmiennymi istnieje logiczny związek ZADANIA statystyka opisowa i CTG 1. Dokonano pomiaru stężenia jonów azotanowych w wodzie μg/ml 1 0.51 0.51 0.51 0.50 0.51 0.49 0.52 0.53 0.50 0.47 0.51 0.52 0.53 0.48 0.59 0.50 0.52 0.49 0.49 0.50 0.49

Bardziej szczegółowo

Usługi Informatyczne "SZANSA" - Gabriela Ciszyńska-Matuszek ul. Świerkowa 25, Bielsko-Biała

Usługi Informatyczne SZANSA - Gabriela Ciszyńska-Matuszek ul. Świerkowa 25, Bielsko-Biała Usługi Informatyczne "SZANSA" - Gabriela Ciszyńska-Matuszek ul. Świerkowa 25, 43-305 Bielsko-Biała NIP 937-22-97-52 tel. +48 33 488 89 39 zwcad@zwcad.pl www.zwcad.pl Aplikacja do rysowania wykresów i oznaczania

Bardziej szczegółowo

PODSTAWOWE ANALIZY I WIZUALIZACJA Z WYKORZYSTANIEM MAP W STATISTICA

PODSTAWOWE ANALIZY I WIZUALIZACJA Z WYKORZYSTANIEM MAP W STATISTICA PODSTAWOWE ANALIZY I WIZUALIZACJA Z WYKORZYSTANIEM MAP W STATISTICA Krzysztof Suwada, StatSoft Polska Sp. z o.o. Wstęp Wiele różnych analiz dotyczy danych opisujących wielkości charakterystyczne bądź silnie

Bardziej szczegółowo

STATYSTYKA POWTORZENIE. Dr Wioleta Drobik-Czwarno

STATYSTYKA POWTORZENIE. Dr Wioleta Drobik-Czwarno STATYSTYKA POWTORZENIE Dr Wioleta Drobik-Czwarno Populacja Próba Parametry EX, µ Statystyki średnia D 2 X, δ 2 S 2 wnioskowanie DX, δ p ρ S w r...... JAK POWSTAJE MODEL MATEMATYCZNY Dane eksperymentalne

Bardziej szczegółowo

KNIME podstawy obsługi programu. Pracownia Chemometrii Środowiska Katedra Chemii i Radiochemii Środowiska Wydział Chemii UG

KNIME podstawy obsługi programu. Pracownia Chemometrii Środowiska Katedra Chemii i Radiochemii Środowiska Wydział Chemii UG KNIME podstawy obsługi programu Pracownia Chemometrii Środowiska Katedra Chemii i Radiochemii Środowiska Wydział Chemii UG KNIME KNIME jest programem działającym na licencji GNU można go pobrać za darmo

Bardziej szczegółowo

Analizy wariancji ANOVA (analysis of variance)

Analizy wariancji ANOVA (analysis of variance) ANOVA Analizy wariancji ANOVA (analysis of variance) jest to metoda równoczesnego badania istotności różnic między wieloma średnimi z prób pochodzących z wielu populacji (grup). Model jednoczynnikowy analiza

Bardziej szczegółowo

Ć w i c z e n i e 3 : W i z u a l i z a c j a d a n y c h - w y k r e s y S t r o n a 1

Ć w i c z e n i e 3 : W i z u a l i z a c j a d a n y c h - w y k r e s y S t r o n a 1 Ć w i c z e n i e 3 : W i z u a l i z a c j a d a n y c h - w y k r e s y S t r o n a 1 Zadanie 1. Tworzenie wykresów zmiennych jakościowych wyrażonych w skali nominalnej i porządkowej. Utworzyć wykres

Bardziej szczegółowo

Laboratorium - Monitorowanie i zarządzanie zasobami systemu Windows 7

Laboratorium - Monitorowanie i zarządzanie zasobami systemu Windows 7 5.0 5.3.3.5 Laboratorium - Monitorowanie i zarządzanie zasobami systemu Windows 7 Wprowadzenie Wydrukuj i uzupełnij to laboratorium. W tym laboratorium, będziesz korzystać z narzędzi administracyjnych

Bardziej szczegółowo

Skumulowane wykresy słupkowe: pokazują zależności zachodzące między indywidualnymi elementami i całością.

Skumulowane wykresy słupkowe: pokazują zależności zachodzące między indywidualnymi elementami i całością. Tworzenie wykresu Wykresy są bardzo atrakcyjne pod względem wizualnym, ponieważ pozwalają użytkownikom w łatwy sposób porównywać dane, wzorce i trendy. Na przykład, zamiast analizować dane umieszczone

Bardziej szczegółowo

Liczba godzin Punkty ECTS Sposób zaliczenia. ćwiczenia 30 zaliczenie z oceną. laboratoria 30 zaliczenie z oceną

Liczba godzin Punkty ECTS Sposób zaliczenia. ćwiczenia 30 zaliczenie z oceną. laboratoria 30 zaliczenie z oceną Wydział: Psychologia Nazwa kierunku kształcenia: Psychologia Rodzaj przedmiotu: podstawowy Opiekun: dr Andrzej Tarłowski Poziom studiów (I lub II stopnia): Jednolite magisterskie Tryb studiów: Stacjonarne

Bardziej szczegółowo

MapInfo Professional - 5

MapInfo Professional - 5 Analiza danych na mapach tematycznych Mapy tematyczne to narzędzie do analizy i wizualizacji danych. Rozkłady i trendy, które trudno zauważyć na wykazach danych można łatwo wyśledzić na mapach tematycznych.

Bardziej szczegółowo

Ćwiczenie: Wprowadzenie do obsługi programu statystycznego SAS Enterprise Guide. Statystyka opisowa w SAS Enterprise Guide.

Ćwiczenie: Wprowadzenie do obsługi programu statystycznego SAS Enterprise Guide. Statystyka opisowa w SAS Enterprise Guide. Ćwiczenie: Wprowadzenie do obsługi programu statystycznego SAS Enterprise Guide. Statystyka opisowa w SAS Enterprise Guide. 1. Załóż we własnym folderze podfolder o nazwie cw2 i przekopiuj do niego plik

Bardziej szczegółowo

Spis treści. LaboratoriumV: Podstawy korelacji i regresji. Inżynieria biomedyczna, I rok, semestr letni 2014/2015 Analiza danych pomiarowych

Spis treści. LaboratoriumV: Podstawy korelacji i regresji. Inżynieria biomedyczna, I rok, semestr letni 2014/2015 Analiza danych pomiarowych 1 LaboratoriumV: Podstawy korelacji i regresji Spis treści Laboratorium V: Podstawy korelacji i regresji...1 Wiadomości ogólne...2 1. Wstęp teoretyczny....2 1.1 Korelacja....2 1.2 Funkcja regresji....5

Bardziej szczegółowo

Instalacja Pakietu R

Instalacja Pakietu R Instalacja Pakietu R www.r-project.org wybór źródła wybór systemu operacyjnego: Download R for Windows opcja: install R for the first time opcja: Download R 3.3.3 for Windows uruchomienie R-3.3.3-win MAGDA

Bardziej szczegółowo

INFORMATYKA W SELEKCJI

INFORMATYKA W SELEKCJI INFORMATYKA W SELEKCJI INFORMATYKA W SELEKCJI - zagadnienia 1. Dane w pracy hodowlanej praca z dużym zbiorem danych (Excel) 2. Podstawy pracy z relacyjną bazą danych w programie MS Access 3. Systemy statystyczne

Bardziej szczegółowo

Gimnastyka artystyczna

Gimnastyka artystyczna Gimnastyka artystyczna Zbadano losową próbę N=40 dziewcząt i chłopców z klas o profilu ogólnym i sportowym pod kątem ich ogólnej sprawności fizycznej ocenianej na skali Hirscha (od 0 do 20 pkt.), gdzie

Bardziej szczegółowo

Przykład 2. Na podstawie książki J. Kowal: Metody statystyczne w badaniach sondażowych rynku

Przykład 2. Na podstawie książki J. Kowal: Metody statystyczne w badaniach sondażowych rynku Przykład 2 Na podstawie książki J. Kowal: Metody statystyczne w badaniach sondażowych rynku Sondaż sieciowy analiza wyników badania sondażowego dotyczącego motywacji w drodze do sukcesu Cel badania: uzyskanie

Bardziej szczegółowo

Ćwiczenie komputerowe 2 testy t-studenta. Program Statistica

Ćwiczenie komputerowe 2 testy t-studenta. Program Statistica Ćwiczenie komputerowe testy t-studenta. Program Statistica Test t-studenta dla par. Przykład Podsumowanie:roznica: =przed-po K-S d=.69, p>.; Lilliefors p>. Shapiro-Wilk W=.98, p=. Wykres normalności: roznica

Bardziej szczegółowo

b) Umiejętność wykonania analizy zależności zmiennych i interpretacji uzyskanych wyników.

b) Umiejętność wykonania analizy zależności zmiennych i interpretacji uzyskanych wyników. Cele: a) Umiejętność przeprowadzenia analizy struktury wybranego zbioru obserwacji Obliczanie miar tendencji centralnych, miar rozproszenia, współczynnika skośności i miary spłaszczenia z wykorzystaniem

Bardziej szczegółowo

Szkolenie dla nauczycieli SP10 w DG Operacje na plikach i folderach, obsługa edytora tekstu ABC. komputera dla nauczyciela. Materiały pomocnicze

Szkolenie dla nauczycieli SP10 w DG Operacje na plikach i folderach, obsługa edytora tekstu ABC. komputera dla nauczyciela. Materiały pomocnicze ABC komputera dla nauczyciela Materiały pomocnicze 1. Czego się nauczysz? Uruchamianie i zamykanie systemu: jak zalogować się do systemu po uruchomieniu komputera, jak tymczasowo zablokować komputer w

Bardziej szczegółowo

Ćwiczenie: Wprowadzenie do obsługi programu statystycznego SAS Enterprise Guide. Podstawowa charakterystyka statystyczna

Ćwiczenie: Wprowadzenie do obsługi programu statystycznego SAS Enterprise Guide. Podstawowa charakterystyka statystyczna Ćwiczenie: Wprowadzenie do obsługi programu statystycznego SAS Enterprise Guide. Podstawowa charakterystyka statystyczna 1. Załóż we własnym folderze podfolder o nazwie cw2 i przekopiuj do niego plik babulice100.xls

Bardziej szczegółowo

Instrukcja obsługi programu Do-Exp

Instrukcja obsługi programu Do-Exp Instrukcja obsługi programu Do-Exp Autor: Wojciech Stark. Program został utworzony w ramach pracy dyplomowej na Wydziale Chemicznym Politechniki Warszawskiej. Instrukcja dotyczy programu Do-Exp w wersji

Bardziej szczegółowo

Przewodnik Szybki start

Przewodnik Szybki start Przewodnik Szybki start Program Microsoft Access 2013 wygląda inaczej niż wcześniejsze wersje, dlatego przygotowaliśmy ten przewodnik, aby skrócić czas nauki jego obsługi. Zmienianie rozmiaru ekranu lub

Bardziej szczegółowo

Inżynieria Środowiska. II stopień ogólnoakademicki. przedmiot podstawowy obowiązkowy polski drugi. semestr zimowy

Inżynieria Środowiska. II stopień ogólnoakademicki. przedmiot podstawowy obowiązkowy polski drugi. semestr zimowy Załącznik nr 7 do Zarządzenia Rektora nr../12 z dnia.... 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2017/2018 STATYSTYKA

Bardziej szczegółowo

PLUTO Sterownik bezpieczeństwa Skrócona Instrukcja obsługi oprogramowania. PlutoProgrammingManualPL_v7A.pdf 1

PLUTO Sterownik bezpieczeństwa Skrócona Instrukcja obsługi oprogramowania. PlutoProgrammingManualPL_v7A.pdf 1 PLUTO Sterownik bezpieczeństwa Skrócona Instrukcja obsługi oprogramowania PlutoProgrammingManualPL_v7A.pdf 1 www.jokabsafety.com Spis treści 1. Instalacja oprogramowania 3 2. Podłączenie do komputera..5

Bardziej szczegółowo

Na komputerach z systemem Windows XP zdarzenia są rejestrowane w trzech następujących dziennikach: Dziennik aplikacji

Na komputerach z systemem Windows XP zdarzenia są rejestrowane w trzech następujących dziennikach: Dziennik aplikacji Podgląd zdarzeń W systemie Windows XP zdarzenie to każde istotne wystąpienie w systemie lub programie, które wymaga powiadomienia użytkownika lub dodania wpisu do dziennika. Usługa Dziennik zdarzeń rejestruje

Bardziej szczegółowo

Typy zmiennych. Zmienne i rekordy. Rodzaje zmiennych. Graficzne reprezentacje danych Statystyki opisowe

Typy zmiennych. Zmienne i rekordy. Rodzaje zmiennych. Graficzne reprezentacje danych Statystyki opisowe Typy zmiennych Graficzne reprezentacje danych Statystyki opisowe Jakościowe charakterystyka przyjmuje kilka możliwych wartości, które definiują klasy Porządkowe: odpowiedzi na pytania w ankiecie ; nigdy,

Bardziej szczegółowo

4.Arkusz kalkulacyjny Calc

4.Arkusz kalkulacyjny Calc 4.Arkusz kalkulacyjny Calc 4.1. Okno programu Calc Arkusz kalkulacyjny Calc jest zawarty w bezpłatnym pakiecie OpenOffice.org 2.4. Można go uruchomić, podobnie jak inne aplikacje tego środowiska, wybierając

Bardziej szczegółowo

ρ siła związku korelacyjnego brak słaba średnia silna bardzo silna

ρ siła związku korelacyjnego brak słaba średnia silna bardzo silna Ćwiczenie 4 ANALIZA KORELACJI, BADANIE NIEZALEŻNOŚCI Analiza korelacji jest działem statystyki zajmującym się badaniem zależności pomiędzy rozkładami dwu lub więcej badanych cech w populacji generalnej.

Bardziej szczegółowo

Ćwiczenie 6. Wiadomości ogólne.

Ćwiczenie 6. Wiadomości ogólne. Ćwiczenie 6. Cel ćwiczenia: zapoznanie się z obsługą i konfiguracją X Windows. W systemie Linux można korzystać także z interfejsu graficznego do obsługi komputera X Windows. Wiadomości ogólne. KDE czyli

Bardziej szczegółowo

Laboratorium - Monitorowanie i zarządzanie zasobami systemu Windows XP

Laboratorium - Monitorowanie i zarządzanie zasobami systemu Windows XP 5.0 5.3.3.7 Laboratorium - Monitorowanie i zarządzanie zasobami systemu Windows XP Wprowadzenie Wydrukuj i uzupełnij to laboratorium. W tym laboratorium, będziesz korzystać z narzędzi administracyjnych

Bardziej szczegółowo

e-podręcznik dla seniora... i nie tylko.

e-podręcznik dla seniora... i nie tylko. Pliki i foldery Czym są pliki? Plik to w komputerowej terminologii pewien zbiór danych. W zależności od TYPU pliku może to być: obraz (np. zdjęcie z imienin, rysunek) tekst (np. opowiadanie) dźwięk (np.

Bardziej szczegółowo

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego

Bardziej szczegółowo

Statystyka. Wykład 4. Magdalena Alama-Bućko. 13 marca Magdalena Alama-Bućko Statystyka 13 marca / 41

Statystyka. Wykład 4. Magdalena Alama-Bućko. 13 marca Magdalena Alama-Bućko Statystyka 13 marca / 41 Statystyka Wykład 4 Magdalena Alama-Bućko 13 marca 2017 Magdalena Alama-Bućko Statystyka 13 marca 2017 1 / 41 Na poprzednim wykładzie omówiliśmy następujace miary rozproszenia: Wariancja - to średnia arytmetyczna

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA Zadanie 0.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 0 4 p k 1/3 1/6 1/ obliczyć EX, D X. (odp. 4/3;

Bardziej szczegółowo

MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ

MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ Opracowała: Milena Suliga Wszystkie pliki pomocnicze wymienione w treści

Bardziej szczegółowo

INSTRUKCJA OBSŁUGI PROGRAMU REJESTRACJI I AKWIZYCJI DANYCH REJESTRATOR 9.2

INSTRUKCJA OBSŁUGI PROGRAMU REJESTRACJI I AKWIZYCJI DANYCH REJESTRATOR 9.2 INSTRUKCJA OBSŁUGI PROGRAMU REJESTRACJI I AKWIZYCJI DANYCH REJESTRATOR 9.2 PC THERM AUTOMATYKA PRZEMYSŁOWA Systemy Kontroli Dostępu i Rejestracji Czasu Pracy Al. Komisji Edukacji Narodowej 21 02-797 Warszawa

Bardziej szczegółowo

Statystyka w zarzadzaniu / Amir D. Aczel, Jayavel Sounderpandian. Wydanie 2. Warszawa, Spis treści

Statystyka w zarzadzaniu / Amir D. Aczel, Jayavel Sounderpandian. Wydanie 2. Warszawa, Spis treści Statystyka w zarzadzaniu / Amir D. Aczel, Jayavel Sounderpandian. Wydanie 2. Warszawa, 2018 Spis treści Przedmowa 13 O Autorach 15 Przedmowa od Tłumacza 17 1. Wprowadzenie i statystyka opisowa 19 1.1.

Bardziej szczegółowo

Laboratorium nr Wyznaczyć podstawowe statystyki (średnia, mediana, IQR, min, max) dla próby:

Laboratorium nr Wyznaczyć podstawowe statystyki (średnia, mediana, IQR, min, max) dla próby: Laboratorium nr 1 CZĘŚĆ I : STATYSTYKA OPISOWA : 1. Wyznaczyć podstawowe statystyki (średnia, mediana, IQR, min, max) dla próby: 6,9,1,2,5,2,6,2,1,0,1,4,5,6,3,7,3,2,2,3,8,5,3,4,8,0,8,0,5,1,6,4,8,0,3,2

Bardziej szczegółowo

AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT. Instrukcja do zajęc laboratoryjnych nr 1 AUTOMATYZACJA I ROBOTYZACJA PROCESÓW PRODUKCYJNYCH

AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT. Instrukcja do zajęc laboratoryjnych nr 1 AUTOMATYZACJA I ROBOTYZACJA PROCESÓW PRODUKCYJNYCH AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT Instrukcja do zajęc laboratoryjnych nr 1 AUTOMATYZACJA I ROBOTYZACJA PROCESÓW PRODUKCYJNYCH II rok Kierunek Logistyka Temat: Zajęcia wprowadzające. BHP stanowisk

Bardziej szczegółowo

Przedmowa Wykaz symboli Litery alfabetu greckiego wykorzystywane w podręczniku Symbole wykorzystywane w zagadnieniach teorii

Przedmowa Wykaz symboli Litery alfabetu greckiego wykorzystywane w podręczniku Symbole wykorzystywane w zagadnieniach teorii SPIS TREŚCI Przedmowa... 11 Wykaz symboli... 15 Litery alfabetu greckiego wykorzystywane w podręczniku... 15 Symbole wykorzystywane w zagadnieniach teorii mnogości (rachunku zbiorów)... 16 Symbole stosowane

Bardziej szczegółowo

Zadanie 1. a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1

Zadanie 1. a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1 Zadanie 1 a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1 b) W naszym przypadku populacja są inżynierowie w Tajlandii. Czy można jednak przypuszczać, że na zarobki kobiet-inżynierów

Bardziej szczegółowo

Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2012/2013

Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2012/2013 Krakowska Akademia im. Andrzeja Frycza Modrzewskiego Karta przedmiotu obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2012/201 WydziałPsychologii i Nauk Humanistycznych Kierunek studiów:

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 5 Analiza współzależności ZADANIE DOMOWE. Strona 1

KURS STATYSTYKA. Lekcja 5 Analiza współzależności ZADANIE DOMOWE.  Strona 1 KURS STATYSTYKA Lekcja 5 Analiza współzależności ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 W analizie współzależności a) badamy

Bardziej szczegółowo

Pomiary urodzeń według płci noworodka i województwa.podział na miasto i wieś.

Pomiary urodzeń według płci noworodka i województwa.podział na miasto i wieś. Pomiary urodzeń według płci noworodka i województwa.podział na miasto i wieś. Województwo Urodzenia według płci noworodka i województwa. ; Rok 2008; POLSKA Ogółem Miasta Wieś Pozamałżeńskie- Miasta Pozamałżeńskie-

Bardziej szczegółowo

Zadanie Tworzenie próbki z rozkładu logarytmiczno normalnego LN(5, 2) Plot Probability Distributions

Zadanie Tworzenie próbki z rozkładu logarytmiczno normalnego LN(5, 2) Plot Probability Distributions Zadanie 1. 1 Wygenerować 200 elementowa próbkę z rozkładu logarytmiczno-normalnego o parametrach LN(5,2). Utworzyć dla tej próbki: - szereg rozdzielczy - histogramy liczebności i częstości - histogramy

Bardziej szczegółowo

Skrypt 7. Funkcje. Opracowanie: L1

Skrypt 7. Funkcje. Opracowanie: L1 Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 7 Funkcje 8. Miejsce zerowe

Bardziej szczegółowo

Wstęp 5 Rozdział 1. Instalacja systemu 13. Rozdział 2. Logowanie i wylogowywanie 21 Rozdział 3. Pulpit i foldery 25. Rozdział 4.

Wstęp 5 Rozdział 1. Instalacja systemu 13. Rozdział 2. Logowanie i wylogowywanie 21 Rozdział 3. Pulpit i foldery 25. Rozdział 4. Wstęp 5 Rozdział 1. Instalacja systemu 13 Uruchamianie Ubuntu 14 Rozdział 2. Logowanie i wylogowywanie 21 Rozdział 3. Pulpit i foldery 25 Uruchamianie aplikacji 25 Skróty do programów 28 Preferowane aplikacje

Bardziej szczegółowo

Program współpracuje z : Windows XP, Powerdraft 2004, v8, XM, Microstation 2004, v8, XM.

Program współpracuje z : Windows XP, Powerdraft 2004, v8, XM, Microstation 2004, v8, XM. Spis treści 1. Informacje ogólne. Wstęp. Wymagania programu. 2. Sposób uruchomienia programu. Uruchomienie poprzez menu microstation. Uruchomienie z menu start. 3. Działanie programu. Zakładka import.

Bardziej szczegółowo

Rysunek 8. Rysunek 9.

Rysunek 8. Rysunek 9. Ad 2. Dodatek Excel Add-Ins for Operations Management/Industral Engineering został opracowany przez Paul A. Jensen na uniwersytecie w Teksasie. Dodatek można pobrać ze strony http://www.ormm.net. Po rozpakowaniu

Bardziej szczegółowo

Importowanie danych do SPSS Eksportowanie rezultatów do formatu MS Word... 22

Importowanie danych do SPSS Eksportowanie rezultatów do formatu MS Word... 22 Spis treści Przedmowa do wydania pierwszego.... 11 Przedmowa do wydania drugiego.... 15 Wykaz symboli.... 17 Litery alfabetu greckiego wykorzystywane w podręczniku.... 17 Symbole wykorzystywane w zagadnieniach

Bardziej szczegółowo

Zadanie 8. Dołączanie obiektów

Zadanie 8. Dołączanie obiektów Zadanie 8. Dołączanie obiektów Edytor Word umożliwia dołączanie do dokumentów różnych obiektów. Mogą to być gotowe obiekty graficzne z galerii klipów, równania, obrazy ze skanera lub aparatu cyfrowego.

Bardziej szczegółowo

Ekonometria. Regresja liniowa, współczynnik zmienności, współczynnik korelacji, współczynnik korelacji wielorakiej. Paweł Cibis

Ekonometria. Regresja liniowa, współczynnik zmienności, współczynnik korelacji, współczynnik korelacji wielorakiej. Paweł Cibis Regresja liniowa, współczynnik zmienności, współczynnik korelacji, współczynnik korelacji wielorakiej Paweł Cibis pcibis@o2.pl 9 marca 2006 1 Regresja liniowa 2 wzory funkcje 3 Korelacja liniowa wzory

Bardziej szczegółowo

LINIOWOŚĆ METODY OZNACZANIA ZAWARTOŚCI SUBSTANCJI NA PRZYKŁADZIE CHROMATOGRAFU

LINIOWOŚĆ METODY OZNACZANIA ZAWARTOŚCI SUBSTANCJI NA PRZYKŁADZIE CHROMATOGRAFU LINIOWOŚĆ METODY OZNACZANIA ZAWARTOŚCI SUBSTANCJI NA PRZYKŁADZIE CHROMATOGRAFU Tomasz Demski, StatSoft Polska Sp. z o.o. Wprowadzenie Jednym z elementów walidacji metod pomiarowych jest sprawdzenie liniowości

Bardziej szczegółowo

Zadanie 1. Stosowanie stylów

Zadanie 1. Stosowanie stylów Zadanie 1. Stosowanie stylów Styl to zestaw elementów formatowania określających wygląd: tekstu atrybuty czcionki (tzw. styl znaku), akapitów np. wyrównanie tekstu, odstępy między wierszami, wcięcia, a

Bardziej szczegółowo

Skrypt 29. Statystyka. Opracowanie L2

Skrypt 29. Statystyka. Opracowanie L2 Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 29 Statystyka 1. Przypomnienie

Bardziej szczegółowo

Wykład 9 Wnioskowanie o średnich

Wykład 9 Wnioskowanie o średnich Wykład 9 Wnioskowanie o średnich Rozkład t (Studenta) Wnioskowanie dla jednej populacji: Test i przedziały ufności dla jednej próby Test i przedziały ufności dla par Porównanie dwóch populacji: Test i

Bardziej szczegółowo

Pracownia internetowa w każdej szkole (edycja Jesień 2007)

Pracownia internetowa w każdej szkole (edycja Jesień 2007) Instrukcja numer D1/02_05/Z7 Pracownia internetowa w każdej szkole (edycja Jesień 2007) Opiekun pracowni internetowej cz. 1 Tworzenie własnej witryny WWW - Zadanie 7 (D1) Zadanie 7 Modyfikowanie właściwości

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium 30

Wykład Ćwiczenia Laboratorium Projekt Seminarium 30 Zał. nr 4 do ZW WYDZIAŁ CHEMICZNY KARTA PRZEDMIOTU Nazwa w języku polskim Wstęp do statystyki praktycznej Nazwa w języku angielskim Intriduction to the Practice of Statistics Kierunek studiów (jeśli dotyczy):

Bardziej szczegółowo

Płace Optivum. 1. Zainstalować serwer SQL (Microsoft SQL Server 2008 R2) oraz program Płace Optivum.

Płace Optivum. 1. Zainstalować serwer SQL (Microsoft SQL Server 2008 R2) oraz program Płace Optivum. Płace Optivum Jak przenieść dane programu Płace Optivum na nowy komputer? Aby kontynuować pracę z programem Płace Optivum na nowym komputerze, należy na starym komputerze wykonać kopię zapasową bazy danych

Bardziej szczegółowo

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego

Bardziej szczegółowo

Funkcje systemu qs-stat Przegląd

Funkcje systemu qs-stat Przegląd Funkcje systemu qs-stat Przegląd qs-stat ME Wersja: 7 / marzec 2006 Doku-Nr: E-PD 08 PL Copyright 2006 Q-DAS GmbH & Co. KG Eisleber Str. 2 D - 69469 Weinheim Tel.: ++49/6201/3941-0 Fax: ++49/6201/3941-24

Bardziej szczegółowo

MIARY KLASYCZNE Miary opisujące rozkład badanej cechy w zbiorowości, które obliczamy na podstawie wszystkich zaobserwowanych wartości cechy

MIARY KLASYCZNE Miary opisujące rozkład badanej cechy w zbiorowości, które obliczamy na podstawie wszystkich zaobserwowanych wartości cechy MIARY POŁOŻENIA Opisują średni lub typowy poziom wartości cechy. Określają tą wartość cechy, wokół której skupiają się wszystkie pozostałe wartości badanej cechy. Wśród nich można wyróżnić miary tendencji

Bardziej szczegółowo