Zadanie 1. Napisz równanie prostej przechodzącej przez punkt odcinka o koocach M N. Rozwiązanie - 1 sposób 1.Znajdujemy współrzędne punktu S będącego środkiem odcinka MN: oraz środek 2.Piszemy równanie prostej przechodzącej przez dwa punkty P i S ponieważ Odp. Szukana prosta ma równanie Rozwiązanie - 2 sposób Po znalezieniu współrzędnych punktu S można tez skorzystad z równania kierunkowego prostej: Wiadomo, że jeśli punkt leży na prostej tzn., że spełnia jej równanie. Podstawiamy kolejno do równania prostej współrzędne punktu P i punktu S. Podstawiamy otrzymane wartości do równania prostej:
Zadanie 2. Napisz równanie prostej przechodzącej przez punkty K i L, gdzie punkt K jest punktem przecięcia się przekątnych kwadratu ABCD o wierzchołkach: zaś punkt L punktem, w którym przecinają się proste o wzorach: i. 1.Znajduję współrzędne punktu K Wiadomo, że przekątne kwadratu przecinają się w połowie, punkt K jest środkiem odcinka AC (albo BD). 2.Znajduję współrzędne punktu L Wiadomo, że punkt L leży jednocześnie na obu prostych, spełnia równanie każdej z nich. Rozwiązuje układ równao: 3. szem równ n e prostej przechodzącej przez dw punkt K L Zadanie 3. Napisz równanie prostej przechodzącej przez punkt do prostej o równaniu i równoległej Przekształcam równanie podanej prostej do postaci kierunkowej, aby zobaczyd jej współczynnik kierunkowy. Z warunku równoległości wiadomo, że. Punkt P leży na prostej, spełnia jej równanie:
Zadanie 4. Napisz równanie prostej przechodzącej przez punkt K i prostopadłej do prostej o równaniu Przekształcam równanie podanej prostej do postaci kierunkowej, aby zobaczyd jej współczynnik kierunkowy. Z warunku prostopadłości wiadomo, że Punkt K leży na prostej, spełnia jej równanie: i ostatecznie Zadanie 5. Napisz równanie prostej przechodzącej przez punkt M i nachylonej do osi OX pod katem 60. Wiadomo, że współczynnik kierunkowy prostej t, -kąt nachylenia prostej do osi OX Punkt M leży na prostej, spełnia jej równanie: Zadanie 6. Napisz równanie prostej zawierającej symetralną odcinka o koocach i. Symetralna odcinka to prosta prostopadła do danego odcinka i przechodząca przez jego środek. 1.Wyznaczam współrzędne środka odcinka PR 2.Wyznaczam współczynnik kierunkowy prostej przechodzącej przez punkty P i R 3.Symetralna jest prostopadła, 4.Punkt S leży na symetralnej, spełnia jej równanie. Podstawiam do wzoru prostej współrzędne punktu S i wyliczony współczynnik kierunkowy a i ostatecznie Odp. Prosta zawierająca symetralną odcinka PR ma wzór:
Zadanie 7. Punkty,, są wierzchołkami trójkąta ABC. a)napisz równania prostych zawierających boki trójkąta b)napisz równania prostych zawierających wysokości trójkąta ABC c) napisz równania prostych zawierających środkowe trójkąta ABC d)znajdź punkt będący środkiem ciężkości trójkąta ABC Rada - warto sporządzid sobie rysunek pomocniczy Ad a) Zauważmy, że równanie prostej zawierającej bok AB ma postad. Ponadto równanie prostej zawierającej bok BC ma postad Aby napisad równanie prostej zawierającej bok AC korzystam ze wzoru na równanie prostej przechodzącej przez dwa punkty A i C: Ad b) Wysokośd trójkąta wychodzi z wierzchołka i spada na bok przeciwległy pod kątem prostym. Wysokośd wyprowadzona z wierzchołka A spada na bok BC. Równanie boku BC ma postad. Zatem prosta prostopadła do prostej BC i przechodząca przez punkt A ma postad:. Równanie prostej zawierającej wysokośd wyprowadzoną z wierzchołka A: Wysokośd wyprowadzona z wierzchołka C spada na bok AB. Równanie boku AB ma postad. Zatem prosta prostopadła do prostej AB i przechodząca przez punkt C ma postad:. Równanie prostej zawierającej wysokośd wyprowadzoną z wierzchołka C: Wysokośd wyprowadzona z wierzchołka B spada na bok AC. Równanie boku AC ma postad. Przekształcam, aby zobaczyd współczynnik kierunkowy prostej. - zatem Wysokośd jest prostopadła do boku AC zatem Prosta zawierająca wysokośd wyprowadzoną z wierzchołka B przechodzi przez punkt B, zatem punkt spełnia jej równanie. Podstawiam współrzędne punktu B i wyliczony współczynnik a do wzoru prostej:. Ostatecznie Równanie prostej zawierającej wysokośd wyprowadzoną z wierzchołka B:
Ad c) Środkowa trójkąta wychodzi z jego wierzchołka i przecina przeciwległy bok w połowie 1.Wyznaczam środki boków trójkąta ABC S- środek boku AB L- środek boku AC L M- środek boku BC M 2.Prosta zawierająca środkową wyprowadzoną z punktu A przechodzi przez punkt oraz punkt M Korzystam z równania prostej przechodzącej przez dwa punkty A i M Prosta zawierająca środkową wyprowadzoną z punktu B przechodzi przez punkt, oraz punkt L, zaś prosta zawierająca środkową wyprowadzoną z punktu C przechodzi przez punkt oraz punkt Postępujemy analogicznie. Ad c) Środek ciężkości trójkąta znajduje się w punkcie przecięcia się jego środkowych. Należy rozwiązad układ równao złożony z dwóch równao prostych zawierających dowolne środkowe tego trójkąta.