Petr Hasil. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 1 / 187

Podobne dokumenty
Komplexní analýza. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Martin Bohata Komplexní analýza Mocninné řady 1 / 18

Kristýna Kuncová. Matematika B2 18/19

MATEMATIKA 3. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci

Necht je funkce f spojitá v intervalu a, b a má derivaci v (a, b). Pak existuje bod ξ (a, b) tak, že f(b) f(a) b a. Geometricky

Obsah. Limita posloupnosti a funkce. Petr Hasil. Limita posloupnosti. Pro a R definujeme: Je-li a < 0, pak a =, a ( ) =. vlastní body.

Kristýna Kuncová. Matematika B3

(1) Derivace. Kristýna Kuncová. Matematika B2 17/18. Kristýna Kuncová (1) Derivace 1 / 35

Kristýna Kuncová. Matematika B2

5. a 12. prosince 2018

Matematika (KMI/PMATE)

(13) Fourierovy řady

Edita Pelantová, katedra matematiky / 16

Linea rnı (ne)za vislost

Co nám prozradí derivace? 21. listopadu 2018

1 Definice. A B A B vlastní podmnožina. 4. Relace R mezi množinami A a B libovolná R A B. Je-li A = B relace na A

1 Soustava lineárních rovnic

Funkce zadané implicitně. 4. března 2019

Kristýna Kuncová. Matematika B2 18/19. Kristýna Kuncová (1) Vzorové otázky 1 / 36

Vybrané kapitoly z matematiky

Numerické metody minimalizace

(2) Funkce. Kristýna Kuncová. Matematika B2. Kristýna Kuncová (2) Funkce 1 / 25

Určitý (Riemannův) integrál a aplikace. Nevlastní integrál. 19. prosince 2018

Operace s funkcemi [MA1-18:P2.1] funkční hodnota... y = f(x) (x argument)

Stochastické modelování v ekonomii a financích Konzistence odhadu LWS. konzistence OLS odhadu. Předpoklady pro konzistenci LWS

Komplexní analýza. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Martin Bohata Komplexní analýza Úvod 1 / 32

Elementární funkce. Edita Pelantová. únor FJFI, ČVUT v Praze. katedra matematiky, FJFI, ČVUT v Praze

Matematická analýza pro učitele (text je v pracovní verzi)

Obsah. Petr Hasil. (konjunkce) (disjunkce) A B (implikace) A je dostačující podmínka pro B; B je nutná podmínka pro A A B: (A B) (B A) A (negace)

Úvodní informace. 18. února 2019

Matematika 2, vzorová písemka 1

(a). Pak f. (a) pro i j a 2 f

Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost.

Aproximace funkcí 1,00 0,841 1,10 0,864 1,20 0,885. Body proložíme lomenou čarou.

Teorie. kuncova/ Definice 1. Necht f je reálná funkce a a R. Jestliže existuje.

Průvodce studiem V této kapitole se budeme zabývat diferenciálním počtem pro funkce více

Kapitola 4: Soustavy diferenciálních rovnic 1. řádu

7. Aplikace derivace

x2 + 2x 15 x 2 + 4x ) f(x) = x 2 + 2x 15 x2 + x 12 3) f(x) = x 3 + 3x 2 10x. x 3 + 3x 2 10x x 2 + x 12 10) f(x) = log 2.

Obsah. 1 Konstrukce (definice) Riemannova integrálu Výpočet Newtonova Leibnizova věta Aplikace výpočet objemů a obsahů 30

podle přednášky doc. Eduarda Fuchse 16. prosince 2010

Funkce více proměnných: limita, spojitost, derivace

Matematika II. Ing. Radek Fučík, Ph.D. WikiSkriptum. verze: 25. října 2019

Matematika 1 Jiˇr ı Fiˇser 24. z aˇr ı 2013 Jiˇr ı Fiˇser (KMA, PˇrF UP Olomouc) KMA MAT1 24. z aˇr ı / 52

Inverzní Z-transformace

Numerické metody 8. května FJFI ČVUT v Praze

MATEMATIKA 1 ALEŠ NEKVINDA. + + pokud x < 0; x. Supremum a infimum množiny.

Diferenciální rovnice základní pojmy. Rovnice se

DFT. verze:

Nekomutativní Gröbnerovy báze

Sb ırka pˇr ıklad u z matematick e anal yzy II Petr Tomiczek

Algebra I Cvičení. Podstatná část příkladů je převzata od kolegů, jmenovitě Prof. Kučery, Doc. Poláka a Doc. Kunce, se

Geometrická nelinearita: úvod

Funkce více proměnných: limita, spojitost, parciální a směrové derivace, diferenciál

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava

Pojem množiny nedefinujeme, pouze připomínáme, že množina je. Nejprve shrneme pojmy a fakta, které znáte ze střední školy.

Metody, s nimiž se seznámíme v této kapitole, lze použít pro libovolnou

Obsah. 1.2 Integrály typu ( ) R x, s αx+β

Laplaceova transformace

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu (reg. č. CZ.1.07/2.2.00/28.

Matematická analýza 2. Kubr Milan

ÚVOD DO ARITMETIKY Michal Botur

GEM a soustavy lineárních rovnic, část 2

Univerzita Karlova v Praze Matematicko-fyzikální fakulta

Kapitola 2. Nelineární rovnice

Obsah. Aplikovaná matematika I. Vlivem meze Vlivem funkce Bernhard Riemann. Mendelu Brno. 3 Vlastnosti určitého integrálu

Statistika (KMI/PSTAT)

Univerzita Palackého v Olomouci

Matematická analýza II pro kombinované studium. Konzultace první a druhá. RNDr. Libuše Samková, Ph.D. pf.jcu.cz

Lineární algebra - iterační metody

Zobecněné metriky Různé poznámky 12. METRIZACE. Miroslav Hušek, Pavel Pyrih KMA MFF UK. 12. Poznámky

kontaktní modely (Winklerův, Pasternakův)

6 Dedekindovy řezy (30 bodů)

02GR - Odmaturuj z Grup a Reprezentací

Mendelova univerzita v Brně user.mendelu.cz/marik

Logika V. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12

Petr Beremlijski, Marie Sadowská

Univerzita Karlova v Praze Matematicko-fyzikální fakulta

1 Dedekindovy řezy (30 bodů)

Definice Řekneme, že PDA M = (Q,Σ,Γ,δ,q 0,Z 0,F) je. 1. pro všechna q Q a Z Γ platí: kdykoliv δ(q,ε,z), pak δ(q,a,z) = pro všechna a Σ;

Stavový popis Stabilita spojitých systémů (K611MSAP) Katedra aplikované matematiky Fakulta dopravní ČVUT. čtvrtek 20. dubna 2006

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava

1 Derivace funkce a monotonie

Powyższe reguły to tylko jedna z wersji gry. Istnieje wiele innych wariantów, można też ustalać własne zasady. Miłej zabawy!

Karel Vostruha. evolučních rovnic hyperbolického typu

Odpřednesenou látku naleznete v kapitolách skript Abstraktní a konkrétní lineární algebra.

Kompaktnost v neklasických logikách

Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky

Speciální funkce, Fourierovy řady a Fourierova transformace

FAKULTA STAVEBNÍ. Stavební statika. Telefon: WWW:

Cauchyova úloha pro obyčejnou diferenciální rovnici

Matematika prˇedna sˇka Lenka Prˇibylova 7. u nora 2007 c Lenka Prˇibylova, 200 7

Komplexní analýza. Příklad Body. Nepište obyčejnou tužkou ani červeně, jinak písemka nebude přijata. Soupis vybraných vzorců. 4a.

Matematika III Stechiometrie stručný

Okrajový problém podmínky nejsou zadány v jednom bodu nejčastěji jsou podmínky zadány ve 2 bodech na okrajích, ale mohou být

Základy obecné algebry

Jednoduchá zobrazení. Podpořeno z projektu FRVŠ 584/2011.

TGH01 - Algoritmizace

NDMI002 Diskrétní matematika

Poznámky z matematiky

Jednoduchá zobrazení. Podpořeno z projektu FRVŠ 584/2011.

Transkrypt:

Nekonečné řady Petr Hasil Přednáška z Matematické analýzy III c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 1 / 187

Obsah 1 Nekonečné číselné řady Základní pojmy Řady s nezápornými členy Řady s libovolnými členy Násobení nekonečných řad a odhad zbytku 2 Řady funkcí Posloupnosti a řady funkcí Mocninné řady Fourierovy řady Fourierovy řady vzhledem k {1, sin x, cos x,... } c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 2 / 187

Nekonečné číselné řady Základní pojmy Definice 1 Necht {a n } n=1 je posloupnost reálných čísel. Položme s n = a 1 + + a n. Tuto posloupnost nazýváme posloupnost částečných součtů řady n=1 a n, přičemž symbolem n=1 a n rozumíme nekonečný součet a 1 + + a n +, jehož hodnotu definujeme takto: Jestliže existuje konečná limita s = lim n s n, definujeme a n = s n=1 ( ) = lim s n n a řekneme, že nekonečná řada n=1 a n konverguje. Jestliže limita neexistuje, nebo je rovna nekonečnu, řekneme, že tato řada diverguje, a to k ± v případě nevlastní limity (píšeme n=1 a n = ± ), resp. řekneme, že osciluje, když lim n s n neexistuje. Číslo a n se nazývá n tý člen, číslo s n se nazývá n tý částečný součet řady. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 4 / 187

Nekonečné číselné řady Základní pojmy Příklad 1 Geometrická řada je součet tvaru a + aq + aq 2 + aq 3 + + aq n + = aq n 1 = n=1 aq n, kde a, q R jsou pevně zvolená čísla. Tedy je to nekonečná řada, kde a n := aq n 1 pro n N. Číslo q se nazývá kvocient geometrické řady, přičemž q může být kladné či záporné. Posloupnost částečných součtů pro geometrickou řadu odvodíme snadno: s n = a+aq+aq 2 + +aq n 2 +aq n 1, qs n = aq+aq 2 +aq 3 + +aq n 1 +aq n. Odečtením druhé rovnice od první dostaneme n=0 s n qs n = a aq n s n (1 q) = a (1 q n ). c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 5 / 187

Nekonečné číselné řady Základní pojmy Je-li q = 1, potom je zřejmě s n = na. Je-li q 1, potom je Ihned tedy dostáváme s n = a 1 qn 1 q. Geometrická řada s a = 0 (a q R libovolným) konverguje (k 0), protože v tomto případě jsou s n = 0. Geometrická řada s a 0 a q = 1 zřejmě diverguje (k ± podle znaménka čísla a), protože v tomto případě jsou s n = na. Geometrická řada s a 0 a q = 1 zřejmě osciluje, protože je v tomto případě s n = {a, 0, a, 0, a, 0,... } a limita této posloupnosti neexistuje. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 6 / 187

Nekonečné číselné řady Základní pojmy Věta 1 Necht a 0. Potom geometrická řada n=1 aqn 1 konverguje právě tehdy když q < 1. V tomto případě (a také v případě a = 0) je pak její součet aq n 1 = n=1 a, q < 1. 1 q c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 7 / 187

Nekonečné číselné řady Základní pojmy Příklad 2 n=1 1 2 n = ( 1 ) n 1 n=1 2 = 2 1 1 2 = 1 (a = 1 2, q = 1 2 ) Plocha Sierpinského koberce (o straně 1 jednotka) P = 1 n=1 8 n 1 9 n = 1 1 8 n=1 ( ) 8 n = 1 1 9 8 8 9 1 8 9 = 1 1 = 0 c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 8 / 187

Nekonečné číselné řady Základní pojmy Příklad 3 n=1 1 n 2 +2n = n=1 A n + B n+2 = n=1 1 2 n 1 2 n+2 s n = 1 ( 1 1 2 3 + 1 2 1 4 + 1 3 1 5 + + 1 n 2 1 n + 1 n 1 1 n + 1 + 1 n 1 ) n + 2 = 1 ( 3 2 2 1 n + 1 1 ) n + 2 lim n s n = 3 4 n=1 1 n 2 +2n = 3 4 c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 9 / 187

Nekonečné číselné řady Základní pojmy Příklad 4 n=1 ( 1)n (Grandiho řada) s n = a 1 + + a n = Limita s n neexistuje, řada osciluje. n=1 1 n (harmonická řada) { 1 n liché 0 n sudé 1 + 1 2 + 1 3 + 1 4 + + 1 8 + + 1 16 + 1 + 1 2 + 1 4 + 1 4 + 4 1 8 + 8 1 16 + s 2 n, 1 + n 1 2 n=1 1 n = c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 10 / 187

Nekonečné číselné řady Základní pojmy Poznámka 1 an... rozumí se n=1 a n 2 Charakter chování řady (konvergence, divergence, oscilace) zachováme, jestliže změníme konečný počet členů posloupnosti a n. (Zvláště vynecháme-li konečný počet prvků např. na začátku.) 3 Často nás spíše než součet řady zajímá, zda řada konverguje, resp. diverguje, aniž nás zajímá konkrétní hodnota součtu. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 11 / 187

Nekonečné číselné řady Základní pojmy Věta 2 (Nutná podmínka konvergence) Jestliže řada a n konverguje, pak limita lim a n = 0. Důkaz. Když s = lim s n = lim(a 1 + + a n ) existuje a je konečná, pak a n = s n s n 1, tedy lim a n = lim s n lim s n 1 = s s = 0. Poznámka Opačné tvrzení neplatí viz harmonickou řadu. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 12 / 187

Nekonečné číselné řady Základní pojmy Příklad 5 ( 1) n asociativní zákon neplatí! c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 13 / 187 Věta 3 (Asociativní zákon pro nekonečné řady) Necht a n = a je konvergentní. Necht n k je libovolná rostoucí posloupnost přirozených čísel, n 0 = 0 a b k = a nk 1 +1 + + a nk. Pak řada k=1 b k konverguje se stejným součtem jako původní řada, tj. bk = a. Důkaz. a 1 + + a n1 + a n1 +1 + + a n2 + = an = a }{{}}{{} b 1 b 2 Označme s k = k j=1 a j, t k = k j=1 b j t 1 = s n1, t 2 = b 1 + b 2 = s n2,..., t k = s nk. Protože limita s n je a, pak lim k s nk = lim n t k = a, tedy b k = a. (Posloupnost {t i } je vybraná podposloupnost {s j }.)

Nekonečné číselné řady Základní pojmy Věta 4 (Cauchyovo Bolzanovo kritérium konvergence) Řada a n je konvergentní právě tehdy, když posloupnost jejích částečných součtů s n je cauchyovská, tj. ε > 0 n 0, n > n 0 a m N : s n+m s n = a n+1 + + a n+m < ε. Důkaz. {s n } je konvergentní právě tehdy, když je cauchyovská (R je úplný metrický prostor). c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 14 / 187

Nekonečné číselné řady Základní pojmy Věta 5 Necht a n = a a b n = b jsou konvergentní řady a α, β R. Pak i řada (αa n + βb n ) je konvergentní a platí (αan + βb n ) = αa + βb. Důkaz. Vlastnosti limit samostatné procvičení. Poznámka an = a a b n =, pak (a n + b n ) = c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 15 / 187

Nekonečné číselné řady Řady s nezápornými členy Řadami s nezápornými členy rozumíme řady n=1 a n, pro které a n 0 pro každé n N. (Často budemem uvažovat i řady s kladnými členy, tedy a n > 0, n N.) Je zřejmé, že součet nemůže být záporný (nekladný) a nemůže nastat oscilace. Tj. limita částečných součtů existuje a platí 0 lim s n, přičemž lim s n = 0 pouze pokud a n = 0, n N. Věta 6 (Prosté srovnávací kritérium) Necht a n, b n 0 a necht a n b n platí pro velká n, tj. n 0 N : a n b n n n 0. Je-li b n <, pak a n <. Naopak, je-li a n =, pak b n =. Poznámka Řada b n ja majorantní řadou k řadě a n a řada a n ja minorantní řadou k řadě b n. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 17 / 187

Nekonečné číselné řady Řady s nezápornými členy Důkaz. Bez újmy na obecnosti předpokládejme, že a n b n n N. Označme s k = k j=1 a j, t k = k j=1 b j s n t n, n N. Je-li b n <, pak posloupnost {t n } konverguje, tedy je shora ohraničená. Potom je také posloupnost {s n } shora ohraničená. Protože je navíc neklesající, musí konvergovat. Sporem předpokládejme, že a n = a b n <. Dle výše dokázaného plyne z konvergence řady b n konvergence řady a n. Spor. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 18 / 187

Nekonečné číselné řady Řady s nezápornými členy Příklad 6 Rozhodněte o konvergenci (divergenci) řady 1 n 2. Pro n 2 máme 1 1 n 2 n(n 1). Pokud dokážeme, že majorantní řada konverguje, lze použít předchozí větu. Pro velká m N máme m n=2 1 m n(n 1) = tedy 1 n 2 n=2 1 n + 1 n 1 = 1 2 + 1 1 3 + 1 2 + 1 m 1 + 1 m 2 1 m + 1 m 1 = 1 1 1 pro m, m konverguje. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 19 / 187

Nekonečné číselné řady Řady s nezápornými členy Věta 7 (Integrální kritérium) Necht n=1 a n je nekonečná řada s nezápornými členy. Necht f (x) je funkce definovaná na intervalu [N, ) pro nějaké N [0, ), která je na tomto intervalu nezáporná, nerostoucí a platí f (n) = a n pro všechna n N. Potom a n konverguje n=1 a n diverguje k n=1 N N f (x) dx f (x) dx =. konverguje, c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 20 / 187

Nekonečné číselné řady Řady s nezápornými členy Důkaz. Bez újmy na obecnosti předpokládejme, že N = 1. Vzhledem k monotonii funkce f je tato integrovatelná na libovolném intervalu [1, t], 1 t R a funkce horní meze F (t) = t 1 f (x)dx je neklesající. i=1 a i, Jistě platí n i=2 a i n 1 f (x)dx n 1 tedy s n a 1 F (n) s n 1. 1 2 3 4 5 n c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 21 / 187

Nekonečné číselné řady Řady s nezápornými členy Jestliže n=1 a n konverguje, pak je posloupnost {s n } shora ohraničená a tedy k R : F (n) k n N. Funkce F je neklesající, tedy F (t) k t [1, ). Limita lim t F (t) tedy konverguje, což znamená konvergenci 1 f (x) dx. Jestliže 1 f (x) dx konverguje, pak je F shora ohraničená. Z nerovnosti s n a 1 F (n) plyne ohraničenost posloupnosti částečných součtů {s n }, která je neklesající a ohraničená, tedy konvergentní. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 22 / 187

Nekonečné číselné řady Řady s nezápornými členy Příklad 7 Pomocí integrálního kritéria snadno dokážeme, že { 1 n α = diverguje pro α 1, konverguje pro α > 1. n=1 c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 23 / 187

Nekonečné číselné řady Řady s nezápornými členy Věta 8 (Limitní srovnávácí kritérium) a Necht a n, b n 0 a existuje limita lim n n b n = L (vlastní nebo nevlastní). Je-li b n < a L <, pak a n <. Důkaz. Je-li b n = a L > 0, pak a n =. Předpokládejme, že b n < a L <, pak ε > 0 n 0 N, n n 0 : L ε < a n < L + ε. Odtud b } n {{} a n < (L + ε)b n a n (L + ε)b n a n (L + ε) b n <. Tedy a n konverguje. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 24 / 187

Nekonečné číselné řady Řady s nezápornými členy Předpokládejme, že b n = a L > 0 a uvažujme dva případy. Jestliže L <, pak ε > 0 a n 0 N, n n 0 : 0 < L ε < an b n. Tedy (L ε)b n < a n a n. Jestliže L =, pak k > 0, k R, a n 0 N, n n 0 : k < an b n. Tedy kb n < a n a n. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 25 / 187

Nekonečné číselné řady Řady s nezápornými členy Příklad 8 Rozhodněte o konvergenci (divergenci) řady n=1 arctg 1 n. arctg 1 n lim n 1 n = lim n 1 1+ 1 n 2 1 n 2 tj. b n = 1 n =, L > 0 arctg 1 n =. Příklad 9 = 1 > 0, 1 n 2 Rozhodněte o konvergenci (divergenci) řady n=1 ln ( 1 + 1 ) n. 2 ( ln lim n ( ln lim n ) 1+ 1 n 2 1 n 1+ 1 n 2 ) 1 = lim n 2 n 1+ 1 n 2 1+ 1 n 2 = lim n 1 = 0, (nelze použít) n 2 = 1, tj. b n <, L < a n <. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 26 / 187

Nekonečné číselné řady Řady s nezápornými členy Věta 9 (Podílové (d Alambertovo) kritérium) Necht a n > 0 pro n N. 1 Jestliže k R, k < 1 : a n+1 a n k, n N, pak a n konverguje. Jestliže a n+1 a n 1, n N, pak a n diverguje. 2 Necht navíc existuje limita lim a n+1 a n = L, L R. Je-li L < 1, pak an < ; je-li L > 1, pak a n = ; je-li L = 1, nelze rozhodnout. Poznámka Pro a n = 1 n 2 diverguje. i pro a n = 1 n je L = 1, přitom jedna řada konverguje a druhá c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 27 / 187

Nekonečné číselné řady Řady s nezápornými členy Důkaz. Dokážeme limitní podílové kritérium (první část podobně). Jestliže lim a n+1 a n = L, pak ε > 0 n 0 N, n n 0 : L ε < a n+1 L + ε (L ε)a n < a n+1 < (L + ε)a n. a n < L < 1: Necht ε > 0 je takové, že L + ε = q < 1 a n+1 qa n a n0 +1 qa n0, a n0 +2 q 2 a n0,..., a n0 +k q k a n0, pak n 0 n 0 a n = a n + a n0 +k n=1 n=1 k=1 tedy řada a n konverguje. n=1 a n }{{} číslo +a n0 q k q = číslo + a n0 1 q, k=1 L > 1: Porovnání s geometrickou řadou s q = L ε > 1. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 28 / 187

Nekonečné číselné řady Řady s nezápornými členy Věta 10 (Odmocninové (Cauchyovo) kritérium) Necht a n > 0 pro n N. 1 Jestliže k R, k < 1 : n a n k, n N, pak a n konverguje. Jestliže n a n 1 pro nekonečně mnoho n N, pak a n diverguje. 2 Necht navíc existuje limita lim n a n = L, L R. Je-li L < 1, pak an < ; je-li L > 1, pak a n = ; je-li L = 1, nelze rozhodnout. Poznámka Opět např. pro a n = 1 i pro a n 2 n = 1 n konverguje a druhá diverguje. je L = 1, přitom jedna řada Důkaz. Opět dokážeme limitní kritérium (první část podobně). Jestliže lim n a n = L L ε < n a n < L + ε, pro velká n. Tedy (L ε) n < a n < (L + ε) n a použijeme obdobně jako v předchozím důkazu porovnání s geometrickou řadou. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 29 / 187

Nekonečné číselné řady Řady s nezápornými členy Poznámka Lze ukázat, že platí lim inf a n+1 a n lim inf n a n lim sup n a n lim sup a n+1 a n. a Tedy pokud existuje limita lim n+1 n a n = L, potom existuje i limita lim n n a n a tyto dvě limity si jsou rovny. Navíc, jestliže je podílové kritérium nerozhodnutelné ( a n+1 a n 1), potom je také odmocninové kritérium nerozhodnutelné ( n a n 1). Říkáme, že odmocninové kritérium je silnější, než podílové kritérium (každý problém, který lze vyřešit podílovým kritériem, lze vyřešit i odmocninovým kritériem, ale ne naopak). c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 30 / 187

Nekonečné číselné řady Řady s nezápornými členy Příklad 10 Rozhodněte o konvergenci (divergenci) řady n n n! a n+1 a n = (n+1)n+1 (n+1)! n! n n n (3+ 1 n )n lim n n = lim n n (3+ 1 n )n 3+ 1 n = (n+1)n n n = 1 3 = ( 1 + 1 n ) n n e > 1 řada diverguje < 1 řada konverguje c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 31 / 187

Nekonečné číselné řady Řady s nezápornými členy Věta 11 (Raabeovo kritérium) Necht a n > 0 a necht existuje limita ( lim n 1 a ) n+1 n a n = L, L R. Pro L < 1 řada diverguje, pro L > 1 řada konverguje a pro L = 1 nelze rozhodnout. Poznámka Raabeovo kritérium je zesílením podílového kritéria. (Přibližování k 1 zespoda či shora.) V literatuře lze najít (či odvodit) další zobecnění, tedy další silnější kritéria. Jediné univerzální je ale Cauchyovo Bolzanovo kritérium (věta 4). c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 32 / 187

Nekonečné číselné řady Řady s nezápornými členy Příklad 11 n=1 n! ( 2+1)( 2+2) ( 2+n) lim a n+1 a n = lim (n+1)!( 2+1)( 2+2) ( 2+n) ( ) lim n 1 a n+1 a n = lim n ( 2+1)( 2+2) ( 2+n)( 2+n+1)n! = lim n+1 2+n+1 = 1 ( 1 n+1 2+n+1 ) = lim n( 2+n+1 n 1) 2+n+1 = lim n 2 2+n+1 = 2 > 1, tedy řada konverguje c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 33 / 187

Nekonečné číselné řady Řady s nezápornými členy Poznámka an, a n > 0 a člen a n má n v exponentu, nebo obsahuje faktoriál. Pak je obvykle výhodné zkusit podílové nebo odmocninové kritérium. Není-li tomu tak, pak zkusíme podílové srovnávací kritérium s 1/n α. Dále je k dispozici integrální kritérium. Např. 1 n(ln n) α e dx x(ln x) α = ln x = t, dx x n=2 =dt = 1 dt t α = { konv. α > 1 div. α 1 c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 34 / 187

Nekonečné číselné řady Řady s nezápornými členy Věta 12 (Kondenzační kritérium) Necht {a n } n=1 je monotónní posloupnost kladných čísel. Pak je konvergence řady n=1 a n ekvivalentní s konvergencí řady n=0 2n a 2 n. Poznámka Kondenzační kritérium lze někdy využít, když v odmocninovém a podílovém kritériu vyjde jednička. Kondenzační kritérium se často formuluje pouze pro monotónní posloupnosti {a n } n=1. Z nutné podmínky konvergence pak plyne, že daná posloupnost musí být bud kladná a klesající, nebo záporná a rostoucí, jinak jsou obě uvažované řady divergentní. (Pro zápornou a rostoucí posloupnost {a n } n=1 jde pouze o překlopení.) c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 35 / 187

Nekonečné číselné řady Řady s nezápornými členy Důkaz. Z platnosti nutné podmínky konvergence je zřejmé, že a n a n+1. Rozepsáním a n = a 1 + (a 2 + a 3 ) + (a 4 + a 5 + a 6 + a 7 ) +, n=1 2 n a 2 n = a 1 + (a 2 + a 2 ) + (a 4 + a 4 + a 4 + a 4 ) + n=0 vidíme, že konvergence druhé řady implikuje konvergenci první řady. Nyní druhou řadu upravíme (konvergence není ovlivněna) na 1 2 2 n a 2 n = a 2 + (a 4 + a 4 ) + (a 8 + a 8 + a 8 + a 8 ) +, n=1 jejíž konvergence plyne z konvergence řady n=1 a n. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 36 / 187

Nekonečné číselné řady Řady s nezápornými členy Příklad 12 Rozhodněme o konvergenci řady n=1 1 n(ln n) α, α R. Odmocninové kritérium 1 lim n n(ln n) α = lim 1 n n( n ln n) = 1 α 1 1 α = 1, kde ln( n ln(ln n) ln n) = n 0 n ln n e 0 = 1. Podílové kritérium nemá cenu zkoušet, pro úplnost dostaneme lim a n+1 a n = lim n n + 1 ( ln n ln(n + 1) ) α = 1 1 α = 1. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 37 / 187

Nekonečné číselné řady Řady s nezápornými členy Kondenzačním kritériem dostaneme řadu 2 n a 2 n = n=0 = n=0 n=0 2 n 2 n (ln 2 n ) α = 1 (ln 2 n ) α n=0 1 (n ln 2) α = 1 (ln 2) α n=0 1 n α, tedy n=1 { 1 n(ln n) α = diverguje pro α 1, konverguje pro α > 1. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 38 / 187

Nekonečné číselné řady Řady s libovolnými členy Definice 2 Necht a n > 0. Pak řada n=1 ( 1)n 1 a n se nazývá alternující řada. Poznámka Alternující řada je také řada n=1 ( 1)n a n a obecně řada splňující sgn f n = sgn f n+1, n N. n=1 f n c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 40 / 187

Nekonečné číselné řady Řady s libovolnými členy Věta 13 (Leibnizovo kritérium) Necht a n > 0 je nerostoucí posloupnost. Jestliže lim n a n = 0, pak alternující řada n=1 ( 1)n 1 a n konverguje. Poznámka Vzhledem k platnosti nutné podmínky konvergence lze větu 13 formulovat i s ekvivalencí. Důkaz. s 2n = a 1 a }{{} 2 + + a 2n 1 a 2n, s }{{} 2n+2 = s 2n + a 2n+1 a 2n+2, }{{} 0 0 0 tedy posloupnost {s 2n } je neklesající. Podobně s 2n 1 = a 1 (a 2 a 3 ) (a 2n 2 a 2n 1 ), s 2n+1 = s 2n 1 (a 2n a 2n+1 ), tedy {s 2n+1 } je nerostoucí. s 2 = a 1 a 2 s 2n s 2n + a 2n+1 = s 2n+1 s 1 = a 1 {s 2n }, {s 2n+1 } jsou ohraničené, obě mají konečnou limitu lim(s 2n+1 s 2n ) = lim a 2n+1 = 0 lim s 2n+1 = lim s 2n = s = lim s n n=1 ( 1)n 1 a n = s konverguje. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 41 / 187

Nekonečné číselné řady Řady s libovolnými členy Příklad 13 n=1 ( 1) n 1 n ( 1 n 0, 1 n+1 < 1 n Příklad 14 = 1 ) 1 2 + 1 3 1 4 + (Leibnizova řada) ( 1) n 1 konverguje n n=2 ( 1) n 1 n + ( 1) n lim a n = 0, kdyby řada konvergovala, pak bychom mohli aplikovat asociativní zákon (věta 3). Pro n liché máme 1 1 n 1 n+1+1 = n+1+1 n+1 ( n 1)( n+1+1) = n+1 n+2 ( n 1)( n+1+1) 1 n. Uzávorkovaná řada diverguje, tedy ve větě 13 nelze vynechat předpoklad monotonie. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 42 / 187

Nekonečné číselné řady Řady s libovolnými členy Definice 3 Řekneme, že řada a n konverguje absolutně, pokud konverguje řada an. Řekneme, že řada konverguje neabsolutně (relativně), jestliže řada an konverguje, ale řada a n diverguje. Příklad 15 ( 1) n 1 n je neabsolutně konvergentní sama konverguje, ale absolutní hodnotou dostaneme harmonickou řadu, která diverguje. ( 1) n 1 n 2 je absolutně konvergentní, nebot ( 1) n 1 n 2 = 1 n 2 <. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 43 / 187

Nekonečné číselné řady Řady s libovolnými členy Věta 14 Je-li řada a n absolutně konvergentní, pak je konvergentní. (Tedy z absolutní konvergence plyne konvergence.) Důkaz. Podle Cauchyova Bolzanova kritéria (věta 4) je řada a n konvergentní právě tehdy, když posloupnost a 1 + + a n je cauchyovská, tj. }{{} s n ε > 0 n 0 N n n 0, m N : s n+m s n = a n+m + + a n+1 < ε a n+m + + a n+1 < ε. tedy posloupnost částečných součtů řady a n je cauchyovská, tedy řada konverguje. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 44 / 187

Nekonečné číselné řady Řady s libovolnými členy Poznámka Opak neplatí viz Leibnizovu řadu. Poznámka Při rozhodování o konvergenci/divergenci je někdy výhodné otestovat nejprve a n pomocí kritéríı o řadách s nezápornými členy. Je-li an < a n <. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 45 / 187

Nekonečné číselné řady Řady s libovolnými členy Věta 15 (Abelovo kritérium) Necht a n je konvergentní a {b n } je ohraničená a monotónní posloupnost. Pak (a n b n ) je konvergentní. Věta 16 (Dirichletovo kritérium) Necht a n má ohraničenou posloupnost částečných součtů a {b n } je monotónní posloupnost s limitou nula (b n 0). Pak (a n b n ) je konvergentní. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 46 / 187

Nekonečné číselné řady Řady s libovolnými členy Příklad 16 Otestujme konvergenci řady sin nx n, x R. Pokud je x celočíselný násobek π, řada konverguje. Dále postupujme pro všechna ostatní x. Zvoĺıme a n = sin nx, b n = 1 n, tedy b n 0 a je ohraničená. s n = sin x + + sin nx / i c n = cos x + + cos nx n k=1 (cos kx + i sin kx) = n k=1 eikx c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 47 / 187

Nekonečné číselné řady Řady s libovolnými členy n e ikx = e ix + e 2ix + + e nix = e ix eixn 1 e ix 1 ( ) ixn e 2 e ixn 2 e ixn 2 ix = e ( ) = e iα e iα = 2i sin α e ix 2 e ix 2 k=1 e ix 2 = e ix 2 e ixn 2 sin xn 2 sin x 2 = [ cos ( ) ( )] n + 1 n + 1 sin xn 2 x + i sin 2 x 2 sin x. 2 Imaginární část dává sin x + + sin nx = sin ( ) n + 1 sin xn 2 x 2 sin x, 2 což je ohraničené, tedy řada konverguje podle Dirichletova kritéria. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 48 / 187

Nekonečné číselné řady Řady s libovolnými členy Konverguje absolutně? Pokud je x celočíselný násobek π, pak ano. Pokud x není celočíselný násobek π, pak sin nx n Řada sin nx n sin 2 nx n = 1 cos 2nx 2n = 1 2 diverguje, tedy řada sin nx n 1 }{{ n} = ( cos 2α = cos 2 α sin 2 α = 1 2 sin 2 α sin 2 α = Poznámka cos 2nx n. }{{} konv. dle DK konverguje neabsolutně. ) 1 cos 2α 2 Leibnizovo kritérium je speciálním případem Dirichletova pro ( 1) n a n. ( 1) n má ohraničené částečné součty a a n 0 (shora) hraje roli b n v Dirichletově kritériu. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 49 / 187

Nekonečné číselné řady Řady s libovolnými členy Definice 4 Necht f : N N je bijekce. Řekneme, že řada b n, kde b n = a f (n), je přeřazením řady a n. Řekneme, že pro řadu a n platí komutativní zákon, jestliže pro libovolnou bijekci f : N N platí a n = a f (n). c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 50 / 187

Nekonečné číselné řady Řady s libovolnými členy Věta 17 (Komutativní zákon pro nekonečné řady) Necht řada a n konverguje absolutně, tj. a n <. Pak pro tuto řadu platí komutativní zákon. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 51 / 187

Nekonečné číselné řady Řady s libovolnými členy Důkaz. Označme b n = a f (n) a necht t n = b 1 + + b n = a f (1) + + a f (n) je posloupnost částečných součtů b n a necht s n = a 1 + + a n je posloupnost částečných součtů a n. Protože a n konverguje absolutně, pak a n konverguje, tedy existuje konečná limita s = lim s n. Dokážeme, že t n s. Platí s n t n = a 1 + + a n (a f (1) + + a f (n) ). Necht ε > 0 je libovolné. Protože a n je konvergentní, tak podle Cauchyova Bolzanova kritéria (věta 4) n 0 N : n n 0, m N : a n+1 + + a n+m < ε. Zejména máme a n0 +1 + + a n0 +m < ε. Protože n n 0, máme a 1 + + a n (a f (1) + + a f (n) ) = a 1 + + a n0 + + a n (a f (1) + + a f (n) ). c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 52 / 187

Nekonečné číselné řady Řady s libovolnými členy Necht n 1 N je takové, že {1,..., n 0 } {f (1),..., f (n 1 )}, pak pro n max{n 0, n 1 } platí a 1 + + a n0 + + a n (a f (1) + + a f (n) ) a n0 +1 + + a n0 +q }{{} <ε (q je největší zbývající index ). Tedy s n t n 0 a n = a f (n). c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 53 / 187

Nekonečné číselné řady Řady s libovolnými členy Definice 5 Pro posloupnost a n označme { a n + a n a n 0 = 0 a n < 0 a a n = { a n a n 0 0 a n > 0. Potom {a + n } nazýváme kladná část a {a n } záporná část posloupnosti {a n }. Poznámka Zřejmě platí a + n = an+ an 2 = max{a n, 0}, resp. a n = an an 2 = min{a n, 0}. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 54 / 187

Nekonečné číselné řady Řady s libovolnými členy Věta 18 Necht a n je neabsolutně konvergentní, pak a + n = + a a n =. Důkaz. 1 2 3 4 a + n < a a n > a + n = a an > a + n < a an = a + n = a an = Kdyby platilo 1, pak a n = a n + an konverguje podle věty o konvergenci součtu dvou konvergentních řad spor, nebot a n =. Kdyby platilo 2 nebo 3, pak a n = a n + + an a součet bude (případ 2) nebo (případ 3) spor s a n <. Tedy nutně a n + = a an =. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 55 / 187

Nekonečné číselné řady Řady s libovolnými členy Věta 19 (Riemannova věta o přeřazení, velká věta o přeřazení) Necht řada a n je neabsolutně konvergentní a L 1, L 2 R, L 1 L 2. Pak existuje permutace množiny N taková, že pro posloupnost částečných součtů t n přeřazení řady a f (n) (tj. t n = a f (1) + + a f (n) ) platí lim sup t n = L 2 a lim inf t n = L 1. Zejména neabsolutně konvergentní řadu lze přerovnat tak, že diverguje k ± nebo osciluje. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 56 / 187

Nekonečné číselné řady Řady s libovolnými členy Důkaz. Předpokládejme, že L 1, L 2 R, L 1 < L 2 a L 2 > 0 (pro ostatní případy je modifikace důkazu zřejmá). Platí a + n = a a n =. Existuje n 1 : a + 1 + + a+ n 1 > L 2 a necht n 1 je nejmenší takový index. Necht n 2 je takový index, že a + 1 + + a+ n 1 + a 1 + + a n 2 < L 1 a necht je nejmenším indexem s takovou vlastností. Důležité je, že a n 0 (což je nutná podmínka konvergence a n ) a n 0 a tedy velikost přelezení/podlezení hodnot L 1, L 2 se bĺıží k nule. Z konstrukce plyne, že lim sup t n = L 2 a lim inf t n = L 1. (Např. pro L 1 =, L 2 = budeme součty rozkmitávat.) c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 57 / 187

Nekonečné číselné řady Násobení nekonečných řad a odhad zbytku Poznámka Konečné řady: (a 1 + + a n )(b 1 + + b m ) = a 1 b 1 + + a n b m. Nekonečné řady: ( ) ( ) an bn =? a 1 b 1 a 1 b 2 a 1 b n a 2 b 1 a 2 b 2 a 2 b n... a n b 1 a n b 2 a n b n... c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 59 / 187

Nekonečné číselné řady Násobení nekonečných řad a odhad zbytku Věta 20 Necht řady a n, b n jsou absolutně konvergentní a necht c n je libovolná nekonečná řada, v níž posloupnost {c n } je permutací posloupnosti {a i b j } (tj. {c n } je libovolná posloupnost obsahující permutaci prvků z uvedené tabulky). Pak c n konverguje také absolutně a platí cn = c = a b, kde a n = a, b n = b. Důkaz. Pro i m = min{i 1,..., i n }, j m = min{j 1,..., j n }, i M = max{i 1,..., i n }, j M = max{j 1,..., j n } máme c 1 + + c n = a i1 b j1 + + a in b jn ( a im + + a im )( b jm + + b jm ) A B, kde }{{}}{{} a(i M ) b(j M ) A = a n, B = b n. Tedy posloupnost částečných součtů c n je shora omezená, tedy c n <, tedy c n je absolutně konvergentní a platí pro ni komutativní zákon. n 2 k=1 c k = a 1 b 1 +(a 1 b 2 +a 2 b 2 +a 2 b 1 )+ +(a 1 b n + +a n b n + +a n b 1 )+ = (a 1 + + a n )(b 1 + + b n ) = s n t n ab n=1 c n = ab. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 60 / 187

Nekonečné číselné řady Násobení nekonečných řad a odhad zbytku Poznámka (a 1 x + a 2 x 2 + + a n x n )(b 1 x + b 2 x 2 + + b n x n ) = x 2 (a 1 b 1 ) + x 3 (a 1 b 2 + a 2 b 1 ) + x 4 (a 1 b 3 + a 2 b 2 + a 3 b 1 ) + (Postupujeme po diagonálách.) Definice 6 Uvažujme nekonečné řady a n, b n. Necht c n = a 1 b n + + a n b n + + a n b 1 (po elkách ), pak se řada cn nazývá Dirichletův součin řad a n, b n. Je-li c n = a 1 b n + a 2 b n 1 + + a n 1 b 2 + a n b 1 (po diagonálách), pak se řada c n nazývá Cauchyův součin řad a n, b n. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 61 / 187

Nekonečné číselné řady Násobení nekonečných řad a odhad zbytku Věta 21 Necht a n, b n jsou konvergentní řady, a n = a, b n = b. Pak jejich Dirichletův součin c n také konverguje a c n = ab. (Mertensova věta) Necht a n, b n jsou konvergentní řady, an = a, b n = b a alespoň jedna z nich konverguje absolutně. Pak konverguje i jejich Cauchyův součin a c n = ab. Poznámka V Mertensově větě o Cauchyově součinu nelze vypustit předpoklad absolutní konvergence alespoň jedné řady. Např. pro [( ( 1) n 1 n ) ( ( 1) n 1 n )] Cauchy máme c n = 1 1 1 n + 2 n 1 + + 1 n 1 1 n + 1 n + + 1 n = 1, lim c n 0, není splněna nutná podmínka konvergence a tedy Cauchyův součin řady ( 1) n 1 n se sebou nemůže konvergovat. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 62 / 187

Nekonečné číselné řady Násobení nekonečných řad a odhad zbytku Definice 7 Předpokládejme, že řada a n je konvergentní. Výraz R n = k=n+1 a k se nazývá zbytek po n-tém členu, tj. a n = s n + R n. Věta 22 Uvažujme nekonečnou řadu a n se zbytkem R n. Necht b n je konvergentní řada se nezápornými členy, pro niž platí a n b n. Pak řada an konverguje absolutně a pro její zbytek platí R n R n, kde R n je zbytek po n-tém členu řady b n. Důkaz. R n = k=n+1 a k k=n+1 a k k=n+1 b k = R n. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 63 / 187

Nekonečné číselné řady Násobení nekonečných řad a odhad zbytku Věta 23 Necht a n je nerostoucí posloupnost kladných čísel a lim a n = 0. Pak pro zbytek alternující řady ( 1) n 1 a n platí R n < a n+1. Navíc sgn R n = ( 1) n. Důkaz. Dle Leibnizova kritéria je řada ( 1) n 1 a n konvergentní. Dále postupujeme jako v důkazu Leibnizova kritéria pro řadu R n = k=n+1 ( 1)k 1 a k, tedy R n = ( 1) n a n+1 + ( 1) n+1 a n+2 + ( 1) n+2 a n+3 + = ( 1) n (a n+1 a n+2 + a n+3 a n+4 + ) }{{} =:r a odtud 0<a n+1 a n+2 <r <a n+1. Tj. R n =( 1) n r R n =r < a n+1. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 64 / 187

Nekonečné číselné řady Násobení nekonečných řad a odhad zbytku Věta 24 Necht a n je monotónní posloupnost nezáporných čísel, řada a n konverguje a f : [1, ) R je monotónní a pro n N : f (n) = a n. Pak R n n f (x)dx. Důkaz. Plyne ze stejného obrázku jako důkaz integrálního kritéria. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 65 / 187

Nekonečné číselné řady Násobení nekonečných řad a odhad zbytku Příklad 17 Kolik členů řady n=1 1 musíme vzít, aby chyba (zbytek) byla menší než n 2 0,01? R n n 1 x 2 dx = [ 1 x ] n = 1 n 1 100 n 100. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 66 / 187

Řady funkcí Posloupnosti a řady funkcí Příklad 18 (Motivace) Uvažujme funkce s n (x) = x n pro x [0, 1] a n N. Jedná se tedy o posloupnost částečných součtů funkcí s 1 (x) = x, s 2 (x) = x 2, s 3 (x) = x 3, s 4 (x) = x 4,... f 1 (x) = x, f 2 (x) = x 2 x, f 3 (x) = x 3 x 2,... f n (x) = x n x n 1,... Všechny tyto funkce f n (x) jsou spojité na intervalu [0, 1] pro každé n N. Dále jsou všechny funkce s n (x) spojité na intervalu [0, 1]. Přitom { x n n 0 x [0, 1), s n (x) = 1 n n. 1 x = 1 c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 68 / 187

Řady funkcí Posloupnosti a řady funkcí Tedy posloupnost s n (x) konverguje pro každé x [0, 1] k funkci { 0, pro x [0, 1), f n (x) = lim s n(x) = s(x) = n 1, pro x = 1, n=1 přičemž tato funkce s(x) je nespojitá (konverguje pouze bodově). c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 69 / 187

Řady funkcí Posloupnosti a řady funkcí Definice 8 Řekneme, že posloupnost funkcí {f n (x)}, x I, konverguje bodově na tomto intervalu k funkci f (x), jestliže x I číselná posloupnost {f n ( x)} konverguje k číslu f ( x), píšeme f n f, tj. Definice 9 ε > 0, x I, n 0 = n 0 (ε, x) n n 0 : f n (x) f (x) < ε. Řekneme, že posloupnost funkcí {f n (x)}, x I, konverguje na intervalu I stejnoměrně k funkci f (x), jestliže píšeme f n f. ε > 0 n 0 = n 0 (ε) : x I, n n 0 : f n (x) f (x) < ε, c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 70 / 187

Řady funkcí Posloupnosti a řady funkcí Poznámka Konvergence posloupnosti f n (x) = x n, x [0, 1] není na [0, 1] stejnoměrná. P = C[a, b], ρ C (f, g) = max x [a,b] f (x) g(x) metrika stejnoměrné konvergence. Ze stejnoměrné konvergence plyne bodová konvergence. Naopak to neplatí. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 71 / 187

Řady funkcí Posloupnosti a řady funkcí Věta 25 Necht posloupnost funkcí {f n } konverguje na intervalu I k funkci f, označme r n = sup f n (x) f (x). x I Pak posloupnost f n konverguje na I k funkci f stejnoměrně právě tehdy, když r n 0. Důkaz. ( ) lim r n = 0 ε > 0 n 0 N, n n 0 : r n < ε sup x I f n (x) f (x) < ε x I : f n (x) f (x) < ε ( ) triviální modifikace předchozí implikace c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 72 / 187

Řady funkcí Posloupnosti a řady funkcí Příklad 19 Rozhodněte, zda posloupnost f n (x) = stejnoměrně. 2nx 1+n 2 x 2 konverguje na I = [0, 1] Vyřešíme bodovou konvergenci a pak podle věty 25 rozhodneme, je-li 2nx stejnoměrná nebo ne. Protože lim n = 0, konverguje posloupnost 1+n 2 x 2 bodově na I k funkci f (x) 0. Dále r n = sup f n (x) f (x) = sup x I x [0,1] 2nx 1 + n 2 x 2 0 2nx = max x [0,1] 1 + n 2 = 1, n N. x 2 Posloupnost nekonverguje stejnoměrně k nule na intervalu [0, 1]. ( ) 2nx 1+n 2 x = 2n(1+n 2 x 2 ) 2nx(n 2 2x) = 0 2n(1 + n 2 x 2 ) = 2nx(n 2 2x) 2 (1+n 2 x 2 ) 2 1 + n 2 x 2 = 2n 2 x 2 1= n 2 x 2 x = 1 n, f n(0) = 0, f n (1) = 2n, f 1+n 2 n ( 1 n ) = 1 c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 73 / 187

Řady funkcí Posloupnosti a řady funkcí Příklad 20 f n (x) = sin nx n, I = R f n 0, r n = 1 n f n(x) 0 na R c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 74 / 187

Řady funkcí Posloupnosti a řady funkcí Definice 10 Řekneme, že řada funkcí n=1 f n(x) konverguje (bodově) k funkci f (x), jestliže posloupnost částečných součtů s n (x) = f 1 (x) + + f n (x) konverguje (bodově) k funkci f (x) na intervalu I, tj. s n (x) f (x) na I. Řekneme, že řada funkcí n=1 f n(x) konverguje stejnoměrně k funkci f (x), píšeme n=1 f n(x) = f (x) stejnoměrně, pokud s n f (x) na I. Příklad 21 e x = 1 + x + x 2 2! + = konverguje stejnoměrně na R (ukážeme později). n=0 x n n! c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 75 / 187

Řady funkcí Posloupnosti a řady funkcí Lemma 1 (Cauchyovo-Bolzanovo kritérium stejnoměrné konvergence) Posloupnost funkcí {f n } konverguje na intervalu I stejnoměrně právě tehdy, když ε > 0 n 0 N x I m, n n 0 (m, n N) : f m (x) f n (x) < ε. Důkaz. Viz skripta. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 76 / 187

Řady funkcí Posloupnosti a řady funkcí Věta 26 (Cauchyovo-Bolzanovo kritérium pro řady funkcí) Řada funkcí n=1 f n(x) je na intervalu I stejnoměrně konvergentní právě tehdy, když posloupnost jejích částečných součtů s n (x) je na intervalu I stejnoměrně cauchyovská, tj. ε > 0 n 0 N x I n n 0 m N : s n+m (x) s n (x) = f n+1 (x) + + f n+m (x) < ε. Důkaz. Řada funkcí n=1 f n(x) konverguje stejnoměrně k funkci s(x), právě tehdy, když posloupnost jejích částečných součtů s n (x) konverguje stejnoměrně k funkci s(x). Nyní stačí využít Lemma 1. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 77 / 187

Řady funkcí Posloupnosti a řady funkcí Věta 27 (Weierstrassovo kritérium stejnoměrné konvergence) Necht posloupnost funkcí {f n (x)}, x I, splňuje na intervalu I nerovnost f n (x) a n a číselná řada a n je konvergentní. Pak řada funkcí n=1 f n(x) je na intervalu I stejnoměrně konvergentní. Důkaz. Podle předchozí věty stačí dokázat, že posloupnost částečných součtů s n (x) je na intervalu I stejnoměrně cauchyovská. Protože řada a n konverguje, pak podle Cauchyova Bolzanova kritéria je číselná posloupnost jejích částečných součtů cauchyovská, tzn. tedy ε n 0 N, n n 0, m N : a n+1 + + a n+m < ε, f n+1 (x) + + f n+m (x) f n+1 (x) + + f n+m (x) a n+1 + + a n+m < ε n n 0, m N, x I. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 78 / 187

Řady funkcí Posloupnosti a řady funkcí Věta 28 (Abelovo kritérium) Necht f n (x) je na intervalu I stejnoměrně konvergentní a posloupnost {g n (x)} je na I stejnoměrně ohraničená a monotónní. Pak f n (x)g n (x) je na intervalu I stejnoměrně konvergentní. Věta 29 (Dirichletovo kritérium) Necht f n (x) má stejnoměrně ohraničenou posloupnost částečných součtů, posloupnost {g n (x)} je na I monotónní a g n 0 na I. Pak fn (x)g n (x) je na intervalu I stejnoměrně konvergentní. Posloupnost {f n (x)} je na I neklesající (nerostoucí), jestliže má tuto vlastnost každá číselná posloupnost {f n (x 0 )}, x 0 I. Jestliže k R, k > 0 : n N, x I : f n (x) k, nazýváme posloupnost {f n (x)} stejnoměrně ohraničenou. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 79 / 187

Řady funkcí Posloupnosti a řady funkcí Věta 30 Necht funkce f n jsou na intervalu I spojité a f n (x) f (x) na intervalu I. Pak je na intervalu I spojitá i limitní funkce f. Důkaz. Potřebujeme dokázat, že lim x x0 f (x) = f (x 0 ) x 0 I. f (x) f (x 0 ) = f (x) f n (x) + f n (x) f n (x 0 ) + f n (x 0 ) f (x 0 ) f (x) f n (x) + f }{{} n (x) f n (x 0 ) + f n (x 0 ) f (x 0 ). }{{} < ε < ε 3 3 Necht ε > 0 je libovolné, protože f n (x) f (x) na I, k ε 3 n 0, n n 0, x I : f n (x) f (x) < ε 3. Protože f n jsou spojité, pak k ε 3 δ > 0, x (x 0 δ, x 0 + δ) : f n (x) f n (x 0 ) < ε 3. Tedy ε > 0 δ > 0, x (x 0 δ, x 0 + δ) : f (x) f (x 0 ) < ε a funkce f je spojitá v bodě x 0. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 80 / 187

Řady funkcí Posloupnosti a řady funkcí Poznámka Předchozí Věta 30 v podstatě dokazuje, že prostor spojitých funkcí s metrikou stejnoměrné konvergence je úplný metrický prostor, a tedy lze aplikovat (na kontraktivní zobrazení) Banachovu větu o pevném bodě. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 81 / 187

Řady funkcí Posloupnosti a řady funkcí Věta 31 Necht n=1 f n(x) = f (x) konverguje stejnoměrně na intervalu I, tj. s n (x) = n f k (x) f (x) na I. k=1 Je-li každá z funkcí f n spojitá na I, je i součet f spojitou funkcí na intervalu I. Důkaz. Aplikace Věty 30 na posloupnost s n (x) = f 1 (x) + + f n (x), což je spojitá funkce, protože je konečným součtem spojitých funkcí. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 82 / 187

Řady funkcí Posloupnosti a řady funkcí Poznámka Derivace a integrace součtu dvou funkcí platí pro libovolný konečný počet sčítanců. Věta 32 Necht {f n } je posloupnost integrovatelných funkcí na intervalu [a, b] a tato posloupnost na [a, b] konverguje stejnoměrně k funkci f. Pak i limitní funkce je na [a, b] integrovatelná a platí b a b f (x)dx = lim f n (x)dx, n a tj. b a lim n f n (x)dx = lim n b a f n(x)dx. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 83 / 187

Řady funkcí Posloupnosti a řady funkcí Důkaz. Funkce f je integrovatelná na [a, b] právě tehdy, když ε > 0 δ > 0, D(dělení intervalu [a, b]) : ν(d) < δ : S(D, f ) s(d, f ) < ε. Máme S(D, f ) s(d, f ) = = S(D, f ) S(D, f n ) + S(D, f n ) s(d, f n ) + s(d, f n ) s(d, f ) S(D, f ) S(D, f n ) + S(D, f n ) s(d, f n ) + s(d, f n ) s(d, f ) n S(D, f ) S(D, f n ) = [M i (f )(x i x i 1 ) M i (f n )(x i x i 1 )] i=1 n M i (f ) M i (f n ) (x i x i 1 ) i=1 ε 5(b a) n (x i x i 1 ) ε 5 a analogicky pro dolní součty (M i (f ) značí supremum funkce f na intervalu [x i 1, x i ].) Pro dostatečně jemné dělení je i S(D, f n ) s(d, f n ) ε 5. i=1 c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 84 / 187

Řady funkcí Posloupnosti a řady funkcí Dále potřebujeme dokázat, že b a f n(x)dx b a f (x)dx < ε pro dostatečně velké n. b b b f n (x)dx f (x)dx f n (x) f (x) dx < ε a a a pro n taková, že f n (x) f (x) < ε b a na intervalu [a, b]. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 85 / 187

Řady funkcí Posloupnosti a řady funkcí Poznámka b Za předpokladu lim n a f n(x)dx = b a f (x)dx, kde f n(x) f (x) na [a, b] máme x [a, b] lim n x f n (t)dt = a } {{ } F n(x) (F n(x) = f n (x), F (x) = f (x), F n (a) = F (a).) }{{}}{{} =0 =0 x f (t)dt. a } {{ } F (x) c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 86 / 187

Řady funkcí Posloupnosti a řady funkcí Věta 33 Necht {f n (x)} je posloupnost funkcí majících na intervalu I = (a, b) derivaci a necht tato posloupnost na I konverguje k funkci f a posloupnost {f n(x)} na I konverguje stejnoměrně. Pak i limitní funkce f má na I derivaci a platí tj. [lim n f n (x)] = lim n f n(x). Důkaz. Viz skripta. f (x) = lim f n n(x), c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 87 / 187

Řady funkcí Posloupnosti a řady funkcí Věta 34 Necht posloupnost {f n } je na intervalu I stejnoměrně konvergentní a ke každé z těchto funkcí existuje na intervalu I primitivní funkce F n. Jestliže f je stejnoměrná limita funkcí na I, tj. f n f na I, pak k funkci f také existuje primitivní funkce. Jestliže pro nějaké c I platí, že lim n F n (c) = F (c), pak i posloupnost primitivních funkcí F n konverguje stejnoměrně na intervalu I, a to k funkci F, tj. F n F na I. Věta 35 Necht f n (x) = f (x) stejnoměrně na intervalu [a, b] a každá z funkcí f n je na [a, b] integrovatelná. Pak je na [a, b] integrovatelný i součet f a platí b a f (x)dx = b n=1 a f n(x)dx, tj. b a n=1 f n(x)dx = b n=1 a f n(x)dx. Důkaz. Aplikace Věty 32 na částečné součty řady n=1 f n(x). c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 88 / 187

Řady funkcí Posloupnosti a řady funkcí Příklad 22 Vypočítejte ln 3 ln 2 n=1 n e nx dx. Chtěli bychom n e nx dx. To lze pokud řada stejnoměrně konverguje na intervalu [ln 2, ln 3], použijeme Weierstrassovo kritérium f n (x) a n, a n < f n f : n e nx n e n ln 2 = n 2, n+1 n 2 2 n 2n n = n+1 2n 1 2 < 1 n 2 <, tedy n řada konverguje stejnoměrně a lze počítat [ e nx ] ln ln 3 2 = ( 1 2 n 1 ) 1 1 2 3 3 n = 1 1 2 1 1 3 n=1 = 1 1 3 3 2 = 1 2. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 89 / 187

Řady funkcí Posloupnosti a řady funkcí Věta 36 Necht posloupnost funkcí {f n (x)} má na intervalu I = (a, b) derivace f n a pro řadu z těchto derivací platí n=1 f n(x) = g(x) stejnoměrně na I a řada n=1 f n(x) na I konverguje. Pak součet n=1 f n(x) = f (x) má na I derivaci a platí f (x) = g(x), tj. Důkaz. ( f n (x)) = n=1 n=1 f n(x). Označme {s n } a {s n} posloupnosti částečných součtů řad f n (x) a f n(x). (Zřejmě platí, že s n je derivací s n.) Z předpokladů věty na I {s n } konverguje a {s n} konverguje stejnoměrně. Dle Věty 33 má funkce fn (x) = f (x) derivaci a platí f [ (x) = lim n s n(x) = lim f n 1(x) + + f n(x) ] = n=1 f n(x). c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 90 / 187

Řady funkcí Posloupnosti a řady funkcí Věta 37 Necht posloupnost funkcí {f n (x)} má na intervalu I = (a, b) derivace f n a pro řadu z těchto derivací platí n=1 f n(x) = g(x) stejnoměrně na I. Jestliže řada n=1 f n(x) konverguje alespoň v jednom čísle c I, pak tato řada konverguje stejnoměrně a pro její součet n=1 f n(x) = f (x) platí f (x) = g(x), tj. ( n=1 f n(x)) = n=1 f n(x). Poznámka Lze sestrojit příklady, kde se ukáže, že nelze nahradit stejnoměrnou konvergenci bodovou konvergencí. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 91 / 187

Řady funkcí Mocninné řady Definice 11 Necht a n je posloupnost reálných čísel a x 0 R, pak nekonečná řada funkcí n=0 a n(x x 0 ) n se nazývá mocninná řada se středem x 0 a koeficienty a n, n N 0. Poznámka Substitucí y = x x 0 a n y n lze každou řadu převést na řadu se středem y 0 = 0. Můžeme proto uvažovat řady n=0 a nx n. Mocninná řada vždy konverguje ve svém středu. Konvence: a n x n = n=0 a nx n. N 0 := N {0}. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 93 / 187

Řady funkcí Mocninné řady Věta 38 Necht a := lim sup n a n. Je-li a = 0, pak mocninná řada a n x n konverguje x R. Je-li a =, pak řada konverguje pouze ve svém středu x 0 = 0. Je-li 0 < a <, pak řada konverguje x R : x < R := 1 a a diverguje pro x R : x > R. Číslo R se nazývá poloměr konvergence mocninné řady a n x n. Poznámka Interval I takový, že pro x I příslušná řada (absolutně) konverguje nazýváme intervalem (absolutní) kovergence této řady. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 94 / 187

Řady funkcí Mocninné řady Důkaz. Předpokládejme pro jednoduchost, že existuje limita lim n a n = a. Pro nějaké x R aplikujeme na řadu a n x n odmocninové kritérium < 1 konverguje lim n a n x n = x lim n a n = a x > 1 diverguje = 1 nevíme { x < 1 a = R řada konv. x > 1 a = R řada div. Pokud limita lim n a n neexistuje, pak lim sup n a n charakterizuje jak velká čísla a n se v posloupnosti vyskytují a čím větší jsou a n, tím menší je interval pro x, pro něž řada konverguje. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 95 / 187

Řady funkcí Mocninné řady Poznámka Protože platí lim inf a n+1 a n lim inf n a n lim sup n a n lim sup a n+1 a n, lze v případě existence limity podílu použít pro určení poloměru konvergence ji. Protože ve zmíněných limitách jsou absolutní hodnoty, získáváme uvnitř intervalu konvergence přímo absolutní konvergenci. Pro hodnoty x, kde limity vychází jedna (krajní body intervalu konvergence) tyto hodnoty dosadíme a řešíme konvergenci příslušných číselných řad. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 96 / 187

Řady funkcí Mocninné řady Příklad 23 1 x n, a = lim n 1 = 1 R = 1 pro x = 1 řada osciluje, pro x = 1 řada diverguje, řada konverguje (absolutně) pro x ( 1, 1) 2 x n n, a n = 1 n lim a n+1 a n = lim n n+1 = 1 R = 1 pro x = 1 máme 1 n, která diverguje (harmonická řada), pro x = 1 máme ( 1) n n, která konverguje (Leibnizova řada), řada konverguje pro x [ 1, 1), absolutně konverguje pro x ( 1, 1) 3 4 ( 1) n x n n, R = 1, konverguje pro x ( 1, 1], absolutně konverguje pro x ( 1, 1) x n, R = 1, lim a n 2 n+1 a n = 1, x = 1 1 konverguje absolutně, n 2 x = 1 ( 1) n konverguje absolutně, řada konverguje absolutně n 2 pro x [ 1, 1] c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 97 / 187

Řady funkcí Mocninné řady Příklad 24 R =? 1 2 x n n! a n = 1 n!, R = lim 1 n! (n+1)n! 1 = lim(n + 1) = řada konverguje pro x R n!x n a n = n!, R = 0, řada konverguje pouze pro x = 0 c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 98 / 187

Řady funkcí Mocninné řady Poznámka Proč se říká poloměr konvergence? Často se uvažuje řada a n z n, z C, a n C, kde pak místo intervalu konvergence pracujeme s kružnicemi o poloměru z. Tedy hledáme takové číslo R, kdy daná řada konverguje pro všechny z C, z < R a diverguje pro všechny z C, z > R. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 99 / 187

Řady funkcí Mocninné řady Věta 39 Necht mocninná řada a n x n má poloměr konvergence R > 0. Pak r : 0 < r < R řada konverguje na intervalu [ r, r] stejnoměrně (a absolutně). Důkaz. Necht 0 < r < R je libovolné. Použijeme Weierstrassovo kritérium stejnoměrné konvergence, tj. a n x n a n x n = a n x n a n r n pro x [ r, r], řada a n r n konverguje, nebot r < R, tedy a n x n konverguje na [ r, r] stejnoměrně. Absolutní konvergence plyne z faktu, že v nerovnosti a n x n a n r n vystupuje absolutní hodnota. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 100 / 187

Řady funkcí Mocninné řady Věta 40 Necht mocninná řada a n x n má poloměr konvergence R > 0. Pak x ( R, R) platí x 0 an t n dt = a n x n+1 n + 1, přičemž řada na pravé straně rovnosti má poloměr konvergence opět R. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 101 / 187

Řady funkcí Mocninné řady Důkaz. x 0 an t n dt st.konv. = a n x 0 t n dt = a n [ t n+1 n + 1 Předpokládejme, že existuje limita lim n a n = a = 1 R, potom lim n an ( 1 = a lim n + 1 n + 1 = lim n ( 1 a n lim ) 1 n ] x 0 = a n n + 1 x n+1 n + 1 ) 1 n = 0 0 = a lim e 1 ln( 1 ln(n+1) n n+1) = a lim e n = a e 0 = a, tedy poloměr konvergence řady a n n+1 x n+1 je R. Protože a n n+1 x n+1 = x a n n+1 x n mohli jsme použít n-tou odmocninu místo (n + 1)-ní. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 102 / 187

Řady funkcí Mocninné řady Věta 41 Necht mocninná řada a n x n má poloměr konvergence R > 0. Pak x ( R, R) platí ( ) a n x n = n=1 na n x n 1, n=1 přičemž derivováním se poloměr konvergence nemění. Důkaz. Opět plyne ze stejnoměrné konvergence a jednoduchého výpočtu. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 103 / 187

Řady funkcí Mocninné řady Věta 42 (Abelova věta) Necht mocninná řada a n x n má poloměr konvergence 0 < R < a předpokládejme, že pro x = R je tato řada konvergentní. Pak její součet f (x) = a n x n je funkce, která je v x = R zleva spojitá, tj. an R n = f (R) = lim f (x). x R c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 104 / 187

Řady funkcí Mocninné řady Důkaz. Pro důkaz využijeme Abelovo kritérium (věta 28). Pro x [0, R] je číselná řada a n R n konvergentní, tedy je pro libovolné x konvergentní stejnoměrně (jako funkce vystupují konstanty). Přepišme řadu z tvrzení věty takto an x n = ( a n R n x ) n. R Pro použití Abelova kritéria musí být posloupnost funkcí {( ) x n } R nerostoucí a stejnoměrně ohraničená, což je pro x [0, R] splněno. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 105 / 187

Řady funkcí Mocninné řady Příklad 25 Určete součet řady n=1 n 2 n. lim n+1 2n 2n 2 n pokračovat. = lim n+1 2n = 1 2 < 1 řada konverguje a má tedy smysl Využijeme mocninnou řadu n=0 n x n. Ihned máme n R = lim n+1 = 1, tedy pro x = 1 2 absolutně konverguje. [ n x n = x n x n 1 = x n n=0 n=1 [ ] = x x n = x n=1 ( x 1 x n=1 x = 1 2 n=1 n 2 n = 1/2 (1 1/2) 2 = 1 2 4 1 = 2 x n 1 dx ] ) = x 1 x + x (1 x) 2 = x (1 x) 2 c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 106 / 187

Řady funkcí Mocninné řady Využijeme Cauchyův součin (absolutně konvergentní) řady n=1 1 2 = 1 se sebou. Tedy n 1 1 = ( ) ( 1 ) 1 2 n 2 n = 1 1 2 2 +2 1 2 3 +3 1 2 4 + +n 1 + 2n+1 odkud ihned n=1 n 2 n = 2. Přímo pomocí částečných součtů máme = n=1 n 2 n+1 = 1 2 n=1 s n = 1 2 + 2 4 + 3 8 + + n 2 n, s n 2 = 1 4 + 2 8 + 3 16 + + n 2 n+1. Odkud odečtením získáme s n 2 = 1 2 + 1 4 + + 1 2 n n 2 n = 2. n 2 n, n=1 c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 107 / 187

Řady funkcí Mocninné řady Příklad 26 Určete součet řady n=1 1 n2 n. Využijeme mocninnou řadu pro x = 1 2 absolutně konverguje. n=1 x n n = n=1 n=1 x 0 t n 1 dt = 1 n2 n = n=1 = ( 1 2) n n n=1 xn n x 0 n=1 x 0 n+1. Ihned máme R = lim n = 1, tedy t n 1 dt 1 1 t dt = [ ln 1 t ]x 0 = ln(1 x) ( = ln 1 1 ) = ln 1 2 2 = ln 2 c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 108 / 187

Řady funkcí Mocninné řady Příklad 27 Určete poloměr konvergence a součet řady n=0 n(n + 2)x n. R = lim a n n(n + 2) = lim (n + 1)(n + 3) = 1 a n+1 Pro x ( 1, 1) máme n=0 x n = 1 1 x. Protože pro x = 0 máme ihned n=0 n(n + 2)x n = 0, budeme předpokládat, že x 0. x n = 1 / d 1 x dx n=0 [ ] 1 / nx n 1 = x 3 1 x nx n+2 x 3 / d = (1 x) 2 dx n=0 n=0 c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 109 / 187

Řady funkcí Mocninné řady n=0 n(n + 2)x n+1 = 3x 2 x 3 / (1 x) 3 1 x n=0 n(n + 2)x n = 3x x 2 (1 x) 3 Výsledný vztah platí i pro x = 0, tedy lze ho použít pro všechna x ( 1, 1). c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 110 / 187

Řady funkcí Mocninné řady Definice 12 Necht funkce f má v bodě x 0 derivace všech řádů, pak se mocninná řada n=0 f (n) (x 0 ) (x x 0 ) n n! nazývá Taylorova řada dunkce f. Je-li x 0 = 0, pak se řada nazývá Maclaurinova řada. Poznámka f n=0 f (n) (0) x n n! Problém platí (a kde) f (x) = f (n) (0) n=0 n! x n? c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 111 / 187

Řady funkcí Mocninné řady Příklad 28 Uvažujme funkci f (x) = f f (x) f (0) (0) = lim = lim x 0 x 0 Podobně f (0) = lim x 0 což znamená {e 1 x 2 x 0, 0 x = 0. Potom a 0 = 0, a n = f (n) (0) n!,n N. x x 0 e (e 1 x 2 ) f (0) x 0 1 x 2 = lim x 0 = x = 1 t = lim t ± (t e t2 ) = lim t ± (e 1 x 2 ) f (n) (0) = 0 n N 0, f (x) 0 x n = 0 f (x). x t e t2 = lim t ± 1 2t e t2 = 0 1 x 2 2 e = lim x 0 x 3 = 0 c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 112 / 187