1A. Which of the following five units is NOT the same as the other four? A) joule B) erg C) watt D) foot pound E) newton meter

Podobne dokumenty
PRACA I ENERGIA ENERGIA A PRACA

Przedmiot: Fizyka PRACA I ENERGIA. Wykład 5, 2016/2017 1

Praca w języku potocznym

KINEMATYKA (punkt materialny)

Blok 6: Pęd. Zasada zachowania pędu. Praca. Moc.

KINEMATYKA (punkt materialny)

Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący:

DYNAMIKA ZADANIA. Zadanie DYN1

ZASADY ZALICZANIA PRZEDMIOTU:

3. Zadanie nr 21 z rozdziału 7. książki HRW

Podstawy fizyki. Wykład 2. Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska

FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY RUCH PROSTOLINIOWY JEDNOSTAJNIE PRZYSPIESZONY RUCH PROSTOLINIOWY JEDNOSTAJNIE OPÓŹNIONY

Podstawy fizyki. Wykład 3. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, W11, PWr

1 WEKTORY, KINEMATYKA

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii

Podstawy fizyki. Wykład 2. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, W11, PWr

Wykład 5: Praca i Energia. Matematyka Stosowana

(t) w przedziale (0 s 16 s). b) Uzupełnij tabelę, wpisując w drugiej kolumnie rodzaj ruchu, jakim poruszała się mrówka w kolejnych przedziałach czasu.

Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule

Imię i nazwisko ucznia Data... Klasa... Ruch i siły wer. 1

Fizyka 11. Janusz Andrzejewski

Odp.: F e /F g = 1 2,

TRANFORMACJA GALILEUSZA I LORENTZA

POLITECHNIKA ŚLĄSKA INSTYTUT AUTOMATYKI ZAKŁAD SYSTEMÓW POMIAROWYCH

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko

Helena Boguta, klasa 8W, rok szkolny 2018/2019

Zakład Dydaktyki Fizyki UMK

Drgania - zadanka. (b) wyznacz maksymalne położenie, prędkość i przyspieszenie ciała,

b) Oblicz ten ułamek dla zderzeń z jądrami ołowiu, węgla. Iloraz mas tych jąder do masy neutronu wynosi: 206 dla ołowiu i 12 dla węgla.

Opis ruchu obrotowego

Zadania z dynamiki. Maciej J. Mrowiński 11 marca mω 2. Wyznacz położenie i prędkość ciała w funkcji czasu. ma t + f 0. ma 2 (e at 1), v gr = f 0

1. Jeśli częstotliwość drgań ciała wynosi 10 Hz, to jego okres jest równy: 20 s, 10 s, 5 s, 0,1 s.

4. Jeżeli obiekt waży 1 kg i porusza się z prędkością 1 m/s, to jaka jest jego energia kinetyczna? A. ½ B. 1 C. 2 D. 2

Na wykresie przedstawiono zależność drogi od czasu trwania ruchu dla ciał A i B.

MECHANIKA 2. Praca, moc, energia. Wykład Nr 11. Prowadzący: dr Krzysztof Polko

Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Podstawy Procesów i Konstrukcji Inżynierskich. Dynamika

gęstością prawdopodobieństwa

Ruch drgający i falowy

y = The Chain Rule Show all work. No calculator unless otherwise stated. If asked to Explain your answer, write in complete sentences.

Podstawy Procesów i Konstrukcji Inżynierskich. Praca, moc, energia INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA

Ruch drgający. Ruch harmoniczny prosty, tłumiony i wymuszony

DYNAMIKA dr Mikolaj Szopa

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

1. Wykres przedstawia zależność wzrostu temperatury T dwóch gazów zawierających w funkcji ciepła Q dostarczonego gazom.

Kuratorium Oświaty w Katowicach KONKURS PRZEDMIOTOWY Z FIZYKI I ASTRONOMII DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH. Etap III 10 marca 2008 r.

Rodzaj obliczeń. Data Nazwa klienta Ref. Napędy z pasami klinowymi normalnoprofilowymi i wąskoprofilowymi 4/16/ :53:55 PM

v 6 i 7 j. Wyznacz wektora momentu pędu czaski względem początku układu współrzędnych.

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 09 PĘD Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania

Fizyka 5. Janusz Andrzejewski

Kto wykonał większą pracę?

Electromagnetism Q =) E I =) B E B. ! Q! I B t =) E E t =) B. 05/06/2018 Physics 0

Siły zachowawcze i niezachowawcze. Autorzy: Zbigniew Kąkol Kamil Kutorasiński

Elementy fizyki relatywistycznej

Wykład FIZYKA I. 5. Energia, praca, moc. Dr hab. inż. Władysław Artur Woźniak

Ładunki elektryczne. q = ne. Zasada zachowania ładunku. Ładunek jest cechąciała i nie można go wydzielićz materii. Ładunki jednoimienne odpychają się

Drgania. O. Harmoniczny

Podstawy fizyki sezon 1 V. Pęd, zasada zachowania pędu, zderzenia

Fizyka I (mechanika), rok akad. 2011/2012 Zadania na ćwiczenia, seria 2

Dynamika relatywistyczna

Nazwa projektu: Kreatywni i innowacyjni uczniowie konkurencyjni na rynku pracy

Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule

I. DYNAMIKA PUNKTU MATERIALNEGO

Szczególna teoria względności

2.3. Pierwsza zasada dynamiki Newtona

Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) sprężyny

Ćwiczenie: "Symulacja zderzeń sprężystych i niesprężystych"

14P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM PODSTAWOWY (od początku do grawitacji)

POWTÓRKA PRZED KONKURSEM CZĘŚĆ C ZADANIA ZAMKNIĘTE

WYDZIAŁ LABORATORIUM FIZYCZNE

Fizyka 4. Janusz Andrzejewski

SG-MICRO... SPRĘŻYNY GAZOWE P.103

Oddziaływania. Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze.

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd

ZADANIA DLA CHĘTNYCH na 6 (seria II) KLASA III

Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej

ZASADY DYNAMIKI. Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał.

Lista zadań nr 5 Ruch po okręgu (1h)

OCENIANIE ARKUSZA POZIOM ROZSZERZONY INFORMACJE DLA OCENIAJACYCH

Podstawy fizyki wykład 9

Materiały pomocnicze 6 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

WOJEWÓDZKI KONKURS PRZEDMIOTOWY z FIZYKI DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW ORAZ KLAS DOTYCHCZASOWYCH GIMNAZJÓW 2017/2018 ELIMINACJE REJONOWE

Praca, moc, energia. 1. Klasyfikacja energii. W = Epoczątkowa Ekońcowa

Siły zachowawcze i energia potencjalna. Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18

III Powiatowy konkurs szkół ponadgimnazjalnych z fizyki finał

Test powtórzeniowy nr 1

Elektrostatyka, część pierwsza

Odpowietrznik / Vent Charakterystyka pracy / Performance characteristic: Wykres ciœnienia wyjœciowego p2 w funkcji ciœnienia steruj¹cego p4 Diagram -

Praca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne.

Blok 2: Zależność funkcyjna wielkości fizycznych. Rzuty

Informatyka Studia niestacjonarne Fizyka 1.1B

pobrano z serwisu Fizyka Dla Każdego zadania fizyka, wzory fizyka, matura fizyka

36P5 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - V POZIOM PODSTAWOWY

SPRAWDZIAN NR 1. gruntu energia potencjalna kulki jest równa zero. Zakładamy, że podczas spadku na kulkę nie działają opory ruchu.

III Zasada Dynamiki Newtona. Wykład 5: Układy cząstek i bryła sztywna. Przykład. Jak odpowiesz na pytania?

RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA

Tematy zadań do rozwiązania przy użyciu modułu symulacji dynamicznej programu Autodesk Inventor

Wymiana ciepła. Ładunek jest skwantowany. q=n. e gdzie n = ±1, ±2, ±3 [1C = 6, e] e=1, C

Energia mechaniczna 2012/2012

Transkrypt:

1P. Cząstka startuje ze stanu spoczynku w chwili t=0 i porusza wzdłuż osi x. Jeżeli siła wypadkowa działająca na cząstkę jest wprost proporcjonalna do t 2, gdzie t jest czasem liczonym od chwili początkowej, to jej energia kinetyczna jest proporcjonalna do: A) t 2 B) t 3 C) t 4 D) t 6 E) żadna odpowiedź nie jest prawidłowa 1A. Which of the following five units is NOT the same as the other four? A) joule B) erg C) watt D) foot pound E) newton meter 2P. Dana jest siła 2 2 F = ( y - x )ˆi + 3xy ˆj Praca tej siły po dowolnej drodze zamkniętej: A) wynosi 0 bo siła ta jest zachowawcza B) wynosi 0 bo siła ta nie jest zachowawcza C) jest różna od zera bo siła ta jest centralna D) jest różna od zera bo siła ta jest zachowawcza E) nie może zostać obliczona bez znajomości drogi 2A. Which of the following is not true (U-scalar function, F is a vector function): U ˆ U i ˆ U A) U = + j+ kˆ x y z ˆ i ˆ B) = + j+ kˆ D) U = grad F C) F x y z = grad U E) F = U 1

3P. Chłopiec wiosłując chce przepłynąć rzekę w możliwie najkrótszym czasie. Łódka może poruszać się z prędkością 2 m/s względem wod a rzeka płynie z prędkością 1 m/s. Pod jakim kątem θ powinien chłopiec ustawić dziób łodzi w stosunku do brzegu? A) 30 B) 45 C) 60 D) 63 E) 90 3A. A girl wishes to swim across a river to a point directly opposite as shown. She can swim at 2 m/s in still water and the river is flowing at 1 m/s. At what angle θ with respect to the line joining the starting and finishing points should she swim? A) 30 o B) 45 o C) 60 o D) 63 o E) 90 o 4P. Dwa zdarzenia zachodzą w odległości 100 m od siebie w odstępie czasu 0.60 µs w pewnym układzie odniesienia S. Prędkość układu odniesienia S, w którym zdarzenia te zachodzą w tym samym miejscu, liczona względem S, wynosi: A) 0 B) 0.25c C) 0.56c D) 0.8c E) taki układ nie istnieje 4A. Two events occur 100 m apart with an intervening time interval of 0.37 µs. The speed of clock that measures the proper time between the events is: A) 0 D) 0.9c B) 0.45c E) none of the above is true C) 0.56c 2

5P. Długość metrowego pręta poruszającego się z prędkością 0.95c w kierunku swojej długości jest mierzona w laboratoryjnym układzie S przez zaznaczenie jednoczesne położenia początku i końca pręta na osi OX tego układu. Zegar spoczywający względem pręta ( w układzie S ) mierzący przedział czasu pomiędzy zaznaczeniem początku i końca pręta wskaże czas: A) 0 B) 3.1 10 10 s C) 1.0 10 9 s D) 3.2 10 9 s E) 1.0 10 8 s 5A. A meter stick moves sideways at 0.95c. According to the measurements taken in the laborator its length is: A) 0 D) 1 m B) 0.098 m E) 3.1 m C) 0.31 m 6P. Układ odniesienia S' porusza się w kierunku dodatnim osi OX z prędkością 0.6c względem układu odniesienia S. Cząstka porusza się w kierunku dodatnim OX z prędkością 0.4c mierzoną przez obserwatora w S'. Prędkość cząstki mierzona przez obserwatora w S wynosi: A) c/5 B) 5c/19 C) 8c/25 D) 25c/31 E) c 6A. Star S1 is moving away from us at a speed of 0.8c. Star S2 is moving away from us in the opposite direction at a speed of 0.5c. The speed of S1 as measured by an observer on S2 is: A) 0.21c B) 0.5c C) 0.93c D) 1.3c E) 2.17c 3

7P. Przyczepa kempingowa o ciężarze 6000 N jest ciągnięta ze stałą prędkością po zamarzniętym jeziorze za pomocą liny naciągniętej poziomo w stosunku do powierzchni jeziora. Współczynnik tarcia kinetycznego wynosi 0.05. Praca wykonana przez zewnętrzną siłę ciągnącą na drodze 1000 m wynosi: A) 3.1x10 4 J B) 1.5x10 5 J C) 3.0x10 5 J D) 2.9x10 6 J E) 6.0x10 6 J 7A. A crate moves 10 m to the right on a horizontal surface as a woman pulls on it with a 10-N force. Rank the situations shown below according to the work done by her force, least to greatest. A) 1,2,3 B) 2,1,3 C) 2,3,1 D) 1,3,2 E) 3,2,1 8P. Masa jest przyczepiona do końca idealnej sprężyny i przemieszcza się od położenia x i do położenia x f. Położenie równowagi znajduje się w x = 0. Praca wykonana przez sprężynę jest dodatnia jeżeli: A)x i = 2 cm ix f = 4 cm D) x i = 4 cm ix f = 2 cm B)x i = 2 cm ix f = 4 cm E) x i = 2 cm ix f = 4 cm C)x i = 2 cm ix f = 4 cm 8A. A Boston Red Sox baseball player catches a ball of mass m that is moving toward him with speed v. While bringing the ball to rest, his hand moves back a distance d. Assuming constant deceleration, the horizontal force exerted on the ball by his hand is: A) mv/d B) mvd C) mv 2 /d D) 2mv/d E) mv 2 /(2d) 4

9P. Nić na rysunku ma 50 cm długości. Kiedy początkowo spoczywająca kulka zostaje zwolniona porusza się ruchem wahadłowym wzdłuż łuku zaznaczonego na rysunku linią przerywaną. Jaka jest prędkość kulki w najniższym punkcie toru? A) 2.0 m/s B) 2.2 m/s C) 3.1 m/s D) 4.4 m/s E) 6.0 m/s 9A. A 0.50-kg block attached to an ideal spring with a spring constant of 80 N/m oscillates on a horizontal frictionless surface. The total mechanical energy is 0.12 J. The greatest speed of the block is A) 0.15 m/s B) 0.24 m/s C) 0.48 m/s D) 0.69 m/s E) 1.46 m/s 10P. Energia potencjalna ciała o masie m dana jest wzorem:u= mgx + 1/2kx 2. Odpowiadająca tej energii siła wynosi: A) mgx 2 /2 + kx 3 /6 D)mg kx B) mg + kx C)mgx 2 /2 kx 3 /6 E) mg +kx/2 10A. The potential energy for the interaction between the two atoms in a diatomic molecule is U = A/x 12 B/x 6, where A and B are constants and x is the interatomic distance. The magnitude of the force one atom exerts on the other is: A) 12A/ x 13 6B/ x 7 B) 72A/ x 12 72B/ x 6 C) 13A/ x 13 + 7B/ x 7 D) A/ x 13 B/ x 7 E) 11A/ x 11 + 5B/ x 5 5