Sztuczna inteligencja w identyfikacji i sterowaniu. Uczenie konkurencyjne w sieciach samoorganizujących się
|
|
- Teodor Markiewicz
- 7 lat temu
- Przeglądów:
Transkrypt
1 Sztuczna ntelgencja w entyfkacj sterowanu Uczene konkurencyjne w secach samoorganzujących sę Cel ćwczena Celem ćwczena jest poznane samoorganzującej sę sec neuronowej Kohonena oraz algorytmu jej uczena. Wstęp teoretyczny Wstęp Metoa propagacj wstecznej błęu wykorzystana w celu uczena sec neuronowych posaa stotną neogoność, a manowce wymaga ona w trakce uczena pomocy tzw. nauczycela, którego zaanem jest poawane la każego wzorca wejścowego wzorca oczekwanej opowez sec porównywane oczekwanych opowez z rzeczywstym opowezam generowanym przez seć. Jenakże ukła bologczny jakm jest mózg, w welu przypakach jest w stane uczyć sę bez pomocy nauczycela, rozpoznając śwat na postawe wrażeń zmysłowych bez żanych bezpośrench nstrukcj. Przykłaem może być uczene sę noworoka rozpoznawana twarzy swoch najblższych lub otaczających przemotów. Welu baaczy w celu zrozumena procesów zachozących w secach bologcznych, pojęło sę zaana opracowana sec, która potrafłaby wykorzystać nformacje zawarte w użym zestawe wzorców, bęąc pozbawoną wezy a pror o tym, co one reprezentują. Seć pownna okryć bez zewnętrznej pomocy wzory, cechy, wzajemne zależnośc, uporząkowane anych wejścowych, a następne poać taką nformację na wyjśce. Sec Kohonena uczene konkurencyjne Kohonena Wśró sec samoorganzujących sę stotną klasę stanową sec, których postawą załana jest konkurencja męzy neuronam. Są to zwykle sec jenowarstwowe, w których każy neuron jest połączony ze wszystkm skłaowym wektora wejścowego x (Rys. 1). Rys.1 Przykłaowa struktura sec Kohonena Na poszczególnych wejścach każego neuronu znajują sę wag tworząc wektor wag w. Poszczególne neurony znajujące sę w sec współzawonczą ze sobą poprzez porównywane swoch wag z opowenm skłaowym wektora wejścowego x. Zwycęzcą zostaje neuron, którego wag najmnej różną sę o wektora wejścowego x. W celu wyznaczena neuronu zwycęzcy oblcza sę la każego neuronu oległość (x,w) w sense wybranej metryk męzy wektorem wag anego wektora a wektorem sygnałów wejścowych x. Neuron zwycęzca spełna następujący warunek
2 ( x,w ) = mn ( x, w ) zwycezca 1 n Ponżej zaprezentowano najczęścej stosowane mary oległośc w procese samo organzacj: Mara euklesowa loczyn skalarny mara Manhattan N ( x, w ) = ( x j w, j ) j= 1 ( x, w ) = x w cos( x, w ) N ( x, w ) = j= 1 x j w, j 2 Neuron zwycęzca wraz z neuronam znajującym sę w jego sąseztwe polega uczenu weług reguły Kohonena przestawonej wzorem 1 (wag pozostałych neuronów ne są moyfkowane). Poprzez sąseztwo rozumane jest topologczne rozmeszczene neuronów w sec w poblżu neuronu zwycęzcy. Przykła takego sąseztwa został przestawony na rys. 2. w(k+1)=w(k)+η(k)[x-w(k)] (1) Rys. 2 Przykłaowa seć Kohonena, neuron nr 13 wygrał współzawonctwo z nnym neuronam, neurony o nr 8, 14, 18,12 są sąsaam neuronu zwycęzcy ch wag równeż polegają procesow uczena. Moyfkacja wag weług reguły anej wzorem 1 powouję coraz wększe upoobnene zwycęskego wektora wag wektorów wag neuronów sąsench o wektora wejścowego czego efektem w kolejnych teracjach jest jeszcze wększa aktywność zwycęskego neuronu la anego zestawu sygnałów wejścowych. Zastosowana ogranczena Sec konkurencyjne używane są męzy nnym o kompresj koowana anych, aproksymacj funkcj, w analze statystycznej optymalzacj kombnatorycznej. Postawowe ogranczena to nemożlwość rozróżnena wększej lczby klas nż lczba neuronów, brak opornośc na uszkozena sec zakłócena, nemożlwość porząkowana rozpoznawanych klas. Praktyczne wskazówk onośne symulacj sec Kohonena w programe Matlab 1. Tworzene sec konkurencyjnej W celu stworzena sec konkurencyjnej należy skorzystać z funkcj newc, która posaa następującą
3 strukturę net= newc(pr,s,lr) gze net to obekt opsujący stworzoną seć, PR macerz z wartoścam mnmalnym maksymalnym la kolejnych wejść, S lczba neuronów, lr krok uczena. Stworzona seć skłaa sę z jenej warstwy neuronów, które ne są w żaen sposób połączone męzy sobą. Tylko jeen z neuronów po poanu sygnałów wejścowych może stać sę aktywny wygenerować na wyjścu wartość 1 pozostałe neurony w tym czase są neaktywne generują na swoch wyjścach wartość zero. Każy neuron posaa wag, których lczba równa sę lczbe wejść sec plus bas. Wag ncjalzowane są za pomocą funkcj mpont automatyczne w trakce tworzena sec. Funkcja mpont rozmeszcza wag la poszczególnych neuronów okłane w śrokach przezałów poanych w macerzy PR, czego efektem są take same sekwencje wag la wszystkch neuronów (jeżel potraktować wag poszczególnych neuronów jako współrzęne punktów w przestrzen sygnałów wejścowych, to punkty te bęą leżały w tym samym mejscu). Wszystke neurony w sec po poanu sygnałów wejścowych współzawonczą ze sobą, zwycęzcą zostaje neuron, którego wektor wag jest najblższy wektorow anych wejścowych. Aby wyznaczyć zwycęzcę lczona jest oległość wektora wag poszczególnych neuronów o wektora anych uczących. Welkość ta jest zawsze ujemna lub równa zero (gy wartośc anych wejścowych pokrywają sę z wagam baanego neuronu). Z nnejszego faktu wynka, że wygrywa zawsze neuron z najwększą wartoścą oległośc. Aby usprawnć załane sec konkurencyjnej specjalne zaane przyzelono basom. A manowce może zarzyć sę taka sytuacja, że część zaeklarowanych neuronów bęze leżała ostateczne aleko o anych uczących ngy ne bęze mała szans wygrać w procese współzawonctwa neuronów. W takm przypaku take neuronu są neuronam tzw. martwym poneważ ne reprezentują żanej klasy anych. Aby umożlwć wygraną we współzawonctwe neuronom nefortunne rozmeszczonym aleko o anych uczących systematyczne zwększa sę w trakce uczena bas neuronom, które ne wygrywają w konkurencj z nnym neuronam a zmnejsza sę wartość basu la neuronów systematyczne wygrywających. Dzęk nnejszemu poejścu rozwązuje sę problem martwych neuronów a oatkowo zyskuje sę równomerne rozmeszczene neuronów na całej przestrzen anych wejścowych. Przykła P = [ ; ]; net = newc([0 1; 0 1],2); a = sm(net,p) ac = vec2n(a) 2. Dostęp o wag basów sec obywa sę entyczne jak w sec perceptronowej. 3. Uczene sec konkurencyjnej obywa sę za pomocą funkcj tran. W zamplementowanej la tej sec metoze uczena wykorzystano regułę Kohonena, jenakże moyfkacj polegają wag wyłączne neuronu zwycęskego. W opsywanym type sec ne stneje pojęce sąseztwa. Przykła net.tranparam.epochs=100; % Ustalene lczby epok uczących net = tran(net,p); 4. Symulacja sec konkurencyjnej za pomocą funkcj sm a = sm(net,p); ac = vec2n(a); w wektorze ac otrzymujemy numery aktywnych neuronów la kolejnych anych z macerzy p 5. Tworzene mapy Kohonena za pomocą funkcj newsom net = newsom(pr,d,tfcn,dfcn,olr,osteps,tlr,tnd)
4 gze net to obekt opsujący stworzoną seć, PR macerz z wartoścam mnmalnym maksymalnym la kolejnych wejść, D wektor opsujący strukturę fzyczną sec czyl rozmeszczene neuronów w sec np. wektor [4 3] oznacza satkę neuronów 4*3, TFCN efnuje fzyczną topologę rozmeszczena neuronów, przy czym stneją trzy możlwe o wyboru struktury: grtop, hextop rantop, DFCN efnuje metoę oblczana oległośc w fzycznym rozmeszczenu neuronów w celu określena sąseztwa neuronów, użytkownk sec może wyberać pomęzy następującym metrykam st, lnkst, manst, boxst, gze st to mara euklesowa, mara lnkst lczy oległość pomęzy neuronam jako lczbę połączeń jake należy przejść o neuronu źrółowego o ocelowego, mara manst zefnowana jest za pomocą następującego wzoru D = sum(abs(x-y)), mara boxst zefnowana jest za pomocą następującego wzoru Dj = max(abs(p-pj)), OLR to krok uczena la fazy porząkowana, OSTEPS to lczba epok fazy porząkowana, TLR to krok uczena la właścwej fazy uczena, TND to ystans efnujący sąseztwo w faze właścwego uczena (proces uczena la opsywanej sec opsany jest szerzej w popunkce opsującym funkcje tran). Parametram mapy Kohonena są wyłączne wag, nnejsza struktura ne posaa basów. Wag ncjalzowane są za pomocą funkcj mpont. Dystans potrzebny o wyznaczena zwycęzcy lczony jest entyczne jak w przypaku sec konkurencyjnych, jenakże w przypaku omawanej sec w trakce, uczena oprócz moyfkacj wag neuronu wygrywającego uczenu polegają równeż wag neuronów które fzyczne sąsaują z nm (grancę sąseztwa wyznacza parametr TND). Przykła P = [ran(1,400)*2; ran(1,400)]; net = newsom([0 2; 0 1],[3 5]); plotsom(net.layers{1}.postons) net.tranparam.epochs = 25; plot(p(1,:),p(2,:),'.g','markersze',20) hol on plotsom(net.w{1,1},net.layers{1}.stances) hol off 6. Uczene mapy Kohonena obywa sę za pomocą funkcj tran Proces uczena mapy Kohonena przebega wuetapowo, w perwszej faze tzw. faze porząkowana, wag moyfkowane są przy użycu kroku uczena zefnowanego la tej fazy, który w kolejnych krokach systematyczne zmnejsza sę aby po ustalonej la fazy porząkowana lczbe epok osągnąć krok uczena zefnowany la właścwej fazy uczena. Sąseztwo w perwszej epoce fazy porząkowana obejmuje swom zasęgem wszystke neurony, ale systematyczne zmnejsza sę aby po ustalonej lczbe epok fazy porząkowana osągnąć zakres sąseztwa zefnowany la fazy właścwego uczena. Po faze porząkowana następuje faza właścwego uczena, o tego momentu wag w przestrzen wag pownny stworzyć strukturę przypomnającą fzyczne rozmeszczene neuronów. Krok uczena w rugej faze jest znaczne mnejszy nż w rugej, poneważ przewywane są jeyne robne korekty w wartoścach wag poszczególnych neuronów. Jenocześne sąseztwo neuronów otyczy najczęścej tylko najblższych zwycęskemu neuronow sąsaów. Uczene neuronów sąsench przebega z krokem o połowę mnejszym nż neuronu zwycęskego a wag pozostałych neuronów ne są moyfkowane. Zaana Zbuować system kompresj plków grafcznych formatu BMP za pomocą sec konkurencyjnej oraz mapy Kohonena. a) wybrać 3 struktury sec konkurencyjnej następne przeprowazć uczene każej sec, wybrać seć która skompresowała obrazek w najwększym stopnu (zefnować polczyć współczynnk kompresj) oraz wybrać seć, która otwarza obrazek z najlepszym efektem (każą seć uczyć przy takch samych ustawenach)
5 b) powtórzyć operacje wymenone w popunkce a la mapy Kohonena c) wybrać jeną seć konkurencyjną ającą najlepsze efekty wzualne a następne zbaać wpływ welkośc wzorca kompresj poprzez wybór trzech wzorców porównane stopna kompresj oraz jakośc otwarzana uzyskanych la wzorców o wybranych rozmarach ) powtórzyć ćwczene z popunktu c la mapy Kohonena e) porównać stopeń kompresj sec konkurencyjnej, która otwarza obrazek z najlepszym efektem ze stopnem kompresj mapy Kohonena, która otwarza obrazek z najlepszym efektem wzualnym
Sztuczne sieci neuronowe. Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 311
Sztuczne sec neuronowe Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyk, p. 311 Wykład 6 PLAN: - Repetto (brevs) - Sec neuronowe z radalnym funkcjam bazowym Repetto W aspekce archtektury: zajmowalśmy
Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja)
Analza danych Dane trenngowe testowe. Algorytm k najblższych sąsadów. Jakub Wróblewsk jakubw@pjwstk.edu.pl http://zajeca.jakubw.pl/ OGÓLNY SCHEMAT Mamy dany zbór danych podzelony na klasy decyzyjne, oraz
Systemy Just-in-time. Sterowanie produkcją
Systemy Just-n-tme Sterowane proukcją MRP MRP II Just n tme OPT 1 Sterowane proukcją MRP MRP II Just n tme OPT Koszty opóźneń Kary umowne Utrata zamówena Utrata klenta Utrata t reputacj 2 Problemy z zapasam
Klasyfkator lnowy Wstęp Klasyfkator lnowy jest najprostszym możlwym klasyfkatorem. Zakłada on lnową separację lnowy podzał dwóch klas mędzy sobą. Przedstawa to ponższy rysunek: 5 4 3 1 0-1 - -3-4 -5-5
Sieci Neuronowe 1 Michał Bereta
Wprowadzene Zagadnena Sztucznej Intelgencj laboratorum Sec Neuronowe 1 Mchał Bereta Sztuczne sec neuronowe można postrzegać jako modele matematyczne, które swoje wzorce wywodzą z bolog obserwacj ludzkch
Zastosowanie Robotyki w Przemyśle
Zastosowane Robotyk w Przemyśle Dr nż. Tomasz Buratowsk Wyzał nżyner Mechancznej Robotyk Katera Robotyk Mechatronk WPROWADZENIE Robotyka jest zezną nauk, która łączy różne traycyjne gałęze nauk techncznych.
Nowoczesne technk nformatyczne - Ćwczene 2: PERCEPTRON str. 2 Potencjał membranowy u wyznaczany jest klasyczne: gdze: w waga -tego wejśca neuronu b ba
Nowoczesne technk nformatyczne - Ćwczene 2: PERCEPTRON str. 1 Ćwczene 2: Perceptron WYMAGANIA 1. Sztuczne sec neuronowe budowa oraz ops matematyczny perceptronu (funkcje przejśca perceptronu), uczene perceptronu
Analiza rodzajów skutków i krytyczności uszkodzeń FMECA/FMEA według MIL STD - 1629A
Analza rodzajów skutków krytycznośc uszkodzeń FMECA/FMEA według MIL STD - 629A Celem analzy krytycznośc jest szeregowane potencjalnych rodzajów uszkodzeń zdentyfkowanych zgodne z zasadam FMEA na podstawe
Laboratorium z Podstaw Automatyki. Laboratorium nr 4. Działanie układu automatycznej regulacji. Rodzaje regulatorów.
. Cele ćwczena Laboratorum nr 4 Dzałane ukłau automatycznej regulacj. ozaje regulatorów. zaoznane sę z buową załanem ukłau regulacj, zaoznane sę z różnym strukturam regulatorów, obór arametrów regulatorów
Arytmetyka finansowa Wykład z dnia 30.04.2013
Arytmetyka fnansowa Wykła z na 30042013 Wesław Krakowak W tym rozzale bęzemy baać wartość aktualną rent pewnych, W szczególnośc, wartość obecną renty, a równeż wartość końcową Do wartośc końcowej renty
5. OPTYMALIZACJA GRAFOWO-SIECIOWA
. OPTYMALIZACJA GRAFOWO-SIECIOWA Defncja grafu Pod pojęcem grafu G rozumemy następującą dwójkę uporządkowaną (defncja grafu Berge a): (.) G W,U gdze: W zbór werzchołków grafu, U zbór łuków grafu, U W W,
Neural networks. Krótka historia 2004-05-30. - rozpoznawanie znaków alfanumerycznych.
Neural networks Lecture Notes n Pattern Recognton by W.Dzwnel Krótka hstora McCulloch Ptts (1943) - perwszy matematyczny ops dzalana neuronu przetwarzana przez nego danych. Proste neurony, które mogly
; -1 x 1 spełnia powyższe warunki. Ale
Funkcje uwkłane Przkła.ozważm równane np. nech. Ptane Cz la owolneo [ ] stneje tak że? Nech. Wówczas unkcja - spełna powższe warunk. Ale spełna je także unkcja [ ] Q. Dokłaając warunek cąłośc unkcj [ ]
Diagnostyka układów kombinacyjnych
Dagnostyka układów kombnacyjnych 1. Wprowadzene Dagnostyka obejmuje: stwerdzene stanu układu, systemu lub ogólne sec logcznej. Jest to tzw. kontrola stanu wykrywająca czy dzałane sec ne jest zakłócane
Wykład 2: Uczenie nadzorowane sieci neuronowych - I
Wykład 2: Uczene nadzorowane sec neuronowych - I Algorytmy uczena sec neuronowych Na sposób dzałana sec ma wpływ e topologa oraz funkconowane poszczególnych neuronów. Z reguły topologę sec uznae sę za
Twierdzenie Bezouta i liczby zespolone Javier de Lucas. Rozwi azanie 2. Z twierdzenia dzielenia wielomianów, mamy, że
Twerdzene Bezouta lczby zespolone Javer de Lucas Ćwczene 1 Ustal dla których a, b R można podzelć f 1 X) = X 4 3X 2 + ax b przez f 2 X) = X 2 3X+2 Oblcz a b Z 5 jeżel zak ladamy, że f 1 f 2 s a welomanam
Infrastruktura transportowa w wybranych krajach Unii Europejskiej analiza taksonomiczna Transport Infrastructure in UE countries taxonomic analysis
Infrastruktura transportowa w wybranych krajach Un Europejskej analza taksonomczna Transport Infrastructure n UE countres taxonomc analyss Danuta Tarka Poltechnka Bałostocka, Wyzał Zarzązana, Katera Informatyk
; -1 x 1 spełnia powyższe warunki. Ale
AIB-Inormatka-Wkła - r Aam Ćmel cmel@.ah.eu.pl Funkcje uwkłane Przkła.ozważm równane np. nech. Ptane Cz la owolneo [] stneje tak że? Nech. Wówczas unkcja - spełna powższe warunk. Ale [ ] Q spełna je także
Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych
Zaawansowane metody numeryczne Komputerowa analza zagadneń różnczkowych 1. Układy równań lnowych P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ semestr letn 2006/07 Podstawowe fakty Równane Ax = b, x,
Wprowadzenie do Sieci Neuronowych Sieci rekurencyjne
Wprowadzene do Sec Neuronowych Sec rekurencyjne M. Czoków, J. Persa 2010-12-07 1 Powtórzene Konstrukcja autoasocjatora Hopfelda 1.1 Konstrukcja Danych jest m obrazów wzorcowych ξ 1..ξ m, gdze każdy pojedynczy
D Archiwum Prac Dyplomowych - Instrukcja dla studentów
Kraków 01.10.2015 D Archwum Prac Dyplomowych - Instrukcja dla studentów Procedura Archwzacj Prac Dyplomowych jest realzowana zgodne z zarządzenem nr 71/2015 Rektora Unwersytetu Rolnczego m. H. Kołłątaja
Wykład 2: Uczenie nadzorowane sieci neuronowych - I
Wykład 2: Uczene nadzorowane sec neuronowych - I Algorytmy uczena sec neuronowych Na sposób dzałana sec ma wpływ e topologa oraz funkconowane poszczególnych neuronów. Z reguły topologę sec uznae sę za
METODY PLANOWANIA EKSPERYMENTÓW. dr hab. inż. Mariusz B. Bogacki
Metody Planowana Eksperymentów Rozdzał 1. Strona 1 z 14 METODY PLANOWANIA EKSPERYMENTÓW dr hab. nż. Marusz B. Bogack Marusz.Bogack@put.poznan.pl www.fct.put.poznan.pl/cv23.htm Marusz B. Bogack 1 Metody
Procedura normalizacji
Metody Badań w Geograf Społeczno Ekonomcznej Procedura normalzacj Budowane macerzy danych geografcznych mgr Marcn Semczuk Zakład Przedsęborczośc Gospodark Przestrzennej Instytut Geograf Unwersytet Pedagogczny
Neuron liniowy. Najprostsza sieć warstwa elementów liniowych
Najprostsza jest jednostka lnowa: Neuron lnowy potraf ona rozpoznawać wektor wejścowy X = (x 1, x 2,..., x n ) T zapamętany we współczynnkach wagowych W = (w 1, w 2,..., w n ), Zauważmy, że y = W X Załóżmy,
Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB
Rozwązywane zadań optymalzacj w środowsku programu MATLAB Zagadnene optymalzacj polega na znajdowanu najlepszego, względem ustalonego kryterum, rozwązana należącego do zboru rozwązań dopuszczalnych. Standardowe
Nieeuklidesowe sieci neuronowe
Unwersytet Mkoaja Kopernka Wydza Fzyk, Astronom Informatyk Stosowanej IS Helena Jurkewcz numer albumu: 177622 Praca magsterska na kerunku Fzyka Komputerowa Neeukldesowe sec neuronowe Opekun pracy dyplomowej
BADANIA OPERACYJNE. Podejmowanie decyzji w warunkach niepewności. dr Adam Sojda
BADANIA OPERACYJNE Podejmowane decyzj w warunkach nepewnośc dr Adam Sojda Teora podejmowana decyzj gry z naturą Wynk dzałana zależy ne tylko od tego, jaką podejmujemy decyzję, ale równeż od tego, jak wystąp
Diagonalizacja macierzy kwadratowej
Dagonalzacja macerzy kwadratowej Dana jest macerz A nân. Jej wartośc własne wektory własne spełnają równane Ax x dla,..., n Każde z równań własnych osobno można zapsać w postac: a a an x x a a an x x an
W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np.
Wykład 7 Uwaga: W praktyce często zdarza sę, że wynk obu prób możemy traktować jako wynk pomarów na tym samym elemence populacj np. wynk x przed wynk y po operacj dla tego samego osobnka. Należy wówczas
Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE
Inormatyka Podstawy Programowana 06/07 Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE 6. Równana algebraczne. Poszukujemy rozwązana, czyl chcemy określć perwastk rzeczywste równana:
Laboratorium ochrony danych
Laboratorum ochrony danych Ćwczene nr Temat ćwczena: Cała skończone rozszerzone Cel dydaktyczny: Opanowane programowej metody konstruowana cał skończonych rozszerzonych GF(pm), poznane ch własnośc oraz
METODA UNITARYZACJI ZEROWANEJ Porównanie obiektów przy ocenie wielokryterialnej. Ranking obiektów.
Opracowane: Dorota Mszczyńska METODA UNITARYZACJI ZEROWANEJ Porównane obektów przy ocene welokryteralnej. Rankng obektów. Porównane wybranych obektów (warantów decyzyjnych) ze względu na różne cechy (krytera)
Za: Stanisław Latoś, Niwelacja trygonometryczna, [w:] Ćwiczenia z geodezji II [red.] J. Beluch
Za: Stansław Latoś, Nwelacja trygonometryczna, [w:] Ćwczena z geodezj II [red.] J. eluch 6.1. Ogólne zasady nwelacj trygonometrycznej. Wprowadzene Nwelacja trygonometryczna, zwana równeż trygonometrycznym
Minister Edukacji Narodowej Pani Katarzyna HALL Ministerstwo Edukacji Narodowej al. J. Ch. Szucha 25 00-918 Warszawa Dnia 03 czerwca 2009 r.
Mnster Edukacj arodowej Pan Katarzyna HALL Mnsterstwo Edukacj arodowej al. J. Ch. Szucha 25 00-918 arszawa Dna 03 czerwca 2009 r. TEMAT: Propozycja zmany art. 30a ustawy Karta auczycela w forme lstu otwartego
ORGANIZACJA ZAJĘĆ OPTYMALIZACJA GLOBALNA WSTĘP PLAN WYKŁADU. Wykładowca dr inż. Agnieszka Bołtuć, pokój 304, e-mail: aboltuc@ii.uwb.edu.
ORGANIZACJA ZAJĘĆ Wykładowca dr nż. Agneszka Bołtuć, pokój 304, e-mal: aboltuc@.uwb.edu.pl Lczba godzn forma zajęć: 15 godzn wykładu oraz 15 godzn laboratorum 15 godzn projektu Konsultacje: ponedzałk 9:30-11:00,
Warszawa, 28 stycznia 2017 r., Blok tematyczny II Sztuczne sieci neuronowe (środowisko MATLAB i Simulink z wykorzystaniem Neural Network Toolbox),
Studa Doktorancke IBS PA nt. Technk nformacyjne teora zastosowana WYKŁAD Semnarum nt. Modelowane rozwoju systemów w środowsku MATLABA Smulnka Prof. nadzw. dr hab. nż. Jerzy Tchórzewsk, jtchorzewsk@ntera.pl;
WYZNACZANIE OPTYMALIZOWANYCH PROCEDUR DIAGNOSTYCZNO-OBSŁUGOWYCH
ZAKŁA KSPLOATACJI SYSTMÓW LKTRONICZNYCH INSTYTUT SYSTMÓW LKTRONICZNYCH WYZIAŁ LKTRONIKI WOJSKOWA AKAMIA TCHNICZNA ---------------------------------------------------------------------------------------------------------------
Warunek równowagi bryły sztywnej: Znikanie sumy sił przyłożonych i sumy momentów sił przyłożonych.
Warunek równowag bryły sztywnej: Znkane suy sł przyłożonych suy oentów sł przyłożonych. r Precesja koła rowerowego L J Oznaczena na poprzench wykłaach L L L L g L t M M F L t F Częstość precesj: Ω ϕ t
Proces narodzin i śmierci
Proces narodzn śmerc Jeżel w ewnej oulacj nowe osobnk ojawają sę w sosób losowy, rzy czym gęstość zdarzeń na jednostkę czasu jest stała w czase wynos λ, oraz lczba osobnków n, które ojawły sę od chwl do
SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW
SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskego 8, 04-703 Warszawa tel.
Zastosowanie sieci neuronowych Kohonena do prognozowania obciążeń elektroenergetycznych
Tomasz CIECHULSKI 1, Stansław OSOWSKI 1,2 Wojskowa Akadema Technczna, Wydzał Elektronk (1), Poltechnka Warszawska, Wydzał Elektryczny (2) do:10.15199/48.2016.10.48 Zastosowane sec neuronowych Kohonena
Natalia Nehrebecka. Wykład 2
Natala Nehrebecka Wykład . Model lnowy Postad modelu lnowego Zaps macerzowy modelu lnowego. Estymacja modelu Wartośd teoretyczna (dopasowana) Reszty 3. MNK przypadek jednej zmennej . Model lnowy Postad
ZAGADNIENIE W POSTACI OGÓLNEJ
ZAGADNINI W POSAI OGÓLNJ s e ˆ - sygał - sygał -sygał obserwoway -sygał skoreloway z e eskoreloway z s -moel sygału s e ˆ -błą Szukae: 0,,..., M ] - ooweź mulsowa fltru FIR, - trasozycja Kryterum: m ]
Sztuczna Inteligencja Tematy projektów Sieci Neuronowe
PB, 2009 2010 Sztuczna Inteligencja Tematy projektów Sieci Neuronowe Projekt 1 Stwórz projekt implementujący jednokierunkową sztuczną neuronową złożoną z neuronów typu sigmoidalnego z algorytmem uczenia
dy dx stąd w przybliżeniu: y
Przykłady do funkcj nelnowych funkcj Törnqusta Proszę sprawdzć uzasadnć, które z podanych zdań są prawdzwe, a które fałszywe: Przykład 1. Mesęczne wydatk na warzywa (y, w jednostkach penężnych, jp) w zależnośc
MODEL PROGNOZUJĄCY EKOEFEKTYWNOŚĆ TECHNOLOGII ZRÓWNOWAŻONEGO ROZWOJU W OPARCIU O SIECI NEURONOWE
ZADANIA 3.4., 3.5. 3.6 OPRACOWANIE, TESTOWANIE I WERYFIKACJA ALGORYTMU MODELU OCENY EKOEFEKTYWNOŚCI TECHNOLOGII MODEL PROGNOZUJĄCY EKOEFEKTYWNOŚĆ TECHNOLOGII ZRÓWNOWAŻONEGO ROZWOJU W OPARCIU O SIECI NEURONOWE
I. Elementy analizy matematycznej
WSTAWKA MATEMATYCZNA I. Elementy analzy matematycznej Pochodna funkcj f(x) Pochodna funkcj podaje nam prędkość zman funkcj: df f (x + x) f (x) f '(x) = = lm x 0 (1) dx x Pochodna funkcj podaje nam zarazem
WSPOMAGANE KOMPUTEROWO POMIARY CZĘSTOTLIWOŚCI CHWILOWEJ SYGNAŁÓW IMPULSOWYCH
Metrologa Wspomagana Komputerowo - Zegrze, 9-22 05.997 WSPOMAGANE KOMPUTEROWO POMIARY CZĘSTOTLIWOŚCI CHWILOWEJ SYGNAŁÓW IMPULSOWYCH dr nż. Jan Ryszard Jask, dr nż. Elgusz Pawłowsk POLITECHNIKA lubelska
System Przeciwdziałania Powstawaniu Bezrobocia na Terenach Słabo Zurbanizowanych SPRAWOZDANIE Z BADAŃ Autor: Joanna Wójcik
Opracowane w ramach projektu System Przecwdzałana Powstawanu Bezroboca na Terenach Słabo Zurbanzowanych ze środków Europejskego Funduszu Społecznego w ramach Incjatywy Wspólnotowej EQUAL PARTNERSTWO NA
Plan wykładu: Typowe dane. Jednoczynnikowa Analiza wariancji. Zasada: porównać zmienność pomiędzy i wewnątrz grup
Jednoczynnkowa Analza Waranc (ANOVA) Wykład 11 Przypomnene: wykłady zadana kursu były zaczerpnęte z podręcznków: Statystyka dla studentów kerunków techncznych przyrodnczych, J. Koronack, J. Melnczuk, WNT
KRZYWA BÉZIERA TWORZENIE I WIZUALIZACJA KRZYWYCH PARAMETRYCZNYCH NA PRZYKŁADZIE KRZYWEJ BÉZIERA
KRZYWA BÉZIERA TWORZENIE I WIZUALIZACJA KRZYWYCH PARAMETRYCZNYCH NA PRZYKŁADZIE KRZYWEJ BÉZIERA Krzysztof Serżęga Wyższa Szkoła Informatyk Zarządzana w Rzeszowe Streszczene Artykuł porusza temat zwązany
Część III: Termodynamika układów biologicznych
Część III: Termodynamka układów bologcznych MATERIAŁY POMOCNICZE DO WYKŁADÓW Z PODSTAW BIOFIZYKI IIIr. Botechnolog prof. dr hab. nż. Jan Mazersk TERMODYNAMIKA UKŁADÓW BIOLOGICZNYCH Nezwykle cenną metodą
Rozkład dwupunktowy. Rozkład dwupunktowy. Rozkład dwupunktowy x i p i 0 1-p 1 p suma 1
Rozkład dwupunktowy Zmenna losowa przyjmuje tylko dwe wartośc: wartość 1 z prawdopodobeństwem p wartość 0 z prawdopodobeństwem 1- p x p 0 1-p 1 p suma 1 Rozkład dwupunktowy Funkcja rozkładu prawdopodobeństwa
Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4.
Modele weloczynnkowe Analza Zarządzane Portfelem cz. 4 Ogólne model weloczynnkowy można zapsać jako: (,...,,..., ) P f F F F = n Dr Katarzyna Kuzak lub (,...,,..., ) f F F F = n Modele weloczynnkowe Można
Lekcja 5: Sieć Kohonena i sieć ART
Lekcja 5: Sieć Kohonena i sieć ART S. Hoa Nguyen 1 Materiał Sieci Kohonena (Sieć samo-organizująca) Rysunek 1: Sieć Kohonena Charakterystyka sieci: Jednowarstwowa jednokierunkowa sieć. Na ogół neurony
Prawdziwa ortofotomapa
Prawdzwa ortofotomapa klasyczna a prawdzwa ortofotomapa mnmalzacja przesunęć obektów wystających martwych pól na klasycznej ortofotomape wpływ rodzaju modelu na wynk ortorektyfkacj budynków stratege opracowana
Sieci Neuronowe 2 Michał Bereta
Zagadnena Sztucznej Intelgencj laboratorum Sec Neuronowe 2 Mchał Bereta Cele laboratorum: zapoznane sę z nowym rodzajam sec neuronowych: secam Kohonena oraz secam radalnym porównane sec Kohonena oraz sec
Natalia Nehrebecka. Zajęcia 4
St ł Cchock Stansław C h k Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0 1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających
Wprowadzenie do Sieci Neuronowych Algorytm wstecznej propagacji błędu
Wprowadzene do Sec Neuronowych Algorytm wstecznej propagacj błędu Maja Czoków, Jarosław Persa --6 Powtórzene. Perceptron sgmodalny Funkcja sgmodalna: σ(x) = + exp( c (x p)) Parametr c odpowada za nachylene
Zastosowanie symulatora ChemCad do modelowania złożonych układów reakcyjnych procesów petrochemicznych
NAFTA-GAZ styczeń 2011 ROK LXVII Anna Rembesa-Śmszek Instytut Nafty Gazu, Kraków Andrzej Wyczesany Poltechnka Krakowska, Kraków Zastosowane symulatora ChemCad do modelowana złożonych układów reakcyjnych
Programowanie Równoległe i Rozproszone
Programowane Równoległe Rozproszone Wykład Programowane Równoległe Rozproszone Lucjan Stapp Wydzał Matematyk Nauk Informacyjnych Poltechnka Warszawska (l.stapp@mn.pw.edu.pl) /38 PRR Wykład Chcemy rozwązać
Sztuczne sieci neuronowe
Sztuczne sec neuronowe Jerzy Stefanowsk Plan wykładu 1. Wprowadzene 2. Model sztucznego neuronu. 3. Topologe sec neuronowych 4. Reguły uczena sec neuronowych. 5. Klasyfkaca sec neuronowych. 6. Sec warstwowe
Wstęp do metod numerycznych Faktoryzacja SVD Metody iteracyjne. P. F. Góra
Wstęp do metod numerycznych Faktoryzacja SVD Metody teracyjne P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ 2013 Sngular Value Decomposton Twerdzene 1. Dla każdej macerzy A R M N, M N, stneje rozkład
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 15. ALGORYTMY GENETYCZNE Częstochowa 014 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska TERMINOLOGIA allele wartośc, waranty genów, chromosom - (naczej
Stanisław Cichocki Natalia Nehrebecka. Zajęcia 4
Stansław Cchock Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0-1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających Interpretacja
Systemy Inteligentnego Przetwarzania wykład 3: sieci rekurencyjne, sieci samoorganizujące się
Systemy Intelgentnego Przetwarzana wykład 3: sec rekurencyne, sec samoorganzuące sę Dr nż. Jacek Mazurkewcz Katedra Informatyk Technczne e-mal: Jacek.Mazurkewcz@pwr.edu.pl Sec neuronowe ze sprzężenem Sprzężena
MINISTER EDUKACJI NARODOWEJ
4 MINISTER EDUKACJI NARODOWEJ DWST WPZN 423189/BSZI13 Warszawa, 2013 -Q-4 Pan Marek Mchalak Rzecznk Praw Dzecka Szanowny Pane, w odpowedz na Pana wystąpene z dna 28 czerwca 2013 r. (znak: ZEW/500127-1/2013/MP),
STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH
STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH 1 Test zgodnośc χ 2 Hpoteza zerowa H 0 ( Cecha X populacj ma rozkład o dystrybuance F). Hpoteza alternatywna H1( Cecha X populacj
p Z(G). (G : Z({x i })),
3. Wykład 3: p-grupy twerdzena Sylowa. Defncja 3.1. Nech (G, ) będze grupą. Grupę G nazywamy p-grupą, jeżel G = dla pewnej lczby perwszej p oraz k N. Twerdzene 3.1. Nech (G, ) będze p-grupą. Wówczas W
S O M SELF-ORGANIZING MAPS. Przemysław Szczepańczyk Łukasz Myszor
S O M SELF-ORGANIZING MAPS Przemysław Szczepańczyk Łukasz Myszor Podstawy teoretyczne Map Samoorganizujących się stworzył prof. Teuvo Kohonen (1982 r.). SOM wywodzi się ze sztucznych sieci neuronowych.
r i m r Fwyp R CM Dynamika ruchu obrotowego bryły sztywnej
Dynamka ruchu obrotowego bryły sztywnej Bryła sztywna - zbór punktów materalnych (neskończene welu), których wzajemne położene ne zmena sę po wpływem załających sł F wyp R C O r m R F wyp C Śroek masy
Zapis informacji, systemy pozycyjne 1. Literatura Jerzy Grębosz, Symfonia C++ standard. Harvey M. Deitl, Paul J. Deitl, Arkana C++. Programowanie.
Zaps nformacj, systemy pozycyjne 1 Lteratura Jerzy Grębosz, Symfona C++ standard. Harvey M. Detl, Paul J. Detl, Arkana C++. Programowane. Zaps nformacj w komputerach Wszystke elementy danych przetwarzane
8. Optymalizacja decyzji inwestycyjnych
dr nż. Zbgnew Tarapata: Optymalzacja decyzj nwestycyjnych, cz.ii 8. Optymalzacja decyzj nwestycyjnych W rozdzale 8, część I przedstawono elementarne nformacje dotyczące metod oceny decyzj nwestycyjnych.
Statystyka Inżynierska
Statystyka Inżynerska dr hab. nż. Jacek Tarasuk AGH, WFIS 013 Wykład DYSKRETNE I CIĄGŁE ROZKŁADY JEDNOWYMIAROWE Zmenna losowa, Funkcja rozkładu, Funkcja gęstośc, Dystrybuanta, Charakterystyk zmennej, Funkcje
Regulamin promocji 14 wiosna
promocja_14_wosna strona 1/5 Regulamn promocj 14 wosna 1. Organzatorem promocj 14 wosna, zwanej dalej promocją, jest JPK Jarosław Paweł Krzymn, zwany dalej JPK. 2. Promocja trwa od 01 lutego 2014 do 30
APROKSYMACJA QUASIJEDNOSTAJNA
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 73 Electrcal Engneerng 213 Jan PURCZYŃSKI* APROKSYMACJA QUASIJEDNOSTAJNA W pracy wykorzystano metodę aproksymacj średnokwadratowej welomanowej, przy
Współczynnik przenikania ciepła U v. 4.00
Współczynnk przenkana cepła U v. 4.00 1 WYMAGANIA Maksymalne wartośc współczynnków przenkana cepła U dla ścan, stropów, stropodachów, oken drzw balkonowych podano w załącznku do Rozporządzena Mnstra Infrastruktury
Hipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ
WERYFIKACJA HIPOTEZY O ISTOTNOŚCI OCEN PARAMETRÓW STRUKTURALNYCH MODELU Hpoezy o sonośc oszacowao paramerów zmennych objaśnających Tesowane sonośc paramerów zmennych objaśnających sprowadza sę do nasępującego
Alternatywne metody grupowania i wizualizacji wykorzystujące sieci konkurencyjne
Alternatywne metody grupowana wzualzacj wykorzystujące sec konkurencyjne Janusz Stal Akadema Ekonomczna w Krakowe Katedra Informatyk Streszczene: Samoogranzujące sę mapy cech (SOM) są jednym z rodzajów
Analiza danych. Analiza danych wielowymiarowych. Regresja liniowa. Dyskryminacja liniowa. PARA ZMIENNYCH LOSOWYCH
Analza danych Analza danych welowymarowych. Regresja lnowa. Dyskrymnacja lnowa. Jakub Wróblewsk jakubw@pjwstk.edu.pl http://zajeca.jakubw.pl/ PARA ZMIENNYCH LOSOWYCH Parę zmennych losowych X, Y możemy
Metody Sztucznej Inteligencji II
17 marca 2013 Neuron biologiczny Neuron Jest podstawowym budulcem układu nerwowego. Jest komórką, która jest w stanie odbierać i przekazywać sygnały elektryczne. Neuron działanie Jeżeli wartość sygnału
ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 5(96)/2013
ZESZYTY NAUKOWE NSTYTUTU POJAZDÓW 5(96)/2013 Hubert Sar, Potr Fundowcz 1 WYZNACZANE MASOWEGO MOMENTU BEZWŁADNOŚC WZGLĘDEM OS PODŁUŻNEJ DLA SAMOCHODU TYPU VAN NA PODSTAWE WZORÓW DOŚWADCZALNYCH 1. Wstęp
UNIWESRYTET EKONOMICZNY WE WROCŁAWIU HOSSA ProCAPITAL WYCENA OPCJI. Sebastian Gajęcki WYDZIAŁ NAUK EKONOMICZNYCH
UNIWESRYTET EKONOMICZNY WE WROCŁAWIU HOSSA ProCAPITAL WYCENA OPCJI Sebastian Gajęcki WYDZIAŁ NAUK EKONOMICZNYCH WPROWADZENIE Opcje są instrumentem pochonym, zatem takim, którego cena zależy o ceny instrumentu
Nie istnieje ogólna recepta, każdy przypadek musi być rozważany indywidualnie!
Kwesta wyboru struktury modelu neuronowego Schematyczne przedstawene etapów przetwarzana danych w procese neuronowego modelowana Ne stneje ogólna recepta, każdy przypadek mus być rozważany ndywdualne!
KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1
KURS STATYSTYKA Lekcja 6 Regresja lne regresj ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 Funkcja regresj I rodzaju cechy Y zależnej
Nowe europejskie prawo jazdy w celu większej ochrony, bezpieczeństwa i swobodnego przemieszczania się
KOMISJA EUROPEJSKA NOTATKA Bruksela, 18 styczna 2013 r. Nowe europejske prawo jazdy w celu wększej ochrony, bezpeczeństwa swobodnego przemeszczana sę W dnu 19 styczna 2013 r., w ramach wejśca w życe trzecej
SYSTEMY UCZĄCE SIĘ WYKŁAD 15. ANALIZA DANYCH WYKRYWANIE OBSERWACJI. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska
SYSTEMY UCZĄCE SIĘ WYKŁAD 15. ANALIZA DANYCH WYKRYWANIE OBSERWACJI ODSTAJĄCYCH, UZUPEŁNIANIE BRAKUJĄCYCH DANYCH Częstochowa 2014 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska WYKRYWANIE
Zaawansowane metody numeryczne
Wykład 9. jej modyfkacje. Oznaczena Będzemy rozpatrywać zagadnene rozwązana następującego układu n równań lnowych z n newadomym x 1... x n : a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x
Pattern Classification
attern Classfcaton All materals n these sldes were taken from attern Classfcaton nd ed by R. O. Duda,. E. Hart and D. G. Stork, John Wley & Sons, 000 wth the permsson of the authors and the publsher Chapter
Regulamin promocji zimowa piętnastka
zmowa pętnastka strona 1/5 Regulamn promocj zmowa pętnastka 1. Organzatorem promocj zmowa pętnastka, zwanej dalej promocją, jest JPK Jarosław Paweł Krzymn, zwany dalej JPK. 2. Promocja trwa od 01 grudna
OŚWIADCZENIE MAJĄTKOWE radnego gminy. (miejscowość)
OŚWIADCZENIE MAJĄTKOWE radnego gmny (mejscowość). dna Uwaga: 1. Osoba składająca ośwadczene obowązana jest do zgodnego z prawdą, starannego zupełnego wypełnena każdej z rubryk. 2. Jeżel poszczególne rubryk
NAFTA-GAZ marzec 2011 ROK LXVII. Wprowadzenie. Tadeusz Kwilosz
NAFTA-GAZ marzec 2011 ROK LXVII Tadeusz Kwlosz Instytut Nafty Gazu, Oddzał Krosno Zastosowane metody statystycznej do oszacowana zapasu strategcznego PMG, z uwzględnenem nepewnośc wyznaczena parametrów
WPŁYW LICZBY NAJBLIŻSZYCH SĄSIADÓW NA DOKŁADNOŚĆ PROGNOZ EKONOMICZNYCH SZEREGÓW CZASOWYCH
Stua Ekonomczne. Zeszyty Naukowe Unwersytetu Ekonomcznego w Katowcach ISSN 2083-86 Nr 295 206 Monka Mśkewcz-Nawrocka Unwersytet Ekonomczny w Katowcach Wyzał Zarzązana Katera Matematyk monka.mskewcz@ue.katowce.pl
Ćwiczenie 2. Parametry statyczne tranzystorów bipolarnych
Ćwczene arametry statyczne tranzystorów bpolarnych el ćwczena odstawowym celem ćwczena jest poznane statycznych charakterystyk tranzystorów bpolarnych oraz metod dentyfkacj parametrów odpowadających m
Zjawiska masowe takie, które mogą wystąpid nieograniczoną ilośd razy. Wyrazów Obcych)
Statystyka - nauka zajmująca sę metodam badana przedmotów zjawsk w ch masowych przejawach ch loścową lub jakoścową analzą z punktu wdzena nauk, do której zakresu należą.
MATERIAŁY I STUDIA. Zeszyt nr 286. Analiza dyskryminacyjna i regresja logistyczna w procesie oceny zdolności kredytowej przedsiębiorstw
MATERIAŁY I STUDIA Zeszyt nr 86 Analza dyskrymnacyjna regresja logstyczna w procese oceny zdolnośc kredytowej przedsęborstw Robert Jagełło Warszawa, 0 r. Wstęp Robert Jagełło Narodowy Bank Polsk. Składam
Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych
Komputerowa analza zagadneń różnczkowych 1. Układy równań lnowych P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ semestr letn 2007/08 Podstawowe fakty Równane Ax = b, x, b R N, A R N N (1) ma jednoznaczne
VIII. NIELINIOWE ZAGADNIENIA MECHANIKI
Konerla P. Metoa Eleentów Skończonych, teora zastosowana 57 VIII. NIELINIOWE ZAGADNIENIA MECHANIKI. Rozaje nelnowośc a) Nelnowość fzyczna: nelnowe zwązk konstytutywne, plastyczność, lepkoplastyczność,
MATLAB Neural Network Toolbox przegląd
MATLAB Neural Network Toolbox przegląd WYKŁAD Piotr Ciskowski Neural Network Toolbox: Neural Network Toolbox - zastosowania: przykłady zastosowań sieci neuronowych: The 1988 DARPA Neural Network Study