O ruchach Browna i demonie Maxwella
|
|
- Krystian Wilczyński
- 7 lat temu
- Przeglądów:
Transkrypt
1 O ruchach Browna i demonie Maxwella P. F. Góra Wydział Fizyki, Astronomii i Informatyki Stosowanej UJ 3 listopada 216 P. F. Góra (WFAIS UJ) O ruchach Browna i demonie Maxwella 3 listopada / 17
2 Odkrycie ruchów Browna Robert Brown ( ) botanik szkocki While examining the form of these particles immersed in water, I observed many of them very evidently in motion... These motions were such as to satisfy me, after frequently repeated observations, that they arose neither from currents in the fluid, nor from its gradual evaporation [konwekcja], but belonged to the particle itself. Brown nie był pierwszy już przed nim obserwowano mikroskopowe ruchy czasteczek organicznych, ale przypisywano je jakiejś sile życiowej. Brown obserwował ruchy żywych pyłków, obumarłych pyłków i zawiesiny nieorganicznej. P. F. Góra (WFAIS UJ) O ruchach Browna i demonie Maxwella 3 listopada / 17
3 Dziwny charakter ruchów Browna Ruch bardzo nieregularny Trajektoria w różnych skalach czasowych wyglada podobnie Trajektoria nie zależy od historii Próby opisu w języku prędkości zawiodły. P. F. Góra (WFAIS UJ) O ruchach Browna i demonie Maxwella 3 listopada / 17
4 Dziwny charakter ruchów Browna Ruch bardzo nieregularny Trajektoria w różnych skalach czasowych wyglada podobnie Trajektoria nie zależy od historii Próby opisu w języku prędkości zawiodły. P. F. Góra (WFAIS UJ) O ruchach Browna i demonie Maxwella 3 listopada / 17
5 Dziwny charakter ruchów Browna Ruch bardzo nieregularny Trajektoria w różnych skalach czasowych wyglada podobnie Trajektoria nie zależy od historii Próby opisu w języku prędkości zawiodły. P. F. Góra (WFAIS UJ) O ruchach Browna i demonie Maxwella 3 listopada / 17
6 Dziwny charakter ruchów Browna Ruch bardzo nieregularny Trajektoria w różnych skalach czasowych wyglada podobnie Trajektoria nie zależy od historii Próby opisu w języku prędkości zawiodły. P. F. Góra (WFAIS UJ) O ruchach Browna i demonie Maxwella 3 listopada / 17
7 Dwie prace, które wszystko wyjaśniły Albert Einstein ( ) A. Einstein, Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen, Ann. Phys. 17, (195). Marian Smoluchowski ( ) M. von Smoluchowski, Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen, Ann. Phys. 21, (196). P. F. Góra (WFAIS UJ) O ruchach Browna i demonie Maxwella 3 listopada / 17
8 Szum proteza niewiedzy Dla układu makroskopowego 1 23 równań ruchu niemożliwe do rozwiazania. Proces stochastyczny (szum) proteza naszej niewiedzy. P. F. Góra (WFAIS UJ) O ruchach Browna i demonie Maxwella 3 listopada / 17
9 Mechanizm mikroskopowy Ruch wywołany jest zderzeniami z czasteczkami rozpuszczalnika ruchy Browna sa obserwowalna manifestacja ruchów cieplnych Pomiędzy każdymi kolejnymi zarejstrowanymi położeniami nastapiło bardzo wiele zderzeń elementarnych Proces zderzeń można (w dobrym przybliżeniu) opisywać jako ciagły w czasie Trajektorie nie sa różniczkowalne w żadnym punkcie Heurystyczne wyprowadzenie równania dyfuzji Zwiazek pomiędzy lepkościa (oporami ruchu) a zaburzeniami stochastycznymi (twierdzenie fluktuacyjno-dysypacyjne) P. F. Góra (WFAIS UJ) O ruchach Browna i demonie Maxwella 3 listopada / 17
10 Najprostszy model Zwykła dyfuzja: Układ skacze z jednakowym prawdopodobieństwem w lewo lub w prawo z ustalonym krokiem czasowym (co każde cyknięcie zegara) P. F. Góra (WFAIS UJ) O ruchach Browna i demonie Maxwella 3 listopada / 17
11 Biały szum gaussowski P. F. Góra (WFAIS UJ) O ruchach Browna i demonie Maxwella 3 listopada / 17
12 Procesy stochastyczne dzisiaj Teoria procesów stochastycznych ważnym działem matematyki. Metoda Monte Carlo: Procesy stochastyczne jako narzędzie modelowania zjawisk fizycznych i chemicznych, technicznych, biologicznych i ekologicznych, społecznych i ekonomicznych. Nie w pełni poznana jest rola, charakter i pochodzenie fluktuacji nierównowagowych. W wielu zastosowaniach praktycznych szum przeszkadza jak pozbyć się szkodliwego wpływu szumów? Szumy moga dawać także efekty konstruktywne i prowadzić do zjawisk paradoksalnych! P. F. Góra (WFAIS UJ) O ruchach Browna i demonie Maxwella 3 listopada / 17
13 Przykład detekcja sygnału podprogowego x(t) = A sin(ωt + φ) + σξ(t), A < 1 { 1 x(t) 1 y(t) = x(t) < 1 Wykrycie takiego sygnału jest możliwe dzięki rezonansowi stochastycznemu. P. F. Góra (WFAIS UJ) O ruchach Browna i demonie Maxwella 3 listopada / 17
14 P. F. Góra (WFAIS UJ) O ruchach Browna i demonie Maxwella 3 listopada / 17
15 Rekin ma zmysł elektryczny, pozwalajacy wykryć i zlokalizować fokę po biciu jej serca. Zmysł ten działa na zasadzie rezonansu stochastycznego. Kinezyna transportuje białko wzdłuż mikrotubuli. Jej nogi trafiaja we właściwe miejsca dzięki rezonansowi stochastycznemu. P. F. Góra (WFAIS UJ) O ruchach Browna i demonie Maxwella 3 listopada / 17
16 Demon Maxwella Czy demon Maxwella, po wyeliminowaniu (zminimalizowaniu) tarcia itp, narusza II zasadę termodynamiki? Nie, gdyż demon, aby działać, musi usuwać informację o oberwowanych czastkch (zasada Landauera). P. F. Góra (WFAIS UJ) O ruchach Browna i demonie Maxwella 3 listopada / 17
17 Zębatka brownowska: Inne przedstawienie demona Maxwella Smoluchowski, Feynman, Magnasco, Parrondo, Jarzynski... P. F. Góra (WFAIS UJ) O ruchach Browna i demonie Maxwella 3 listopada / 17
18 Motory molekularne Nanotechnologia i biotechnologia opieraja się na możliwości kontrolowania i wytwarzania niezwykle małych mechanizmów. Marzenie: Zbudujmy nanoroboty, które będa naprawiać mikrouszkodzenia w ludzkim ciele od wewnatrz. Wielu marzycieli i projektantów zapomina, iż na poziomie molekularnym fluktuacje termiczne odgrywaja ogromna rolę. Na poziomie molekularnym siłę fluktuacji można porównać do siły huraganu na poziomie makro. P. F. Góra (WFAIS UJ) O ruchach Browna i demonie Maxwella 3 listopada / 17
19 Motory molekularne (c.d.) A jednak natura jakoś sobie z tym radzi... Bardzo dobrym modelem działania wielu naturalnych motorów molekularnych sa zębratki brownowskie! Np. kinezyny, pompy molekularne itp. P. F. Góra (WFAIS UJ) O ruchach Browna i demonie Maxwella 3 listopada / 17
20 Motory molekularne (c.d.) A jednak natura jakoś sobie z tym radzi... Bardzo dobrym modelem działania wielu naturalnych motorów molekularnych sa zębratki brownowskie! Np. kinezyny, pompy molekularne itp. R. Dean Astumian, Making Molecules Into Motors, Sci. Am., July 21, 51 Pracę motoru molekularnego można porównać do wpychania samochodu pod górę w czasie huraganu, bez użycia silnika 1 Samochód ma koła zablokowane cegła, która mocno dociskamy do podłoża 2 Czekamy aż wiatr popchnie samochód pod górę 3 Szybko przesuwamy cegłę 4 GOTO 1 P. F. Góra (WFAIS UJ) O ruchach Browna i demonie Maxwella 3 listopada / 17
21 Ujemna ruchliwość Co jest potrzebne do zrealizowania ujemnej ruchliwości? Pułapki na czastki ( asymetria) Dyfuzja ( ruchy Browna) Duża siła działa w prawo większość czasteczek nie zdaży dyfuzyjnie uciec do wyjścia zostaja uwięzione Przełaczamy siłę słabsza siła działa w lewo większość czaste- czek zdoła uciec na lewo Niewielkie zmiany w parametrach czasteczek (masa, lepkość) moga spowodować, iż niektóre będa wykazywać ruchliwość dodatnia, inne ujemna orzechy brazylijskie! P. F. Góra (WFAIS UJ) O ruchach Browna i demonie Maxwella 3 listopada / 17
Fluktuacje wokół nas Dziedzictwo Mariana Smoluchowskiego
Fluktuacje wokół nas Dziedzictwo Mariana Smoluchowskiego P. F. Góra Wydział Fizyki, Astronomii i Informatyki Stosowanej UJ 4 września 2017 P. F. Góra (WFAIS UJ) Fluktuacje wokół nas Dziedzictwo Mariana
Zjawiska wywoływane szumem
Zjawiska wywoływane szumem P. F. Góra Wydział Fizyki, Astronomii i Informatyki Stosowanej Uniwersytet Jagielloński 13 grudnia 2006 Szum przeszkadza Ale czy zawsze?! Szum przeszkadza Ale czy zawsze?! Zagadnienie
P. F. Góra. XXXVIII Zjazd Fizyków Polskich, Warszawa, Instytut Fizyki im. Mariana Smoluchowskiego Uniwersytet Jagielloński
Instytut Fizyki im. Mariana Smoluchowskiego Uniwersytet Jagielloński XXXVIII Zjazd Fizyków Polskich, Warszawa, 2005 1827: Robert Brown (1773 1858) botanik szkocki While examining the form of these particles
FOTON 91, Zima 2005. und der Suspensionen, Ann. Phys. 21, 756 780 (1906). Marian Smoluchowski. Robert Brown (1773 1858)
12 FOTON 91, Zima 2005 Sto lat teorii ruchów Browna Paweł F. Góra Instytut Fizyki UJ Rok 1905 był rokiem prawdziwie cudownym, annus mirabilis, dla fizyki. W roku tym ukazały się cztery bardzo ważne prace
O Marianie Smoluchowskim, górach i fizyce
O Marianie Smoluchowskim, górach i fizyce P. F. Góra Wydział Fizyki, Astronomii i Informatyki Stosowanej UJ 4 października 2012 P. F. Góra (WFAIS UJ) O Marianie Smoluchowskim, górach i fizyce 4 października
Marian Smoluchowski i fizyka statystyczna
Marian Smoluchowski i fizyka statystyczna P. F. Góra Wydział Fizyki, Astronomii i Informatyki Stosowanej UJ 5 października 2016 P. F. Góra (WFAIS UJ) Marian Smoluchowski i fizyka statystyczna 5 października
Ruch Browna. Ilona Kosińska Instytut Inżynierii Biomedycznej i Pomiarowej Politechnika Wroc lawska. 29 listopada 2008
Ruch Browna Ilona Kosińska Instytut Inżynierii Biomedycznej i Pomiarowej Politechnika Wroc lawska 29 listopada 2008 Wst ep Obserwacje ruchu py lków roślinnych w wodzie przez Roberta Browna (1827): dynamiczny
Fizyka statystyczna Równanie Fokkera-Plancka. P. F. Góra
Fizyka statystyczna Równanie Fokkera-Plancka P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Mamy równanie master dla ciagłych rozkładów prawdopodobieństwa: P (y, t) t = (W (y y )P (y, t) W (y y)p
Fizyka statystyczna Równanie Fokkera-Plancka
Fizyka statystyczna Równanie Fokkera-Plancka P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 17 marca 2015 Mamy równanie master dla ciagłych rozkładów prawdopodobieństwa: P (y, t) t = (W (y y )P (y, t)
O procesie Wienera. O procesie Wienera. Procesy stochastyczne Wykład XV, 15 czerwca 2015 r. Proces Wienera. Ruch Browna. Ułamkowe ruchy Browna
Procesy stochastyczne Wykład XV, 15 czerwca 2015 r. Ruch 1 {X t } jest martyngałem dokładnie wtedy, gdy E(X t F s ) = X s, s, t T, s t. Jeżeli EX 2 (t) < +, to E(X t F s ) jest rzutem ortogonalnym zmiennej
Wykład 2. Przykład zastosowania teorii prawdopodobieństwa: procesy stochastyczne (Markova)
Wykład 2 Przykład zastosowania teorii prawdopodobieństwa: procesy stochastyczne (Markova) 1. Procesy Markova: definicja 2. Równanie Chapmana-Kołmogorowa-Smoluchowskiego 3. Przykład dyfuzji w kapilarze
NIEMOŻLIWE MASZYNY O PRAWACH TERMODYNAMIKI I OBSESJI ZMIANY ŚWIATA
NIEMOŻLIWE MASZYNY O PRAWACH TERMODYNAMIKI I OBSESJI ZMIANY ŚWIATA 2 TROCHĘ TEORII I TROCHĘ HISTORII ZASADY TERMODYNAMIKI 3 POCZĄTKI BYWAJĄ TRUDNE... (1676-1689) Vis viva siła życiowa mv 2 i i 4 POCZĄTKI
If I Knew How to Make Money...
Instytut Matematyki WFMiI Politechnika Krakowska Szkoła Letnia Matematyki Finansowej Tarnów 2012 Merton Miller 1923-2000 ekonomista amerykański, laureat Nagrody Nobla w dziedzinie ekonomii w 1990 r. I
Jak dyfuzja anomalna stała się normalna
FOTON 19, Lato 015 13 Jak dyfuzja anomalna stała się normalna Bartłomiej Dybiec Instytut Fizyki UJ Dyfuzja jest procesem samoistnego przemieszczania się cząsteczek na skutek zderzeń z innymi cząsteczkami.
Entropia, demon Maxwella i maszyna Turinga
Entropia, demon Maxwella i maszyna Turinga P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 14 lutego 2013 Pojęcia z dwu różnych dyscyplin Fizyka Informatyka Demon Maxwella Maszyna Turinga podstawy termodynamiki
Termodynamika. Część 11. Układ wielki kanoniczny Statystyki kwantowe Gaz fotonowy Ruchy Browna. Janusz Brzychczyk, Instytut Fizyki UJ
Termodynamika Część 11 Układ wielki kanoniczny Statystyki kwantowe Gaz fotonowy Ruchy Browna Janusz Brzychczyk, Instytut Fizyki UJ Układ otwarty rozkład wielki kanoniczny Rozważamy układ w równowadze termicznej
Teoria kinetyczno cząsteczkowa
Teoria kinetyczno cząsteczkowa Założenie Gaz składa się z wielkiej liczby cząstek znajdujących się w ciągłym, chaotycznym ruchu i doznających zderzeń (dwucząstkowych) Cel: Wyprowadzić obserwowane (makroskopowe)
Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne
Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne W3. Zjawiska transportu Zjawiska transportu zachodzą gdy układ dąży do stanu równowagi. W zjawiskach
Ruchy Browna. Wykład XIII Mechanika statystyczna 1. Podejście Einsteina
Wykład XIII Mechanika statystyczna 1 Ruchy Browna Stosując metody fizyki statystycznej do opisu układów wielu ciał, koncentrowaliśmy się dotychczas na ich charakterystykach uśrednionych po dostatecznie
Rozkłady statyczne Maxwella Boltzmana. Konrad Jachyra I IM gr V lab
Rozkłady statyczne Maxwella Boltzmana Konrad Jachyra I IM gr V lab MODEL STATYCZNY Model statystyczny hipoteza lub układ hipotez, sformułowanych w sposób matematyczny (odpowiednio w postaci równania lub
Spis treści. Przedmowa Obraz makroskopowy Ciepło i entropia Zastosowania termodynamiki... 29
Przedmowa... XI 1. Obraz makroskopowy... 1 1.1. Termodynamika... 1 1.2. Parametry termodynamiczne... 2 1.3. Granica termodynamiczna... 3 1.4. Procesy termodynamiczne... 4 1.5. Klasycznygazdoskonały...
Termodynamika informacji
Termodynamika informacji P. F. Góra Wydział Fizyki, Astronomii i Informatyki Stosowanej UJ http://th-www.if.uj.edu.pl/zfs/gora/ 30 października 2014 Pojęcia z dwu różnych dyscyplin Fizyka Demon Maxwella
Dyfuzyjny Transport Masy
POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY KATEDRA FIZYKOCHEMII I TECHNOLOGII POLIMERÓW LABORATORIUM Z FIZYKI I BIOFIZYKI Dyfuzyjny Transport Masy 1. Wprowadzenie Dyfuzja jest to proces, w którym następuje
Fizyka statystyczna. This Book Is Generated By Wb2PDF. using
http://pl.wikibooks.org/wiki/fizyka_statystyczna This Book Is Generated By Wb2PDF using RenderX XEP, XML to PDF XSL-FO Formatter 18-05-2014 Table of Contents 1. Fizyka statystyczna...4 Spis treści..........................................................................?
= = Budowa materii. Stany skupienia materii. Ilość materii (substancji) n - ilość moli, N liczba molekuł (atomów, cząstek), N A
Budowa materii Stany skupienia materii Ciało stałe Ciecz Ciała lotne (gazy i pary) Ilość materii (substancji) n N = = N A m M N A = 6,023 10 mol 23 1 n - ilość moli, N liczba molekuł (atomów, cząstek),
Fizyka statystyczna, elementy termodynamiki nierównowagowej Cele, zakres zagadnień
Fizyka statystyczna, elementy termodynamiki nierównowagowej Cele, zakres zagadnień Narzędzia przypomnienie podstawowych definicji i twierdzeń z rachunku prawdopodobienstwa; podstawowe rozkłady statystyczne
Roy Glauber jako młody student z własnoręcznie wykonaną aparaturą. Zdjęcie otrzymano dzięki uprzejmości R. Glaubera
Roy Glauber jako młody student z własnoręcznie wykonaną aparaturą Zdjęcie otrzymano dzięki uprzejmości R. Glaubera FOTON 91, Zima 2005 1 Rok Fizyki 2005 Co roku przeżywamy emocje związane z przyznaniem
Modelowanie absorbcji cząsteczek LDL w ściankach naczyń krwionośnych
Modelowanie absorbcji cząsteczek LDL w ściankach naczyń krwionośnych Plan prezentacji Co to jest LDL? 1 Budowa naczynia krwionośnego 2 Przykładowe wyniki 3 Mechanizmy wnikania blaszki miażdżycowej w ścianki
Problemy i rozwiązania
Problemy i rozwiązania Znakomita większość układów, które badamy liczy sobie co najmniej mol cząsteczek >> 10 23 Typowy krok czasowy symulacji to 10-15 s natomiast zjawiska, które zachodzą wokół nas trwają
Termodynamika. Część 4. Procesy izoparametryczne Entropia Druga zasada termodynamiki. Janusz Brzychczyk, Instytut Fizyki UJ
Termodynamika Część 4 Procesy izoparametryczne Entropia Druga zasada termodynamiki Janusz Brzychczyk, Instytut Fizyki UJ Pierwsza zasada termodynamiki procesy kwazistatyczne Zgodnie z pierwszą zasadą termodynamiki,
Termodynamika. Część 12. Procesy transportu. Janusz Brzychczyk, Instytut Fizyki UJ
Termodynamika Część 12 Procesy transportu Janusz Brzychczyk, Instytut Fizyki UJ Zjawiska transportu Zjawiska transportu są typowymi procesami nieodwracalnymi zachodzącymi w przyrodzie. Zjawiska te polegają
Feynmana wykłady z fizyki. [T.] 1.2, Optyka, termodynamika, fale / R. P. Feynman, R. B. Leighton, M. Sands. wyd. 7. Warszawa, 2014.
Feynmana wykłady z fizyki. [T.] 1.2, Optyka, termodynamika, fale / R. P. Feynman, R. B. Leighton, M. Sands. wyd. 7. Warszawa, 2014 Spis treści Spis rzeczy części 1 tomu I X 26 Optyka: zasada najkrótszego
Wykład FIZYKA I. 15. Termodynamika statystyczna. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA I 15. Termodynamika statystyczna Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html TERMODYNAMIKA KLASYCZNA I TEORIA
Fizyka klasyczna. - Mechanika klasyczna prawa Newtona - Elektrodynamika prawa Maxwella - Fizyka statystyczna -Hydrtodynamika -Astronomia
Fizyka klasyczna - Mechanika klasyczna prawa Newtona - Elektrodynamika prawa Maxwella - Fizyka statystyczna -Hydrtodynamika -Astronomia Zaczniemy historię od optyki W połowie XiX wieku Maxwell wprowadził
Fizyka statystyczna Termodynamika bliskiej nierównowagi. P. F. Góra
Fizyka statystyczna Termodynamika bliskiej nierównowagi P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Nasze wszystkie dotychczasowe rozważania dotyczyły układów w równowadze termodynamicznej lub
Szum w urzadzeniu półprzewodnikowym przeszkoda czy szansa?
Szum w urzadzeniu półprzewodnikowym przeszkoda czy szansa? szczegółowe zastosowania kwantowego szumu śrutowego J. Tworzydło Instytut Fizyki Teoretycznej Uniwersytet Warszawski Sympozjum Instytutu Fizyki
Tematy prac magisterskich i doktorskich
Tematy prac magisterskich i doktorskich Stochastyczna dynamika z opóźnieniami czasowymi w grach ewolucyjnych oraz modelach ekspresji i regulacji genów Jacek Miękisz Instytut Matematyki Stosowanej i Mechaniki
FIZYKA STATYSTYCZNA. d dp. jest sumaryczną zmianą pędu cząsteczek zachodzącą na powierzchni S w
FIZYKA STATYSTYCZNA W ramach fizyki statystycznej przyjmuje się, że każde ciało składa się z dużej liczby bardzo małych cząstek, nazywanych cząsteczkami. Cząsteczki te znajdują się w ciągłym chaotycznym
Komputerowe modelowanie zjawisk fizycznych
Komputerowe modelowanie zjawisk fizycznych Ryszard Kutner Zakład Dydaktyki Fizyki Instytut Fizyki Doświadczalnej, Wydział Fizyki Uniwersytet Warszawski IX FESTIWAL NAUKI WARSZAWA 2005 BRAK INWESTYCJI W
Spis treści. Tom 1 Przedmowa do wydania polskiego 13. Przedmowa 15. Wstęp 19
Spis treści Tom 1 Przedmowa do wydania polskiego 13 Przedmowa 15 1 Wstęp 19 1.1. Istota fizyki.......... 1 9 1.2. Jednostki........... 2 1 1.3. Analiza wymiarowa......... 2 3 1.4. Dokładność w fizyce.........
Elementy fizyki relatywistycznej
Elementy fizyki relatywistycznej Transformacje Galileusza i ich konsekwencje Transformacje Lorentz'a skracanie przedmiotów w kierunku ruchu dylatacja czasu nowe składanie prędkości Szczególna teoria względności
Czy informacja jest fizyczna? Demonologia, zasada Landauera i obliczenia odwracalne
Czy informacja jest fizyczna? Demonologia, zasada Landauera i obliczenia odwracalne P. F. Góra Wydział Fizyki, Astronomii i Informatyki Stosowanej UJ http://th-www.if.uj.edu.pl/zfs/gora/ 13 października
TEORIA CHAOSU. Autorzy: Szymon Sapkowski, Karolina Seweryn, Olaf Skrabacz, Kinga Szarkowska
TEORIA CHAOSU Autorzy: Szymon Sapkowski, Karolina Seweryn, Olaf Skrabacz, Kinga Szarkowska Wydział MiNI Politechnika Warszawska Rok akademicki 2015/2016 Semestr letni Krótki kurs historii matematyki DEFINICJA
Stochastyczna dynamika z opóźnieniem czasowym w grach ewolucyjnych oraz modelach ekspresji i regulacji genów
Stochastyczna dynamika z opóźnieniem czasowym w grach ewolucyjnych oraz modelach ekspresji i regulacji genów Jacek Miękisz Instytut Matematyki Stosowanej i Mechaniki Uniwersytet Warszawski Warszawa 14
Wstęp do astrofizyki I
Wstęp do astrofizyki I Wykład 13 Tomasz Kwiatkowski Uniwersytet im. Adama Mickiewicza w Poznaniu Wydział Fizyki Instytut Obserwatorium Astronomiczne Tomasz Kwiatkowski, OA UAM Wstęp do astrofizyki I, Wykład
r. akad. 2005/ 2006 Jan Królikowski Fizyka IBC
VIII.1 Pojęcia mikrostanu i makrostanu układu N punktów materialnych. Prawdopodobieństwo termodynamiczne. Entropia. VIII. Rozkład Boltzmanna VIII.3 Twierdzenie o wiriale Jan Królikowski Fizyka IBC 1 Uwagi
FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor.
DKOS-5002-2\04 Anna Basza-Szuland FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor. WYMAGANIA NA OCENĘ DOPUSZCZAJĄCĄ DLA REALIZOWANYCH TREŚCI PROGRAMOWYCH Kinematyka
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Rezonansowe oddziaływanie układu atomowego z promieniowaniem "! "!! # $%&'()*+,-./-(01+'2'34'*5%.25%&+)*-(6
Procedura modelowania matematycznego
Procedura modelowania matematycznego System fizyczny Model fizyczny Założenia Uproszczenia Model matematyczny Analiza matematyczna Symulacja komputerowa Rozwiązanie w postaci modelu odpowiedzi Poszerzenie
KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY
... pieczątka nagłówkowa szkoły... kod pracy ucznia KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY Drogi Uczniu, witaj na I etapie Konkursu Fizycznego. Przeczytaj uważnie instrukcję i postaraj się
Zagadnienia na egzamin 2016/2017
Zagadnienia na egzamin 2016/2017 Egzamin będzie obejmował: - 8 pytań/problemów wymagających krótkiego, kilkuzdaniowego omówienia istoty zagadnienia (część I poniżej) - 2 zagadnienia obejmujące: wyprowadzenie
I semestr: Nazwa modułu kształcenia. Rodzaj zajęć dydaktycznych * O/F ** forma. ECTS Zajęcia wyrównawcze z. ćw O Z 30ćw 2 fizyki Zajęcia wyrównawcze z
Załącznik nr 3 do zarządzenia nr 12 Rektora UJ z 15 lutego 2012 r. PLAN STUDIÓW NA KIERUNKU STUDIÓW WYŻSZYCH: FIZYKA, SPECJALIZACJA FIZYKA STOSOWANA, STUDIA I STOPNIA profil ogólnoakademicki I ROK STUDIÓW:
Fizyka statystyczna i termodynamika Wykład 1: Wstęp. Katarzyna Sznajd-Weron Katedra Fizyki Teoretycznej
Fizyka statystyczna i termodynamika Wykład 1: Wstęp Katarzyna Sznajd-Weron Katedra Fizyki Teoretycznej http://www.if.pwr.wroc.pl/~katarzynaweron/ Mój plan zajęć Strona kursu Kim jestem? Prof. dr hab. Katarzyna
Podstawy fizyki wykład 6
Podstawy fizyki wykład 6 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Elementy termodynamiki Temperatura Rozszerzalność cieplna Ciepło Praca a ciepło Pierwsza zasada termodynamiki Gaz doskonały
Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12
Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12 atomu węgla 12 C. Mol - jest taką ilością danej substancji,
Dotyczy to zarówno istniejących już związków, jak i związków, których jeszcze dotąd nie otrzymano.
Chemia teoretyczna to dział chemii zaliczany do chemii fizycznej, zajmujący się zagadnieniami związanymi z wiedzą chemiczną od strony teoretycznej, tj. bez wykonywania eksperymentów na stole laboratoryjnym.
Z-ID-204. Inżynieria Danych I stopień Praktyczny Studia stacjonarne Wszystkie Katedra Matematyki i Fizyki Prof. dr hab.
KARTA MODUŁU / KARTA PRZEDMIOTU Z-ID-204 Kod modułu Nazwa modułu Fizyka II Nazwa modułu w języku angielskim Physics II Obowiązuje od roku akademickiego 2018/2019 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW
PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH
PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH Krzysztof Horodecki, Artur Ludwikowski, Fizyka 2. Podręcznik dla gimnazjum, Gdańskie Wydawnictwo Oświatowe
Występują fluktuacje w stanie równowagi Proces przejścia do stanu równowagi jest nieodwracalny proces powrotny jest bardzo mało prawdopodobny.
Wykład 14: Fizyka statystyczna Zajmuje sie układami makroskopowymi (typowy układ makroskopowy składa się z ok. 10 25 atomów), czyli ok 10 25 równań Newtona? Musimy dopasować inne pojęcia do opisu takich
Opis systemów dynamicznych w przestrzeni stanu. Wojciech Kurek , Gdańsk
Opis systemów dynamicznych Mieczysław Brdyś 27.09.2010, Gdańsk Rozważmy układ RC przedstawiony na rysunku poniżej: wejscie u(t) R C wyjście y(t)=vc(t) Niech u(t) = 2 + sin(t) dla t t 0 gdzie t 0 to chwila
Janusz Adamowski METODY OBLICZENIOWE FIZYKI Kwantowa wariacyjna metoda Monte Carlo. Problem własny dla stanu podstawowego układu N cząstek
Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 20 KWANTOWE METODY MONTE CARLO 20.1 Kwantowa wariacyjna metoda Monte Carlo Problem własny dla stanu podstawowego układu N cząstek (H E 0 )ψ 0 (r)
Ośrodkowość procesów, proces Wienera. Ośrodkowość procesów, proces Wienera Procesy Stochastyczne, wykład, T. Byczkowski,
Procesy Stochastyczne, wykład, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1136 27 luty, 2012 Ośrodkowość procesów Dalej zakładamy, że (Ω, Σ, P) jest zupełną przestrzenią miarową. Definicja.
podać przykład wielkości fizycznej, która jest iloczynem wektorowym dwóch wektorów.
PLAN WYNIKOWY FIZYKA - KLASA TRZECIA TECHNIKUM 1. Ruch postępowy i obrotowy bryły sztywnej Lp. Temat lekcji Treści podstawowe 1 Iloczyn wektorowy dwóch wektorów podać przykład wielkości fizycznej, która
Badanie ruchu drgającego
1 5.1. Badanie ruchu drgającego opisuje ruch drgający ciężarka na sprężynie posługuje się pojęciami amplitudy drgań, okresu i częstotliwości do opisu drgań; wskazuje położenie równowagi i odczytuje amplitudę
S ścianki naczynia w jednostce czasu przekazywany
FIZYKA STATYSTYCZNA W ramach fizyki statystycznej przyjmuje się, że każde ciało składa się z dużej liczby bardzo małych cząstek, nazywanych cząsteczkami. Cząsteczki te znajdują się w ciągłym chaotycznym
J. Szantyr Wyklad nr 6 Przepływy laminarne i turbulentne
J. Szantyr Wyklad nr 6 Przepływy laminarne i turbulentne Zjawisko występowania dwóch różnych rodzajów przepływów, czyli laminarnego i turbulentnego, odkrył Osborne Reynolds (1842 1912) w swoim znanym eksperymencie
Ruch drgajacy. Drgania harmoniczne. Drgania harmoniczne... Drgania harmoniczne... Notatki. Notatki. Notatki. Notatki. dr inż.
Ruch drgajacy dr inż. Ireneusz Owczarek CNMiF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 1 dr inż. Ireneusz Owczarek Ruch drgajacy Drgania harmoniczne Drgania oscylacje to cykliczna
DRUGA ZASADA TERMODYNAMIKI
DRUGA ZASADA TERMODYNAMIKI Procesy odwracalne i nieodwracalne termodynamicznie, samorzutne i niesamorzutne Proces nazywamy termodynamicznie odwracalnym, jeśli bez spowodowania zmian w otoczeniu możliwy
Utrwalenie wiadomości. Fizyka, klasa 1 Gimnazjum im. Jana Pawła II w Sułowie
Utrwalenie wiadomości Fizyka, klasa 1 Gimnazjum im. Jana Pawła II w Sułowie Za tydzień sprawdzian Ciało fizyczne a substancja Ciało Substancja gwóźdź żelazo szklanka szkło krzesło drewno Obok podanych
Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne
Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2005/06 Wstęp
Podstawowe prawa opisujące właściwości gazów zostały wyprowadzone dla gazu modelowego, nazywanego gazem doskonałym (idealnym).
Spis treści 1 Stan gazowy 2 Gaz doskonały 21 Definicja mikroskopowa 22 Definicja makroskopowa (termodynamiczna) 3 Prawa gazowe 31 Prawo Boyle a-mariotte a 32 Prawo Gay-Lussaca 33 Prawo Charlesa 34 Prawo
AUTOREFERAT. Łukasz Machura. 23 kwietnia Dane osobowe 2
AUTOREFERAT Łukasz Machura 23 kwietnia 2016 Spis treści 1 Dane osobowe 2 2 Wykształcenie, posiadane dyplomy, stopnie naukowe/ artystyczne z podaniem nazwy, miejsca i roku ich uzyskania oraz tytułu rozprawy
Stany skupienia materii
Stany skupienia materii Ciała stałe Ciecze Płyny Gazy Plazma 1 Stany skupienia materii Ciała stałe - ustalony kształt i objętość - uporządkowanie dalekiego zasięgu - oddziaływania harmoniczne Ciecze -
Superdyfuzja. Maria Knorps. Wydział Fizyki Technicznej i Matematyki stosowanej, Politechnika Gdańska
VI Matematyczne Warsztaty KaeNeMów p. 1/2 Superdyfuzja Maria Knorps maria.knorps@gmail.com Wydział Fizyki Technicznej i Matematyki stosowanej, Politechnika Gdańska VI Matematyczne Warsztaty KaeNeMów p.
Stochastyczne równania różniczkowe, model Blacka-Scholesa
Stochastyczne równania różniczkowe, model Blacka-Scholesa Marcin Orchel Spis treści 1 Wstęp 1 1.1 Błądzenie losowe................................ 1 1. Proces Wienera................................. 1.3
ZAMRAŻANIE PODSTAWY CZ.1
METODY PRZECHOWYWANIA I UTRWALANIA BIOPRODUKTÓW ZAMRAŻANIE PODSTAWY CZ.1 Opracował: dr S. Wierzba Katedra Biotechnologii i Biologii Molekularnej Uniwersytetu Opolskiego Zamrażaniem produktów nazywamy proces
Fizyka na usługach inżynierii finansowej 1
Fizyka na usługach inżynierii finansowej 1 Plan referatu 1. Zwiazek ekonomii z naukami ścisłymi 2. Ekonofizyka 3. Metody fizyki w inżynierii finansowej Bładzenie przypadkowe Uniwersalność Korelacje Macierze
Technika próżni / Andrzej Hałas. Wrocław, Spis treści. Od autora 9. Wprowadzenie 11. Wykaz ważniejszych oznaczeń 13
Technika próżni / Andrzej Hałas. Wrocław, 2017 Spis treści Od autora 9 Wprowadzenie 11 Wykaz ważniejszych oznaczeń 13 Część I Fizyczne podstawy techniki próżniowej 1. Właściwości gazów rozrzedzonych 19
6. Dyfuzja w ujęciu atomowym
6. Dyfuzja w ujęciu atomowym Do tej pory rozpatrywaliśmy dyfuzję w kategoriach makroskopowych - wszystkie nasze równania odnosiły się do sytuacji, w których opisywany układ traktowany był jako ciągłe medium.
Fizyka statystyczna Procesy stochastyczne. P. F. Góra
Fizyka statystyczna Procesy stochastyczne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Procesy stochastyczne motywacja Układy makroskopowe maja bardzo dużo stopni swobody, rzędu liczby Avogadra,
Plan Zajęć. Ćwiczenia rachunkowe
Plan Zajęć 1. Termodynamika, 2. Grawitacja, Kolokwium I 3. Elektrostatyka + prąd 4. Pole Elektro-Magnetyczne Kolokwium II 5. Zjawiska falowe 6. Fizyka Jądrowa + niepewność pomiaru Kolokwium III Egzamin
Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne.
Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. DUALIZM ŚWIATŁA fala interferencja, dyfrakcja, polaryzacja,... kwant, foton promieniowanie ciała doskonale
DRUGA ZASADA TERMODYNAMIKI
DRUGA ZASADA TERMODYNAMIKI Procesy odwracalne i nieodwracalne termodynamicznie, samorzutne i niesamorzutne Proces nazywamy termodynamicznie odwracalnym, jeśli bez spowodowania zmian w otoczeniu możliwy
Fizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła
W- (Jaroszewicz) 19 slajdów Na podstawie prezentacji prof. J. Rutkowskiego Fizyka kwantowa promieniowanie termiczne zjawisko fotoelektryczne kwantyzacja światła efekt Comptona dualizm korpuskularno-falowy
Fizyka statystyczna Zerowa Zasada Termodynamiki. P. F. Góra
Fizyka statystyczna Zerowa Zasada Termodynamiki P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Stan układu Fizyka statystyczna (i termodynamika) zajmuje się przede wszystkim układami dużymi, liczacymi
Instrukcja wykonania ćwiczenia - Ruchy Browna
Instrukcja wykonania ćwiczenia - Ruchy Browna 1. Aparatura Do obserwacji ruchów brownowskich cząstek zawiesiny w cieczy stosujemy mikroskop optyczny Genetic pro wyposażony w kamerę cyfrową połączoną z
Termodynamika program wykładu
Termodynamika program wykładu Wiadomości wstępne: fizyka statystyczna a termodynamika masa i rozmiary cząstek stan układu, przemiany energia wewnętrzna pierwsza zasada termodynamiki praca wykonana przez
Dynamika nieliniowa i chaos deterministyczny. Fizyka układów złożonych
Dynamika nieliniowa i chaos deterministyczny Fizyka układów złożonych Wahadło matematyczne F θ = mgsinθ Druga zasada dynamiki: ma = mgsinθ a = d2 x dt 2 = gsinθ Długość łuku: x = Lθ Równanie ruchu: θ ሷ
Analiza szeregów czasowych: 3. Filtr Wienera
Analiza szeregów czasowych: 3. Filtr Wienera P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2006/07 Filtr Wienera ( filtr optymalny ) Przypuśćmy, że pewien układ (fizyczny, biologiczny,
ROZKŁAD MATERIAŁU Z FIZYKI W PIERWSZYCH KLASACH TECHNIKUM
ROZKŁAD MATERIAŁU Z FIZYKI W PIERWSZYCH KLASACH TECHNIKUM W czteroletnim cyklu nauczania przewidziane są 3 godziny fizyki, 2 godziny w klasie pierwszej oraz 1 godzina w klasie drugiej. Proponowana siatka
Spotkania z fizyka 2. Rozkład materiału nauczania (propozycja)
Spotkania z fizyka 2. Rozkład materiału nauczania (propozycja) Temat lekcji Siła wypadkowa siła wypadkowa, składanie sił o tym samym kierunku, R składanie sił o różnych kierunkach, siły równoważące się.
GODZINY ZAJĘĆ sem. zimowy FORMA ZAL. ECTS. sem. letni ćwicz. KOD. razem wyk. labor. inne. labor. inne. ćwicz. NAZWA PRZEDMIOTU. wyk.
AS Fiz 1 - mechanika 70 30 40 E 6 Fiz 2 - elektryczność i magnetyzm 70 30 40 E 6 Fiz 3 - fizyka falowa i optyka 40 20 20 E 4 Fiz 4 - fizyka materii 40 20 20 E 4 Astronomia klasyczna 60 30 30 E 5 Astronomia
Radosław Chrapkiewicz, Piotr Migdał (SKFiz UW) Optyczny wzmacniacz parametryczny jako źródło splątanych par fotonów
Optyczny wzmacniacz parametryczny jako źródło splątanych par fotonów Radosław Chrapkiewicz, Piotr Migdał (SKFiz UW) VII OSKNF 8 XI 2008 Plan Po co nam optyka kwantowa? Czerwony + Czerwony = Niebieski?
Wielcy rewolucjoniści nauki
Isaak Newton Wilhelm Roentgen Albert Einstein Max Planck Wielcy rewolucjoniści nauki Erwin Schrödinger Werner Heisenberg Niels Bohr dr inż. Romuald Kędzierski W swoim słynnym dziele Matematyczne podstawy
Bizantyńscy generałowie: zdrada, telekomunikacja i fizyka
Bizantyńscy generałowie: zdrada, telekomunikacja i fizyka P. F. Góra Wydział Fizyki, Astronomii i Informatyki Stosowanej UJ 26 września 2018 P. F. Góra (WFAIS UJ) Bizantyńscy generałowie 26 września 2018
ZASTOSOWANIA FIZYKI W BIOLOGII I MEDYCYNIE Specjalność: Biofizyka molekularna. 2-letnie studia II stopnia (magisterskie)
ZASTOSOWANIA FIZYKI W BIOLOGII I MEDYCYNIE Specjalność: Biofizyka molekularna 2-letnie studia II stopnia (magisterskie) 1. OGÓLNA CHARAKTERYSTYKA STUDIÓW Biofizyka to uznana dziedzina nauk przyrodniczych
Lp. Data Temat zajęć Sposoby realizacji Pomoce naukowe. poznanie wyposażenia pracowni podział na grupy wybór liderów przydział zadań
Lp. Data Temat zajęć Sposoby realizacji Pomoce naukowe 1. 7.02.2012 Czym będziemy zajmować się podczas zajęć kółka fizycznego poznanie wyposażenia pracowni podział na grupy wybór liderów przydział zadań
Termodynamika Mechaniczny równoważnik ciepła. Kalorymetria, Ciepło tarcia. Wyposażenie potrzebne do przeprowadzenia ćwiczenia:
Termodynamika Kalorymetria, Ciepło tarcia Co możesz poznać.. Mechaniczny równoważnik ciepła Praca mechaniczna Energia termiczna Pojemność cieplna Pierwsza zasada termodynamiki Ciepło właściwe Zasada: Podczas