Praktyki studenckie na LHC IFJ PAN, 5 lipca 2017
|
|
- Daniel Król
- 7 lat temu
- Przeglądów:
Transkrypt
1 M. Trzebiński ROOT wprowadzenie 1/10 Pakiet ROOT wprowadzenie Maciej Trzebiński Instytut Fizyki Jądrowej Polskiej Akademii Nauki Praktyki studenckie na LHC IFJ PAN, 5 lipca 2017
2 Wprowadzenie M. Trzebiński ROOT wprowadzenie 2/10 Cel wykładu Zapoznanie się z pojęciami: histogram, bin, zakres, interpretacja histogramów, skala logarytmiczna, przypadek (event), normalizacja. Cel ćwiczenia Zapoznanie się z programem ROOT: struktura pliku, nawigacja, wczytywanie danych, rysowanie histogramów jednowymiarowych, upiększanie histogramów.
3 Makro-świat a mikro-świat M. Trzebiński ROOT wprowadzenie 3/10 Makro-świat Determinizm. Jeśli znamy warunki początkowe (położenia i prędkości) oraz działające siły możemy przewidzieć co się stanie.
4 Makro-świat a mikro-świat M. Trzebiński ROOT wprowadzenie 3/10 Makro-świat Determinizm. Jeśli znamy warunki początkowe (położenia i prędkości) oraz działające siły możemy przewidzieć co się stanie. Mikro-świat Badanie mikro-świata zderzanie cząstek. Rozmiar protonu: 1 fm = m = mm. Nie da się zmierzyć parametrów początkowych. Efekty kwantowe nawet jeśli znalibyśmy warunki początkowe, nie można przewidzieć wyniku.
5 Makro-świat a mikro-świat M. Trzebiński ROOT wprowadzenie 3/10 Makro-świat Determinizm. Jeśli znamy warunki początkowe (położenia i prędkości) oraz działające siły możemy przewidzieć co się stanie. Mikro-świat Badanie mikro-świata zderzanie cząstek. Rozmiar protonu: 1 fm = m = mm. Nie da się zmierzyć parametrów początkowych. Efekty kwantowe nawet jeśli znalibyśmy warunki początkowe, nie można przewidzieć wyniku. Statystyka dlaczego? Nie znamy dokładnie warunków początkowych. Nawet jeśli znalibyśmy warunki początkowe, nie można przewidzieć wyniku. Z tego samego eksperymentu dostajemy raz taki wynik, raz inny. Podstawowe prawa fizyki rządzą prawdopodobieństwami (częstościami występowania) określonych wyników. Analiza prawdopodobieństw statystyka.
6 Histogram, bin, zakres,... M. Trzebiński ROOT wprowadzenie 4/10
7 Histogram, bin, zakres,... M. Trzebiński ROOT wprowadzenie 4/10
8 Histogram, bin, zakres,... M. Trzebiński ROOT wprowadzenie 4/10
9 Histogram, bin, zakres,... M. Trzebiński ROOT wprowadzenie 4/10
10 Histogram, bin, zakres,... M. Trzebiński ROOT wprowadzenie 4/10
11 Histogram, bin, zakres,... M. Trzebiński ROOT wprowadzenie 4/10
12 Histogram, bin, zakres,... M. Trzebiński ROOT wprowadzenie 4/10
13 Histogram, bin, zakres,... M. Trzebiński ROOT wprowadzenie 4/10
14 Histogram, bin, zakres,... M. Trzebiński ROOT wprowadzenie 4/10
15 Histogram, bin, zakres,... Histogram Jeden z graficznych sposobów przedstawiania rozkładu empirycznego cechy. Tytuł histogramu: rozkład masy jabłek Zakres: od 0 do 90 (gramów) Liczba binów: 9 Szerokość binu: 10 (gramów) M. Trzebiński ROOT wprowadzenie 4/10
16 Podział osi x M. Trzebiński ROOT wprowadzenie 5/10
17 Skala logarytmiczna M. Trzebiński ROOT wprowadzenie 6/10 Dobrze widoczne różnice w czołówce. Słabo widoczne ogony.
18 Skala logarytmiczna M. Trzebiński ROOT wprowadzenie 6/10 Dobrze widoczne różnice w czołówce. Słabo widoczne ogony. Zamiast liczby głosów logarytm (dziesiętny) z liczby głosów.
19 Skala logarytmiczna M. Trzebiński ROOT wprowadzenie 6/10 Dobrze widoczne różnice w czołówce. Słabo widoczne ogony. Zamiast liczby głosów logarytm (dziesiętny) z liczby głosów. Albo skala logarytmiczna.
20 Czego można się dowiedzieć z rozkładu? M. Trzebiński ROOT wprowadzenie 7/10 Wyniki matury z języka polskiego w 2013 roku.
21 M. Trzebiński ROOT wprowadzenie 8/10 Czego można się dowiedzieć z rozkładu? Typowy rozkład: Wiek zwiedzających muzeum Fizyki Cząstek
22 M. Trzebiński ROOT wprowadzenie 8/10 Czego można się dowiedzieć z rozkładu? Wiek zwiedzających muzeum Fizyki Cząstek Typowy rozkład: Pewnego razu:
23 M. Trzebiński ROOT wprowadzenie 8/10 Czego można się dowiedzieć z rozkładu? Wiek zwiedzających muzeum Fizyki Cząstek Typowy rozkład: Pewnego razu: Przyczyna: wycieczka szkolna
24 M. Trzebiński ROOT wprowadzenie 9/10 Przypadek (event) W fizyce wysokich energii mówimy o przypadkach (ang. events). Na akceleratorze LHC przypadkiem nazywamy jedno przecięcie wiązek protonowych. Podczas takiego przecięcia: może nastąpić kilka zderzeń proton-proton (tzw. pile-up), w wyniku każdego ze zderzeń mogą powstać dziesiątki nowych cząstek. Należy pamiętać, że poszczególne zderzenia są od siebie niezależne.
25 M. Trzebiński ROOT wprowadzenie 9/10 Przypadek (event) W fizyce wysokich energii mówimy o przypadkach (ang. events). Na akceleratorze LHC przypadkiem nazywamy jedno przecięcie wiązek protonowych. Podczas takiego przecięcia: może nastąpić kilka zderzeń proton-proton (tzw. pile-up), w wyniku każdego ze zderzeń mogą powstać dziesiątki nowych cząstek. Należy pamiętać, że poszczególne zderzenia są od siebie niezależne. Informacje o każdym przypadku chcemy zapisać w konsystentny sposób. Zauważmy, że typ poszczególnych zmiennych (np. ilość zderzeń, położenia, pędy czy energie wyprodukowanych cząstek) jest zawsze identyczny. Jednak ilość informacji może być różna. Format ROOT (struktura drzewa) pozwala na efektywny zapis danych.
26 Przypadek (event) W fizyce wysokich energii mówimy o przypadkach (ang. events). Na akceleratorze LHC przypadkiem nazywamy jedno przecięcie wiązek protonowych. Podczas takiego przecięcia: może nastąpić kilka zderzeń proton-proton (tzw. pile-up), w wyniku każdego ze zderzeń mogą powstać dziesiątki nowych cząstek. Należy pamiętać, że poszczególne zderzenia są od siebie niezależne. Informacje o każdym przypadku chcemy zapisać w konsystentny sposób. Zauważmy, że typ poszczególnych zmiennych (np. ilość zderzeń, położenia, pędy czy energie wyprodukowanych cząstek) jest zawsze identyczny. Jednak ilość informacji może być różna. Format ROOT (struktura drzewa) pozwala na efektywny zapis danych. Analogia (wykorzystywana w ćwiczeniu) Firma spedycyjna transporty T-shirt: do siedziby firmy przyjeżdżają samochody z towarami, każdy samochód przywozi inną ilość pudełek z koszulkami, np. pierwszy samochód przywiózł 10 pudełek z koszulkami o rozmiarze S, 15 o rozmiarze M, 7 L, 12 XL, 24 XXL, drugi 25 pudełek z koszulkami S, 25 M, itd. poszczególne transporty od siebie są niezależne. M. Trzebiński ROOT wprowadzenie 9/10
27 M. Trzebiński ROOT wprowadzenie 10/10 Normalizacja Normalizacja procedura wstępnej obróbki danych w celu umożliwienia ich wzajemnego porównywania i dalszej analizy. Na potrzeby zajęć wyróżnimy dwa sposoby normalizacji.
28 Normalizacja M. Trzebiński ROOT wprowadzenie 10/10 Normalizacja procedura wstępnej obróbki danych w celu umożliwienia ich wzajemnego porównywania i dalszej analizy. Na potrzeby zajęć wyróżnimy dwa sposoby normalizacji. do liczby przypadków (przekroju czynnego) przydatna do pokazania faktycznej różnicy pomiędzy różnymi próbkami danych Przykład: obie wygenerowane próbki zawierały 10 6 przypadków, waga przypadków różni się o czynnik 10
29 Normalizacja Normalizacja procedura wstępnej obróbki danych w celu umożliwienia ich wzajemnego porównywania i dalszej analizy. Na potrzeby zajęć wyróżnimy dwa sposoby normalizacji. do liczby przypadków (przekroju czynnego) do prawdopodobieństwa (jedynki) przydatna do pokazania faktycznej różnicy pomiędzy różnymi próbkami danych Przykład: obie wygenerowane próbki zawierały 10 6 przypadków, waga przypadków różni się o czynnik 10 przydatna do porównania próbek danych o różnej liczbie przypadków Przykład: jedna próbka zawiera 10 5 a druga 200 przypadków Temat będzie dyskutowany szerzej podczas ćwiczenia 3. M. Trzebiński ROOT wprowadzenie 10/10
Podstawy ROOTa. Maciej Trzebiński. Praktyki studenckie na LHC IFJ PAN. Instytut Fizyki Jądrowej Polskiej Akademii Nauk. M. Trzebiński ROOT 1/26
M. Trzebiński ROOT 1/26 Podstawy ROOTa Maciej Trzebiński Instytut Fizyki Jądrowej Polskiej Akademii Nauk Praktyki studenckie na LHC IFJ PAN 6lipca2015 Dane w eksperymentach fizyki wysokich energii M. Trzebiński
Pakiet ROOT. prosty generator Monte Carlo. Maciej Trzebiński. Instytut Fizyki Jądrowej Polskiej Akademii Nauki
M. Trzebiński ROOT generator MC 1/5 Pakiet ROOT prosty generator Monte Carlo Maciej Trzebiński Instytut Fizyki Jądrowej Polskiej Akademii Nauki Praktyki studenckie na LHC IFJ PAN, 23 sierpnia 2016 Wprowadzenie
Fizyka cząstek elementarnych warsztaty popularnonaukowe
Fizyka cząstek elementarnych warsztaty popularnonaukowe Spotkanie 3 Porównanie modeli rozpraszania do pomiarów na Wielkim Zderzaczu Hadronów LHC i przyszłość fizyki cząstek Rafał Staszewski Maciej Trzebiński
Wstęp do systemu Linux
M. Trzebiński Linux 1/8 Wstęp do systemu Linux Maciej Trzebiński Instytut Fizyki Jądrowej Polskiej Akademii Nauk Praktyki studenckie na LHC IFJ PAN 6lipca2015 Uruchomienie maszyny w CC1 M. Trzebiński Linux
Cząstki elementarne i ich oddziaływania PROJEKT 2016 Obserwacja mezonów powabnych i dziwnych analiza danych zebranych w eksperymencie LHCb
Cząstki elementarne i ich oddziaływania PROJEKT 2016 Obserwacja mezonów powabnych i dziwnych analiza danych zebranych w eksperymencie LHCb D + D 0 D 0 K s 0 K + K K s 0 π D + D 0 K s 0 K K + π A.Obłąkowska-Mucha,
Pracownia Komputerowa wykład IV
Pracownia Komputerowa wykład IV dr Magdalena Posiadała-Zezula http://www.fuw.edu.pl/~mposiada/pk16 1 Reprezentacje liczb i znaków! Liczby:! Reprezentacja naturalna nieujemne liczby całkowite naturalny
2008/2009. Seweryn Kowalski IVp IF pok.424
2008/2009 seweryn.kowalski@us.edu.pl Seweryn Kowalski IVp IF pok.424 Plan wykładu Wstęp, podstawowe jednostki fizyki jądrowej, Własności jądra atomowego, Metody wyznaczania własności jądra atomowego, Wyznaczanie
Środowisko do Analizy Danych Obiektowo Orientowane. Izabela Ciepał Instytut Fizyki Jądrowej PAN Kraków
Środowisko do Analizy Danych Obiektowo Orientowane Izabela Ciepał Instytut Fizyki Jądrowej PAN Kraków Środowisko do Analizy Danych Obiektowo Orientowane Plan: 1. Co to jest ROOT? 2. Programowanie OO. 3.
W jaki sposób dokonujemy odkryć w fizyce cząstek elementarnych? Maciej Trzebiński
W jaki sposób dokonujemy odkryć w fizyce cząstek elementarnych? Maciej Trzebiński Instytut Fizyki Jądrowej im. Henryka Niewodniczańskiego Polskiej Akademii Nauk Gimli Glider Boeing 767-233 lot: Air Canada
Wstęp do astrofizyki I
Wstęp do astrofizyki I Wykład 13 Tomasz Kwiatkowski Uniwersytet im. Adama Mickiewicza w Poznaniu Wydział Fizyki Instytut Obserwatorium Astronomiczne Tomasz Kwiatkowski, OA UAM Wstęp do astrofizyki I, Wykład
Dynamika relatywistyczna
Dynamika relatywistyczna Fizyka I (B+C) Wykład XVIII: Energia relatywistyczna Transformacja Lorenza energii i pędu Masa niezmiennicza Energia relatywistyczna Dla ruchu ciała pod wpływem stałej siły otrzymaliśmy:
Podstawy języka C++ Maciej Trzebiński. Instytut Fizyki Jądrowej Polskiej Akademii Nauk. Praktyki studenckie na LHC IVedycja,2016r.
M. Trzebiński C++ 1/14 Podstawy języka C++ Maciej Trzebiński Instytut Fizyki Jądrowej Polskiej Akademii Nauk Praktyki studenckie na LHC IVedycja,2016r. IFJ PAN Przygotowanie środowiska pracy Niniejsza
Tomasz Szumlak WFiIS AGH 03/03/2017, Kraków
Oddziaływanie Promieniowania Jonizującego z Materią Tomasz Szumlak WFiIS AGH 03/03/2017, Kraków Labs Prowadzący Tomasz Szumlak, D11, p. 111 Konsultacje Do uzgodnienia??? szumlak@agh.edu.pl Opis przedmiotu
WSTĘP DO FIZYKI CZĄSTEK. Julia Hoffman (NCU)
WSTĘP DO FIZYKI CZĄSTEK Julia Hoffman (NCU) WSTĘP DO WSTĘPU W wykładzie zostały bardzo ogólnie przedstawione tylko niektóre zagadnienia z zakresu fizyki cząstek elementarnych. Sugestie, pytania, uwagi:
FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych
FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych Wykład 9 Reakcje jądrowe Reakcje jądrowe Historyczne reakcje jądrowe 1919 E.Rutherford 4 He + 14 7N 17 8O + p (Q = -1.19 MeV) powietrze błyski na ekranie
Statystyka matematyczna i ekonometria
Statystyka matematyczna i ekonometria prof. dr hab. inż. Jacek Mercik B4 pok. 55 jacek.mercik@pwr.wroc.pl (tylko z konta studenckiego z serwera PWr) Konsultacje, kontakt itp. Strona WWW Elementy wykładu.
Reakcje jądrowe. X 1 + X 2 Y 1 + Y b 1 + b 2
Reakcje jądrowe X 1 + X 2 Y 1 + Y 2 +...+ b 1 + b 2 kanał wejściowy kanał wyjściowy Reakcje wywołane przez nukleony - mechanizm reakcji Wielkości mierzone Reakcje wywołane przez ciężkie jony a) niskie
Szczególna i ogólna teoria względności (wybrane zagadnienia)
Szczególna i ogólna teoria względności (wybrane zagadnienia) Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 4 M. Przybycień (WFiIS AGH) Szczególna Teoria Względności
Theory Polish (Poland)
Q3-1 Wielki Zderzacz Hadronów (10 points) Przeczytaj Ogólne instrukcje znajdujące się w osobnej kopercie zanim zaczniesz rozwiązywać to zadanie. W tym zadaniu będą rozpatrywane zagadnienia fizyczne zachodzące
WYKŁAD 8. Wszechświat cząstek elementarnych dla przyrodników
Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 8 1 Maria Krawczyk, Wydział Fizyki UW 2.12. 2009 Współczesne eksperymenty-wprowadzenie Detektory Akceleratory Zderzacze LHC Mapa drogowa Tevatron-
STATYSTYKA MATEMATYCZNA WYKŁAD 4. WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH X - cecha populacji, θ parametr rozkładu cechy X.
STATYSTYKA MATEMATYCZNA WYKŁAD 4 WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH X - cecha populacji, θ parametr rozkładu cechy X. Wysuwamy hipotezy: zerową (podstawową H ( θ = θ i alternatywną H, która ma jedną z
Metody Lagrange a i Hamiltona w Mechanice
Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 6 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład
Szczególna i ogólna teoria względności (wybrane zagadnienia)
Szczególna i ogólna teoria względności (wybrane zagadnienia) Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 6 M. Przybycień (WFiIS AGH) Szczególna Teoria Względności
Pracownia Komputerowa wyk ad IV
Pracownia Komputerowa wykad IV dr Magdalena Posiadaa-Zezula Magdalena.Posiadala@fuw.edu.pl http://www.fuw.edu.pl/~mposiada Magdalena.Posiadala@fuw.edu.pl 1 Reprezentacje liczb i znaków Liczby: Reprezentacja
Podstawy opracowania wyników pomiarów z elementami analizy niepewności statystycznych
Podstawy opracowania wyników pomiarów z elementami analizy niepewności statystycznych Dr inż. Marcin Zieliński I Pracownia Fizyczna dla Biotechnologii, wtorek 8:00-10:45 Konsultacje Zakład Fizyki Jądrowej
Rozkłady dwóch zmiennych losowych
Rozkłady dwóch zmiennych losowych Uogólnienie pojęć na rozkład dwóch zmiennych Dystrybuanta i gęstość prawdopodobieństwa Rozkład brzegowy Prawdopodobieństwo warunkowe Wartości średnie i odchylenia standardowe
Plan wykładu. Statystyka opisowa. Statystyka matematyczna. Dane statystyczne miary położenia miary rozproszenia miary asymetrii
Plan wykładu Statystyka opisowa Dane statystyczne miary położenia miary rozproszenia miary asymetrii Statystyka matematyczna Podstawy estymacji Testowanie hipotez statystycznych Żródła Korzystałam z ksiażek:
Energetyka konwencjonalna odnawialna i jądrowa
Energetyka konwencjonalna odnawialna i jądrowa Wykład 8-27.XI.2018 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Wykład 8 Energia atomowa i jądrowa
Reakcje jądrowe. Podstawy fizyki jądrowej - B.Kamys 1
Reakcje jądrowe Reakcje w których uczestniczą jądra atomowe nazywane są reakcjami jądrowymi Mogą one zachodzić w wyniku oddziaływań silnych, elektromagnetycznych i słabych Nomenklatura Reakcje, w których
Statystyka opisowa. Wykład I. Elementy statystyki opisowej
Statystyka opisowa. Wykład I. e-mail:e.kozlovski@pollub.pl Spis treści Elementy statystyku opisowej 1 Elementy statystyku opisowej 2 3 Elementy statystyku opisowej Definicja Statystyka jest to nauka o
Co ma piekarz do matematyki?
Instytut Matematyki i Informatyki Politechnika Wrocławska Dolnośląski Festiwal Nauki Wrzesień 2009 x x (x 1, x 2 ) x (x 1, x 2 ) (x 1, x 2, x 3 ) x (x 1, x 2 ) (x 1, x 2, x 3 ) (x 1, x 2, x 3, x 4 ). x
Wykład 2: Tworzenie danych
Wykład 2: Tworzenie danych Plan: Statystyka opisowa a wnioskowanie statystyczne Badania obserwacyjne a eksperyment Planowanie eksperymentu, randomizacja Próbkowanie z populacji Rozkłady próbkowe Wstępna/opisowa
IX. MECHANIKA (FIZYKA) KWANTOWA
IX. MECHANIKA (FIZYKA) KWANTOWA IX.1. OPERACJE OBSERWACJI. a) klasycznie nie ważna kolejność, w jakiej wykonujemy pomiary. AB = BA A pomiar wielkości A B pomiar wielkości B b) kwantowo wartość obserwacji
Rozwiązania zadań z podstaw fizyki kwantowej
Rozwiązania zadań z podstaw fizyki kwantowej Jacek Izdebski 5 stycznia roku Zadanie 1 Funkcja falowa Ψ(x) = A n sin( πn x) jest zdefiniowana jedynie w obszarze
Fizyka promieniowania jonizującego. Zygmunt Szefliński
Fizyka promieniowania jonizującego Zygmunt Szefliński 1 Wykład 3 Ogólne własności jąder atomowych (masy ładunki, izotopy, izobary, izotony izomery). 2 Liczba atomowa i masowa Liczba nukleonów (protonów
FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych
FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych Wykład 1 własności jąder atomowych Odkrycie jądra atomowego Rutherford (1911) Ernest Rutherford (1871-1937) R 10 fm 1908 Skala przestrzenna jądro
Zderzenia. Fizyka I (B+C) Wykład XVI: Układ środka masy Oddziaływanie dwóch ciał Zderzenia Doświadczenie Rutherforda
Zderzenia Fizyka I (B+C) Wykład XVI: Układ środka masy Oddziaływanie dwóch ciał Zderzenia Doświadczenie Rutherforda Układ środka masy Układ izolowany Izolowany układ wielu ciał: m p m 4 CM m VCM p 4 3
Maria Krawczyk, Wydział Fizyki UW. Oddziaływania słabe 4.IV.2012
Wszechświat cząstek elementarnych WYKŁAD 8sem.letni.2011-12 Maria Krawczyk, Wydział Fizyki UW Oddziaływania słabe Cztery podstawowe siły Oddziaływanie grawitacyjne Działa między wszystkimi cząstkami, jest
Biologiczne skutki promieniowania
Biologiczne skutki promieniowania Promieniowanie padające na żywe organizmy powoduje podczas naświetlania te same efekty co przy oddziaływaniu z nieożywioną materią Skutki promieniowania mogą być jednak
Przykłady: zderzenia ciał
Strona 1 z 5 Przykłady: zderzenia ciał Zderzenie, to proces w którym na uczestniczące w nim ciała działają wielkie siły, ale w stosunkowo krótkim czasie. Wynikają z tego ważne dla praktycznej analizy wnioski
Rok akademicki: 2012/2013 Kod: JFM s Punkty ECTS: 3. Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne
Nazwa modułu: Statystyka inżynierska Rok akademicki: 2012/2013 Kod: JFM-1-210-s Punkty ECTS: 3 Wydział: Fizyki i Informatyki Stosowanej Kierunek: Fizyka Medyczna Specjalność: Poziom studiów: Studia I stopnia
Zderzenia relatywistyczne
Zderzenia relatywistyczne Fizyka I (B+C) Wykład XVIII: Zderzenia nieelastyczne Energia progowa Rozpady czastek Neutrina Zderzenia relatywistyczne Zderzenia nieelastyczne Zderzenia elastyczne - czastki
Cząstki elementarne i ich oddziaływania III
Cząstki elementarne i ich oddziaływania III 1. Przekrój czynny. 2. Strumień cząstek. 3. Prawdopodobieństwo procesu. 4. Szybkość reakcji. 5. Złota Reguła Fermiego 1 Oddziaływania w eksperymencie Oddziaływania
Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach
Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. p f Θ foton elektron p f p e 0 p e Zderzenia fotonów
WYKŁAD 15. Gęstość stanów Zastosowanie: oscylatory kwantowe (ª bosony bezmasowe) Formalizm dla nieoddziaływujących cząstek Bosego lub Fermiego
WYKŁAD 15 Gęstość stanów Zastosowanie: oscylatory kwantowe (ª bosony bezmasowe) Formalizm dla nieoddziaływujących cząstek Bosego lub Fermiego 1 Statystyka nieoddziaływujących gazów Bosego i Fermiego Bosony
Model uogólniony jądra atomowego
Model uogólniony jądra atomowego Jądro traktowane jako chmura nukleonów krążąca w średnim potencjale Średni potencjał może być sferyczny ale także trwale zdeformowany lub może zależeć od czasu (wibracje)
Wykład FIZYKA I. 10. Ruch drgający tłumiony i wymuszony. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA I 1. Ruch drgający tłumiony i wymuszony Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html Siły oporu (tarcia)
WYKŁAD 8. Wszechświat cząstek elementarnych dla przyrodników. Maria Krawczyk, Wydział Fizyki UW 25.11.2011
Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 8 Maria Krawczyk, Wydział Fizyki UW 25.11.2011 Współczesne eksperymenty Wprowadzenie Akceleratory Zderzacze Detektory LHC Mapa drogowa Współczesne
SCENARIUSZ LEKCJI FIZYKI Z WYKORZYSTANIEM FILMU PĘDZĄCE CZĄSTKI.
SCENARIUSZ LEKCJI FIZYKI Z WYKORZYSTANIEM FILMU PĘDZĄCE CZĄSTKI. SPIS TREŚCI: I. Wprowadzenie. II. Części lekcji. 1. Część wstępna. 2. Część realizacji. 3. Część podsumowująca. III. Karty pracy. 1. Karta
MODELE LINIOWE. Dr Wioleta Drobik
MODELE LINIOWE Dr Wioleta Drobik MODELE LINIOWE Jedna z najstarszych i najpopularniejszych metod modelowania Zależność między zbiorem zmiennych objaśniających, a zmienną ilościową nazywaną zmienną objaśnianą
Podróż do początków Wszechświata: czyli czym zajmujemy się w laboratorium CERN
Podróż do początków Wszechświata: czyli czym zajmujemy się w laboratorium CERN mgr inż. Małgorzata Janik - majanik@cern.ch mgr inż. Łukasz Graczykowski - lgraczyk@cern.ch Zakład Fizyki Jądrowej, Wydział
Wykład Ćwiczenia Laboratorium Projekt Seminarium 30
Zał. nr 4 do ZW WYDZIAŁ CHEMICZNY KARTA PRZEDMIOTU Nazwa w języku polskim Wstęp do statystyki praktycznej Nazwa w języku angielskim Intriduction to the Practice of Statistics Kierunek studiów (jeśli dotyczy):
Klasyfikacja przypadków w ND280
Klasyfikacja przypadków w ND280 Arkadiusz Trawiński Warszawa, 20 maja 2008 pod opieką: prof Danuta Kiełczewska prof Ewa Rondio 1 Abstrakt Celem analizy symulacji jest bliższe zapoznanie się z możliwymi
Postulaty interpretacyjne mechaniki kwantowej Wykład 6
Postulaty interpretacyjne mechaniki kwantowej Wykład 6 Karol Kołodziej Instytut Fizyki Uniwersytet Śląski, Katowice http://kk.us.edu.pl 19 września 2014 Karol Kołodziej Postulaty interpretacyjne mechaniki
zbieranie porządkowanie i prezentacja (tabele, wykresy) analiza interpretacja (wnioskowanie statystyczne)
STATYSTYKA zbieranie porządkowanie i prezentacja (tabele, wykresy) analiza interpretacja (wnioskowanie statystyczne) DANYCH STATYSTYKA MATEMATYCZNA analiza i interpretacja danych przy wykorzystaniu metod
1.Wstęp W ćwiczeniu bada się zestaw głośnikowy oraz mikrofon pomiarowy z wykorzystaniem sekwencji MLS opis w załącznikui skrypcie- [1].oraz poz.
Temat ćwiczenia: Pomiar odpowiedzi impulsowej głośników i mikrofonów metodą MLS 1.Wstęp W ćwiczeniu bada się zestaw głośnikowy oraz mikrofon pomiarowy z wykorzystaniem sekwencji MLS opis w załącznikui
Pomiar energii wiązania deuteronu. Celem ćwiczenia jest wyznaczenie energii wiązania deuteronu
J1 Pomiar energii wiązania deuteronu Celem ćwiczenia jest wyznaczenie energii wiązania deuteronu Przygotowanie: 1) Model deuteronu. Własności deuteronu jako źródło informacji o siłach jądrowych [4] ) Oddziaływanie
Komputerowa Analiza Danych Doświadczalnych
Komputerowa Analiza Danych Doświadczalnych dr inż. Adam Kisiel kisiel@if.pw.edu.pl pokój 117b (12b) 1 Materiały do wykładu Transparencje do wykładów: http://www.if.pw.edu.pl/~kisiel/kadd/kadd.html Literatura
Zaliczenie. Ćwiczenia (zaliczenie = min. 15 punktów)
Zaliczenie Ćwiczenia (zaliczenie = min. 15 punktów) Kolokwium (8/10 czerwca) = maks. 30 punktów Dwa zadania z listy pod linkiem = maks. 1 punkt http://www.fuw.edu.pl/~prozanski/ws/upload/20150415-zadania.php
STATYSTYKA OPISOWA. Przykłady problemów: - badanie opinii publicznej na temat preferencji wyborczych;
STATYSTYKA OPISOWA Przykłady problemów: - badanie opinii publicznej na temat preferencji wyborczych; - badanie stanu zdrowia w pewnej miejscowości; - badanie stopnia zanieczyszczenia gleb metalami ciężkimi
LICZBY - Podział liczb
1 LICZBY - Podział liczb Liczby naturalne (N) to liczby, za pomocą których rachujemy. Podział liczb na diagramie prezentuje się następująco 0, 1, 2, 3, 4, 5,, 99, 100, 101,, 999, 1000, Liczby całkowite
Atomowa budowa materii
Atomowa budowa materii Wszystkie obiekty materialne zbudowane są z tych samych elementów cząstek elementarnych Cząstki elementarne oddziałują tylko kilkoma sposobami oddziaływania wymieniając kwanty pól
Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne.
Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne. Definicja. Niech a i b będą dodatnimi liczbami rzeczywistymi i niech a. Logarytmem liczby b przy podstawie
Wykład 9 Wnioskowanie o średnich
Wykład 9 Wnioskowanie o średnich Rozkład t (Studenta) Wnioskowanie dla jednej populacji: Test i przedziały ufności dla jednej próby Test i przedziały ufności dla par Porównanie dwóch populacji: Test i
WYKŁAD 8. Maria Krawczyk, Wydział Fizyki UW. Oddziaływania słabe
Wszechświat cząstek elementarnych WYKŁAD 8 Maria Krawczyk, Wydział Fizyki UW Oddziaływania słabe Cztery podstawowe siłyprzypomnienie Oddziaływanie grawitacyjne Działa między wszystkimi cząstkami, jest
Rozkład normalny, niepewność standardowa typu A
Podstawy Metrologii i Technik Eksperymentu Laboratorium Rozkład normalny, niepewność standardowa typu A Instrukcja do ćwiczenia nr 1 Zakład Miernictwa i Ochrony Atmosfery Wrocław, listopad 2010 r. Podstawy
Wstęp do fizyki jądrowej Tomasz Pawlak, 2013
24-06-2007 Wstęp do fizyki jądrowej Tomasz Pawlak, 2013 część 1 własności jąder (w stanie podstawowym) składniki jąder przekrój czynny masy jąder rozmiary jąder Rutherford (1911) Ernest Rutherford (1871-1937)
Zadanie Tworzenie próbki z rozkładu logarytmiczno normalnego LN(5, 2) Plot Probability Distributions
Zadanie 1. 1 Wygenerować 200 elementowa próbkę z rozkładu logarytmiczno-normalnego o parametrach LN(5,2). Utworzyć dla tej próbki: - szereg rozdzielczy - histogramy liczebności i częstości - histogramy
VI. 6 Rozpraszanie głębokonieelastyczne i kwarki
r. akad. 005/ 006 VI. 6 Rozpraszanie głębokonieelastyczne i kwarki 1. Fale materii. Rozpraszanie cząstek wysokich energii mikroskopią na bardzo małych odległościach.. Akceleratory elektronów i protonów.
SCENARIUSZ LEKCJI. TEMAT LEKCJI: Zastosowanie średnich w statystyce i matematyce. Podstawowe pojęcia statystyczne. Streszczenie.
SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Autorzy scenariusza:
Metody probabilistyczne
Metody probabilistyczne 13. Elementy statystki matematycznej I Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 17.01.2019 1 / 30 Zagadnienia statystki Przeprowadzamy
Generowanie ciągów pseudolosowych o zadanych rozkładach przykładowy raport
Generowanie ciągów pseudolosowych o zadanych rozkładach przykładowy raport Michał Krzemiński Streszczenie Projekt dotyczy metod generowania oraz badania własności statystycznych ciągów liczb pseudolosowych.
LABORATORIUM: ROZDZIELANIE UKŁADÓW HETEROGENICZNYCH ĆWICZENIE 1 - PRZESIEWANIE
LABORATORIUM: ROZDZIELANIE UKŁADÓW HETEROGENICZNYCH ĆWICZENIE 1 - PRZESIEWANIE CEL ĆWICZENIA Celem ćwiczenia jest wykonanie analizy sitowej materiału ziarnistego poddanego mieleniu w młynie kulowym oraz
Statystyka i analiza danych pomiarowych Podstawowe pojęcia statystyki cz. 2. Tadeusz M. Molenda Instytut Fizyki, Uniwersytet Szczeciński
Statystyka i analiza danych pomiarowych Podstawowe pojęcia statystyki cz. 2. Tadeusz M. Molenda Instytut Fizyki, Uniwersytet Szczeciński Opracowanie materiału statystycznego Szereg rozdzielczy częstości
Wnioskowanie statystyczne Weryfikacja hipotez. Statystyka
Wnioskowanie statystyczne Weryfikacja hipotez Statystyka Co nazywamy hipotezą Każde stwierdzenie o parametrach rozkładu lub rozkładzie zmiennej losowej w populacji nazywać będziemy hipotezą statystyczną
Pytanie 2. Co to są ciągi i do czego służą?
TECHNIKI ANALITYC ZNE W BIZNESIE 0 pytań do specjalisty Pytanie. Czy TECHNIKI ANALITYCZNE W BIZNESIE są częścią jakiegoś przedmiotu wykładanego na innych uczelniach? W zasadzie nie ma takiego jednego przedmiotu
Technologie i systemy oparte na logice rozmytej
Zagadnienia I Technologie i systemy oparte na logice rozmytej Mają zastosowania w sytuacjach kiedy nie posiadamy wystarczającej wiedzy o modelu matematycznym rządzącym danym zjawiskiem oraz tam gdzie zbudowanie
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych
Lista 1 liczby rzeczywiste.
Lista 1 liczby rzeczywiste Zad 1 Przedstaw liczbę m w postaci W każdym ze składników tej sumy musimy wyłączyd czynnik przed znak pierwiastka Można to zrobid rozkładając liczby podpierwiastkowe na czynniki
EDUKACYJNE ZASOBY CERN
EDUKACYJNE ZASOBY CERN Prezentację przygotowały: Bożena Kania, Gimnazjum nr 9 w Lublinie Ewa Pilorz, Gimnazjum nr 15 w Lublinie Joanna Russa-Resztak, IX Liceum Ogólnokształcące w Lublinie po szkoleniu
Wstęp do systemu Linux
M. Trzebiński Linux 1/8 Wstęp do systemu Linux Maciej Trzebiński Instytut Fizyki Jądrowej Polskiej Akademii Nauk Praktyki studenckie na LHC IVedycja:2016r. IFJ PAN Uruchomienie terminala Jeżeli na komputerze
ARYTMETYKA BINARNA. Dziesiątkowy system pozycyjny nie jest jedynym sposobem kodowania liczb z jakim mamy na co dzień do czynienia.
ARYTMETYKA BINARNA ROZWINIĘCIE DWÓJKOWE Jednym z najlepiej znanych sposobów kodowania informacji zawartej w liczbach jest kodowanie w dziesiątkowym systemie pozycyjnym, w którym dla przedstawienia liczb
V.6.6 Pęd i energia przy prędkościach bliskich c. Zastosowania
V.6.6 Pęd i energia przy prędkościach bliskich c. Zastosowania 1. Ogólne wyrażenia na aberrację światła. Rozpad cząstki o masie M na dwie cząstki o masach m 1 i m 3. Rozpraszanie fotonów z lasera GaAs
Janusz Adamowski METODY OBLICZENIOWE FIZYKI Kwantowa wariacyjna metoda Monte Carlo. Problem własny dla stanu podstawowego układu N cząstek
Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 20 KWANTOWE METODY MONTE CARLO 20.1 Kwantowa wariacyjna metoda Monte Carlo Problem własny dla stanu podstawowego układu N cząstek (H E 0 )ψ 0 (r)
interpretacje mechaniki kwantowej fotony i splątanie
mechaniki kwantowej fotony i splątanie Jacek Matulewski Karolina Słowik Jarosław Zaremba Jacek Jurkowski MECHANIKA KWANTOWA DLA NIEFIZYKÓW Twierdzenie o nieklonowaniu Jak sklonować stan kwantowy? klonowanie
Ćwiczenie nr 6 Charakterystyki częstotliwościowe
Wstęp teoretyczny Ćwiczenie nr 6 Charakterystyki częstotliwościowe 1 Cel ćwiczenia Celem ćwiczenia jest wyznaczenie charakterystyk częstotliwościowych układu regulacji oraz korekta nastaw regulatora na
Statystyka nieoddziaływujących gazów Bosego i Fermiego
Statystyka nieoddziaływujących gazów Bosego i Fermiego Bozony: fotony (kwanty pola elektromagnetycznego, których liczba nie jest zachowana mogą być pojedynczo pochłaniane lub tworzone. W konsekwencji,
I. Przedmiot i metodologia fizyki
I. Przedmiot i metodologia fizyki Rodowód fizyki współczesnej Świat zjawisk fizycznych: wielkości fizyczne, rzędy wielkości, uniwersalność praw Oddziaływania fundamentalne i poszukiwanie Teorii Ostatecznej
Statystyka opisowa- cd.
12.03.2017 Wydział Inżynierii Produkcji I Logistyki Statystyka opisowa- cd. Wykład 4 Dr inż. Adam Deptuła HISTOGRAM UNORMOWANY Pole słupka = wysokość słupka x długość przedziału Pole słupka = n i n h h,
Statystyka. Wykład 6. Magdalena Alama-Bućko. 9 kwietnia Magdalena Alama-Bućko Statystyka 9 kwietnia / 36
Statystyka Wykład 6 Magdalena Alama-Bućko 9 kwietnia 2018 Magdalena Alama-Bućko Statystyka 9 kwietnia 2018 1 / 36 Krzywa koncentracji Lorenza w ekonometrii, ekologii, geografii ludności itp. koncentrację
Temat Ocena Wymagania ROZDZIAŁ III. MATERIAŁY I ICH ZASTOSOWANIE
Wymagania na poszczególne oceny z przedmiotu zajęcia techniczne dla klasy V 1. Od włókna do ubrania 1 Temat Ocena Wymagania ROZDZIAŁ III. MATERIAŁY I ICH ZASTOSOWANIE poprawnie posługuje się terminami:
Reakcje jądrowe. kanał wyjściowy
Reakcje jądrowe X 1 + X 2 Y 1 + Y 2 +...+ b 1 + b 2 kanał wejściowy kanał wyjściowy Reakcje wywołane przez nukleony - mechanizm reakcji Wielkości mierzone Reakcje wywołane przez ciężkie jony a) niskie
Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 1
Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 1 Przygotowując wykład korzystam głównie z książki Jakubowski, Sztencel Wstęp do teorii prawdopodobieństwa. Jakubowski, Sztencel:
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych. Wykład tutora na bazie wykładu prof. Marka Stankiewicza
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych Wykład tutora na bazie wykładu prof. Marka Stankiewicza Po co zajęcia w I Pracowni Fizycznej? 1. Obserwacja zjawisk i
Zespół Zakładów Fizyki Jądrowej
gluons Zespół Zakładów Fizyki Jądrowej Zakład Fizyki Hadronów Zakład Doświadczalnej Fizyki Cząstek i jej Zastosowań Zakład Teorii Układów Jądrowych QCD Zakład Fizyki Hadronów Badanie struktury hadronów,
Badanie normalności rozkładu
Temat: Badanie normalności rozkładu. Wyznaczanie przedziałów ufności. Badanie normalności rozkładu Shapiro-Wilka: jest on najbardziej zalecanym testem normalności rozkładu. Jednak wskazane jest, aby liczebność
Instytut Fizyki Politechniki Łódzkiej Laboratorium Metod Analizy Danych Doświadczalnych Ćwiczenie 3 Generator liczb losowych o rozkładzie Rayleigha.
Instytut Fizyki Politechniki Łódzkiej Laboratorium Metod Analizy Danych Doświadczalnych Generator liczb losowych o rozkładzie Rayleigha. Generator liczb losowych o rozkładzie Rayleigha. 1. Cel ćwiczenia
Statystyka Matematyczna Anna Janicka
Statystyka Matematyczna Anna Janicka wykład I, 22.02.2016 STATYSTYKA OPISOWA, cz. I Kwestie techniczne Kontakt: ajanicka@wne.uw.edu.pl Dyżur: strona z materiałami z przedmiotu: wne.uw.edu.pl/azylicz akson.sgh.waw.pl/~aborata