Statystyka. Wykład 6. Magdalena Alama-Bućko. 9 kwietnia Magdalena Alama-Bućko Statystyka 9 kwietnia / 36
|
|
- Andrzej Mucha
- 6 lat temu
- Przeglądów:
Transkrypt
1 Statystyka Wykład 6 Magdalena Alama-Bućko 9 kwietnia 2018 Magdalena Alama-Bućko Statystyka 9 kwietnia / 36
2 Krzywa koncentracji Lorenza w ekonometrii, ekologii, geografii ludności itp. koncentrację rozkładów cech badamy za pomoca krzywej koncentracji Lorenza. w zasadzie badamy czy cecha jest rozłożona równomiernie w ekonometrii np. do badania dystrybucji dochodów w społeczeństwie (tzn. czy wszyscy maja takie same dochody?) w geografii ludności : do obrazowania nierównomierności gęstości zaludnienia w podjednostkach terenowych. Magdalena Alama-Bućko Statystyka 9 kwietnia / 36
3 Magdalena Alama-Buc ko Statystyka 9 kwietnia / 36
4 Magdalena Alama-Buc ko Statystyka 9 kwietnia / 36
5 Magdalena Alama-Bućko Statystyka 9 kwietnia / 36
6 metoda graficzna Kwadrat o boku 1 (= 100%). na osi poziomej odkładamy skumulowane częstości względne (albo skumulowany procent) liczby obserwacji na osi pionowej odkładamy skumulowane częstości względne (albo skumulowany procent) wartości badanej cechy Przekatna kwadratu nosi nazwę linii równomiernego rozdziału. krzywa koncentracji to łamana łacz aca punkty (0, 0) i (1, 1) = (100%, 100%) oraz pewne punkty wyznaczone na podstawie danych (opisane wyżej). Magdalena Alama-Bućko Statystyka 9 kwietnia / 36
7 Przykład 1: Krzywa koncentracji dochodów Dani, Węgier i Namibii źródło : By Mrgann [CC BY-SA 3.0 ( Magdalena Alama-Bućko Statystyka 9 kwietnia / 36
8 20% społeczeństwa zarabiajacego najmniej ma łacznie: W Danii: 8, 30%, na Węgrzech: 9, 5%, w Namibii: 1, 4% 40% społeczeństwa zarabiajacego najmniej ma łacznie: W Danii: 23%, na Węgrzech: 23, 4%, w Namibii: 4, 4% 60% społeczeństwa zarabiajacego najmniej ma łacznie: W Danii: 41, 3%, na Węgrzech: 41%, w Namibii: 9, 8% 80% społeczeństwa zarabiajacego najmniej ma łacznie: W Danii: 64, 20%, na Węgrzech: 63, 5%, w Namibii: 21, 3% Magdalena Alama-Bućko Statystyka 9 kwietnia / 36
9 punkt na przekatnej interpretujemy następujaco : jeżeli dana cecha rozłożona jest równomiernie w badanej grupie obiektów, to p% obiektów (o najmniejszych wartościach) przyjmuje dokładnie p% łacznej wartości danej cechy. jeśli rozkład równomierny, to 50% łacznej wartości cechy osiaga 50% obiektów 80% łacznej wartości cechy osiaga 80% obiektów jeżeli na krzywej Lorenza znajduje się punkt (50%,20%) 20% łacznej wartości cechy osiaga 50% obiektów występuje koncentracja danych ma znaczenie przeciwne do dane rozłożone równomiernie wzrost koncentracji oznacza, że dane sa mniej równomierne Magdalena Alama-Bućko Statystyka 9 kwietnia / 36
10 Interpretacja Magdalena Alama-Buc ko Statystyka 9 kwietnia / 36
11 Jak ta krzywa wyznaczyć? dla i = 1, 2,..., k (liczba kategorii,...) zaznaczamy punkty (w i, z i ) (definicje tych punktów na kolejnych slajdach) Krzywa koncentracji Lorenza otrzymujemy łacz ac z soba po kolei punkty (0, 0), (w i, z i ), i = 1, 2,..., k. Magdalena Alama-Bućko Statystyka 9 kwietnia / 36
12 na osi poziomej zaznaczamy skumulowane częstości względne liczby obserwacji Niech n = n 1 + n n k. Dla każdego i liczymy sumy częściowe liczebności = n j = n 1 + n n i n cum i 1 j i oraz skumulowane częstości względne: w i = ncum in = n 1 + n n i n Oczywiście w i [0, 1], i = 1, 2,..., k oraz w k = 1 = 100%. Magdalena Alama-Bućko Statystyka 9 kwietnia / 36
13 na osi pionowej zaznaczamy skumulowane częstości względne wartości danej cechy dla każdego i liczymy t i = x i n i. Niech: t = n 1 x 1 + n 2 x n k x k. dla każdego i liczymy skumulowane sumy częściowe wartości cechy: = t j = t 1 + t t i t cum i 1 j i oraz skumulowane częstości względne wartości cechy z i = t i cum t = t 1 + t t i t = n 1x 1 + n 2 x n i x i n 1 x 1 + n 2 x n k x k Oczywiście z i [0, 1], i = 1, 2,..., k oraz z k = 1 = 100%. Magdalena Alama-Bućko Statystyka 9 kwietnia / 36
14 Przykład Magdalena Alama-Bućko Statystyka 9 kwietnia / 36
15 Powierzchnia koncentracji - powierzchnia pomiędzy linia równomiernego rozdziału (tzn. przekatn a) a krzywa Lorenza. Na podstawie wykresu można zorientować się jak silna koncentracja występuje. Im większe pole tym mniejsza równomierność w rozkładzie cechy. Współczynnik koncentracji Lorenza (współczynnik Giniego) to stosunek pola powierzchni koncentracji do połowy pola kwadratu (tzn. pola pod przekatn a). Magdalena Alama-Bućko Statystyka 9 kwietnia / 36
16 a - pole powierzchni koncentracji pole połowy kwadratu o boku (1=100%): jeśli jednostki w postaci ułamków (tzn. skala od 0 do 1), to = 1 2 jeśli skala osi od 0% do 100% (pomijamy procenty) to = 5000 Wówczas w zależności od sposobu zapisu danych mamy: K L = a 0.5 albo K L = a K L = 0 - brak koncentracji K L = 1 - koncentracja zupełna Magdalena Alama-Bućko Statystyka 9 kwietnia / 36
17 K L = a 0.5 albo K L = a K L = 0 - brak koncentracji (a = 0 czyli wszystkie punkty na przekatnej) K L = 1 - koncentracja zupełna Słaba koncentracja jest zwiazana z dość równomiernym podziałem łacznej wartości badanej cechy pomiędzy jednostki statystyczne opisywane przez dana cechę Możemy porównywać wyznaczony w ten sposób współczynnik koncentracji Lorenza dla różnych cech. jak policzyć a? Magdalena Alama-Bućko Statystyka 9 kwietnia / 36
18 a obliczamy odejmujac od trójkata pod przekatn a kwadratu pola jednego trójkata (na brzegu) i pól trapezów. P 1 = = P 2 = 1 2 ( ) ( ) = = P 3 = 1 2 ( ) ( ) = = P 4 = 1 2 ( ) ( ) = = P 5 = 1 2 ( ) (1 0.92) = = K L = a 0.5 = 0.5 (P 1 + P 2 + P 3 + P 4 + P 5 ) = = Magdalena Alama-Bućko Statystyka 9 kwietnia / 36
19 W ogólnym przypadku mamy: P 1 = 1 2 w 1 z 1 P 2 = 1 2 (z 1 + z 2 )(w 2 w 1 ) P 3 = 1 2 (z 2 + z 3 )(w 3 w 2 )... P i = 1 2 (z i 1 + z i )(w i w i 1 ), i = 1, 2,..., n K L = a 0.5 = 0.5 i P i = i P i gdzie P i = 1 2 (z i 1 + z i )(w i w i 1 ), i = 1, 2,..., n Pamiętamy, że w 0 = z 0 = 0. Magdalena Alama-Bućko Statystyka 9 kwietnia / 36
20 Zadanie Wyznaczyć i porównać koncentrację utargów w dwóch sieciach sklepów. Pokażemy, że wartości współczynników koncentracji Lorenza dla odpowiednio pierwszej i drugiej sieci sklepów wynosza: K (1) L = , K (2) L = Stad utargi w sieci pierwszej sa mniej skoncentrowane niż w drugiej. Magdalena Alama-Bućko Statystyka 9 kwietnia / 36
21 K L = Magdalena Alama-Bućko Statystyka 9 kwietnia / 36
22 P 1 = = P 2 = 1 2 ( ) ( ) = P 3 = 1 2 ( ) ( ) = P 4 = 1 2 ( ) ( ) = P 5 = 1 2 ( ) (1 0.95) = K L = 0.5 (P 1+P 2 +P 3 +P 4 +P 5 ) 0.5 = = Magdalena Alama-Bućko Statystyka 9 kwietnia / 36
23 K L = Magdalena Alama-Bućko Statystyka 9 kwietnia / 36
24 P 1 = = P 2 = 1 2 ( ) ( ) = P 3 = 1 2 ( ) ( ) = P 4 = 1 2 ( ) (1 0.55) = K L = 0.5 (P 1+P 2 +P 3 +P 4 ) 0.5 = = Magdalena Alama-Bućko Statystyka 9 kwietnia / 36
25 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia miary zmienności miary asymetrii miary koncentracji. Analiza współzależności zjawisk. Analiza dynamiki zjawisk. Magdalena Alama-Bućko Statystyka 9 kwietnia / 36
26 do tej pory opisywaliśmy miary położenia, zmienności, asymetrii i koncentracji dla pojedynczych cech X, Y,... badane cechy mogły dotyczyć tej samej populacji generalnej, zatem mogły opisywać te same obiekty np. dla osób można określać : wzrost, wagę, dochody, wydatki, kolor oczu, preferencje wyborcze,... załóżmy że dla każdej jednostki statystycznej mamy określone pary wartości (x, y) (czyli obserwacje dwóch cech) ponieważ badamy n obiektów, to dysponujemy n parami obserwacji (x i, y i ), i = 1, 2,..., n szukamy zależności między obserwacjami x i i y i Magdalena Alama-Bućko Statystyka 9 kwietnia / 36
27 czy istnieje zależność między cechami X i Y? jak silna jest ta zależność? czy można napisać wzór tej zależności? czy na podstawie wzoru można obliczyć (przewidzieć) wartość pewnej cechy? np. ile wynosza wartości wydatków, gdy dochody wynosza 3000? Badanie postaci i siły zależności występujacych pomiędzy cechami zbiorowości sa przedmiotem analizy korelacji i regresji. Magdalena Alama-Bućko Statystyka 9 kwietnia / 36
28 Celem analizy jest stwierdzenie, czy między badanymi zmiennymi zachodza jakieś zależności, jaka jest ich: siła np. słaba albo silna zależność postać ( dopasowanie funkcji reprezentujacych zależność ) kierunek (monotoniczność) czy wraz ze wzrostem jednej cechy, druga rośnie czy maleje? Magdalena Alama-Bućko Statystyka 9 kwietnia / 36
29 Współzależność między zmiennymi może być różnego rodzaju: funkcyjna gdy zmiana wartości jednej zmiennej powoduje ściśle określona zmianę wartości drugiej zmiennej np. wartość wynagrodzenia za określona liczbę przepracowanych godzin to zawsze "liczba godzin razy stawka godzinowa" stochastyczna gdy określonym wartościom jednej zmiennej jest przyporzadkowanych wiele różnych wartości drugiej zmiennej np. zależność wieku od liczby posiadanych dzieci ( osoby w tym samym wieku moga mieć różne liczby dzieci) np. zależność między wiekiem pracownika a stażem jego pracy Magdalena Alama-Bućko Statystyka 9 kwietnia / 36
30 korelacyjna gdy określonym wartościom jednej zmiennej odpowiadaja ściśle określone, ale różne średnie wartości drugiej zmiennej czyli zmiana wartości jednej zmiennej powoduje ściśle określona zmianę wartości średniej drugiej zmiennej np. starsza osoba ma średnio dłuższy staż pracy niż osoba młodsza każda relacja korelacyjna jest relacja stochastyczna, ale nie każda relacja stochastyczna jest relacja korelacyjna (np. gdy średnie w różnych grupach sa takie same) Zwiazki typu korelacyjnego sa możliwe do wykrycia oraz opisu w przypadku, kiedy mamy do czynienia z wieloma obserwacjami, opisujacymi badane obiekty, zjawiska czy też procesy. Magdalena Alama-Bućko Statystyka 9 kwietnia / 36
31 Postać zależności (wzór) gdy y = f (x) to x jest zmienna objaśniajac a (niezależna), a y - zmienna objaśniana (zależna) gdy x = f (y) to y jest zmienna objaśniajac a (niezależna), a x - zmienna objaśniana (zależna) czasami można zamiennie wybierać nasze zmienne jako zmienne zależne i niezależne, a czasami ten wybór jest określony: waga może być funkcja wzrostu, wzrost może być funkcja wagi ilość wyprodukowanych śmieci jest funkcja ilości robionych zakupów ilość wydatków na jedzenie w rodzinie jest funkcja liczby osób w tej rodzinie zależność między zmiennymi może być liniowa (tzw. korelacja liniowa), zależność między zmiennymi może mieć postać innej funkcji, np. wykładniczej, logarytmicznej, drugiego stopnia itp. (tzw. korelacja krzywoliniowa) Magdalena Alama-Bućko Statystyka 9 kwietnia / 36
32 Procedura badania zależności między cechami zależy od typów tych cech. Moga być następujace sytuacje: obie cechy sa mierzalne (ilościowe) np. zależność wzrostu od wagi, wydatków od dochodów,... obie cechy sa niemierzalne (jakościowe) np. zależność wykształcenia od preferencji politycznych jedna cecha jest ilościowa i jedna jakościowa np. zależność zarobków od płci. Magdalena Alama-Bućko Statystyka 9 kwietnia / 36
33 Przedstawienie danych Dane (x i, y i ), i = 1, 2,..., n można przedstawić w postaci diagramów korelacyjnych i tabeli korelacyjnych. W pierwotnej postaci dane te (dokładne punkty (x i, y i )) moga być zapisane w tabeli. 1) diagram korelacyjny - to graficzne zaznaczenie na płaszczyźnie punktów (x i, y i ), i = 1, 2,..., n. w Excelu : wykres punktowy danych (X, Y ) Magdalena Alama-Bućko Statystyka 9 kwietnia / 36
34 2) tablica korelacyjna albo tablica dwudzielcza warunek: n 30 w kolejnych wierszach znajduja się możliwe wartości (warianty) jednej zmiennej {x 1, x 2,..., x r } w kolejnych kolumnach znajduja się możliwe wartości (warianty) drugiej zmiennej {y 1, y 2,..., y k } wewnatrz tabelki znajduja się liczebności konkretnych klas, tzn. n ij - liczebność obiektów które maja równocześnie wartość x i i y j. Y y 1 y 2... y k X x 1 n 11 n n 1k x 2 n 21 n n 2k... x r n r1 n r2... n rk Magdalena Alama-Bućko Statystyka 9 kwietnia / 36
35 Tak jak dla "pojedynczych" cech czasami lepiej było pracować na szeregach przedziałowych, tak tutaj też może się zdarzyć że wartościami zmiennych moga być przedziały. Y y 01 y 11 y 02 y y 0k y 1k X x 01 x 11 n 11 n n 1k x 02 x 12 n 21 n n 2k... x 0r x 1r n r1 n r2... n rk Pamiętamy, że we wszelkich obliczeniach (średniej, wariancji,...) dla obiektów danej klasy, jako reprezentant wartości bierzemy środek danego przedziału przez ˆx i, ŷ j oznaczamy środki odpowiednich klas Magdalena Alama-Bućko Statystyka 9 kwietnia / 36
36 Dziękuję za uwagę! Magdalena Alama-Bućko Statystyka 9 kwietnia / 36
Statystyka. Wykład 5. Magdalena Alama-Bućko. 20 marca Magdalena Alama-Bućko Statystyka 20 marca / 26
Statystyka Wykład 5 Magdalena Alama-Bućko 20 marca 2017 Magdalena Alama-Bućko Statystyka 20 marca 2017 1 / 26 Koncentracja Analiza struktury zbiorowości miary położenia ( miary średnie) miary zmienności
Bardziej szczegółowoStatystyka. Wykład 7. Magdalena Alama-Bućko. 16 kwietnia Magdalena Alama-Bućko Statystyka 16 kwietnia / 35
Statystyka Wykład 7 Magdalena Alama-Bućko 16 kwietnia 2017 Magdalena Alama-Bućko Statystyka 16 kwietnia 2017 1 / 35 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia
Bardziej szczegółowoStatystyka. Wykład 7. Magdalena Alama-Bućko. 3 kwietnia Magdalena Alama-Bućko Statystyka 3 kwietnia / 36
Statystyka Wykład 7 Magdalena Alama-Bućko 3 kwietnia 2017 Magdalena Alama-Bućko Statystyka 3 kwietnia 2017 1 / 36 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia
Bardziej szczegółowoStatystyka. Wykład 8. Magdalena Alama-Bućko. 10 kwietnia Magdalena Alama-Bućko Statystyka 10 kwietnia / 31
Statystyka Wykład 8 Magdalena Alama-Bućko 10 kwietnia 2017 Magdalena Alama-Bućko Statystyka 10 kwietnia 2017 1 / 31 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia
Bardziej szczegółowoStatystyka. Wykład 8. Magdalena Alama-Bućko. 23 kwietnia Magdalena Alama-Bućko Statystyka 23 kwietnia / 38
Statystyka Wykład 8 Magdalena Alama-Bućko 23 kwietnia 2017 Magdalena Alama-Bućko Statystyka 23 kwietnia 2017 1 / 38 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia
Bardziej szczegółowoStatystyka. Wykład 9. Magdalena Alama-Bućko. 7 maja Magdalena Alama-Bućko Statystyka 7 maja / 40
Statystyka Wykład 9 Magdalena Alama-Bućko 7 maja 2018 Magdalena Alama-Bućko Statystyka 7 maja 2018 1 / 40 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia miary
Bardziej szczegółowoStatystyka. Wykład 9. Magdalena Alama-Bućko. 24 kwietnia Magdalena Alama-Bućko Statystyka 24 kwietnia / 34
Statystyka Wykład 9 Magdalena Alama-Bućko 24 kwietnia 2017 Magdalena Alama-Bućko Statystyka 24 kwietnia 2017 1 / 34 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia
Bardziej szczegółowoStatystyka. Wykład 4. Magdalena Alama-Bućko. 13 marca Magdalena Alama-Bućko Statystyka 13 marca / 41
Statystyka Wykład 4 Magdalena Alama-Bućko 13 marca 2017 Magdalena Alama-Bućko Statystyka 13 marca 2017 1 / 41 Na poprzednim wykładzie omówiliśmy następujace miary rozproszenia: Wariancja - to średnia arytmetyczna
Bardziej szczegółowoStatystyka. Wykład 5. Magdalena Alama-Bućko. 26 marca Magdalena Alama-Bućko Statystyka 26 marca / 40
Statystyka Wykład 5 Magdalena Alama-Bućko 26 marca 2018 Magdalena Alama-Bućko Statystyka 26 marca 2018 1 / 40 Uwaga Gdy współczynnik zmienności jest większy niż 70%, czyli V s = s x 100% > 70% (co świadczy
Bardziej szczegółowoStatystyka. Wykład 3. Magdalena Alama-Bućko. 6 marca Magdalena Alama-Bućko Statystyka 6 marca / 28
Statystyka Wykład 3 Magdalena Alama-Bućko 6 marca 2017 Magdalena Alama-Bućko Statystyka 6 marca 2017 1 / 28 Szeregi rozdzielcze przedziałowe - kwartyle - przypomnienie Po ustaleniu przedziału, w którym
Bardziej szczegółowoStatystyka. Wykład 1. Magdalena Alama-Bućko. 20 lutego Magdalena Alama-Bućko Statystyka 20 lutego / 19
Statystyka Wykład 1 Magdalena Alama-Bućko 20 lutego 2017 Magdalena Alama-Bućko Statystyka 20 lutego 2017 1 / 19 Wykład : 30h Laboratoria : 30h (grupa B : 14:00, grupa C : 10:30, grupa E : 12:15) obowiazek
Bardziej szczegółowoWprowadzenie do analizy korelacji i regresji
Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących
Bardziej szczegółowoStatystyka. Wykład 4. Magdalena Alama-Bućko. 19 marca Magdalena Alama-Bućko Statystyka 19 marca / 33
Statystyka Wykład 4 Magdalena Alama-Bućko 19 marca 2018 Magdalena Alama-Bućko Statystyka 19 marca 2018 1 / 33 Analiza struktury zbiorowości miary położenia ( miary średnie) miary zmienności (rozproszenia,
Bardziej szczegółowoAnaliza współzależności zjawisk. dr Marta Kuc-Czarnecka
Analiza współzależności zjawisk dr Marta Kuc-Czarnecka Wprowadzenie Prawidłowości statystyczne mają swoje przyczyny, w związku z tym dla poznania całokształtu badanego zjawiska potrzebna jest analiza z
Bardziej szczegółowoStatystyka. Wykład 10. Magdalena Alama-Bućko. 14 maja Magdalena Alama-Bućko Statystyka 14 maja / 31
Statystyka Wykład 10 Magdalena Alama-Bućko 14 maja 2018 Magdalena Alama-Bućko Statystyka 14 maja 2018 1 / 31 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia miary
Bardziej szczegółowoMiary koncentracji STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP. 28 września 2018
STATYSTYKA OPISOWA Dr Alina Gleska Instytut Matematyki WE PP 28 września 2018 1 Pojęcie koncentracji może być stosowane w dwóch różnych znaczeniach: 1) koncentracja jako skupienie poszczególnych wartości
Bardziej szczegółowoStatystyka. Wykład 1. Magdalena Alama-Bućko. 26 lutego Magdalena Alama-Bućko Statystyka 26 lutego / 34
Statystyka Wykład 1 Magdalena Alama-Bućko 26 lutego 2018 Magdalena Alama-Bućko Statystyka 26 lutego 2018 1 / 34 Wykład : 30h Laboratoria : 30h egzamin w sesji letniej (po uprzednim zaliczeniu ćwiczeń)
Bardziej szczegółowoAnaliza Współzależności
Statystyka Opisowa z Demografią oraz Biostatystyka Analiza Współzależności Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka
Bardziej szczegółowoSTATYSTYKA OPISOWA. Dr Alina Gleska. 12 listopada Instytut Matematyki WE PP
STATYSTYKA OPISOWA Dr Alina Gleska Instytut Matematyki WE PP 12 listopada 2017 1 Analiza współzależności dwóch cech 2 Jednostka zbiorowości - para (X,Y ). Przy badaniu korelacji nie ma znaczenia, która
Bardziej szczegółowoStatystyka opisowa. Wykład I. Elementy statystyki opisowej
Statystyka opisowa. Wykład I. e-mail:e.kozlovski@pollub.pl Spis treści Elementy statystyku opisowej 1 Elementy statystyku opisowej 2 3 Elementy statystyku opisowej Definicja Statystyka jest to nauka o
Bardziej szczegółowoAnaliza współzależności zjawisk
Analiza współzależności zjawisk Informacje ogólne Jednostki tworzące zbiorowość statystyczną charakteryzowane są zazwyczaj za pomocą wielu cech zmiennych, które nierzadko pozostają ze sobą w pewnym związku.
Bardziej szczegółowoStatystyka. Wykład 2. Magdalena Alama-Bućko. 5 marca Magdalena Alama-Bućko Statystyka 5 marca / 34
Statystyka Wykład 2 Magdalena Alama-Bućko 5 marca 2018 Magdalena Alama-Bućko Statystyka 5 marca 2018 1 / 34 Banki danych: Bank danych lokalnych : Główny urzad statystyczny: Baza Demografia : https://bdl.stat.gov.pl/
Bardziej szczegółowoPróba własności i parametry
Próba własności i parametry Podstawowe pojęcia Zbiorowość statystyczna zbiór jednostek (obserwacji) nie identycznych, ale stanowiących logiczną całość Zbiorowość (populacja) generalna skończony lub nieskończony
Bardziej szczegółowoStatystyka. Wykład 11. Magdalena Alama-Bućko. 21 maja Magdalena Alama-Bućko Statystyka 21 maja / 31
Statystyka Wykład 11 Magdalena Alama-Bućko 21 maja 2018 Magdalena Alama-Bućko Statystyka 21 maja 2018 1 / 31 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia miary
Bardziej szczegółowoSzczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
Bardziej szczegółowoPlan wykładu. Statystyka opisowa. Statystyka matematyczna. Dane statystyczne miary położenia miary rozproszenia miary asymetrii
Plan wykładu Statystyka opisowa Dane statystyczne miary położenia miary rozproszenia miary asymetrii Statystyka matematyczna Podstawy estymacji Testowanie hipotez statystycznych Żródła Korzystałam z ksiażek:
Bardziej szczegółowoStatystyka. Wykład 2. Magdalena Alama-Bućko. 27 lutego Magdalena Alama-Bućko Statystyka 27 lutego / 39
Statystyka Wykład 2 Magdalena Alama-Bućko 27 lutego 2017 Magdalena Alama-Bućko Statystyka 27 lutego 2017 1 / 39 Banki danych: Bank danych lokalnych : Główny urzad statystyczny: https://bdl.stat.gov.pl/
Bardziej szczegółowoStatystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl
Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący
Bardziej szczegółowoStatystyka od podstaw Janina Jóźwiak, Jarosław Podgórski
Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Książka jest nowoczesnym podręcznikiem przeznaczonym dla studentów uczelni i wydziałów ekonomicznych. Wykład podzielono na cztery części. W pierwszej
Bardziej szczegółowoW1. Wprowadzenie. Statystyka opisowa
W1. Wprowadzenie. Statystyka opisowa dr hab. Jerzy Nakielski Zakład Biofizyki i Morfogenezy Roślin Plan wykładu: 1. O co chodzi w statystyce 2. Etapy badania statystycznego 3. Zmienna losowa, rozkład
Bardziej szczegółowoPOJĘCIA WSTĘPNE. STATYSTYKA - nauka traktująca o metodach ilościowych badania prawidłowości zjawisk (procesów) masowych.
[1] POJĘCIA WSTĘPNE STATYSTYKA - nauka traktująca o metodach ilościowych badania prawidłowości zjawisk (procesów) masowych. BADANIE STATYSTYCZNE - ogół prac mających na celu poznanie struktury określonej
Bardziej szczegółowoSzczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
Bardziej szczegółowoStatystyka. Podstawowe pojęcia: populacja (zbiorowość statystyczna), jednostka statystyczna, próba. Cechy: ilościowe (mierzalne),
Statystyka zbiór przetworzonych i zsyntetyzowanych danych liczbowych, nauka o ilościowych metodach badania zjawisk masowych, zmienna losowa będąca funkcją próby. Podstawowe pojęcia: populacja (zbiorowość
Bardziej szczegółowoWykład 5. Opis struktury zbiorowości. 1. Miary asymetrii.
Wykład 5. Opis struktury zbiorowości 1. Miary asymetrii. 2. Miary koncentracji. Przykład Zbadano stawkę godzinową (w zł) pracowników dwóch branŝ, otrzymując następujące charakterysty ki liczbowe: Stawka
Bardziej szczegółowoWykład 7. Opis współzaleŝności zjawisk. 1. Wprowadzenie.
Wykład 7. Opis współzaleŝności zjawisk 1. Wprowadzenie. 2. Prezentacja materiału statystycznego. Rodzaje współzaleŝności zjawisk 1. WspółzaleŜność funkcyjna określonym wartościom jednej zmiennej jest ściśle
Bardziej szczegółowoStatystyka. Wykład 10. Magdalena Alama-Bućko. 15 maja Magdalena Alama-Bućko Statystyka 15 maja / 32
Statystyka Wykład 10 Magdalena Alama-Bućko 15 maja 2017 Magdalena Alama-Bućko Statystyka 15 maja 2017 1 / 32 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia miary
Bardziej szczegółowoStatystyka matematyczna
Statystyka matematyczna Wykład 6 Magdalena Alama-Bućko 8 kwietnia 019 Magdalena Alama-Bućko Statystyka matematyczna 8 kwietnia 019 1 / 1 Rozkłady ciagłe Magdalena Alama-Bućko Statystyka matematyczna 8
Bardziej szczegółowoRok akademicki: 2013/2014 Kod: ZIE n Punkty ECTS: 6. Poziom studiów: Studia I stopnia Forma i tryb studiów: -
Nazwa modułu: Statystyka opisowa i ekonomiczna Rok akademicki: 2013/2014 Kod: ZIE-1-205-n Punkty ECTS: 6 Wydział: Zarządzania Kierunek: Informatyka i Ekonometria Specjalność: - Poziom studiów: Studia I
Bardziej szczegółowoZałóżmy, że obserwujemy nie jedną lecz dwie cechy, które oznaczymy symbolami X i Y. Wyniki obserwacji obu cech w i-tym obiekcie oznaczymy parą liczb
Współzależność Załóżmy, że obserwujemy nie jedną lecz dwie cechy, które oznaczymy symbolami X i Y. Wyniki obserwacji obu cech w i-tym obiekcie oznaczymy parą liczb (x i, y i ). Geometrycznie taką parę
Bardziej szczegółowoWprowadzenie Pojęcia podstawowe Szeregi rozdzielcze STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP.
STATYSTYKA OPISOWA Dr Alina Gleska Instytut Matematyki WE PP 18 września 2017 1 Wprowadzenie 2 Pojęcia podstawowe 3 Szeregi rozdzielcze Zwykle wyróżnia się dwa podstawowe działy statystyki: statystyka
Bardziej szczegółowoStatystyka opisowa. Literatura STATYSTYKA OPISOWA. Wprowadzenie. Wprowadzenie. Wprowadzenie. Plan. Tomasz Łukaszewski
Literatura STATYSTYKA OPISOWA A. Aczel, Statystyka w Zarządzaniu, PWN, 2000 A. Obecny, Statystyka opisowa w Excelu dla szkół. Ćwiczenia praktyczne, Helion, 2002. A. Obecny, Statystyka matematyczna w Excelu
Bardziej szczegółowoKURS STATYSTYKA. Lekcja 5 Analiza współzależności ZADANIE DOMOWE. Strona 1
KURS STATYSTYKA Lekcja 5 Analiza współzależności ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 W analizie współzależności a) badamy
Bardziej szczegółowoOpisowa analiza struktury zjawisk statystycznych
Statystyka Opisowa z Demografią oraz Biostatystyka Opisowa analiza struktury zjawisk statystycznych Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2
Bardziej szczegółowo-> Średnia arytmetyczna (5) (4) ->Kwartyl dolny, mediana, kwartyl górny, moda - analogicznie jak
Wzory dla szeregu szczegółowego: Wzory dla szeregu rozdzielczego punktowego: ->Średnia arytmetyczna ważona -> Średnia arytmetyczna (5) ->Średnia harmoniczna (1) ->Średnia harmoniczna (6) (2) ->Średnia
Bardziej szczegółowoSTATYSTYKA I DOŚWIADCZALNICTWO Wykład 8
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 8 Regresja wielokrotna Regresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych (X 1, X 2, X 3,...) na zmienną zależną (Y).
Bardziej szczegółowoWykład Prezentacja materiału statystycznego. 2. Rodzaje szeregów statystycznych.
Wykład 2. 1. Prezentacja materiału statystycznego. 2. Rodzaje szeregów statystycznych. 3. Wykresy: histogram, diagram i ogiwa. Prezentacja materiału statystycznego Przy badaniu struktury zbiorowości punktem
Bardziej szczegółowoWYKRESY SPORZĄDZANE W UKŁADZIE WSPÓŁRZĘDNYCH:
WYKRESY SPORZĄDZANE W UKŁADZIE WSPÓŁRZĘDNYCH: Zasada podstawowa: Wykorzystujemy możliwie najmniej skomplikowaną formę wykresu, jeżeli to możliwe unikamy wykresów 3D (zaciemnianie treści), uwaga na kolory
Bardziej szczegółowoStatystyka matematyczna i ekonometria
Statystyka matematyczna i ekonometria prof. dr hab. inż. Jacek Mercik B4 pok. 55 jacek.mercik@pwr.wroc.pl (tylko z konta studenckiego z serwera PWr) Konsultacje, kontakt itp. Strona WWW Elementy wykładu.
Bardziej szczegółowoPDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com
Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych
Bardziej szczegółowoWskaźnik asymetrii Jeżeli: rozkład jest symetryczny, to = 0, rozkład jest asymetryczny lewostronnie, to < 0. Kwartylowy wskaźnik asymetrii
Miary asymetrii Miary asymetrii (skośności) określają kierunek rozkładu cech zmiennych w zbiorowości (rozkład może być symetryczny lub asymetryczny lewostronnie lub prawostronnie) oraz stopień odchylenia
Bardziej szczegółowoSTATYSTYKA I DOŚWIADCZALNICTWO Wykład 5
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 5 Analiza korelacji - współczynnik korelacji Pearsona Cel: ocena współzależności między dwiema zmiennymi ilościowymi Ocenia jedynie zależność liniową. r = cov(x,y
Bardziej szczegółowoWykład 1. Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy
Wykład Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy Zbiorowość statystyczna - zbiór elementów lub wyników jakiegoś procesu powiązanych ze sobą logicznie (tzn. posiadających wspólne cechy
Bardziej szczegółowoRegresja i Korelacja
Regresja i Korelacja Regresja i Korelacja W przyrodzie często obserwujemy związek między kilkoma cechami, np.: drzewa grubsze są z reguły wyższe, drewno iglaste o węższych słojach ma większą gęstość, impregnowane
Bardziej szczegółowoStatystyka i Analiza Danych
Warsztaty Statystyka i Analiza Danych Gdańsk, 20-22 lutego 2014 Zastosowania wybranych technik regresyjnych do modelowania współzależności zjawisk Janusz Wątroba StatSoft Polska Centrum Zastosowań Matematyki
Bardziej szczegółowoElementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej
Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki
Bardziej szczegółowoZ-ZIPN1-004 Statystyka. Zarządzanie i Inżynieria Produkcji I stopień Ogólnoakademicki Niestacjonarne Wszystkie Katedra Matematyki dr Zdzisław Piasta
KARTA MODUŁU / KARTA PRZEDMIOTU Z-ZIPN-004 Statystyka Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Statistics Obowiązuje od roku akademickiego 0/04 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW
Bardziej szczegółowoSTATYSTYKA I DOŚWIADCZALNICTWO Wykład 7
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7 Analiza korelacji - współczynnik korelacji Pearsona Cel: ocena współzależności między dwiema zmiennymi ilościowymi Ocenia jedynie zależność liniową. r = cov(x,y
Bardziej szczegółowoWspółczynniki korelacji czastkowej i wielorakiej STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP. 18 listopada 2017
STATYSTYKA OPISOWA Dr Alina Gleska Instytut Matematyki WE PP 18 listopada 2017 1 Regresja krzywoliniowa 2 Model potęgowy Model potęgowy y = αx β e można sprowadzić poprzez zlogarytmowanie obu stron równania
Bardziej szczegółowoStatystyka matematyczna. dr Katarzyna Góral-Radziszewska Katedra Genetyki i Ogólnej Hodowli Zwierząt
Statystyka matematyczna dr Katarzyna Góral-Radziszewska Katedra Genetyki i Ogólnej Hodowli Zwierząt Zasady zaliczenia przedmiotu: część wykładowa Maksymalna liczba punktów do zdobycia 40. Egzamin będzie
Bardziej szczegółowoMiary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej
Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej cechy. Średnia arytmetyczna suma wartości zmiennej wszystkich
Bardziej szczegółowoZ-LOGN1-006 Statystyka Statistics
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Z-LOGN-006 Statystyka Statistics Obowiązuje od roku akademickiego 0/0 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW Kierunek
Bardziej szczegółowoGraficzna prezentacja danych statystycznych
Szkolenie dla pracowników Urzędu Statystycznego nt. Wybrane metody statystyczne w analizach makroekonomicznych Katowice, 12 i 26 czerwca 2014 r. Dopasowanie narzędzia do typu zmiennej Dobór narzędzia do
Bardziej szczegółowoSposoby prezentacji problemów w statystyce
S t r o n a 1 Dr Anna Rybak Instytut Informatyki Uniwersytet w Białymstoku Sposoby prezentacji problemów w statystyce Wprowadzenie W artykule zostaną zaprezentowane podstawowe zagadnienia z zakresu statystyki
Bardziej szczegółowoStatystyka. Wykład 13. Magdalena Alama-Bućko. 12 czerwca Magdalena Alama-Bućko Statystyka 12 czerwca / 30
Statystyka Wykład 13 Magdalena Alama-Bućko 12 czerwca 2017 Magdalena Alama-Bućko Statystyka 12 czerwca 2017 1 / 30 Co wpływa na zmiany wartości danej cechy w czasie? W najbardziej ogólnym przypadku, na
Bardziej szczegółowoSTATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE
STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE 1 W trakcie badania obliczono wartości średniej (15,4), mediany (13,6) oraz dominanty (10,0). Określ typ asymetrii rozkładu. 2 Wymień 3 cechy rozkładu Gauss
Bardziej szczegółowoStatystyka i analiza danych pomiarowych Podstawowe pojęcia statystyki cz. 2. Tadeusz M. Molenda Instytut Fizyki, Uniwersytet Szczeciński
Statystyka i analiza danych pomiarowych Podstawowe pojęcia statystyki cz. 2. Tadeusz M. Molenda Instytut Fizyki, Uniwersytet Szczeciński Opracowanie materiału statystycznego Szereg rozdzielczy częstości
Bardziej szczegółowoMiary statystyczne w badaniach pedagogicznych
Miary statystyczne w badaniach pedagogicznych Szeregi statystyczne Szczegółowy - gdzie materiał uporządkowany jest rosnąco lub malejąco Rozdzielczy - gdzie poszczególnym wariantom zmiennej przyporządkowane
Bardziej szczegółowoZ-0033z Statystyka. Zarządzanie i Inżynieria Produkcji I stopień Ogólnoakademicki. Stacjonarne Wszystkie Katedra Matematyki dr Zdzisław Piasta
KARTA MODUŁU / KARTA PRZEDMIOTU Z-0033z Statystyka Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Statistics Obowiązuje od roku akademickiego 2012/2013 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW
Bardziej szczegółowoPodstawowe pojęcia statystyczne
Podstawowe pojęcia statystyczne Istnieją trzy rodzaje kłamstwa: przepowiadanie pogody, statystyka i komunikat dyplomatyczny Jean Rigaux Co to jest statystyka? Nauka o metodach ilościowych badania zjawisk
Bardziej szczegółowo1 n. s x x x x. Podstawowe miary rozproszenia: Wariancja z populacji: Czasem stosuje się też inny wzór na wariancję z próby, tak policzy Excel:
Wariancja z populacji: Podstawowe miary rozproszenia: 1 1 s x x x x k 2 2 k 2 2 i i n i1 n i1 Czasem stosuje się też inny wzór na wariancję z próby, tak policzy Excel: 1 k 2 s xi x n 1 i1 2 Przykład 38,
Bardziej szczegółowoAnaliza współzależności dwóch cech I
Analiza współzależności dwóch cech I Współzależność dwóch cech W tym rozdziale pokażemy metody stosowane dla potrzeb wykrywania zależności lub współzależności między dwiema cechami. W celu wykrycia tych
Bardziej szczegółowo1. Opis tabelaryczny. 2. Graficzna prezentacja wyników. Do technik statystyki opisowej można zaliczyć:
Wprowadzenie Statystyka opisowa to dział statystyki zajmujący się metodami opisu danych statystycznych (np. środowiskowych) uzyskanych podczas badania statystycznego (np. badań terenowych, laboratoryjnych).
Bardziej szczegółowoPo co nam charakterystyki liczbowe? Katarzyna Lubnauer 34
Po co nam charakterystyki liczbowe? Katarzyna Lubnauer 34 Def. Charakterystyki liczbowe to wielkości wyznaczone na podstawie danych statystycznych, charakteryzujące własności badanej cechy. Klasyfikacja
Bardziej szczegółowoCechy X, Y są dowolnego typu: Test Chi Kwadrat niezależności. Łączny rozkład cech X, Y jest normalny: Test współczynnika korelacji Pearsona
Badanie zależności między cechami Obserwujemy dwie cechy: X oraz Y Obiekt (X, Y ) H 0 : Cechy X oraz Y są niezależne Próba: (X 1, Y 1 ),..., (X n, Y n ) Cechy X, Y są dowolnego typu: Test Chi Kwadrat niezależności
Bardziej szczegółowoStatystyka Matematyczna Anna Janicka
Statystyka Matematyczna Anna Janicka wykład I, 22.02.2016 STATYSTYKA OPISOWA, cz. I Kwestie techniczne Kontakt: ajanicka@wne.uw.edu.pl Dyżur: strona z materiałami z przedmiotu: wne.uw.edu.pl/azylicz akson.sgh.waw.pl/~aborata
Bardziej szczegółowoSTATYSTYKA OPISOWA. Przykłady problemów: - badanie opinii publicznej na temat preferencji wyborczych;
STATYSTYKA OPISOWA Przykłady problemów: - badanie opinii publicznej na temat preferencji wyborczych; - badanie stanu zdrowia w pewnej miejscowości; - badanie stopnia zanieczyszczenia gleb metalami ciężkimi
Bardziej szczegółowoSCENARIUSZ LEKCJI. TEMAT LEKCJI: Zastosowanie średnich w statystyce i matematyce. Podstawowe pojęcia statystyczne. Streszczenie.
SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Autorzy scenariusza:
Bardziej szczegółowoZJAZD 4. gdzie E(x) jest wartością oczekiwaną x
ZJAZD 4 KORELACJA, BADANIE NIEZALEŻNOŚCI, ANALIZA REGRESJI Analiza korelacji i regresji jest działem statystyki zajmującym się badaniem zależności i związków pomiędzy rozkładami dwu lub więcej badanych
Bardziej szczegółowoSTATYSTYKA IV SEMESTR ALK (PwZ) STATYSTYKA OPISOWA RODZAJE CECH W POPULACJACH I SKALE POMIAROWE
STATYSTYKA IV SEMESTR ALK (PwZ) STATYSTYKA OPISOWA RODZAJE CECH W POPULACJACH I SKALE POMIAROWE CECHY mogą być: jakościowe nieuporządkowane - skala nominalna płeć, rasa, kolor oczu, narodowość, marka samochodu,
Bardziej szczegółowoRegresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna
Regresja wieloraka Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna zmienna niezależna (można zobrazować
Bardziej szczegółowoĆwiczenie: Wybrane zagadnienia z korelacji i regresji.
Ćwiczenie: Wybrane zagadnienia z korelacji i regresji. W statystyce stopień zależności między cechami można wyrazić wg następującej skali: Skala Guillforda Przedział Zależność Współczynnik [0,00±0,20)
Bardziej szczegółowoStatystyka i opracowanie danych W5: Wprowadzenie do statystycznej analizy danych. Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl
Statystyka i opracowanie danych W5: Wprowadzenie do statystycznej analizy danych Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Wprowadzenie Podstawowe cele analizy zbiorów danych Uogólniony opis poszczególnych
Bardziej szczegółowoWykład ze statystyki. Maciej Wolny
Wykład ze statystyki Maciej Wolny T1: Zajęcia organizacyjne Agenda 1. Program wykładu 2. Cel zajęć 3. Nabyte umiejętności 4. Literatura 5. Warunki zaliczenia Program wykładu T1: Zajęcia organizacyjne T2:
Bardziej szczegółowoStatystyka opisowa. Robert Pietrzykowski.
Statystyka opisowa Robert Pietrzykowski email: robert_pietrzykowski@sggw.pl www.ekonometria.info 2 Na dziś Sprawy bieżące Przypominam, że 14.11.2015 pierwszy sprawdzian Konsultacje Sobota 9:00 10:00 pok.
Bardziej szczegółowoPrzedmiot statystyki. Graficzne przedstawienie danych. Wykład-26.02.07. Przedmiot statystyki
Przedmiot statystyki. Graficzne przedstawienie danych. Wykład-26.02.07 Statystyka dzieli się na trzy części: Przedmiot statystyki -zbieranie danych; -opracowanie i kondensacja danych (analiza danych);
Bardziej szczegółowoMATEMATYKA3 Mathematics3. Elektrotechnika. I stopień ogólnoakademicki. studia stacjonarne. Katedra Matematyki dr Zdzisław Piasta
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/13 MATEMATYKA3 Mathematics3 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW Kierunek
Bardziej szczegółowoStatystyka. Wykład 13. Magdalena Alama-Bućko. 18 czerwca Magdalena Alama-Bućko Statystyka 18 czerwca / 36
Statystyka Wykład 13 Magdalena Alama-Bućko 18 czerwca 2018 Magdalena Alama-Bućko Statystyka 18 czerwca 2018 1 / 36 Agregatowy (zespołowy) indeks wartości określonego zespołu produktów np. jak zmianiała
Bardziej szczegółowoStatystyka. Tematyka wykładów. Przykładowe pytania. dr Tomasz Giętkowski www.krajobraz.ukw.edu.pl. wersja 20.01.2013/13:40
Statystyka dr Tomasz Giętkowski www.krajobraz.ukw.edu.pl wersja 20.01.2013/13:40 Tematyka wykładów 1. Definicja statystyki 2. Populacja, próba 3. Skale pomiarowe 4. Miary położenia (klasyczne i pozycyjne)
Bardziej szczegółowoPodstawowe pojęcia. Własności próby. Cechy statystyczne dzielimy na
Podstawowe pojęcia Zbiorowość statystyczna zbiór jednostek (obserwacji) nie identycznych, ale stanowiących logiczną całość Zbiorowość (populacja) generalna skończony lub nieskończony zbiór jednostek, które
Bardziej szczegółowoInżynieria Środowiska. II stopień ogólnoakademicki. przedmiot podstawowy obowiązkowy polski drugi. semestr zimowy
Załącznik nr 7 do Zarządzenia Rektora nr../12 z dnia.... 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2017/2018 STATYSTYKA
Bardziej szczegółowoStatystyka. Wykład 11. Magdalena Alama-Bućko. 22 maja Magdalena Alama-Bućko Statystyka 22 maja / 41
Statystyka Wykład 11 Magdalena Alama-Bućko 22 maja 2017 Magdalena Alama-Bućko Statystyka 22 maja 2017 1 / 41 Analiza dynamiki zjawisk badamy zmiany poziomu (tzn. wzrosty/spadki) badanego zjawiska w czasie.
Bardziej szczegółowoWIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ROZKŁAD EMPIRYCZNY
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ROZKŁAD EMPIRYCZNY Liczebności i częstości Liczebność liczba osób/respondentów/badanych, którzy udzielili tej konkretnej odpowiedzi. Podawana w osobach. Częstość odsetek,
Bardziej szczegółowoTablica Wzorów Rachunek Prawdopodobieństwa i Statystyki
Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...
Bardziej szczegółowoWSHiG Karta przedmiotu/sylabus. Podstawy statystyki. Studia niestacjonarne - 8. Podstawy statystyki
WSHiG Karta przedmiotu/sylabus KIERUNEK SPECJALNOŚĆ TRYB STUDIÓW SEMESTR Turystyka i Rekreacja wszystkie specjalności Stacjonarny / niestacjonarny IV / I stopnia Nazwa przedmiotu Podstawy statystyki Wymiar
Bardziej szczegółowoStatystyka i analiza danych Wstępne opracowanie danych Statystyka opisowa. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl
Statystyka i analiza danych Wstępne opracowanie danych Statystyka opisowa Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl Wprowadzenie Podstawowe cele analizy zbiorów danych Uogólniony opis poszczególnych
Bardziej szczegółowoW kolejnym kroku należy ustalić liczbę przedziałów k. W tym celu należy wykorzystać jeden ze wzorów:
Na dzisiejszym wykładzie omówimy najważniejsze charakterystyki liczbowe występujące w statystyce opisowej. Poszczególne wzory będziemy podawać w miarę potrzeby w trzech postaciach: dla szeregu szczegółowego,
Bardziej szczegółowoAnaliza struktury i przeciętnego poziomu cechy
Analiza struktury i przeciętnego poziomu cechy Analiza struktury Pod pojęciem analizy struktury rozumiemy badanie budowy (składu) określonej zbiorowości, lub próby, tj. ustalenie, z jakich składa się elementów
Bardziej szczegółowoTypy szeregów statystycznych
Typy szeregów statystycznych SZEREGI STATYSTYCZNE szczegółowy (wyliczający) rozdzielczy (strukturalny) przestrzenny (geograficzny) czasowy (dynamiczny) cech mierzalnych cech niemierzalnych momentów okresów
Bardziej szczegółowoRozkłady zmiennych losowych
Rozkłady zmiennych losowych Wprowadzenie Badamy pewną zbiorowość czyli populację pod względem występowania jakiejś cechy. Pobieramy próbę i na podstawie tej próby wyznaczamy pewne charakterystyki. Jeśli
Bardziej szczegółowo