Badanie termostabilności oraz wpływu aktywatorów i inhibitorów na działanie α-amylazy [EC ]
|
|
- Jarosław Kwiatkowski
- 7 lat temu
- Przeglądów:
Transkrypt
1 Badanie termostabilności oraz wpływu aktywatorów i inhibitorów na działanie α-amylazy [EC ] Termostabilność enzymów Dla większości enzymów zmiany denaturacyjne zachodzą bardzo intensywnie powyżej C, jednakże istnieją enzymy wykazujące znaczną odporność na inaktywujące działanie podwyższonej temperatury cechuje je wysoka termostabilność. Termostabilność jest jedną z cech charakterystycznych każdego enzymu, może być wyższa bądź niższa. Wyrażamy ja podając najwyższą temperaturę, przy której nie dochodzi w określonym czasie do termicznej inaktywacji enzymu, poddawanego działaniu tej temperatury w nieobecności substratu. Termostabilność białka enzymatycznego jest zależna od wielu czynników, takich jak ph i siła jonowa środowiska, a także obecności w nim wielorakich substancji niskocząsteczkowych. Niektóre enzymy muszą wykazywać wysoką tolerancję na wysoką lub niską temperaturę chociażby z powodu środowiska życia niektórych organizmów, szczególnie bakterii. Aktywatory i inhibitory enzymów Szybkość reakcji enzymatycznych zależy najczęściej od obecności w układzie substancji innych niż enzym i substrat. Mogą one przyspieszyć (aktywatory) bądź opóźnić (inhibitory) katalityczne działanie enzymu. Do aktywatorów enzymów zaliczamy: jony niektórych metali, zwłaszcza dwuwartościowych (najczęściej Mg 2+, Zn 2+, Mn 2+, Ca 2+, Fe 2+, Fe 3+, rzadziej Cu 2+, Co 2+, Ni 2+, K +, Na + ). Jon metalu może być zlokalizowany w katalitycznym centrum enzymu (bierze wówczas bezpośredni udział w reakcji) lub w innym fragmencie molekuły stabilizując jej aktywną konformację; substancje białkowe, aktywujące grupy czynne enzymów, np. biorące udział w aktywacji proenzymu, kowalencyjnej modyfikacji nieaktywnej formy enzymu; niskocząsteczkowe związki organiczne, znoszące działanie inhibitorów enzymów. aniony wywierają niewielki wpływ na aktywność enzymów. Do wyjątków należy aktywacja α-amylazy przez jony Cl -. Inhibitory enzymów mogą mieć charakter specyficzny lub niespecyficzny. Wśród inhibitorów specyficznych, a więc obniżających aktywność ściśle określonych enzymów wyróżniamy związki: współdziałające z enzymem w tym samym obszarze cząsteczki, co substrat łączące się z centrum aktywnym. Są one strukturalnie podobne do substratu, łączą się z enzymem odwracalnie. Nazywamy je inhibitorami kompetencyjnymi (współzawodniczącymi); wiążące się z enzymem w innym obszarze cząsteczki niż substrat zwanym centrum allosterycznym. Inhibitory tego typu, zwane niekomopetycyjnymi mogą się łączyć albo z wolnym enzymem, albo z kompleksem enzym substrat (w tym przypadku inhibicja ma zwykle charakter nieodwracalny) Niespecyficznymi inhibitorami enzymów są jony metali ciężkich (Cu, Pb, Hg, As, Ag). Wiążą się one łatwo i w sposób nieodwracalny ze wszystkimi białkami, powodując zmiany ich konformacji prowadzące do denaturacji, której często towarzyszy wypadanie białka w postaci osadu. Szczególnie podatne na wiązanie jonów metali ciężkich są grupy sulfhydrylowe (-SH). Metal może się również wbudować w mostek disiarczkowy. Jon metalu ciężkiego może przy-
2 łączać się zarówno w centrum katalitycznym enzymu, jak i w innym obszarze cząsteczki. Prowadzi to do całkowitej i najczęściej nieodwracalnej utraty aktywności przez enzym. Tylko w niewielu przypadkach można cofnąć inaktywację stosując specjalne substancje konkurujące z białkiem o jon metalu ciężkiego (np. 2,3-dimerkaptopropanol). Właściwości aktywujące lub inhibitujące względem biokatalizatorów wykazuje również szereg związków organicznych. Niektóre z nich działają wybiórczo na wybrany enzym lub grupę enzymów, dzięki czemu są stosowane do badań molekularnych struktury białek enzymatycznych. Przebieg enzymatycznej amylolizy α-amylazy to szeroko rozpowszechnione w przyrodzie enzymy należące do klasy hydrolaz i podklasy hydrolaz glikozydowych. Wytwarzają je liczne drobnoustroje oraz organizmy roślinne i zwierzęce. Ze względu na wartość produkcji i zapotrzebowanie, najważniejszymi przemysłowymi preparatami tego enzymu są α-amylazy bakteryjne, wytwarzane przez szczepy z rodzaju Bacillus oraz roślinna α-amylazy ze słodu. Skrobia jest wielkocząsteczkowym polimerem α-d-glukopiranozy. Znane są dwie frakcje skrobi: nierozgałęziona amyloza, w której reszty glukozy połączone są wiązaniami α-1,4-glikozydowymi w długie łańcuchy oraz amylopektyna, w której oprócz głównych wiązań α-1,4-glikozydowych występują także wiązania rozgałęziające α-1,6-glikozydowe. α-amylaza rozkłada tylko wewnętrzne wiązania α-1,4-glikozydowe, powodując stopniowe rozszczepienie łańcuchów skrobi na coraz krótsze fragmenty. Najpierw pod działaniem skrobi powstają nieco krótsze fragmenty amylodekstryny nastepnie krótsze produkty hydrolizy erytrodekstryny. α-amylaza degraduje powstające erytrodekstryny do achrodekstryn. W drugim etapie hydrolizy, achrodekstryny są rozkładane przez enzym do glukozy, maltozy i mieszaniny oligocukrów redukujących. Zasada oznaczania aktywności α-amylazy W celu zaobserwowania przebiegu hydrolizy skrobi pod działaniem α-amylazy wykorzystuje się metody pozwalające na pomiar przyrostu stężenia cukrów redukujących uwalnianych z substratu przez enzym. Są to między innymi metody: Fehlinga, Somogyi - Nelsona, oraz Hagedorna Jensena, w których stężenia cukrów redukujących oznacza się na podstawie ilości Cu 2 O powstającego na skutek redukcji jonów miedziowych przez wolne grupy redukujące cukrów, oraz metoda Millera z kwasem 3,5 -dinitrosalicylowym (DNS) stosowana w niniejszym ćwiczeniu. W metodzie Millera aktywność enzymu oznacza się mierząc przyrost cukrów redukujących uwolnionych w czasie reakcji hydrolizy skrobi katalizowanej przez α-amylazę przebiegającej w przyjętych warunkach temperatury i ph. Cukry te oznacza się ilościowo stosując alkaliczny roztwór kwasu 3,5 -dinitrosalicylowego (DNS). W analogiczny sposób można oznaczyć aktywność dowolnej hydrolazy glikozydowej, stosując odpowiedni dla niej substrat. DNS nie tylko umożliwia oznaczenie stężenia cukrów redukujących, ale także pełni rolę inaktywatora enzymu, hamującego katalizowaną przez niego reakcję. W środowisku alkalicznym i w temperaturze 100 C DNS ulega redukcji pod działaniem cukrów redukujących, dając pochodną aminową, zabarwioną w środowisku alkalicznym na kolor pomarańczowy. Natężenie barwy, o maksimum absorbancji przy długości fali λ = 540 nm, jest proporcjonalne do stężenia cukrów redukujących w badanym roztworze. Stężenie cukrów redukujących w próbie odczytuje się z krzywej wzorcowej A 540 = f(c maltozy ), przygotowanej w warunkach oznaczenia.
3 Wykres 1. Krzywa wzorcowa. Zależność absorbancji przy λ = 540 nm od stężenia maltozy - A 540 = f(c maltozy ) Literatura: Stryer L., Biochemia, PWN, 2003 Sivak M.N, Preiss J;. Starch: Basic Science to Biotechnology. Advances in Food and Nutrition Research, vol. 41. New York: Academic Press, 1998 Miller G.L.; Use of dinitriosalicylic acid reagent for determination of reducing sugar, Anal. Chem., 31, , 1959 ODCZYNNIKI-MATERIAŁY-SPRZĘT 1% koloidalny roztwór skrobi 1% alkaliczny roztwór kwasu 3,5 -dinitrosalicylowego (DNS) 1% roztwór NaCl 1% roztwór CuSO 4 woda destylowana pipety automatyczne termobloki: 37, 50 oraz 100 C spektrofotometr stoper PROCEDURY
4 Przygotowanie roztworu śliny 1. Do probówki 50 ml wprowadzić 5 ml śliny. 2. Następnie rozcieńczyć ślinę wodą destylowaną 1:1. 3. Tak przygotowany roztwór enzymu użyć do wykonania kolejnych punktów ćwiczenia. Badanie termostabilności α-amylazy 1. Do 5 probówek odmierzyć po 0,25 ml roztworu śliny i po 0,25 ml buforu o ph 7. Zawartość probówek wymieszać. Równocześnie przygotować próby odczynnikowe dla każdej temperatury zawierające (0,25 ml wody oraz 0,25 ml buforu o ph 7, UWA- GA: do prób odczynnikowych nie dodajemy śliny) 2. Probówki inkubować przez 10 minut w następujących temperaturach: -20 C zamrażarka, pokojowa (stół laboratoryjny), 37, 60 oraz 95 C. 3. Po 10 minutach roztwór enzymu doprowadzić do temperatury pokojowej i do każdej probówki dodać 0,5 ml koloidalnego roztworu skrobi (po uprzednim dokładnym wymieszaniu) i dokładnie wymieszać. 4. Probówki inkubować przez 20 minut w temperaturze 37 C, po czym pobrać 0,2 ml mieszaniny reakcyjnej, wprowadzić do czystych probówek, do których dodać także po 0,2 ml roztworu DNS. Zawartość wymieszać i umieścić na 5 minut w termobloku 100 C 5. Po 20 minutach probówki wyjąć, schłodzić do temperatury pokojowej pod bieżącą wodą, dodać 0,6 ml wody destylowanej i dokładnie wymieszać. 6. Zmierzyć absorbancję roztworu przy λ=540 nm (A 540 ) wobec próby odczynnikowej. 7. Z krzywej wzorcowej odczytać stężenie cukrów redukujących (mg maltozy /ml). Wyniki umieścić w tabeli. 8. Na podstawie tabeli sporządzić wykres zależności stężenia cukrów redukujących uwolnionych przez α-amylazę ze skrobi od temperatury preinkubacji enzymu. 9. Z wykresu odczytać, w jakim zakresie temperatur 10-minutowa preinkubacja nie spowodowała spadku aktywności α-amylazy. Wpływ aktywatorów i inhibitorów na α-amylazę. 1. Do 3 probówek odmierzyć po 0,25 ml roztworu śliny, 0,25 ml buforu o ph 7. Następnie dodać do próbówek po 0,1 ml aktywatorów/inihibitorów (CuSO4, NaCl oraz wodę). Zawartość probówek wymieszać. Równocześnie przygotować próby odczynnikowe dla każdego ze związków zawierające (0,25 ml wody, 0,25 ml buforu o ph 7 oraz po 0,1 ml każdego inhibitora/aktywatora), UWAGA: do prób odczynnikowych nie dodajemy śliny) 2. Do każdej probówki dodać 0,5 ml koloidalnego roztworu skrobi (po uprzednim jej wymieszaniu) i dokładnie wymieszać. Probówki inkubować przez 20 minut w temperaturze 37 C. 3. Po inkubacji pobrać 0,2 ml mieszaniny reakcyjnej, wprowadzić do czystych probówek, do których dodać także po 0,2 ml roztworu DNS. Zawartość wymieszać i umieścić na 5 minut w termobloku 100 C 4. Po 5 minutach probówki wyjąć, schłodzić do temperatury pokojowej pod bieżącą wodą, dodać 0,6 ml wody destylowanej i dokładnie wymieszać. 5. Zmierzyć absorbancję roztworu przy λ=540 nm (A 540 ) wobec próby odczynnikowej.
5 6. Z krzywej wzorcowej odczytać stężenie cukrów redukujących (mg maltozy /ml). Wyniki umieścić w tabeli. 7. Na podstawie tabeli określić wpływ badanych związków na aktywność enzymu.
Wpływ ph i temperatury na aktywność enzymów na przykładzie α-amylazy [EC ]
Wpływ ph i temperatury na aktywność enzymów na przykładzie α-amylazy [EC 3.2.1.1.] Szybkość katalizowanej przez enzym przemiany danego substratu w określony produkt jest ściśle uzależniona od stężenia
Wydział Chemiczny Politechniki Gdańskiej Katedra Technologii Leków i Biochemii
Wydział Chemiczny Politechniki Gdańskiej Katedra Technologii Leków i Biochemii Badanie wpływu temperatury, ph, aktywatorów i inhibitorów na aktywność α-amylazy Wstęp Szybkość reakcji enzymatycznej jest
Wyznaczanie krzywej progresji reakcji i obliczenie szybkości początkowej reakcji katalizowanej przez β-fruktofuranozydazy
Wyznaczanie krzywej progresji reakcji i obliczenie szybkości początkowej reakcji katalizowanej przez β-fruktofuranozydazy W organizmach żywych reakcje chemiczne rzadko zachodzą w nieobecności katalizatora.
KINETYKA HYDROLIZY SACHAROZY
Ćwiczenie nr 2 KINETYKA HYDROLIZY SACHAROZY I. Kinetyka hydrolizy sacharozy reakcja chemiczna Zasada: Sacharoza w środowisku kwaśnym ulega hydrolizie z wytworzeniem -D-glukozy i -D-fruktozy. Jest to reakcja
Laboratorium 5. Wpływ temperatury na aktywność enzymów. Inaktywacja termiczna
Laboratorium 5 Wpływ temperatury na aktywność enzymów. Inaktywacja termiczna Prowadzący: dr inż. Karolina Labus 1. CZĘŚĆ TEORETYCZNA Szybkość reakcji enzymatycznej zależy przede wszystkim od stężenia substratu
KINETYKA HYDROLIZY SACHAROZY (REAKCJA ENZYMATYCZNA I CHEMICZNA)
Ćwiczenie nr 2 KINETYKA HYDROLIZY SACHAROZY (REAKCJA ENZYMATYCZNA I CHEMICZNA) ĆWICZENIE PRAKTYCZNE I. Kinetyka hydrolizy sacharozy reakcja chemiczna Zasada: Sacharoza w środowisku kwaśnym ulega hydrolizie
Oznaczanie aktywności - i β- amylazy słodu metodą kolorymetryczną
KATEDRA BIOCHEMII Wydział Biologii i Ochrony Środowiska Oznaczanie aktywności - i β- amylazy słodu metodą kolorymetryczną ĆWICZENIE 5 OZNACZANIE AKTYWNOŚCI -AMYLAZY SŁODU METODĄ KOLORYMETRYCZNĄ Enzymy
Oznaczanie aktywności enzymów amylolitycznych.
Oznaczanie aktywności enzymów amylolitycznych. Zajęcia 3 godzinne część A, zajęcia 4 godzinne część A i B. Cel ćwiczenia Ćwiczenie poświęcone jest zapoznaniu się z metodami oznaczania aktywności enzymów
1. Oznaczanie aktywności lipazy trzustkowej i jej zależności od stężenia enzymu oraz żółci jako modulatora reakcji enzymatycznej.
ĆWICZENIE OZNACZANIE AKTYWNOŚCI LIPAZY TRZUSTKOWEJ I JEJ ZALEŻNOŚCI OD STĘŻENIA ENZYMU ORAZ ŻÓŁCI JAKO MODULATORA REAKCJI ENZYMATYCZNEJ. INHIBICJA KOMPETYCYJNA DEHYDROGENAZY BURSZTYNIANOWEJ. 1. Oznaczanie
data ĆWICZENIE 7 DYSTRYBUCJA TKANKOWA AMIDOHYDROLAZ
Imię i nazwisko Uzyskane punkty Nr albumu data /3 podpis asystenta ĆWICZENIE 7 DYSTRYBUCJA TKANKOWA AMIDOHYDROLAZ Amidohydrolazy (E.C.3.5.1 oraz E.C.3.5.2) są enzymami z grupy hydrolaz o szerokim powinowactwie
Ilościowe oznaczenie glikogenu oraz badanie niektórych jego właściwości
Ilościowe oznaczenie glikogenu oraz badanie niektórych jego właściwości Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawową wiedzą dotyczącą budowy, funkcji i właściwości glikogenu jak również
ENZYMOLOGIA. Ćwiczenie 4. α-amylaza (cz. I) Oznaczanie aktywności enzymu metodą kolorymetryczną
ENZYMOLOGIA Wydział Nauk o Żywności i Rybactwa Centrum Bioimmobilizacji i Innowacyjnych Materiałów Opakowaniowych ul. Klemensa Janickiego 35 71-270 Szczecin Ćwiczenie 4 α-amylaza (cz. I) Oznaczanie aktywności
BADANIE WŁASNOŚCI KOENZYMÓW OKSYDOREDUKTAZ
KATEDRA BIOCHEMII Wydział Biologii i Ochrony Środowiska BADANIE WŁASNOŚCI KOENZYMÓW OKSYDOREDUKTAZ ĆWICZENIE 2 Nukleotydy pirydynowe (NAD +, NADP + ) pełnią funkcję koenzymów dehydrogenaz przenosząc jony
Laboratorium 8. Badanie stresu oksydacyjnego jako efektu działania czynników toksycznych
Laboratorium 8 Badanie stresu oksydacyjnego jako efektu działania czynników toksycznych Literatura zalecana: Jakubowska A., Ocena toksyczności wybranych cieczy jonowych. Rozprawa doktorska, str. 28 31.
Oznaczanie aktywności enzymów
Oznaczanie aktywności enzymów Instrukcja do zajęć laboratoryjnych z przedmiotu Biotechnologia Enzymatyczna Prowadzący: mgr inż. Anna Byczek CEL ĆWICZENIA Celem ćwiczenia jest oznaczanie aktywności enzymu
Oznaczanie żelaza i miedzi metodą miareczkowania spektrofotometrycznego
Oznaczanie żelaza i miedzi metodą miareczkowania spektrofotometrycznego Oznaczanie dwóch kationów obok siebie metodą miareczkowania spektrofotometrycznego (bez maskowania) jest możliwe, gdy spełnione są
Oznaczanie aktywności proteolitycznej trypsyny metodą Ansona
Oznaczanie aktywności proteolitycznej trypsyny metodą Ansona Wymagane zagadnienia teoretyczne 1. Enzymy proteolityczne, klasyfikacja, rola biologiczna. 2. Enzymy proteolityczne krwi. 3. Wewnątrzkomórkowa
Przemiana materii i energii - Biologia.net.pl
Ogół przemian biochemicznych, które zachodzą w komórce składają się na jej metabolizm. Wyróżnia się dwa antagonistyczne procesy metabolizmu: anabolizm i katabolizm. Szlak metaboliczny w komórce, to szereg
Oznaczanie mocznika w płynach ustrojowych metodą hydrolizy enzymatycznej
Oznaczanie mocznika w płynach ustrojowych metodą hydrolizy enzymatycznej Wprowadzenie: Większość lądowych organizmów kręgowych część jonów amonowych NH + 4, produktu rozpadu białek, wykorzystuje w biosyntezie
ANALIZA TŁUSZCZÓW WŁAŚCIWYCH CZ II
KATEDRA BIOCHEMII Wydział Biologii i Ochrony Środowiska ANALIZA TŁUSZCZÓW WŁAŚCIWYCH CZ II ĆWICZENIE 8 ZADANIE 1 HYDROLIZA LIPIDÓW MLEKA ZA POMOCĄ LIPAZY TRZUSTKOWEJ Lipazy (EC 3.1) to enzymy należące
KREW: 1. Oznaczenie stężenia Hb. Metoda cyjanmethemoglobinowa: Zasada metody:
KREW: 1. Oznaczenie stężenia Hb Metoda cyjanmethemoglobinowa: Hemoglobina i niektóre jej pochodne są utleniane przez K3 [Fe(CN)6]do methemoglobiny, a następnie przekształcane pod wpływem KCN w trwały związek
Krew należy poddać hemolizie, która zachodzi pod wpływem izotonicznego odczynnika Drabkina.
Imię i nazwisko Uzyskane punkty Nr albumu data /3 podpis asystenta ĆWICZENIE 13 BIOCHEMIA KRWI Doświadczenie 1 Cel: Oznaczenie stężenia Hb metodą cyjanmethemoglobinową. Hemoglobina (Hb) i niektóre jej
Właściwości kinetyczne fosfatazy kwaśnej z ziemniaka
Właściwości kinetyczne fosfatazy kwaśnej z ziemniaka Celem ćwiczenia jest zapoznanie się metodyką wyznaczania szybkości reakcji Vmax oraz stałej Michaelisa Menten dla fosfatazy kwaśnej z ziemniaka WPROWADZENIE
OZNACZANIE AKTYWNOŚCI ALKALICZNEJ DIFOSFATAZY (PIROFOSFATAZY)
Ćwiczenie 8 OZNACZANIE AKTYWNOŚCI ALKALICZNEJ DIFOSFATAZY (PIROFOSFATAZY) Część doświadczalna obejmuje: - sączenie Ŝelowe ekstraktu uzyskanego z bielma niedojrzałych nasion kukurydzy - oznaczanie aktywności
WYCHOWANIE FIZYCZNE - STUDIA ZAOCZNE 2010/2011
WYCHOWANIE FIZYCZNE - STUDIA ZAOCZNE 2010/2011 INSTRUKCJE DO ĆWICZEŃ LABORATORYJNYCH Z BIOCHEMII Zasady postępowania w laboratorium: 1. Do wykonania ćwiczenia moŝna przystąpić dopiero po dokładnym zapoznaniu
ĆWICZENIE 5 MECHANIZMY PROMUJĄCE WZROST ROŚLIN
ĆWICZENIE 5 MECHANIZMY PROMUJĄCE WZROST ROŚLIN CZĘŚĆ TEORETYCZNA Mechanizmy promujące wzrost rośli (PGP) Metody badań PGP CZĘŚĆ PRAKTYCZNA 1. Mechanizmy promujące wzrost roślin. Odczyt. a) Wytwarzanie
KINETYKA INWERSJI SACHAROZY
Dorota Warmińska, Maciej Śmiechowski Katedra Chemii Fizycznej, Wydział Chemiczny, Politechnika Gdańska KINETYKA INWERSJI SACHAROZY Wstęp teoretyczny Kataliza kwasowo-zasadowa Kataliza kwasowo-zasadowa
data ĆWICZENIE 12 BIOCHEMIA MOCZU Doświadczenie 1
Imię i nazwisko Uzyskane punkty Nr albumu data /3 podpis asystenta ĆWICZENIE 12 BIOCHEMIA MOCZU Doświadczenie 1 Cel: Wyznaczanie klirensu endogennej kreatyniny. Miarą zdolności nerek do usuwania i wydalania
Badanie szybkości hydrolizy lipidów mleka i oznaczanie aktywności lipazy trzustkowej
Badanie szybkości hydrolizy lipidów mleka i oznaczanie aktywności lipazy trzustkowej Cel ćwiczenia Celem ćwiczenia jest poznanie alkacymetrycznej metody oznaczania aktywności lipazy trzustkowej z użyciem
WPŁYW SUBSTANCJI TOWARZYSZĄCYCH NA ROZPUSZCZALNOŚĆ OSADÓW
WPŁYW SUBSTANCJI TOWARZYSZĄCYCH NA ROZPUSZCZALNOŚĆ OSADÓW Wstęp W przypadku trudno rozpuszczalnej soli, mimo osiągnięcia stanu nasycenia, jej stężenie w roztworze jest bardzo małe i przyjmuje się, że ta
Ćwiczenie 8 Wyznaczanie stałej szybkości reakcji utleniania jonów tiosiarczanowych
CHEMI FIZYCZN Ćwiczenie 8 Wyznaczanie stałej szybkości reakcji utleniania jonów tiosiarczanowych W ćwiczeniu przeprowadzana jest reakcja utleniania jonów tiosiarczanowych za pomocą jonów żelaza(iii). Przebieg
Kinetyka reakcji hydrolizy sacharozy katalizowanej przez inwertazę
Kinetyka reakcji hydrolizy sacharozy katalizowanej przez inwertazę Prowadzący: dr hab. inż. Ilona WANDZIK mgr inż. Sebastian BUDNIOK mgr inż. Marta GREC mgr inż. Jadwiga PASZKOWSKA Miejsce ćwiczenia: sala
KATALITYCZNE OZNACZANIE ŚLADÓW MIEDZI
6 KATALITYCZNE OZNACZANIE ŚLADÓW MIEDZI CEL ĆWICZENIA Zapoznanie studenta z zagadnieniami katalizy homogenicznej i wykorzystanie reakcji tego typu do oznaczania śladowych ilości jonów Cu 2+. Zakres obowiązującego
OZNACZANIE STĘŻENIA GLUKOZY WE KRWI METODĄ ENZYMATYCZNĄ-OXY
OZNACZANIE STĘŻENIA GLUKOZY WE KRWI METODĄ ENZYMATYCZNĄ-OXY ZASADA OZNACZENIA Glukoza pod wpływem oksydazy glukozowej utlenia się do kwasu glukonowego z wytworzeniem nadtlenku wodoru. Nadtlenek wodoru
Laboratorium 4. Określenie aktywności katalitycznej enzymu. Wprowadzenie do metod analitycznych. 1. CZĘŚĆ TEORETYCZNA
Laboratorium 4 Określenie aktywności katalitycznej enzymu. Wprowadzenie do metod analitycznych. Prowadzący: dr inż. Karolina Labus 1. CZĘŚĆ TEORETYCZNA Enzymy to wielkocząsteczkowe, w większości białkowe,
HODOWLA PERIODYCZNA DROBNOUSTROJÓW
Cel ćwiczenia: Celem ćwiczenia jest porównanie zdolności rozkładu fenolu lub wybranej jego pochodnej przez szczepy Stenotrophomonas maltophilia KB2 i Pseudomonas sp. CF600 w trakcie prowadzenia hodowli
Węglowodany metody jakościowe oznaczania cukrów reakcja Molisha, Fehlinga, Selivanowa; ilościowe oznaczanie glukozy metodą Somogyi Nelsona
Ćwiczenie nr 7 Węglowodany metody jakościowe oznaczania cukrów reakcja Molisha, Fehlinga, Selivanowa; ilościowe oznaczanie glukozy metodą Somogyi Nelsona Celem ćwiczenia jest: zapoznanie z metodami jakościowej
3. Badanie kinetyki enzymów
3. Badanie kinetyki enzymów Przy stałym stężeniu enzymu, a przy zmieniającym się początkowym stężeniu substratu, zmiany szybkości reakcji katalizy, wyrażonej jako liczba moli substratu przetworzonego w
CEL ĆWICZENIA: Zapoznanie się z przykładową procedurą odsalania oczyszczanych preparatów enzymatycznych w procesie klasycznej filtracji żelowej.
LABORATORIUM 3 Filtracja żelowa preparatu oksydazy polifenolowej (PPO) oczyszczanego w procesie wysalania siarczanem amonu z wykorzystaniem złoża Sephadex G-50 CEL ĆWICZENIA: Zapoznanie się z przykładową
LABORATORIUM Z KATALIZY HOMOGENICZNEJ I HETEROGENICZNEJ WYZNACZANIE STAŁEJ SZYBKOŚCI REAKCJI UTLENIANIA POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY
POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY KATEDRA FIZYKOCHEMII I TECHNOLOGII POLIMERÓW WYZNACZANIE STAŁEJ SZYBKOŚCI REAKCJI UTLENIANIA JONÓW TIOSIARCZANOWYCH Miejsce ćwiczenia: Zakład Chemii Fizycznej, sala
ĆWICZENIE NR 3 BADANIE MIKROBIOLOGICZNEGO UTLENIENIA AMONIAKU DO AZOTYNÓW ZA POMOCĄ BAKTERII NITROSOMONAS sp.
ĆWICZENIE NR 3 BADANIE MIKROBIOLOGICZNEGO UTLENIENIA AMONIAKU DO AZOTYNÓW ZA POMOCĄ BAKTERII NITROSOMONAS sp. Uwaga: Ze względu na laboratoryjny charakter zajęć oraz kontakt z materiałem biologicznym,
Instrukcja do ćwiczeń laboratoryjnych
UNIWERSYTET GDAŃSKI WYDZIAŁ CHEMII Pracownia studencka Katedra Analizy Środowiska Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 2 ZASTOSOWANIE SPEKTROFOTOMETRII W NADFIOLECIE I ŚWIETLE WIDZIALNYM
POLITECHNIKA WROCŁAWSKA INSTYTUT TECHNOLOGII NIEORGANICZNEJ I NAWOZÓW MINERALNYCH. Ćwiczenie nr 6. Adam Pawełczyk
POLITECHNIKA WROCŁAWSKA INSTYTUT TECHNOLOGII NIEORGANICZNEJ I NAWOZÓW MINERALNYCH Ćwiczenie nr 6 Adam Pawełczyk Instrukcja do ćwiczeń laboratoryjnych USUWANIE SUBSTANCJI POŻYWKOWYCH ZE ŚCIEKÓW PRZEMYSŁOWYCH
WPŁYW SUBSTANCJI TOWARZYSZĄCYCH NA ROZPUSZCZALNOŚĆ OSADÓW
WPŁYW SUBSTANCJI TOWARZYSZĄCYCH NA ROZPUSZCZALNOŚĆ OSADÓW Wstęp Mianem rozpuszczalności określamy maksymalną ilość danej substancji (w gramach lub molach), jaką w danej temperaturze można rozpuścić w określonej
KINETYKA REAKCJI ENZYMATYCZNYCH Wyznaczenie stałej Michaelisa i maksymalnej szybkości reakcji hydrolizy sacharozy katalizowanej przez inwertazę.
KINETYKA REAKCJI ENZYMATYCZNYCH Wyznaczenie stałej Michaelisa i maksymalnej szybkości reakcji hydrolizy sacharozy katalizowanej przez inwertazę. (Chemia Fizyczna I) Maria Bełtowska-Brzezinska, Karolina
OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS
OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS Zagadnienia teoretyczne. Spektrofotometria jest techniką instrumentalną, w której do celów analitycznych wykorzystuje się przejścia energetyczne zachodzące
Biochemia Ćwiczenie 4
Imię i nazwisko Uzyskane punkty Nr albumu data /2 podpis asystenta ĆWICZENIE 4 KINETYKA REAKCJI ENZYMATYCZNYCH Wstęp merytoryczny Peroksydazy są enzymami występującymi powszechne zarówno w świecie roślinnym
Oznaczanie SO 2 w powietrzu atmosferycznym
Ćwiczenie 6 Oznaczanie SO w powietrzu atmosferycznym Dwutlenek siarki bezwodnik kwasu siarkowego jest najbardziej rozpowszechnionym zanieczyszczeniem gazowym, występującym w powietrzu atmosferycznym. Głównym
OZNACZANIE ZAWARTOŚCI MANGANU W GLEBIE
OZNACZANIE ZAWARTOŚCI MANGANU W GLEBIE WPROWADZENIE Przyswajalność pierwiastków przez rośliny zależy od procesów zachodzących między fazą stałą i ciekłą gleby oraz korzeniami roślin. Pod względem stopnia
Biochemia Ćwiczenie 7 O R O P
Imię i nazwisko Uzyskane punkty Nr albumu data /2 podpis asystenta ĆWICZENIE 6 FSFATAZY SCZA KRWI Wstęp merytoryczny Fosfatazy są enzymami należącymi do klasy hydrolaz, podklasy fosfomonoesteraz. Hydrolizują
Technika fluorescencyjnego oznaczania aktywności enzymów. Wstęp:
Technika fluorescencyjnego oznaczania aktywności enzymów Wstęp: Wśród technik biologii molekularnej jedną z najczęściej stosowanych jest technika fluorescencyjna. Stosując technikę fluorescencyjną można
ĆWICZENIE 1: BUFORY 1. Zapoznanie z Regulaminem BHP 2. Oznaczanie ph 2.1. metoda z zastosowaniem papierków wskaźnikowych
ĆWICZENIE 1: BUFORY 1. Zapoznanie z Regulaminem BHP 2. Oznaczanie ph 2.1. metoda z zastosowaniem papierków wskaźnikowych Zasada metody Wykrywanie stęŝenia jonów wodorowych przy zastosowaniu papierków wskaźnikowych
Odczynniki. dzieląc zmierzoną absorbancję przez współczynnik absorbancji dla 1µg p-nitrofenolu
Wyznaczanie stałej Michaelisa (Km), Vmax oraz określanie typu inhibicji aktywności fosfatazy kwaśnej (EC 3.1.3.2 fosfohydrolaza monoestrów ortofosforanowych kwaśne optimum). Cel ćwiczenia Celem ćwiczenia
ĆWICZENIE 1. Aminokwasy
ĆWICZENIE 1 Aminokwasy Przygotować 5 (lub więcej) 1% roztworów poszczególnych aminokwasów i białka jaja kurzego i dla każdego z nich wykonać wszystkie reakcje charakterystyczne. Reakcja ksantoproteinowa
Próba kontrolna (PK) 1000 l 1000 l
Ćwiczenie 10. A. Oznaczanie stężenia bilirubiny całkowitej w surowicy krwi. Wymagane zagadnienia teoretyczne 1. Biosynteza hemu - metabolity pośrednie syntezy hemu. 2. Katabolizm hemu - powstawanie barwników
Chemiczne składniki komórek
Chemiczne składniki komórek Pierwiastki chemiczne w komórkach: - makroelementy (pierwiastki biogenne) H, O, C, N, S, P Ca, Mg, K, Na, Cl >1% suchej masy - mikroelementy Fe, Cu, Mn, Mo, B, Zn, Co, J, F
Laboratorium Inżynierii Bioreaktorów
Laboratorium Inżynierii Bioreaktorów Ćwiczenie nr 1 Reaktor chemiczny: Wyznaczanie równania kinetycznego oraz charakterystyka reaktorów o działaniu ciągłym Cele ćwiczenia: 1 Wyznaczenie równania kinetycznego
Ćwiczenie 4. Identyfikacja wybranych cukrów w oparciu o niektóre reakcje charakterystyczne
Klasyczna Analiza Jakościowa Organiczna, Ćw. 4 - Identyfikacja wybranych cukrów Ćwiczenie 4 Identyfikacja wybranych cukrów w oparciu o niektóre reakcje charakterystyczne Zagadnienia teoretyczne: 1. Budowa
ĆWICZENIE I - BIAŁKA. Celem ćwiczenia jest zapoznanie się z właściwościami fizykochemicznymi białek i ich reakcjami charakterystycznymi.
ĆWICZENIE I - BIAŁKA Celem ćwiczenia jest zapoznanie się z właściwościami fizykochemicznymi białek i ich reakcjami charakterystycznymi. Odczynniki: - wodny 1% roztwór siarczanu(vi) miedzi(ii), - 10% wodny
Protokół: Reakcje charakterystyczne cukrowców
Protokół: Reakcje charakterystyczne cukrowców 1. Rekcja na obecność cukrów: próba Molischa z -naftolem Jest to najbardziej ogólna reakcja na cukrowce, tak wolne jak i związane. Ujemny jej wynik wyklucza
ĆWICZENIE 2 KONDUKTOMETRIA
ĆWICZENIE 2 KONDUKTOMETRIA 1. Oznaczanie słabych kwasów w sokach i syropach owocowych metodą miareczkowania konduktometrycznego Celem ćwiczenia jest ilościowe oznaczenie zawartości słabych kwasów w sokach
SCENARIUSZ ZAJĘĆ SZKOLNEGO KOŁA NAUKOWEGO Z PRZEDMIOTU BIOLOGIA PROWADZONEGO W RAMACH PROJEKTU AKADEMIA UCZNIOWSKA
SCENARIUSZ ZAJĘĆ SZKOLNEGO KOŁA NAUKOWEGO Z PRZEDMIOTU BIOLOGIA PROWADZONEGO W RAMACH PROJEKTU AKADEMIA UCZNIOWSKA Temat lekcji Jaki wpływ na skrobię ma ślina i proszek do prania? Na podstawie pracy uczniów
ĆWICZENIE II Kinetyka reakcji akwatacji kompleksu [Co III Cl(NH 3 ) 5 ]Cl 2 Wpływ wybranych czynników na kinetykę reakcji akwatacji
ĆWICZENIE II Kinetyka reakcji akwatacji kompleksu [Co III Cl(NH 3 ) 5 ]Cl 2 Wpływ wybranych czynników na kinetykę reakcji akwatacji Odczynniki chemiczne związek kompleksowy [CoCl(NH 3 ) 5 ]Cl 2 ; stężony
Zakład Biologii Sanitarnej i Ekotechniki ĆWICZENIE 2 BUDOWA I FUNKCJE ENZYMÓW. ZASTOSOWANIE BADAŃ ENZYMATYCZNYCH W INŻYNIERII ŚRODOWISKA.
ĆWICZENIE 2 BUDOWA I FUNKCJE ENZYMÓW. ZASTOSOWANIE BADAŃ ENZYMATYCZNYCH W INŻYNIERII ŚRODOWISKA. /Opiekun merytoryczny: dr hab. Teodora M. Traczewska, prof. nadzw. PWr modyfikacja: dr inż. Agnieszka Trusz-Zdybek
STĘŻENIE JONÓW WODOROWYCH. DYSOCJACJA JONOWA. REAKTYWNOŚĆ METALI
Ćwiczenie 8 Semestr 2 STĘŻENIE JONÓW WODOROWYCH. DYSOCJACJA JONOWA. REAKTYWNOŚĆ METALI Obowiązujące zagadnienia: Stężenie jonów wodorowych: ph, poh, iloczyn jonowy wody, obliczenia rachunkowe, wskaźniki
Zakład Biologii Molekularnej Materiały do ćwiczeń z przedmiotu: BIOLOGIA MOLEKULARNA
Zakład Biologii Molekularnej Materiały do ćwiczeń z przedmiotu: BIOLOGIA MOLEKULARNA Zakład Biologii Molekularnej Wydział Farmaceutyczny, WUM ul. Banacha 1, 02-097 Warszawa tel. 22 572 0735, 606448502
Scenariusz lekcji chemii w klasie III gimnazjum. Temat lekcji: Białka skład pierwiastkowy, budowa, właściwości i reakcje charakterystyczne
Scenariusz lekcji chemii w klasie III gimnazjum Temat lekcji: Białka skład pierwiastkowy, budowa, właściwości i reakcje charakterystyczne Czas trwania lekcji: 2x 45 minut Cele lekcji: 1. Ogólny zapoznanie
Projektowanie Procesów Biotechnologicznych
Projektowanie Procesów Biotechnologicznych wykład 14 styczeń 2014 Kinetyka prostych reakcji enzymatycznych Kinetyka hamowania reakcji enzymatycznych 1 Enzymy - substancje białkowe katalizujące przemiany
Cukry - czy każdy cukier jest słodki? Wykrywanie skrobi.
1 Cukry - czy każdy cukier jest słodki? Wykrywanie skrobi. Czas trwania zajęć: 45 minut Pojęcia kluczowe: - skrobia, - wielocukier, - glukoza, - rośliny Hipoteza sformułowana przez uczniów: 1. Istnieją
Nazwy pierwiastków: ...
Zadanie 1. [ 3 pkt.] Na podstawie podanych informacji ustal nazwy pierwiastków X, Y, Z i zapisz je we wskazanych miejscach. I. Atom pierwiastka X w reakcjach chemicznych może tworzyć jon zawierający 20
WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z CHEMII
KOD UCZNIA... WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z CHEMII Termin: 16.03. 2010 r. godz. 10 00 Czas pracy: 90 minut ETAP III Ilość punktów za rozwiązanie zadań Część I Część II Część III numer zadania numer
TaqNovaHS. Polimeraza DNA RP902A, RP905A, RP910A, RP925A RP902, RP905, RP910, RP925
TaqNovaHS RP902A, RP905A, RP910A, RP925A RP902, RP905, RP910, RP925 RP902A, RP905A, RP910A, RP925A RP902, RP905, RP910, RP925 TaqNovaHS Polimeraza TaqNovaHS jest mieszaniną termostabilnej polimerazy DNA
ENZYMY. KINETYKA REAKCJI ENZYMATYCZNYCH
Ćwiczenie 7 ENZYMY. KINETYKA REAKCJI ENZYMATYCZNYCH Część doświadczalna obejmuje: - wyznaczenie optimum ph dla reakcji katalizowanej przez kwaśną fosfatazę - wyznaczenie szybkości początkowej reakcji katalizowanej
Ćwiczenie nr 5 - Reaktywne formy tlenu
Ćwiczenie nr 5 - Reaktywne formy tlenu I. Oznaczenie ilościowe glutationu (GSH) metodą Ellmana II. Pomiar całkowitej zdolności antyoksydacyjnej substancji metodą redukcji rodnika DPPH Celem ćwiczeń jest:
Analiza ilościowa. Kompleksometria Opracowanie: mgr inż. Przemysław Krawczyk
Analiza ilościowa. Kompleksometria Opracowanie: mgr inż. Przemysław Krawczyk Kompleksometria to dział objętościowej analizy ilościowej, w którym wykorzystuje się reakcje tworzenia związków kompleksowych.
Laboratorium Inżynierii Bioreaktorów
Laboratorium Inżynierii Bioreaktorów Ćwiczenie nr 3 Reaktor chemiczny: Wyznaczanie równania kinetycznego oraz charakterystyka reaktorów o działaniu ciągłym (kaskada reaktorów) Cele ćwiczenia: 1 Wyznaczenie
Zastosowanie metody Lowry ego do oznaczenia białka w cukrze białym
Zastosowanie metody Lowry ego do oznaczenia białka w cukrze białym Dr inż. Bożena Wnuk Mgr inż. Anna Wysocka Seminarium Aktualne zagadnienia dotyczące jakości w przemyśle cukrowniczym Łódź 10 11 czerwca
RÓWNOWAGI REAKCJI KOMPLEKSOWANIA
POLITECHNIK POZNŃSK ZKŁD CHEMII FIZYCZNEJ ĆWICZENI PRCOWNI CHEMII FIZYCZNEJ RÓWNOWGI REKCJI KOMPLEKSOWNI WSTĘP Ważną grupę reakcji chemicznych wykorzystywanych w chemii fizycznej i analitycznej stanowią
Zadanie 2. (1 pkt) Uzupełnij tabelę, wpisując wzory sumaryczne tlenków w odpowiednie kolumny. CrO CO 2 Fe 2 O 3 BaO SO 3 NO Cu 2 O
Test maturalny Chemia ogólna i nieorganiczna Zadanie 1. (1 pkt) Uzupełnij zdania. Pierwiastek chemiczny o liczbie atomowej 16 znajduje się w.... grupie i. okresie układu okresowego pierwiastków chemicznych,
Sporządzanie roztworów buforowych i badanie ich właściwości
Sporządzanie roztworów buforowych i badanie ich właściwości (opracowanie: Barbara Krajewska) Celem ćwiczenia jest zbadanie właściwości roztworów buforowych. Przygotujemy dwa roztwory buforowe: octanowy
Laboratorium 3 Toksykologia żywności
Laboratorium 3 Toksykologia żywności Literatura zalecana: Orzeł D., Biernat J. (red.) 2012. Wybrane zagadnienia z toksykologii żywności. Wydawnictwo Uniwersytetu Przyrodniczego we Wrocławiu. Wrocław. Str.:
ĆWICZENIE 2. Usuwanie chromu (VI) z zastosowaniem wymieniaczy jonowych
ĆWICZENIE 2 Usuwanie chromu (VI) z zastosowaniem wymieniaczy jonowych Część doświadczalna 1. Metody jonowymienne Do usuwania chromu (VI) można stosować między innymi wymieniacze jonowe. W wyniku przepuszczania
Ćwiczenie 1: Wyznaczanie warunków odporności, korozji i pasywności metali
Ćwiczenie 1: Wyznaczanie warunków odporności, korozji i pasywności metali Wymagane wiadomości Podstawy korozji elektrochemicznej, wykresy E-pH. Wprowadzenie Główną przyczyną zniszczeń materiałów metalicznych
KATALIZA I KINETYKA CHEMICZNA
9 KATALIZA I KINETYKA CHEMICZNA CEL ĆWICZENIA Zapoznanie studenta z procesami katalitycznymi oraz wpływem stężenia, temperatury i obecności katalizatora na szybkość reakcji chemicznej. Zakres obowiązującego
Oznaczanie aktywności proteolitycznej trypsyny Zajęcia 3-godzinne część A, zajęcia 4-godzinne część A i B
znaczanie aktywności proteolitycznej trypsyny Zajęcia 3-godzinne część A, zajęcia 4-godzinne część A i B el ćwiczenia elem ćwiczenia jest zapoznanie się z metodą oznaczania aktywności endopeptydaz na przykładzie
6. Wykorzystanie tyrozynazy otrzymywanej z pieczarki dwuzarodnikowej (Agaricus Bisporus) do produkcji L-DOPA
6. Wykorzystanie tyrozynazy otrzymywanej z pieczarki dwuzarodnikowej (Agaricus Bisporus) do produkcji L-DOPA L-DOPA (L-3,4-dihydroksyfenyloalanina) jest naturalnym prekursorem dopaminy, jednego z najważniejszych
ĆWICZENIE B: Oznaczenie zawartości chlorków i chromu (VI) w spoiwach mineralnych
ĆWICZEIE B: znaczenie zawartości chlorków i chromu (VI) w spoiwach mineralnych Cel ćwiczenia: Celem ćwiczenia jest oznaczenie zawartości rozpuszczalnego w wodzie chromu (VI) w próbce cementu korzystając
CHEMIA. Wymagania szczegółowe. Wymagania ogólne
CHEMIA Wymagania ogólne Wymagania szczegółowe Uczeń: zapisuje konfiguracje elektronowe atomów pierwiastków do Z = 36 i jonów o podanym ładunku, uwzględniając rozmieszczenie elektronów na podpowłokach [
C 6 H 12 O 6 2 C 2 O 5 OH + 2 CO 2 H = -84 kj/mol
OTRZYMYWANIE BIOETANOLU ETAP II (filtracja) i III (destylacja) CEL ĆWICZENIA: Celem ćwiczenia jest przeprowadzenie procesu filtracji brzeczki fermentacyjnej oraz uzyskanie produktu końcowego (bioetanolu)
Zadanie 2. [2 pkt.] Podaj symbole dwóch kationów i dwóch anionów, dobierając wszystkie jony tak, aby zawierały taką samą liczbę elektronów.
2 Zadanie 1. [1 pkt] Pewien pierwiastek X tworzy cząsteczki X 2. Stwierdzono, że cząsteczki te mogą mieć różne masy cząsteczkowe. Wyjaśnij, dlaczego cząsteczki o tym samym wzorze mogą mieć różne masy cząsteczkowe.
1 X. dx dt. W trakcie hodowli okresowej wyróżnia się 4 główne fazy (Rys. 1) substrat. czas [h]
stężenie [g l -1 ] Ćwiczenie 3: Bioreaktor mikrobiologiczny Cel ćwiczenia: Wyznaczanie równania kinetycznego wzrostu mikroorganizmów oraz współczynników stechiometrycznych w hodowli okresowej szczepu Bacillus
ENZYMOLOGIA. Ćwiczenie 5. α-amylaza (cz. II) Enzymatyczna hydroliza skrobi. Centrum Bioimmobilizacji i Innowacyjnych Materiałów Opakowaniowych
ENZYMOLOGIA Wydział Nauk o Żywności i Rybactwa Centrum Bioimmobilizacji i Innowacyjnych Materiałów Opakowaniowych ul. Klemensa Janickiego 35 71-270 Szczecin Ćwiczenie 5 α-amylaza (cz. II) Enzymatyczna
Spektrofotometryczne wyznaczanie stałej dysocjacji czerwieni fenolowej
Spektrofotometryczne wyznaczanie stałej dysocjacji czerwieni fenolowej Metoda: Spektrofotometria UV-Vis Cel ćwiczenia: Celem ćwiczenia jest zapoznanie studenta z fotometryczną metodą badania stanów równowagi
Mechanizmy działania i regulacji enzymów
Mechanizmy działania i regulacji enzymów Enzymy: są katalizatorami, które zmieniają szybkość reakcji, same nie ulegając zmianie są wysoce specyficzne ich aktywność może być regulowana m.in. przez modyfikacje
Ćwiczenie 4 i 21 (skrypt) ćwiczenie laboratoryjne nr 3 dla e-rolnictwa
Ćwiczenie 4 i 21 (skrypt) ćwiczenie laboratoryjne nr 3 dla e-rolnictwa Właściwości i budowa węglowodanów. Sacharydy są podstawową i bardzo zróżnicowaną grupą związków naturalnych występujących we wszystkich
46 Olimpiada Biologiczna
46 Olimpiada Biologiczna Pracownia biochemiczna Radosław Mazur 22 kwietnia 2017 r. Biochemia Czas: 90 min. Łączna liczba punktów do zdobycia: 35 Na tej pracowni wyjątkowo odpowiedzi na zadania należy udzielić
Katalaza scripted inquiry wersja dla nauczyciela
Katalaza scripted inquiry wersja dla nauczyciela 1. Odniesienie do podstawy programowej 1 a) Cele kształcenia stanowią cele zajęć, możliwe dodatkowe cele wykraczające poza zapisy podstawy (opis umiejętności
REAKCJE CHARAKTERYSTYCZNE WYBRANYCH KATIONÓW
REAKCJE CHARAKTERYSTYCZNE WYBRANYCH KATIONÓW Chemia analityczna jest działem chemii zajmującym się ustalaniem składu jakościowego i ilościowego badanych substancji chemicznych. Analiza jakościowa bada
Cz. XXVIII - c Węglowodany - cukry - sacharydy: disacharydy i polisacharydy
Cz. XXVIII - c Węglowodany - cukry - sacharydy: disacharydy i polisacharydy I. Budowa i właściwości disacharydów Wiązanie między monosacharydami powstaje z udziałem dwóch grup hydroksylowych pochodzących
II. Szybkość reakcji chemicznych
II. Szybkość reakcji chemicznych II-1. Wpływ rodzaju substancji na szybkość reakcji II-2. Wpływ stężenia substratu na szybkość reakcji II-3. Wpływ temperatury na szybkość reakcji II-4. Wpływ rozdrobnienia